1 //===-- ABISysV_x86_64.cpp --------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "ABISysV_x86_64.h"
11
12 #include "lldb/Core/ConstString.h"
13 #include "lldb/Core/DataExtractor.h"
14 #include "lldb/Core/Error.h"
15 #include "lldb/Core/Log.h"
16 #include "lldb/Core/Module.h"
17 #include "lldb/Core/PluginManager.h"
18 #include "lldb/Core/RegisterValue.h"
19 #include "lldb/Core/Value.h"
20 #include "lldb/Core/ValueObjectConstResult.h"
21 #include "lldb/Core/ValueObjectRegister.h"
22 #include "lldb/Core/ValueObjectMemory.h"
23 #include "lldb/Symbol/ClangASTContext.h"
24 #include "lldb/Symbol/UnwindPlan.h"
25 #include "lldb/Target/Target.h"
26 #include "lldb/Target/Process.h"
27 #include "lldb/Target/RegisterContext.h"
28 #include "lldb/Target/StackFrame.h"
29 #include "lldb/Target/Thread.h"
30
31 #include "llvm/ADT/Triple.h"
32
33 using namespace lldb;
34 using namespace lldb_private;
35
36 enum gcc_dwarf_regnums
37 {
38 gcc_dwarf_rax = 0,
39 gcc_dwarf_rdx,
40 gcc_dwarf_rcx,
41 gcc_dwarf_rbx,
42 gcc_dwarf_rsi,
43 gcc_dwarf_rdi,
44 gcc_dwarf_rbp,
45 gcc_dwarf_rsp,
46 gcc_dwarf_r8,
47 gcc_dwarf_r9,
48 gcc_dwarf_r10,
49 gcc_dwarf_r11,
50 gcc_dwarf_r12,
51 gcc_dwarf_r13,
52 gcc_dwarf_r14,
53 gcc_dwarf_r15,
54 gcc_dwarf_rip,
55 gcc_dwarf_xmm0,
56 gcc_dwarf_xmm1,
57 gcc_dwarf_xmm2,
58 gcc_dwarf_xmm3,
59 gcc_dwarf_xmm4,
60 gcc_dwarf_xmm5,
61 gcc_dwarf_xmm6,
62 gcc_dwarf_xmm7,
63 gcc_dwarf_xmm8,
64 gcc_dwarf_xmm9,
65 gcc_dwarf_xmm10,
66 gcc_dwarf_xmm11,
67 gcc_dwarf_xmm12,
68 gcc_dwarf_xmm13,
69 gcc_dwarf_xmm14,
70 gcc_dwarf_xmm15,
71 gcc_dwarf_stmm0,
72 gcc_dwarf_stmm1,
73 gcc_dwarf_stmm2,
74 gcc_dwarf_stmm3,
75 gcc_dwarf_stmm4,
76 gcc_dwarf_stmm5,
77 gcc_dwarf_stmm6,
78 gcc_dwarf_stmm7,
79 gcc_dwarf_ymm0,
80 gcc_dwarf_ymm1,
81 gcc_dwarf_ymm2,
82 gcc_dwarf_ymm3,
83 gcc_dwarf_ymm4,
84 gcc_dwarf_ymm5,
85 gcc_dwarf_ymm6,
86 gcc_dwarf_ymm7,
87 gcc_dwarf_ymm8,
88 gcc_dwarf_ymm9,
89 gcc_dwarf_ymm10,
90 gcc_dwarf_ymm11,
91 gcc_dwarf_ymm12,
92 gcc_dwarf_ymm13,
93 gcc_dwarf_ymm14,
94 gcc_dwarf_ymm15
95 };
96
97 enum gdb_regnums
98 {
99 gdb_rax = 0,
100 gdb_rbx = 1,
101 gdb_rcx = 2,
102 gdb_rdx = 3,
103 gdb_rsi = 4,
104 gdb_rdi = 5,
105 gdb_rbp = 6,
106 gdb_rsp = 7,
107 gdb_r8 = 8,
108 gdb_r9 = 9,
109 gdb_r10 = 10,
110 gdb_r11 = 11,
111 gdb_r12 = 12,
112 gdb_r13 = 13,
113 gdb_r14 = 14,
114 gdb_r15 = 15,
115 gdb_rip = 16,
116 gdb_rflags = 17,
117 gdb_cs = 18,
118 gdb_ss = 19,
119 gdb_ds = 20,
120 gdb_es = 21,
121 gdb_fs = 22,
122 gdb_gs = 23,
123 gdb_stmm0 = 24,
124 gdb_stmm1 = 25,
125 gdb_stmm2 = 26,
126 gdb_stmm3 = 27,
127 gdb_stmm4 = 28,
128 gdb_stmm5 = 29,
129 gdb_stmm6 = 30,
130 gdb_stmm7 = 31,
131 gdb_fctrl = 32, gdb_fcw = gdb_fctrl,
132 gdb_fstat = 33, gdb_fsw = gdb_fstat,
133 gdb_ftag = 34, gdb_ftw = gdb_ftag,
134 gdb_fiseg = 35, gdb_fpu_cs = gdb_fiseg,
135 gdb_fioff = 36, gdb_ip = gdb_fioff,
136 gdb_foseg = 37, gdb_fpu_ds = gdb_foseg,
137 gdb_fooff = 38, gdb_dp = gdb_fooff,
138 gdb_fop = 39,
139 gdb_xmm0 = 40,
140 gdb_xmm1 = 41,
141 gdb_xmm2 = 42,
142 gdb_xmm3 = 43,
143 gdb_xmm4 = 44,
144 gdb_xmm5 = 45,
145 gdb_xmm6 = 46,
146 gdb_xmm7 = 47,
147 gdb_xmm8 = 48,
148 gdb_xmm9 = 49,
149 gdb_xmm10 = 50,
150 gdb_xmm11 = 51,
151 gdb_xmm12 = 52,
152 gdb_xmm13 = 53,
153 gdb_xmm14 = 54,
154 gdb_xmm15 = 55,
155 gdb_mxcsr = 56,
156 gdb_ymm0 = 57,
157 gdb_ymm1 = 58,
158 gdb_ymm2 = 59,
159 gdb_ymm3 = 60,
160 gdb_ymm4 = 61,
161 gdb_ymm5 = 62,
162 gdb_ymm6 = 63,
163 gdb_ymm7 = 64,
164 gdb_ymm8 = 65,
165 gdb_ymm9 = 66,
166 gdb_ymm10 = 67,
167 gdb_ymm11 = 68,
168 gdb_ymm12 = 69,
169 gdb_ymm13 = 70,
170 gdb_ymm14 = 71,
171 gdb_ymm15 = 72
172 };
173
174
175 static RegisterInfo g_register_infos[] =
176 {
177 // NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB NATIVE VALUE REGS INVALIDATE REGS
178 // ======== ======= == === ============= =================== ======================= ===================== =========================== ===================== ====================== ========== ===============
179 { "rax" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rax , gcc_dwarf_rax , LLDB_INVALID_REGNUM , gdb_rax , LLDB_INVALID_REGNUM }, NULL, NULL},
180 { "rbx" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rbx , gcc_dwarf_rbx , LLDB_INVALID_REGNUM , gdb_rbx , LLDB_INVALID_REGNUM }, NULL, NULL},
181 { "rcx" , "arg4", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rcx , gcc_dwarf_rcx , LLDB_REGNUM_GENERIC_ARG4 , gdb_rcx , LLDB_INVALID_REGNUM }, NULL, NULL},
182 { "rdx" , "arg3", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rdx , gcc_dwarf_rdx , LLDB_REGNUM_GENERIC_ARG3 , gdb_rdx , LLDB_INVALID_REGNUM }, NULL, NULL},
183 { "rsi" , "arg2", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rsi , gcc_dwarf_rsi , LLDB_REGNUM_GENERIC_ARG2 , gdb_rsi , LLDB_INVALID_REGNUM }, NULL, NULL},
184 { "rdi" , "arg1", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rdi , gcc_dwarf_rdi , LLDB_REGNUM_GENERIC_ARG1 , gdb_rdi , LLDB_INVALID_REGNUM }, NULL, NULL},
185 { "rbp" , "fp", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rbp , gcc_dwarf_rbp , LLDB_REGNUM_GENERIC_FP , gdb_rbp , LLDB_INVALID_REGNUM }, NULL, NULL},
