1 #define MINIMAL_STDERR_OUTPUT
2
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
5 #include "llvm/ExecutionEngine/MCJIT.h"
6 #include "llvm/ExecutionEngine/ObjectCache.h"
7 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
8 #include "llvm/IR/DataLayout.h"
9 #include "llvm/IR/DerivedTypes.h"
10 #include "llvm/IR/IRBuilder.h"
11 #include "llvm/IR/LLVMContext.h"
12 #include "llvm/IR/LegacyPassManager.h"
13 #include "llvm/IR/Module.h"
14 #include "llvm/IR/Verifier.h"
15 #include "llvm/IRReader/IRReader.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/FileSystem.h"
18 #include "llvm/Support/Path.h"
19 #include "llvm/Support/SourceMgr.h"
20 #include "llvm/Support/TargetSelect.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Transforms/Scalar.h"
23 #include <cctype>
24 #include <cstdio>
25 #include <map>
26 #include <string>
27 #include <vector>
28 using namespace llvm;
29
30 //===----------------------------------------------------------------------===//
31 // Command-line options
32 //===----------------------------------------------------------------------===//
33
34 cl::opt<std::string>
35 InputIR("input-IR",
36 cl::desc("Specify the name of an IR file to load for function definitions"),
37 cl::value_desc("input IR file name"));
38
39 cl::opt<bool>
40 UseObjectCache("use-object-cache",
41 cl::desc("Enable use of the MCJIT object caching"),
42 cl::init(false));
43
44 //===----------------------------------------------------------------------===//
45 // Lexer
46 //===----------------------------------------------------------------------===//
47
48 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
49 // of these for known things.
50 enum Token {
51 tok_eof = -1,
52
53 // commands
54 tok_def = -2, tok_extern = -3,
55
56 // primary
57 tok_identifier = -4, tok_number = -5,
58
59 // control
60 tok_if = -6, tok_then = -7, tok_else = -8,
61 tok_for = -9, tok_in = -10,
62
63 // operators
64 tok_binary = -11, tok_unary = -12,
65
66 // var definition
67 tok_var = -13
68 };
69
70 static std::string IdentifierStr; // Filled in if tok_identifier
71 static double NumVal; // Filled in if tok_number
72
73 /// gettok - Return the next token from standard input.
gettok()74 static int gettok() {
75 static int LastChar = ' ';
76
77 // Skip any whitespace.
78 while (isspace(LastChar))
79 LastChar = getchar();
80
81 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
82 IdentifierStr = LastChar;
83 while (isalnum((LastChar = getchar())))
84 IdentifierStr += LastChar;
85
86 if (IdentifierStr == "def") return tok_def;
87 if (IdentifierStr == "extern") return tok_extern;
88 if (IdentifierStr == "if") return tok_if;
89 if (IdentifierStr == "then") return tok_then;
90 if (IdentifierStr == "else") return tok_else;
91 if (IdentifierStr == "for") return tok_for;
92 if (IdentifierStr == "in") return tok_in;
93 if (IdentifierStr == "binary") return tok_binary;
94 if (IdentifierStr == "unary") return tok_unary;
95 if (IdentifierStr == "var") return tok_var;
96 return tok_identifier;
97 }
98
99 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
100 std::string NumStr;
101 do {
102 NumStr += LastChar;
103 LastChar = getchar();
104 } while (isdigit(LastChar) || LastChar == '.');
105
106 NumVal = strtod(NumStr.c_str(), 0);
107 return tok_number;
108 }
109
110 if (LastChar == '#') {
111 // Comment until end of line.
112 do LastChar = getchar();
113 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
114
115 if (LastChar != EOF)
116 return gettok();
117 }
118
119 // Check for end of file. Don't eat the EOF.
120 if (LastChar == EOF)
121 return tok_eof;
122
123 // Otherwise, just return the character as its ascii value.
124 int ThisChar = LastChar;
125 LastChar = getchar();
126 return ThisChar;
127 }
128
129 //===----------------------------------------------------------------------===//
130 // Abstract Syntax Tree (aka Parse Tree)
131 //===----------------------------------------------------------------------===//
132
133 /// ExprAST - Base class for all expression nodes.