186 { "rsp" , "sp", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rsp , gcc_dwarf_rsp , LLDB_REGNUM_GENERIC_SP , gdb_rsp , LLDB_INVALID_REGNUM }, NULL, NULL},
187 { "r8" , "arg5", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r8 , gcc_dwarf_r8 , LLDB_REGNUM_GENERIC_ARG5 , gdb_r8 , LLDB_INVALID_REGNUM }, NULL, NULL},
188 { "r9" , "arg6", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r9 , gcc_dwarf_r9 , LLDB_REGNUM_GENERIC_ARG6 , gdb_r9 , LLDB_INVALID_REGNUM }, NULL, NULL},
189 { "r10" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r10 , gcc_dwarf_r10 , LLDB_INVALID_REGNUM , gdb_r10 , LLDB_INVALID_REGNUM }, NULL, NULL},
190 { "r11" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r11 , gcc_dwarf_r11 , LLDB_INVALID_REGNUM , gdb_r11 , LLDB_INVALID_REGNUM }, NULL, NULL},
191 { "r12" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r12 , gcc_dwarf_r12 , LLDB_INVALID_REGNUM , gdb_r12 , LLDB_INVALID_REGNUM }, NULL, NULL},
192 { "r13" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r13 , gcc_dwarf_r13 , LLDB_INVALID_REGNUM , gdb_r13 , LLDB_INVALID_REGNUM }, NULL, NULL},
193 { "r14" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r14 , gcc_dwarf_r14 , LLDB_INVALID_REGNUM , gdb_r14 , LLDB_INVALID_REGNUM }, NULL, NULL},
194 { "r15" , NULL, 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_r15 , gcc_dwarf_r15 , LLDB_INVALID_REGNUM , gdb_r15 , LLDB_INVALID_REGNUM }, NULL, NULL},
195 { "rip" , "pc", 8, 0, eEncodingUint , eFormatHex , { gcc_dwarf_rip , gcc_dwarf_rip , LLDB_REGNUM_GENERIC_PC , gdb_rip , LLDB_INVALID_REGNUM }, NULL, NULL},
196 { "rflags", NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_REGNUM_GENERIC_FLAGS , gdb_rflags , LLDB_INVALID_REGNUM }, NULL, NULL},
197 { "cs" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_cs , LLDB_INVALID_REGNUM }, NULL, NULL},
198 { "ss" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_ss , LLDB_INVALID_REGNUM }, NULL, NULL},
199 { "ds" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_ds , LLDB_INVALID_REGNUM }, NULL, NULL},
200 { "es" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_es , LLDB_INVALID_REGNUM }, NULL, NULL},
201 { "fs" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fs , LLDB_INVALID_REGNUM }, NULL, NULL},
202 { "gs" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_gs , LLDB_INVALID_REGNUM }, NULL, NULL},
203 { "stmm0" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm0 , gcc_dwarf_stmm0 , LLDB_INVALID_REGNUM , gdb_stmm0 , LLDB_INVALID_REGNUM }, NULL, NULL},
204 { "stmm1" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm1 , gcc_dwarf_stmm1 , LLDB_INVALID_REGNUM , gdb_stmm1 , LLDB_INVALID_REGNUM }, NULL, NULL},
205 { "stmm2" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm2 , gcc_dwarf_stmm2 , LLDB_INVALID_REGNUM , gdb_stmm2 , LLDB_INVALID_REGNUM }, NULL, NULL},
206 { "stmm3" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm3 , gcc_dwarf_stmm3 , LLDB_INVALID_REGNUM , gdb_stmm3 , LLDB_INVALID_REGNUM }, NULL, NULL},
207 { "stmm4" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm4 , gcc_dwarf_stmm4 , LLDB_INVALID_REGNUM , gdb_stmm4 , LLDB_INVALID_REGNUM }, NULL, NULL},
208 { "stmm5" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm5 , gcc_dwarf_stmm5 , LLDB_INVALID_REGNUM , gdb_stmm5 , LLDB_INVALID_REGNUM }, NULL, NULL},
209 { "stmm6" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm6 , gcc_dwarf_stmm6 , LLDB_INVALID_REGNUM , gdb_stmm6 , LLDB_INVALID_REGNUM }, NULL, NULL},
210 { "stmm7" , NULL, 10, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_stmm7 , gcc_dwarf_stmm7 , LLDB_INVALID_REGNUM , gdb_stmm7 , LLDB_INVALID_REGNUM }, NULL, NULL},
211 { "fctrl" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fctrl , LLDB_INVALID_REGNUM }, NULL, NULL},
212 { "fstat" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fstat , LLDB_INVALID_REGNUM }, NULL, NULL},
213 { "ftag" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_ftag , LLDB_INVALID_REGNUM }, NULL, NULL},
214 { "fiseg" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fiseg , LLDB_INVALID_REGNUM }, NULL, NULL},
215 { "fioff" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fioff , LLDB_INVALID_REGNUM }, NULL, NULL},
216 { "foseg" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_foseg , LLDB_INVALID_REGNUM }, NULL, NULL},
217 { "fooff" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fooff , LLDB_INVALID_REGNUM }, NULL, NULL},
218 { "fop" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_fop , LLDB_INVALID_REGNUM }, NULL, NULL},
219 { "xmm0" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm0 , gcc_dwarf_xmm0 , LLDB_INVALID_REGNUM , gdb_xmm0 , LLDB_INVALID_REGNUM }, NULL, NULL},
220 { "xmm1" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm1 , gcc_dwarf_xmm1 , LLDB_INVALID_REGNUM , gdb_xmm1 , LLDB_INVALID_REGNUM }, NULL, NULL},
221 { "xmm2" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm2 , gcc_dwarf_xmm2 , LLDB_INVALID_REGNUM , gdb_xmm2 , LLDB_INVALID_REGNUM }, NULL, NULL},
222 { "xmm3" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm3 , gcc_dwarf_xmm3 , LLDB_INVALID_REGNUM , gdb_xmm3 , LLDB_INVALID_REGNUM }, NULL, NULL},