134 class ExprAST {
135 public:
~ExprAST()136 virtual ~ExprAST() {}
137 virtual Value *Codegen() = 0;
138 };
139
140 /// NumberExprAST - Expression class for numeric literals like "1.0".
141 class NumberExprAST : public ExprAST {
142 double Val;
143 public:
NumberExprAST(double val)144 NumberExprAST(double val) : Val(val) {}
145 virtual Value *Codegen();
146 };
147
148 /// VariableExprAST - Expression class for referencing a variable, like "a".
149 class VariableExprAST : public ExprAST {
150 std::string Name;
151 public:
VariableExprAST(const std::string & name)152 VariableExprAST(const std::string &name) : Name(name) {}
getName() const153 const std::string &getName() const { return Name; }
154 virtual Value *Codegen();
155 };
156
157 /// UnaryExprAST - Expression class for a unary operator.
158 class UnaryExprAST : public ExprAST {
159 char Opcode;
160 ExprAST *Operand;
161 public:
UnaryExprAST(char opcode,ExprAST * operand)162 UnaryExprAST(char opcode, ExprAST *operand)
163 : Opcode(opcode), Operand(operand) {}
164 virtual Value *Codegen();
165 };
166
167 /// BinaryExprAST - Expression class for a binary operator.
168 class BinaryExprAST : public ExprAST {
169 char Op;
170 ExprAST *LHS, *RHS;
171 public:
BinaryExprAST(char op,ExprAST * lhs,ExprAST * rhs)172 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
173 : Op(op), LHS(lhs), RHS(rhs) {}
174 virtual Value *Codegen();
175 };
176
177 /// CallExprAST - Expression class for function calls.
178 class CallExprAST : public ExprAST {
179 std::string Callee;
180 std::vector<ExprAST*> Args;
181 public:
CallExprAST(const std::string & callee,std::vector<ExprAST * > & args)182 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
183 : Callee(callee), Args(args) {}
184 virtual Value *Codegen();
185 };
186
187 /// IfExprAST - Expression class for if/then/else.
188 class IfExprAST : public ExprAST {
189 ExprAST *Cond, *Then, *Else;
190 public:
IfExprAST(ExprAST * cond,ExprAST * then,ExprAST * _else)191 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
192 : Cond(cond), Then(then), Else(_else) {}
193 virtual Value *Codegen();
194 };
195
196 /// ForExprAST - Expression class for for/in.
197 class ForExprAST : public ExprAST {
198 std::string VarName;
199 ExprAST *Start, *End, *Step, *Body;
200 public:
ForExprAST(const std::string & varname,ExprAST * start,ExprAST * end,ExprAST * step,ExprAST * body)201 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
202 ExprAST *step, ExprAST *body)
203 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
204 virtual Value *Codegen();
205 };
206
207 /// VarExprAST - Expression class for var/in
208 class VarExprAST : public ExprAST {
209 std::vector<std::pair<std::string, ExprAST*> > VarNames;
210 ExprAST *Body;
211 public:
VarExprAST(const std::vector<std::pair<std::string,ExprAST * >> & varnames,ExprAST * body)212 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
213 ExprAST *body)
214 : VarNames(varnames), Body(body) {}
215
216 virtual Value *Codegen();
217 };
218
219 /// PrototypeAST - This class represents the "prototype" for a function,
220 /// which captures its argument names as well as if it is an operator.
221 class PrototypeAST {
222 std::string Name;
223 std::vector<std::string> Args;
224 bool isOperator;
225 unsigned Precedence; // Precedence if a binary op.
226 public:
PrototypeAST(const std::string & name,const std::vector<std::string> & args,bool isoperator=false,unsigned prec=0)227 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
228 bool isoperator = false, unsigned prec = 0)
229 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
230
isUnaryOp() const231 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
isBinaryOp() const232 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
233
getOperatorName() const234 char getOperatorName() const {
235 assert(isUnaryOp() || isBinaryOp());
236 return Name[Name.size()-1];
237 }
238
getBinaryPrecedence() const239 unsigned getBinaryPrecedence() const { return Precedence; }
240
241 Function *Codegen();
242
243 void CreateArgumentAllocas(Function *F);
244 };
245
246 /// FunctionAST - This class represents a function definition itself.