223 { "xmm4" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm4 , gcc_dwarf_xmm4 , LLDB_INVALID_REGNUM , gdb_xmm4 , LLDB_INVALID_REGNUM }, NULL, NULL},
224 { "xmm5" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm5 , gcc_dwarf_xmm5 , LLDB_INVALID_REGNUM , gdb_xmm5 , LLDB_INVALID_REGNUM }, NULL, NULL},
225 { "xmm6" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm6 , gcc_dwarf_xmm6 , LLDB_INVALID_REGNUM , gdb_xmm6 , LLDB_INVALID_REGNUM }, NULL, NULL},
226 { "xmm7" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm7 , gcc_dwarf_xmm7 , LLDB_INVALID_REGNUM , gdb_xmm7 , LLDB_INVALID_REGNUM }, NULL, NULL},
227 { "xmm8" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm8 , gcc_dwarf_xmm8 , LLDB_INVALID_REGNUM , gdb_xmm8 , LLDB_INVALID_REGNUM }, NULL, NULL},
228 { "xmm9" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm9 , gcc_dwarf_xmm9 , LLDB_INVALID_REGNUM , gdb_xmm9 , LLDB_INVALID_REGNUM }, NULL, NULL},
229 { "xmm10" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm10 , gcc_dwarf_xmm10 , LLDB_INVALID_REGNUM , gdb_xmm10 , LLDB_INVALID_REGNUM }, NULL, NULL},
230 { "xmm11" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm11 , gcc_dwarf_xmm11 , LLDB_INVALID_REGNUM , gdb_xmm11 , LLDB_INVALID_REGNUM }, NULL, NULL},
231 { "xmm12" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm12 , gcc_dwarf_xmm12 , LLDB_INVALID_REGNUM , gdb_xmm12 , LLDB_INVALID_REGNUM }, NULL, NULL},
232 { "xmm13" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm13 , gcc_dwarf_xmm13 , LLDB_INVALID_REGNUM , gdb_xmm13 , LLDB_INVALID_REGNUM }, NULL, NULL},
233 { "xmm14" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm14 , gcc_dwarf_xmm14 , LLDB_INVALID_REGNUM , gdb_xmm14 , LLDB_INVALID_REGNUM }, NULL, NULL},
234 { "xmm15" , NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_xmm15 , gcc_dwarf_xmm15 , LLDB_INVALID_REGNUM , gdb_xmm15 , LLDB_INVALID_REGNUM }, NULL, NULL},
235 { "mxcsr" , NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , LLDB_INVALID_REGNUM , gdb_mxcsr , LLDB_INVALID_REGNUM }, NULL, NULL},
236 { "ymm0" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm0 , gcc_dwarf_ymm0 , LLDB_INVALID_REGNUM , gdb_ymm0 , LLDB_INVALID_REGNUM }, NULL, NULL},
237 { "ymm1" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm1 , gcc_dwarf_ymm1 , LLDB_INVALID_REGNUM , gdb_ymm1 , LLDB_INVALID_REGNUM }, NULL, NULL},
238 { "ymm2" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm2 , gcc_dwarf_ymm2 , LLDB_INVALID_REGNUM , gdb_ymm2 , LLDB_INVALID_REGNUM }, NULL, NULL},
239 { "ymm3" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm3 , gcc_dwarf_ymm3 , LLDB_INVALID_REGNUM , gdb_ymm3 , LLDB_INVALID_REGNUM }, NULL, NULL},
240 { "ymm4" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm4 , gcc_dwarf_ymm4 , LLDB_INVALID_REGNUM , gdb_ymm4 , LLDB_INVALID_REGNUM }, NULL, NULL},
241 { "ymm5" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm5 , gcc_dwarf_ymm5 , LLDB_INVALID_REGNUM , gdb_ymm5 , LLDB_INVALID_REGNUM }, NULL, NULL},
242 { "ymm6" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm6 , gcc_dwarf_ymm6 , LLDB_INVALID_REGNUM , gdb_ymm6 , LLDB_INVALID_REGNUM }, NULL, NULL},
243 { "ymm7" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm7 , gcc_dwarf_ymm7 , LLDB_INVALID_REGNUM , gdb_ymm7 , LLDB_INVALID_REGNUM }, NULL, NULL},
244 { "ymm8" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm8 , gcc_dwarf_ymm8 , LLDB_INVALID_REGNUM , gdb_ymm8 , LLDB_INVALID_REGNUM }, NULL, NULL},
245 { "ymm9" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm9 , gcc_dwarf_ymm9 , LLDB_INVALID_REGNUM , gdb_ymm9 , LLDB_INVALID_REGNUM }, NULL, NULL},
246 { "ymm10" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm10 , gcc_dwarf_ymm10 , LLDB_INVALID_REGNUM , gdb_ymm10 , LLDB_INVALID_REGNUM }, NULL, NULL},
247 { "ymm11" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm11 , gcc_dwarf_ymm11 , LLDB_INVALID_REGNUM , gdb_ymm11 , LLDB_INVALID_REGNUM }, NULL, NULL},
248 { "ymm12" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm12 , gcc_dwarf_ymm12 , LLDB_INVALID_REGNUM , gdb_ymm12 , LLDB_INVALID_REGNUM }, NULL, NULL},
249 { "ymm13" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm13 , gcc_dwarf_ymm13 , LLDB_INVALID_REGNUM , gdb_ymm13 , LLDB_INVALID_REGNUM }, NULL, NULL},
250 { "ymm14" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm14 , gcc_dwarf_ymm14 , LLDB_INVALID_REGNUM , gdb_ymm14 , LLDB_INVALID_REGNUM }, NULL, NULL},
251 { "ymm15" , NULL, 32, 0, eEncodingVector, eFormatVectorOfUInt8, { gcc_dwarf_ymm15 , gcc_dwarf_ymm15 , LLDB_INVALID_REGNUM , gdb_ymm15 , LLDB_INVALID_REGNUM }, NULL, NULL}
252 };
253
254 static const uint32_t k_num_register_infos = sizeof(g_register_infos)/sizeof(RegisterInfo);
255 static bool g_register_info_names_constified = false;
256
257 const lldb_private::RegisterInfo *
GetRegisterInfoArray(uint32_t & count)258 ABISysV_x86_64::GetRegisterInfoArray (uint32_t &count)
259 {
260 // Make the C-string names and alt_names for the register infos into const
261 // C-string values by having the ConstString unique the names in the global
262 // constant C-string pool.