247 class FunctionAST {
248 PrototypeAST *Proto;
249 ExprAST *Body;
250 public:
FunctionAST(PrototypeAST * proto,ExprAST * body)251 FunctionAST(PrototypeAST *proto, ExprAST *body)
252 : Proto(proto), Body(body) {}
253
254 Function *Codegen();
255 };
256
257 //===----------------------------------------------------------------------===//
258 // Parser
259 //===----------------------------------------------------------------------===//
260
261 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
262 /// token the parser is looking at. getNextToken reads another token from the
263 /// lexer and updates CurTok with its results.
264 static int CurTok;
getNextToken()265 static int getNextToken() {
266 return CurTok = gettok();
267 }
268
269 /// BinopPrecedence - This holds the precedence for each binary operator that is
270 /// defined.
271 static std::map<char, int> BinopPrecedence;
272
273 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()274 static int GetTokPrecedence() {
275 if (!isascii(CurTok))
276 return -1;
277
278 // Make sure it's a declared binop.
279 int TokPrec = BinopPrecedence[CurTok];
280 if (TokPrec <= 0) return -1;
281 return TokPrec;
282 }
283
284 /// Error* - These are little helper functions for error handling.
Error(const char * Str)285 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
ErrorP(const char * Str)286 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
ErrorF(const char * Str)287 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
288
289 static ExprAST *ParseExpression();
290
291 /// identifierexpr
292 /// ::= identifier
293 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()294 static ExprAST *ParseIdentifierExpr() {
295 std::string IdName = IdentifierStr;
296
297 getNextToken(); // eat identifier.
298
299 if (CurTok != '(') // Simple variable ref.
300 return new VariableExprAST(IdName);
301
302 // Call.
303 getNextToken(); // eat (
304 std::vector<ExprAST*> Args;
305 if (CurTok != ')') {
306 while (1) {
307 ExprAST *Arg = ParseExpression();
308 if (!Arg) return 0;
309 Args.push_back(Arg);
310
311 if (CurTok == ')') break;
312
313 if (CurTok != ',')
314 return Error("Expected ')' or ',' in argument list");
315 getNextToken();
316 }
317 }
318
319 // Eat the ')'.
320 getNextToken();
321
322 return new CallExprAST(IdName, Args);
323 }
324
325 /// numberexpr ::= number
ParseNumberExpr()326 static ExprAST *ParseNumberExpr() {
327 ExprAST *Result = new NumberExprAST(NumVal);
328 getNextToken(); // consume the number
329 return Result;
330 }
331
332 /// parenexpr ::= '(' expression ')'
ParseParenExpr()333 static ExprAST *ParseParenExpr() {
334 getNextToken(); // eat (.
335 ExprAST *V = ParseExpression();
336 if (!V) return 0;
337
338 if (CurTok != ')')
339 return Error("expected ')'");
340 getNextToken(); // eat ).
341 return V;
342 }
343
344 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()345 static ExprAST *ParseIfExpr() {
346 getNextToken(); // eat the if.
347
348 // condition.
349 ExprAST *Cond = ParseExpression();
350 if (!Cond) return 0;
351
352 if (CurTok != tok_then)
353 return Error("expected then");
354 getNextToken(); // eat the then
355
356 ExprAST *Then = ParseExpression();
357 if (Then == 0) return 0;
358
359 if (CurTok != tok_else)
360 return Error("expected else");
361
362 getNextToken();
363
364 ExprAST *Else = ParseExpression();
365 if (!Else) return 0;
366
367 return new IfExprAST(Cond, Then, Else);
368 }
369
370 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()371 static ExprAST *ParseForExpr() {
372 getNextToken(); // eat the for.
373
374 if (CurTok != tok_identifier)
375 return Error("expected identifier after for");
376
377 std::string IdName = IdentifierStr;
378 getNextToken(); // eat identifier.
379
380 if (CurTok != '=')
381 return Error("expected '=' after for");
382 getNextToken(); // eat '='.
383
384
385 ExprAST *Start = ParseExpression();
386 if (Start == 0) return 0;
387 if (CurTok != ',')
388 return Error("expected ',' after for start value");
389 getNextToken();
390
391 ExprAST *End = ParseExpression();
392 if (End == 0) return 0;
393
394 // The step value is optional.