263 if (!g_register_info_names_constified)
264 {
265 g_register_info_names_constified = true;
266 for (uint32_t i=0; i<k_num_register_infos; ++i)
267 {
268 if (g_register_infos[i].name)
269 g_register_infos[i].name = ConstString(g_register_infos[i].name).GetCString();
270 if (g_register_infos[i].alt_name)
271 g_register_infos[i].alt_name = ConstString(g_register_infos[i].alt_name).GetCString();
272 }
273 }
274 count = k_num_register_infos;
275 return g_register_infos;
276 }
277
278
279 size_t
GetRedZoneSize() const280 ABISysV_x86_64::GetRedZoneSize () const
281 {
282 return 128;
283 }
284
285 //------------------------------------------------------------------
286 // Static Functions
287 //------------------------------------------------------------------
288 ABISP
CreateInstance(const ArchSpec & arch)289 ABISysV_x86_64::CreateInstance (const ArchSpec &arch)
290 {
291 static ABISP g_abi_sp;
292 if (arch.GetTriple().getArch() == llvm::Triple::x86_64)
293 {
294 if (!g_abi_sp)
295 g_abi_sp.reset (new ABISysV_x86_64);
296 return g_abi_sp;
297 }
298 return ABISP();
299 }
300
301 bool
PrepareTrivialCall(Thread & thread,addr_t sp,addr_t func_addr,addr_t return_addr,addr_t * arg1_ptr,addr_t * arg2_ptr,addr_t * arg3_ptr,addr_t * arg4_ptr,addr_t * arg5_ptr,addr_t * arg6_ptr) const302 ABISysV_x86_64::PrepareTrivialCall (Thread &thread,
303 addr_t sp,
304 addr_t func_addr,
305 addr_t return_addr,
306 addr_t *arg1_ptr,
307 addr_t *arg2_ptr,
308 addr_t *arg3_ptr,
309 addr_t *arg4_ptr,
310 addr_t *arg5_ptr,
311 addr_t *arg6_ptr) const
312 {
313 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
314
315 if (log)
316 {
317 StreamString s;
318 s.Printf("ABISysV_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 ", return_addr = 0x%" PRIx64,
319 thread.GetID(),
320 (uint64_t)sp,
321 (uint64_t)func_addr,
322 (uint64_t)return_addr);
323
324 if (arg1_ptr)
325 {
326 s.Printf (", arg1 = 0x%" PRIx64, (uint64_t)*arg1_ptr);
327 if (arg2_ptr)
328 {
329 s.Printf (", arg2 = 0x%" PRIx64, (uint64_t)*arg2_ptr);
330 if (arg3_ptr)
331 {
332 s.Printf (", arg3 = 0x%" PRIx64, (uint64_t)*arg3_ptr);
333 if (arg4_ptr)
334 {
335 s.Printf (", arg4 = 0x%" PRIx64, (uint64_t)*arg4_ptr);
336 if (arg5_ptr)
337 {
338 s.Printf (", arg5 = 0x%" PRIx64, (uint64_t)*arg5_ptr);
339 if (arg6_ptr)
340 s.Printf (", arg6 = 0x%" PRIx64, (uint64_t)*arg6_ptr);
341 }
342 }
343 }
344 }
345 }
346 s.PutCString (")");
347 log->PutCString(s.GetString().c_str());
348 }
349
350 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
351 if (!reg_ctx)
352 return false;
353
354 const RegisterInfo *reg_info = NULL;
355 if (arg1_ptr)
356 {
357 reg_info = reg_ctx->GetRegisterInfoByName("rdi", 0);
358 if (log)
359 log->Printf("About to write arg1 (0x%" PRIx64 ") into %s", (uint64_t)*arg1_ptr, reg_info->name);
360
361 if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg1_ptr))
362 return false;
363
364 if (arg2_ptr)
365 {
366 reg_info = reg_ctx->GetRegisterInfoByName("rsi", 0);
367 if (log)
368 log->Printf("About to write arg2 (0x%" PRIx64 ") into %s", (uint64_t)*arg2_ptr, reg_info->name);
369 if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg2_ptr))
370 return false;
371
372 if (arg3_ptr)
373 {
374 reg_info = reg_ctx->GetRegisterInfoByName("rdx", 0);
375 if (log)
376 log->Printf("About to write arg3 (0x%" PRIx64 ") into %s", (uint64_t)*arg3_ptr, reg_info->name);
377 if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg3_ptr))
378 return false;
379
380 if (arg4_ptr)
381 {
382 reg_info = reg_ctx->GetRegisterInfoByName("rcx", 0);
383 if (log)
384 log->Printf("About to write arg4 (0x%" PRIx64 ") into %s", (uint64_t)*arg4_ptr, reg_info->name);
385 if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg4_ptr))
386 return false;
387
388 if (arg5_ptr)
389 {
390 reg_info = reg_ctx->GetRegisterInfoByName("r8", 0);
391 if (log)
392 log->Printf("About to write arg5 (0x%" PRIx64 ") into %s", (uint64_t)*arg5_ptr, reg_info->name);
393 if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg5_ptr))
394 return false;
395
396 if (arg6_ptr)
397 {
398 reg_info = reg_ctx->GetRegisterInfoByName("r9", 0);
399 if (log)
400 log->Printf("About to write arg6 (0x%" PRIx64 ") into %s", (uint64_t)*arg6_ptr, reg_info->name);
401 if (!reg_ctx->WriteRegisterFromUnsigned (reg_info, *arg6_ptr))
402 return false;
403 }
404 }
405 }
406 }
407 }
408 }
409
410
411 // First, align the SP
412
413 if (log)
414 log->Printf("16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, (uint64_t)sp, (uint64_t)(sp & ~0xfull));
415
416 sp &= ~(0xfull); // 16-byte alignment
417
418 // The return address is pushed onto the stack (yes after the alignment...)
419 sp -= 8;
420
421 RegisterValue reg_value;
422 reg_value.SetUInt64 (return_addr);
423
424 if (log)
425 log->Printf("Pushing the return address onto the stack: new SP 0x%" PRIx64 ", return address 0x%" PRIx64, (uint64_t)sp, (uint64_t)return_addr);
426
427 const RegisterInfo *pc_reg_info = reg_ctx->GetRegisterInfoByName("rip");
428 Error error (reg_ctx->WriteRegisterValueToMemory(pc_reg_info, sp, pc_reg_info->byte_size, reg_value));
429 if (error.Fail())
430 return false;
431
432 // %rsp is set to the actual stack value.
433
434 if (log)
435 log->Printf("Writing SP (0x%" PRIx64 ") down", (uint64_t)sp);
436
437 if (!reg_ctx->WriteRegisterFromUnsigned (reg_ctx->GetRegisterInfoByName("rsp"), sp))
438 return false;
439
440 // %rip is set to the address of the called function.