395 ExprAST *Step = 0;
396 if (CurTok == ',') {
397 getNextToken();
398 Step = ParseExpression();
399 if (Step == 0) return 0;
400 }
401
402 if (CurTok != tok_in)
403 return Error("expected 'in' after for");
404 getNextToken(); // eat 'in'.
405
406 ExprAST *Body = ParseExpression();
407 if (Body == 0) return 0;
408
409 return new ForExprAST(IdName, Start, End, Step, Body);
410 }
411
412 /// varexpr ::= 'var' identifier ('=' expression)?
413 // (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()414 static ExprAST *ParseVarExpr() {
415 getNextToken(); // eat the var.
416
417 std::vector<std::pair<std::string, ExprAST*> > VarNames;
418
419 // At least one variable name is required.
420 if (CurTok != tok_identifier)
421 return Error("expected identifier after var");
422
423 while (1) {
424 std::string Name = IdentifierStr;
425 getNextToken(); // eat identifier.
426
427 // Read the optional initializer.
428 ExprAST *Init = 0;
429 if (CurTok == '=') {
430 getNextToken(); // eat the '='.
431
432 Init = ParseExpression();
433 if (Init == 0) return 0;
434 }
435
436 VarNames.push_back(std::make_pair(Name, Init));
437
438 // End of var list, exit loop.
439 if (CurTok != ',') break;
440 getNextToken(); // eat the ','.
441
442 if (CurTok != tok_identifier)
443 return Error("expected identifier list after var");
444 }
445
446 // At this point, we have to have 'in'.
447 if (CurTok != tok_in)
448 return Error("expected 'in' keyword after 'var'");
449 getNextToken(); // eat 'in'.
450
451 ExprAST *Body = ParseExpression();
452 if (Body == 0) return 0;
453
454 return new VarExprAST(VarNames, Body);
455 }
456
457 /// primary
458 /// ::= identifierexpr
459 /// ::= numberexpr
460 /// ::= parenexpr
461 /// ::= ifexpr
462 /// ::= forexpr
463 /// ::= varexpr
ParsePrimary()464 static ExprAST *ParsePrimary() {
465 switch (CurTok) {
466 default: return Error("unknown token when expecting an expression");
467 case tok_identifier: return ParseIdentifierExpr();
468 case tok_number: return ParseNumberExpr();
469 case '(': return ParseParenExpr();
470 case tok_if: return ParseIfExpr();
471 case tok_for: return ParseForExpr();
472 case tok_var: return ParseVarExpr();
473 }
474 }
475
476 /// unary
477 /// ::= primary
478 /// ::= '!' unary
ParseUnary()479 static ExprAST *ParseUnary() {
480 // If the current token is not an operator, it must be a primary expr.
481 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
482 return ParsePrimary();
483
484 // If this is a unary operator, read it.
485 int Opc = CurTok;
486 getNextToken();
487 if (ExprAST *Operand = ParseUnary())
488 return new UnaryExprAST(Opc, Operand);
489 return 0;
490 }
491
492 /// binoprhs
493 /// ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,ExprAST * LHS)494 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
495 // If this is a binop, find its precedence.
496 while (1) {
497 int TokPrec = GetTokPrecedence();
498
499 // If this is a binop that binds at least as tightly as the current binop,
500 // consume it, otherwise we are done.
501 if (TokPrec < ExprPrec)
502 return LHS;
503
504 // Okay, we know this is a binop.
505 int BinOp = CurTok;
506 getNextToken(); // eat binop
507
508 // Parse the unary expression after the binary operator.
509 ExprAST *RHS = ParseUnary();
510 if (!RHS) return 0;
511
512 // If BinOp binds less tightly with RHS than the operator after RHS, let
513 // the pending operator take RHS as its LHS.
514 int NextPrec = GetTokPrecedence();
515 if (TokPrec < NextPrec) {
516 RHS = ParseBinOpRHS(TokPrec+1, RHS);
517 if (RHS == 0) return 0;
518 }
519
520 // Merge LHS/RHS.
521 LHS = new BinaryExprAST(BinOp, LHS, RHS);
522 }
523 }
524
525 /// expression
526 /// ::= unary binoprhs
527 ///
ParseExpression()528 static ExprAST *ParseExpression() {
529 ExprAST *LHS = ParseUnary();
530 if (!LHS) return 0;
531
532 return ParseBinOpRHS(0, LHS);
533 }
534
535 /// prototype
536 /// ::= id '(' id* ')'
537 /// ::= binary LETTER number? (id, id)
538 /// ::= unary LETTER (id)
ParsePrototype()539 static PrototypeAST *ParsePrototype() {
540 std::string FnName;
541
542 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
543 unsigned BinaryPrecedence = 30;
544
545 switch (CurTok) {
546 default:
547 return ErrorP("Expected function name in prototype");
548 case tok_identifier:
549 FnName = IdentifierStr;
550 Kind = 0;
551 getNextToken();
552 break;
553 case tok_unary:
554 getNextToken();
555 if (!isascii(CurTok))
556 return ErrorP("Expected unary operator");
557 FnName = "unary";
558 FnName += (char)CurTok;
559 Kind = 1;
560 getNextToken();
561 break;
562 case tok_binary:
563 getNextToken();
564 if (!isascii(CurTok))
565 return ErrorP("Expected binary operator");
566 FnName = "binary";
567 FnName += (char)CurTok;
568 Kind = 2;
569 getNextToken();
570
571 // Read the precedence if present.
572 if (CurTok == tok_number) {
573 if (NumVal < 1 || NumVal > 100)
574 return ErrorP("Invalid precedecnce: must be 1..100");
575 BinaryPrecedence = (unsigned)NumVal;
576 getNextToken();
577 }
578 break;
579 }
580
581 if (CurTok != '(')
582 return ErrorP("Expected '(' in prototype");
583
584 std::vector<std::string> ArgNames;
585 while (getNextToken() == tok_identifier)
586 ArgNames.push_back(IdentifierStr);
587 if (CurTok != ')')
588 return ErrorP("Expected ')' in prototype");
589
590 // success.
591 getNextToken(); // eat ')'.
592
593 // Verify right number of names for operator.
594 if (Kind && ArgNames.size() != Kind)
595 return ErrorP("Invalid number of operands for operator");
596
597 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
598 }
599
600 /// definition ::= 'def' prototype expression
ParseDefinition()601 static FunctionAST *ParseDefinition() {
602 getNextToken(); // eat def.
603 PrototypeAST *Proto = ParsePrototype();
604 if (Proto == 0) return 0;
605
606 if (ExprAST *E = ParseExpression())
607 return new FunctionAST(Proto, E);
608 return 0;
609 }
610
611 /// toplevelexpr ::= expression
ParseTopLevelExpr()612 static FunctionAST *ParseTopLevelExpr() {
613 if (ExprAST *E = ParseExpression()) {
614 // Make an anonymous proto.
615 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
616 return new FunctionAST(Proto, E);
617 }
618 return 0;
619 }
620
621 /// external ::= 'extern' prototype
ParseExtern()622 static PrototypeAST *ParseExtern() {
623 getNextToken(); // eat extern.