441
442 if (log)
443 log->Printf("Writing new IP (0x%" PRIx64 ") down", (uint64_t)func_addr);
444
445 if (!reg_ctx->WriteRegisterFromUnsigned (pc_reg_info, func_addr))
446 return false;
447
448 return true;
449 }
450
ReadIntegerArgument(Scalar & scalar,unsigned int bit_width,bool is_signed,Thread & thread,uint32_t * argument_register_ids,unsigned int & current_argument_register,addr_t & current_stack_argument)451 static bool ReadIntegerArgument(Scalar &scalar,
452 unsigned int bit_width,
453 bool is_signed,
454 Thread &thread,
455 uint32_t *argument_register_ids,
456 unsigned int ¤t_argument_register,
457 addr_t ¤t_stack_argument)
458 {
459 if (bit_width > 64)
460 return false; // Scalar can't hold large integer arguments
461
462 if (current_argument_register < 6)
463 {
464 scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(argument_register_ids[current_argument_register], 0);
465 current_argument_register++;
466 if (is_signed)
467 scalar.SignExtend (bit_width);
468 }
469 else
470 {
471 uint32_t byte_size = (bit_width + (8-1))/8;
472 Error error;
473 if (thread.GetProcess()->ReadScalarIntegerFromMemory(current_stack_argument, byte_size, is_signed, scalar, error))
474 {
475 current_stack_argument += byte_size;
476 return true;
477 }
478 return false;
479 }
480 return true;
481 }
482
483 bool
GetArgumentValues(Thread & thread,ValueList & values) const484 ABISysV_x86_64::GetArgumentValues (Thread &thread,
485 ValueList &values) const
486 {
487 unsigned int num_values = values.GetSize();
488 unsigned int value_index;
489
490 // Extract the register context so we can read arguments from registers
491
492 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
493
494 if (!reg_ctx)
495 return false;
496
497 // Get the pointer to the first stack argument so we have a place to start
498 // when reading data
499
500 addr_t sp = reg_ctx->GetSP(0);
501
502 if (!sp)
503 return false;
504
505 addr_t current_stack_argument = sp + 8; // jump over return address
506
507 uint32_t argument_register_ids[6];
508
509 argument_register_ids[0] = reg_ctx->GetRegisterInfoByName("rdi", 0)->kinds[eRegisterKindLLDB];
510 argument_register_ids[1] = reg_ctx->GetRegisterInfoByName("rsi", 0)->kinds[eRegisterKindLLDB];
511 argument_register_ids[2] = reg_ctx->GetRegisterInfoByName("rdx", 0)->kinds[eRegisterKindLLDB];
512 argument_register_ids[3] = reg_ctx->GetRegisterInfoByName("rcx", 0)->kinds[eRegisterKindLLDB];
513 argument_register_ids[4] = reg_ctx->GetRegisterInfoByName("r8", 0)->kinds[eRegisterKindLLDB];
514 argument_register_ids[5] = reg_ctx->GetRegisterInfoByName("r9", 0)->kinds[eRegisterKindLLDB];
515
516 unsigned int current_argument_register = 0;
517
518 for (value_index = 0;
519 value_index < num_values;
520 ++value_index)
521 {
522 Value *value = values.GetValueAtIndex(value_index);
523
524 if (!value)
525 return false;
526
527 // We currently only support extracting values with Clang QualTypes.
528 // Do we care about others?
529 ClangASTType clang_type = value->GetClangType();
530 if (!clang_type)
531 return false;
532 bool is_signed;
533
534 if (clang_type.IsIntegerType (is_signed))
535 {
536 ReadIntegerArgument(value->GetScalar(),
537 clang_type.GetBitSize(),
538 is_signed,
539 thread,
540 argument_register_ids,
541 current_argument_register,
542 current_stack_argument);
543 }
544 else if (clang_type.IsPointerType ())
545 {
546 ReadIntegerArgument(value->GetScalar(),
547 clang_type.GetBitSize(),
548 false,
549 thread,
550 argument_register_ids,
551 current_argument_register,
552 current_stack_argument);
553 }
554 }
555
556 return true;
557 }
558
559 Error
SetReturnValueObject(lldb::StackFrameSP & frame_sp,lldb::ValueObjectSP & new_value_sp)560 ABISysV_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value_sp)
561 {
562 Error error;
563 if (!new_value_sp)
564 {
565 error.SetErrorString("Empty value object for return value.");
566 return error;
567 }
568
569 ClangASTType clang_type = new_value_sp->GetClangType();
570 if (!clang_type)
571 {
572 error.SetErrorString ("Null clang type for return value.");
573 return error;
574 }
575
576 Thread *thread = frame_sp->GetThread().get();
577
578 bool is_signed;
579 uint32_t count;
580 bool is_complex;
581
582 RegisterContext *reg_ctx = thread->GetRegisterContext().get();
583
584 bool set_it_simple = false;
585 if (clang_type.IsIntegerType (is_signed) || clang_type.IsPointerType())
586 {
587 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("rax", 0);
588
589 DataExtractor data;
590 size_t num_bytes = new_value_sp->GetData(data);
591 lldb::offset_t offset = 0;
592 if (num_bytes <= 8)
593 {
594 uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
595
596 if (reg_ctx->WriteRegisterFromUnsigned (reg_info, raw_value))
597 set_it_simple = true;
598 }
599 else
600 {
601 error.SetErrorString("We don't support returning longer than 64 bit integer values at present.");
602 }
603
604 }
605 else if (clang_type.IsFloatingPointType (count, is_complex))
606 {
607 if (is_complex)
608 error.SetErrorString ("We don't support returning complex values at present");
609 else
610 {
611 size_t bit_width = clang_type.GetBitSize();
612 if (bit_width <= 64)
613 {
614 const RegisterInfo *xmm0_info = reg_ctx->GetRegisterInfoByName("xmm0", 0);
615 RegisterValue xmm0_value;
616 DataExtractor data;
617 size_t num_bytes = new_value_sp->GetData(data);
618
619 unsigned char buffer[16];
620 ByteOrder byte_order = data.GetByteOrder();
621
622 data.CopyByteOrderedData (0, num_bytes, buffer, 16, byte_order);
623 xmm0_value.SetBytes(buffer, 16, byte_order);
624 reg_ctx->WriteRegister(xmm0_info, xmm0_value);
625 set_it_simple = true;
626 }
627 else
628 {
629 // FIXME - don't know how to do 80 bit long doubles yet.
630 error.SetErrorString ("We don't support returning float values > 64 bits at present");
631 }
632 }
633 }
634
635 if (!set_it_simple)
636 {
637 // Okay we've got a structure or something that doesn't fit in a simple register.
638 // We should figure out where it really goes, but we don't support this yet.
639 error.SetErrorString ("We only support setting simple integer and float return types at present.");
640 }
641
642 return error;
643 }
644
645
646 ValueObjectSP
GetReturnValueObjectSimple(Thread & thread,ClangASTType & return_clang_type) const647 ABISysV_x86_64::GetReturnValueObjectSimple (Thread &thread,
648 ClangASTType &return_clang_type) const
649 {
650 ValueObjectSP return_valobj_sp;
651 Value value;
652
653 if (!return_clang_type)
654 return return_valobj_sp;
655
656 //value.SetContext (Value::eContextTypeClangType, return_value_type);
657 value.SetClangType (return_clang_type);
658
659 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
660 if (!reg_ctx)
661 return return_valobj_sp;
662
663 const uint32_t type_flags = return_clang_type.GetTypeInfo ();
664 if (type_flags & ClangASTType::eTypeIsScalar)
665 {
666 value.SetValueType(Value::eValueTypeScalar);
667
668 bool success = false;
669 if (type_flags & ClangASTType::eTypeIsInteger)
670 {
671 // Extract the register context so we can read arguments from registers
672
673 const size_t byte_size = return_clang_type.GetByteSize();
674 uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(reg_ctx->GetRegisterInfoByName("rax", 0), 0);
675 const bool is_signed = (type_flags & ClangASTType::eTypeIsSigned) != 0;
676 switch (byte_size)
677 {
678 default:
679 break;
680
681 case sizeof(uint64_t):
682 if (is_signed)
683 value.GetScalar() = (int64_t)(raw_value);
684 else
685 value.GetScalar() = (uint64_t)(raw_value);
686 success = true;
687 break;
688
689 case sizeof(uint32_t):
690 if (is_signed)
691 value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
692 else
693 value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
694 success = true;
695 break;
696
697 case sizeof(uint16_t):
698 if (is_signed)
699 value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
700 else
701 value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
702 success = true;
703 break;
704
705 case sizeof(uint8_t):
706 if (is_signed)
707 value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
708 else
709 value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
710 success = true;
711 break;
712 }
713 }
714 else if (type_flags & ClangASTType::eTypeIsFloat)
715 {
716 if (type_flags & ClangASTType::eTypeIsComplex)
717 {
718 // Don't handle complex yet.
719 }
720 else
721 {
722 const size_t byte_size = return_clang_type.GetByteSize();
723 if (byte_size <= sizeof(long double))
724 {
725 const RegisterInfo *xmm0_info = reg_ctx->GetRegisterInfoByName("xmm0", 0);
726 RegisterValue xmm0_value;
727 if (reg_ctx->ReadRegister (xmm0_info, xmm0_value))
728 {
729 DataExtractor data;
730 if (xmm0_value.GetData(data))
731 {
732 lldb::offset_t offset = 0;
733 if (byte_size == sizeof(float))
734 {
735 value.GetScalar() = (float) data.GetFloat(&offset);
736 success = true;
737 }
738 else if (byte_size == sizeof(double))
739 {
740 value.GetScalar() = (double) data.GetDouble(&offset);
741 success = true;
742 }
743 else if (byte_size == sizeof(long double))
744 {
745 // Don't handle long double since that can be encoded as 80 bit floats...
746 }
747 }
748 }
749 }
750 }
751 }
752
753 if (success)
754 return_valobj_sp = ValueObjectConstResult::Create (thread.GetStackFrameAtIndex(0).get(),
755 value,
756 ConstString(""));
757
758 }
759 else if (type_flags & ClangASTType::eTypeIsPointer)
760 {
761 unsigned rax_id = reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
762 value.GetScalar() = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0);
763 value.SetValueType(Value::eValueTypeScalar);
764 return_valobj_sp = ValueObjectConstResult::Create (thread.GetStackFrameAtIndex(0).get(),
765 value,
766 ConstString(""));
767 }
768 else if (type_flags & ClangASTType::eTypeIsVector)
769 {
770 const size_t byte_size = return_clang_type.GetByteSize();
771 if (byte_size > 0)
772 {
773
774 const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("ymm0", 0);
775 if (altivec_reg == NULL)
776 {
777 altivec_reg = reg_ctx->GetRegisterInfoByName("xmm0", 0);
778 if (altivec_reg == NULL)
779 altivec_reg = reg_ctx->GetRegisterInfoByName("mm0", 0);
780 }
781
782 if (altivec_reg)
783 {
784 if (byte_size <= altivec_reg->byte_size)
785 {
786 ProcessSP process_sp (thread.GetProcess());
787 if (process_sp)
788 {
789 std::unique_ptr<DataBufferHeap> heap_data_ap (new DataBufferHeap(byte_size, 0));
790 const ByteOrder byte_order = process_sp->GetByteOrder();
791 RegisterValue reg_value;
792 if (reg_ctx->ReadRegister(altivec_reg, reg_value))
793 {
794 Error error;
795 if (reg_value.GetAsMemoryData (altivec_reg,
796 heap_data_ap->GetBytes(),
797 heap_data_ap->GetByteSize(),
798 byte_order,
799 error))
800 {
801 DataExtractor data (DataBufferSP (heap_data_ap.release()),
802 byte_order,
803 process_sp->GetTarget().GetArchitecture().GetAddressByteSize());
804 return_valobj_sp = ValueObjectConstResult::Create (&thread,
805 return_clang_type,
806 ConstString(""),
807 data);
808 }
809 }
810 }
811 }
812 }
813 }
814 }
815
816 return return_valobj_sp;
817 }
818
819 ValueObjectSP
GetReturnValueObjectImpl(Thread & thread,ClangASTType & return_clang_type) const820 ABISysV_x86_64::GetReturnValueObjectImpl (Thread &thread, ClangASTType &return_clang_type) const
821 {
822 ValueObjectSP return_valobj_sp;
823
824 if (!return_clang_type)
825 return return_valobj_sp;
826
827 ExecutionContext exe_ctx (thread.shared_from_this());
828 return_valobj_sp = GetReturnValueObjectSimple(thread, return_clang_type);
829 if (return_valobj_sp)
830 return return_valobj_sp;
831
832 RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
833 if (!reg_ctx_sp)
834 return return_valobj_sp;
835
836 const size_t bit_width = return_clang_type.GetBitSize();
837 if (return_clang_type.IsAggregateType())
838 {
839 Target *target = exe_ctx.GetTargetPtr();
840 bool is_memory = true;
841 if (bit_width <= 128)
842 {
843 ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
844 DataBufferSP data_sp (new DataBufferHeap(16, 0));
845 DataExtractor return_ext (data_sp,
846 target_byte_order,
847 target->GetArchitecture().GetAddressByteSize());
848
849 const RegisterInfo *rax_info = reg_ctx_sp->GetRegisterInfoByName("rax", 0);
850 const RegisterInfo *rdx_info = reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
851 const RegisterInfo *xmm0_info = reg_ctx_sp->GetRegisterInfoByName("xmm0", 0);
852 const RegisterInfo *xmm1_info = reg_ctx_sp->GetRegisterInfoByName("xmm1", 0);
853
854 RegisterValue rax_value, rdx_value, xmm0_value, xmm1_value;
855 reg_ctx_sp->ReadRegister (rax_info, rax_value);
856 reg_ctx_sp->ReadRegister (rdx_info, rdx_value);
857 reg_ctx_sp->ReadRegister (xmm0_info, xmm0_value);
858 reg_ctx_sp->ReadRegister (xmm1_info, xmm1_value);
859
860 DataExtractor rax_data, rdx_data, xmm0_data, xmm1_data;
861
862 rax_value.GetData(rax_data);
863 rdx_value.GetData(rdx_data);
864 xmm0_value.GetData(xmm0_data);
865 xmm1_value.GetData(xmm1_data);
866
867 uint32_t fp_bytes = 0; // Tracks how much of the xmm registers we've consumed so far
868 uint32_t integer_bytes = 0; // Tracks how much of the rax/rds registers we've consumed so far
869
870 const uint32_t num_children = return_clang_type.GetNumFields ();
871
872 // Since we are in the small struct regime, assume we are not in memory.