624 return ParsePrototype();
625 }
626
627 //===----------------------------------------------------------------------===//
628 // Quick and dirty hack
629 //===----------------------------------------------------------------------===//
630
631 // FIXME: Obviously we can do better than this
GenerateUniqueName(const char * root)632 std::string GenerateUniqueName(const char *root)
633 {
634 static int i = 0;
635 char s[16];
636 sprintf(s, "%s%d", root, i++);
637 std::string S = s;
638 return S;
639 }
640
MakeLegalFunctionName(std::string Name)641 std::string MakeLegalFunctionName(std::string Name)
642 {
643 std::string NewName;
644 if (!Name.length())
645 return GenerateUniqueName("anon_func_");
646
647 // Start with what we have
648 NewName = Name;
649
650 // Look for a numberic first character
651 if (NewName.find_first_of("0123456789") == 0) {
652 NewName.insert(0, 1, 'n');
653 }
654
655 // Replace illegal characters with their ASCII equivalent
656 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
657 size_t pos;
658 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
659 char old_c = NewName.at(pos);
660 char new_str[16];
661 sprintf(new_str, "%d", (int)old_c);
662 NewName = NewName.replace(pos, 1, new_str);
663 }
664
665 return NewName;
666 }
667
668 //===----------------------------------------------------------------------===//
669 // MCJIT object cache class
670 //===----------------------------------------------------------------------===//
671
672 class MCJITObjectCache : public ObjectCache {
673 public:
MCJITObjectCache()674 MCJITObjectCache() {
675 // Set IR cache directory
676 sys::fs::current_path(CacheDir);
677 sys::path::append(CacheDir, "toy_object_cache");
678 }
679
~MCJITObjectCache()680 virtual ~MCJITObjectCache() {
681 }
682
notifyObjectCompiled(const Module * M,const MemoryBuffer * Obj)683 virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) {
684 // Get the ModuleID
685 const std::string ModuleID = M->getModuleIdentifier();
686
687 // If we've flagged this as an IR file, cache it
688 if (0 == ModuleID.compare(0, 3, "IR:")) {
689 std::string IRFileName = ModuleID.substr(3);
690 SmallString<128>IRCacheFile = CacheDir;
691 sys::path::append(IRCacheFile, IRFileName);
692 if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) {
693 fprintf(stderr, "Unable to create cache directory\n");
694 return;
695 }
696 std::string ErrStr;
697 raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary);
698 IRObjectFile << Obj->getBuffer();
699 }
700 }
701
702 // MCJIT will call this function before compiling any module
703 // MCJIT takes ownership of both the MemoryBuffer object and the memory
704 // to which it refers.
getObject(const Module * M)705 virtual MemoryBuffer* getObject(const Module* M) {
706 // Get the ModuleID
707 const std::string ModuleID = M->getModuleIdentifier();
708
709 // If we've flagged this as an IR file, cache it
710 if (0 == ModuleID.compare(0, 3, "IR:")) {
711 std::string IRFileName = ModuleID.substr(3);
712 SmallString<128> IRCacheFile = CacheDir;
713 sys::path::append(IRCacheFile, IRFileName);
714 if (!sys::fs::exists(IRCacheFile.str())) {
715 // This file isn't in our cache
716 return NULL;
717 }
718 std::unique_ptr<MemoryBuffer> IRObjectBuffer;
719 MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false);
720 // MCJIT will want to write into this buffer, and we don't want that
721 // because the file has probably just been mmapped. Instead we make
722 // a copy. The filed-based buffer will be released when it goes
723 // out of scope.
724 return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer());
725 }
726
727 return NULL;
728 }
729
730 private:
731 SmallString<128> CacheDir;
732 };
733
734 //===----------------------------------------------------------------------===//
735 // MCJIT helper class
736 //===----------------------------------------------------------------------===//
737
738 class MCJITHelper
739 {
740 public:
MCJITHelper(LLVMContext & C)741 MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
742 ~MCJITHelper();
743
744 Function *getFunction(const std::string FnName);
745 Module *getModuleForNewFunction();
746 void *getPointerToFunction(Function* F);
747 void *getPointerToNamedFunction(const std::string &Name);
748 ExecutionEngine *compileModule(Module *M);
749 void closeCurrentModule();
750 void addModule(Module *M);
751 void dump();
752
753 private:
754 typedef std::vector<Module*> ModuleVector;
755
756 LLVMContext &Context;
757 Module *OpenModule;
758 ModuleVector Modules;
759 std::map<Module *, ExecutionEngine *> EngineMap;
760 MCJITObjectCache OurObjectCache;
761 };
762
763 class HelpingMemoryManager : public SectionMemoryManager
764 {
765 HelpingMemoryManager(const HelpingMemoryManager&) = delete;
766 void operator=(const HelpingMemoryManager&) = delete;
767
768 public:
HelpingMemoryManager(MCJITHelper * Helper)769 HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
~HelpingMemoryManager()770 virtual ~HelpingMemoryManager() {}
771
772 /// This method returns the address of the specified function.
773 /// Our implementation will attempt to find functions in other
774 /// modules associated with the MCJITHelper to cross link functions
775 /// from one generated module to another.