873 is_memory = false;
874
875 for (uint32_t idx = 0; idx < num_children; idx++)
876 {
877 std::string name;
878 uint64_t field_bit_offset = 0;
879 bool is_signed;
880 bool is_complex;
881 uint32_t count;
882
883 ClangASTType field_clang_type = return_clang_type.GetFieldAtIndex (idx, name, &field_bit_offset, NULL, NULL);
884 const size_t field_bit_width = field_clang_type.GetBitSize();
885
886 // If there are any unaligned fields, this is stored in memory.
887 if (field_bit_offset % field_bit_width != 0)
888 {
889 is_memory = true;
890 break;
891 }
892
893 uint32_t field_byte_width = field_bit_width/8;
894 uint32_t field_byte_offset = field_bit_offset/8;
895
896
897 DataExtractor *copy_from_extractor = NULL;
898 uint32_t copy_from_offset = 0;
899
900 if (field_clang_type.IsIntegerType (is_signed) || field_clang_type.IsPointerType ())
901 {
902 if (integer_bytes < 8)
903 {
904 if (integer_bytes + field_byte_width <= 8)
905 {
906 // This is in RAX, copy from register to our result structure:
907 copy_from_extractor = &rax_data;
908 copy_from_offset = integer_bytes;
909 integer_bytes += field_byte_width;
910 }
911 else
912 {
913 // The next field wouldn't fit in the remaining space, so we pushed it to rdx.
914 copy_from_extractor = &rdx_data;
915 copy_from_offset = 0;
916 integer_bytes = 8 + field_byte_width;
917
918 }
919 }
920 else if (integer_bytes + field_byte_width <= 16)
921 {
922 copy_from_extractor = &rdx_data;
923 copy_from_offset = integer_bytes - 8;
924 integer_bytes += field_byte_width;
925 }
926 else
927 {
928 // The last field didn't fit. I can't see how that would happen w/o the overall size being
929 // greater than 16 bytes. For now, return a NULL return value object.
930 return return_valobj_sp;
931 }
932 }
933 else if (field_clang_type.IsFloatingPointType (count, is_complex))
934 {
935 // Structs with long doubles are always passed in memory.
936 if (field_bit_width == 128)
937 {
938 is_memory = true;
939 break;
940 }
941 else if (field_bit_width == 64)
942 {
943 // These have to be in a single xmm register.
944 if (fp_bytes == 0)
945 copy_from_extractor = &xmm0_data;
946 else
947 copy_from_extractor = &xmm1_data;
948
949 copy_from_offset = 0;
950 fp_bytes += field_byte_width;
951 }
952 else if (field_bit_width == 32)
953 {
954 // This one is kind of complicated. If we are in an "eightbyte" with another float, we'll
955 // be stuffed into an xmm register with it. If we are in an "eightbyte" with one or more ints,
956 // then we will be stuffed into the appropriate GPR with them.
957 bool in_gpr;
958 if (field_byte_offset % 8 == 0)
959 {
960 // We are at the beginning of one of the eightbytes, so check the next element (if any)
961 if (idx == num_children - 1)
962 in_gpr = false;
963 else
964 {
965 uint64_t next_field_bit_offset = 0;
966 ClangASTType next_field_clang_type = return_clang_type.GetFieldAtIndex (idx + 1,
967 name,
968 &next_field_bit_offset,
969 NULL,
970 NULL);
971 if (next_field_clang_type.IsIntegerType (is_signed))
972 in_gpr = true;
973 else
974 {
975 copy_from_offset = 0;
976 in_gpr = false;
977 }
978 }
979
980 }
981 else if (field_byte_offset % 4 == 0)
982 {
983 // We are inside of an eightbyte, so see if the field before us is floating point:
984 // This could happen if somebody put padding in the structure.
985 if (idx == 0)
986 in_gpr = false;
987 else
988 {
989 uint64_t prev_field_bit_offset = 0;
990 ClangASTType prev_field_clang_type = return_clang_type.GetFieldAtIndex (idx - 1,
991 name,
992 &prev_field_bit_offset,
993 NULL,
994 NULL);
995 if (prev_field_clang_type.IsIntegerType (is_signed))
996 in_gpr = true;
997 else
998 {
999 copy_from_offset = 4;
1000 in_gpr = false;
1001 }
1002 }
1003
1004 }
1005 else
1006 {
1007 is_memory = true;
1008 continue;
1009 }
1010
1011 // Okay, we've figured out whether we are in GPR or XMM, now figure out which one.
1012 if (in_gpr)
1013 {
1014 if (integer_bytes < 8)
1015 {
1016 // This is in RAX, copy from register to our result structure:
1017 copy_from_extractor = &rax_data;
1018 copy_from_offset = integer_bytes;
1019 integer_bytes += field_byte_width;
1020 }
1021 else
1022 {
1023 copy_from_extractor = &rdx_data;
1024 copy_from_offset = integer_bytes - 8;
1025 integer_bytes += field_byte_width;
1026 }
1027 }
1028 else
1029 {
1030 if (fp_bytes < 8)
1031 copy_from_extractor = &xmm0_data;
1032 else
1033 copy_from_extractor = &xmm1_data;
1034
1035 fp_bytes += field_byte_width;
1036 }
1037 }
1038 }
1039
1040 // These two tests are just sanity checks. If I somehow get the
1041 // type calculation wrong above it is better to just return nothing
1042 // than to assert or crash.
1043 if (!copy_from_extractor)
1044 return return_valobj_sp;
1045 if (copy_from_offset + field_byte_width > copy_from_extractor->GetByteSize())
1046 return return_valobj_sp;
1047
1048 copy_from_extractor->CopyByteOrderedData (copy_from_offset,
1049 field_byte_width,
1050 data_sp->GetBytes() + field_byte_offset,
1051 field_byte_width,
1052 target_byte_order);
1053 }
1054
1055 if (!is_memory)
1056 {
1057 // The result is in our data buffer. Let's make a variable object out of it:
1058 return_valobj_sp = ValueObjectConstResult::Create (&thread,
1059 return_clang_type,
1060 ConstString(""),
1061 return_ext);
1062 }
1063 }
1064
1065
1066 // FIXME: This is just taking a guess, rax may very well no longer hold the return storage location.
1067 // If we are going to do this right, when we make a new frame we should check to see if it uses a memory
1068 // return, and if we are at the first instruction and if so stash away the return location. Then we would
1069 // only return the memory return value if we know it is valid.
1070
1071 if (is_memory)
1072 {
1073 unsigned rax_id = reg_ctx_sp->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
1074 lldb::addr_t storage_addr = (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id, 0);
1075 return_valobj_sp = ValueObjectMemory::Create (&thread,
1076 "",
1077 Address (storage_addr, NULL),
1078 return_clang_type);
1079 }
1080 }
1081
1082 return return_valobj_sp;
1083 }
1084
1085 bool
CreateFunctionEntryUnwindPlan(UnwindPlan & unwind_plan)1086 ABISysV_x86_64::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
1087 {
1088 uint32_t reg_kind = unwind_plan.GetRegisterKind();
1089 uint32_t sp_reg_num = LLDB_INVALID_REGNUM;
1090 uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
1091
1092 switch (reg_kind)
1093 {
1094 case eRegisterKindDWARF:
1095 case eRegisterKindGCC:
1096 sp_reg_num = gcc_dwarf_rsp;
1097 pc_reg_num = gcc_dwarf_rip;
1098 break;
1099
1100 case eRegisterKindGDB:
1101 sp_reg_num = gdb_rsp;
1102 pc_reg_num = gdb_rip;
1103 break;
1104
1105 case eRegisterKindGeneric:
1106 sp_reg_num = LLDB_REGNUM_GENERIC_SP;
1107 pc_reg_num = LLDB_REGNUM_GENERIC_PC;
1108 break;
1109 }
1110
1111 if (sp_reg_num == LLDB_INVALID_REGNUM ||
1112 pc_reg_num == LLDB_INVALID_REGNUM)
1113 return false;
1114
1115 UnwindPlan::RowSP row(new UnwindPlan::Row);
1116 row->SetCFARegister (sp_reg_num);
1117 row->SetCFAOffset (8);
1118 row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -8, false);
1119 unwind_plan.AppendRow (row);
1120 unwind_plan.SetSourceName ("x86_64 at-func-entry default");
1121 unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
1122 return true;
1123 }
1124
1125 bool
CreateDefaultUnwindPlan(UnwindPlan & unwind_plan)1126 ABISysV_x86_64::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
1127 {
1128 uint32_t reg_kind = unwind_plan.GetRegisterKind();
1129 uint32_t fp_reg_num = LLDB_INVALID_REGNUM;
1130 uint32_t sp_reg_num = LLDB_INVALID_REGNUM;
1131 uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
1132
1133 switch (reg_kind)
1134 {
1135 case eRegisterKindDWARF:
1136 case eRegisterKindGCC:
1137 fp_reg_num = gcc_dwarf_rbp;
1138 sp_reg_num = gcc_dwarf_rsp;
1139 pc_reg_num = gcc_dwarf_rip;
1140 break;
1141
1142 case eRegisterKindGDB:
1143 fp_reg_num = gdb_rbp;
1144 sp_reg_num = gdb_rsp;
1145 pc_reg_num = gdb_rip;
1146 break;
1147
1148 case eRegisterKindGeneric:
1149 fp_reg_num = LLDB_REGNUM_GENERIC_FP;
1150 sp_reg_num = LLDB_REGNUM_GENERIC_SP;
1151 pc_reg_num = LLDB_REGNUM_GENERIC_PC;
1152 break;
1153 }
1154
1155 if (fp_reg_num == LLDB_INVALID_REGNUM ||
1156 sp_reg_num == LLDB_INVALID_REGNUM ||
1157 pc_reg_num == LLDB_INVALID_REGNUM)
1158 return false;
1159
1160 UnwindPlan::RowSP row(new UnwindPlan::Row);
1161
1162 const int32_t ptr_size = 8;
1163 row->SetCFARegister (LLDB_REGNUM_GENERIC_FP);
1164 row->SetCFAOffset (2 * ptr_size);
1165 row->SetOffset (0);
1166
1167 row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
1168 row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
1169 row->SetRegisterLocationToAtCFAPlusOffset(sp_reg_num, ptr_size * 0, true);
1170
1171 unwind_plan.AppendRow (row);
1172 unwind_plan.SetSourceName ("x86_64 default unwind plan");
1173 unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
1174 unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
1175 return true;
1176 }
1177
1178 bool
RegisterIsVolatile(const RegisterInfo * reg_info)1179 ABISysV_x86_64::RegisterIsVolatile (const RegisterInfo *reg_info)
1180 {
1181 return !RegisterIsCalleeSaved (reg_info);
1182 }
1183
1184
1185
1186 // See "Register Usage" in the
1187 // "System V Application Binary Interface"
1188 // "AMD64 Architecture Processor Supplement"
1189 // (or "x86-64(tm) Architecture Processor Supplement" in earlier revisions)
1190 // (this doc is also commonly referred to as the x86-64/AMD64 psABI)
1191 // Edited by Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell
1192 // current version is 0.99.6 released 2012-07-02 at http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf
1193
1194 bool
RegisterIsCalleeSaved(const RegisterInfo * reg_info)1195 ABISysV_x86_64::RegisterIsCalleeSaved (const RegisterInfo *reg_info)
1196 {
1197 if (reg_info)
1198 {
1199 // Preserved registers are :
1200 // rbx, rsp, rbp, r12, r13, r14, r15
1201 // mxcsr (partially preserved)
1202 // x87 control word
1203
1204 const char *name = reg_info->name;
1205 if (name[0] == 'r')
1206 {
1207 switch (name[1])
1208 {
1209 case '1': // r12, r13, r14, r15
1210 if (name[2] >= '2' && name[2] <= '5')
1211 return name[3] == '\0';
1212 break;
1213
1214 default:
1215 break;
1216 }
1217 }
1218
1219 // Accept shorter-variant versions, rbx/ebx, rip/ eip, etc.
1220 if (name[0] == 'r' || name[0] == 'e')
1221 {
1222 switch (name[1])
1223 {
1224 case 'b': // rbp, rbx
1225 if (name[2] == 'p' || name[2] == 'x')
1226 return name[3] == '\0';
1227 break;
1228
1229 case 'i': // rip
1230 if (name[2] == 'p')
1231 return name[3] == '\0';
1232 break;
1233
1234 case 's': // rsp
1235 if (name[2] == 'p')
1236 return name[3] == '\0';
1237 break;
1238
1239 }
1240 }
1241 if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
1242 return true;
1243 if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
1244 return true;
1245 if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
1246 return true;
1247 }
1248 return false;
1249 }
1250
1251
1252
1253 void
Initialize()1254 ABISysV_x86_64::Initialize()
1255 {
1256 PluginManager::RegisterPlugin (GetPluginNameStatic(),
1257 "System V ABI for x86_64 targets",
1258 CreateInstance);
1259 }
1260
1261 void
Terminate()1262 ABISysV_x86_64::Terminate()
1263 {
1264 PluginManager::UnregisterPlugin (CreateInstance);
1265 }
1266
1267 lldb_private::ConstString
GetPluginNameStatic()1268 ABISysV_x86_64::GetPluginNameStatic()
1269 {
1270 static ConstString g_name("sysv-x86_64");
1271 return g_name;
1272 }
1273
1274 //------------------------------------------------------------------
1275 // PluginInterface protocol
1276 //------------------------------------------------------------------
1277 lldb_private::ConstString
GetPluginName()1278 ABISysV_x86_64::GetPluginName()
1279 {
1280 return GetPluginNameStatic();
1281 }
1282
1283 uint32_t
GetPluginVersion()1284 ABISysV_x86_64::GetPluginVersion()
1285 {
1286 return 1;
1287 }
1288
1289