776 ///
777 /// If \p AbortOnFailure is false and no function with the given name is
778 /// found, this function returns a null pointer. Otherwise, it prints a
779 /// message to stderr and aborts.
780 virtual void *getPointerToNamedFunction(const std::string &Name,
781 bool AbortOnFailure = true);
782 private:
783 MCJITHelper *MasterHelper;
784 };
785
getPointerToNamedFunction(const std::string & Name,bool AbortOnFailure)786 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
787 bool AbortOnFailure)
788 {
789 // Try the standard symbol resolution first, but ask it not to abort.
790 void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
791 if (pfn)
792 return pfn;
793
794 pfn = MasterHelper->getPointerToNamedFunction(Name);
795 if (!pfn && AbortOnFailure)
796 report_fatal_error("Program used external function '" + Name +
797 "' which could not be resolved!");
798 return pfn;
799 }
800
~MCJITHelper()801 MCJITHelper::~MCJITHelper()
802 {
803 // Walk the vector of modules.
804 ModuleVector::iterator it, end;
805 for (it = Modules.begin(), end = Modules.end();
806 it != end; ++it) {
807 // See if we have an execution engine for this module.
808 std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
809 // If we have an EE, the EE owns the module so just delete the EE.
810 if (mapIt != EngineMap.end()) {
811 delete mapIt->second;
812 } else {
813 // Otherwise, we still own the module. Delete it now.
814 delete *it;
815 }
816 }
817 }
818
getFunction(const std::string FnName)819 Function *MCJITHelper::getFunction(const std::string FnName) {
820 ModuleVector::iterator begin = Modules.begin();
821 ModuleVector::iterator end = Modules.end();
822 ModuleVector::iterator it;
823 for (it = begin; it != end; ++it) {
824 Function *F = (*it)->getFunction(FnName);
825 if (F) {
826 if (*it == OpenModule)
827 return F;
828
829 assert(OpenModule != NULL);
830
831 // This function is in a module that has already been JITed.
832 // We need to generate a new prototype for external linkage.
833 Function *PF = OpenModule->getFunction(FnName);
834 if (PF && !PF->empty()) {
835 ErrorF("redefinition of function across modules");
836 return 0;
837 }
838
839 // If we don't have a prototype yet, create one.
840 if (!PF)
841 PF = Function::Create(F->getFunctionType(),
842 Function::ExternalLinkage,
843 FnName,
844 OpenModule);
845 return PF;
846 }
847 }
848 return NULL;
849 }
850
getModuleForNewFunction()851 Module *MCJITHelper::getModuleForNewFunction() {
852 // If we have a Module that hasn't been JITed, use that.
853 if (OpenModule)
854 return OpenModule;
855
856 // Otherwise create a new Module.
857 std::string ModName = GenerateUniqueName("mcjit_module_");
858 Module *M = new Module(ModName, Context);
859 Modules.push_back(M);
860 OpenModule = M;
861 return M;
862 }
863
getPointerToFunction(Function * F)864 void *MCJITHelper::getPointerToFunction(Function* F) {
865 // Look for this function in an existing module
866 ModuleVector::iterator begin = Modules.begin();
867 ModuleVector::iterator end = Modules.end();
868 ModuleVector::iterator it;
869 std::string FnName = F->getName();
870 for (it = begin; it != end; ++it) {
871 Function *MF = (*it)->getFunction(FnName);
872 if (MF == F) {
873 std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
874 if (eeIt != EngineMap.end()) {
875 void *P = eeIt->second->getPointerToFunction(F);
876 if (P)
877 return P;
878 } else {
879 ExecutionEngine *EE = compileModule(*it);
880 void *P = EE->getPointerToFunction(F);
881 if (P)
882 return P;
883 }
884 }
885 }
886 return NULL;
887 }
888
closeCurrentModule()889 void MCJITHelper::closeCurrentModule() {
890 OpenModule = NULL;
891 }
892
compileModule(Module * M)893 ExecutionEngine *MCJITHelper::compileModule(Module *M) {
894 if (M == OpenModule)
895 closeCurrentModule();
896
897 std::string ErrStr;
898 ExecutionEngine *NewEngine = EngineBuilder(M)
899 .setErrorStr(&ErrStr)
900 .setMCJITMemoryManager(new HelpingMemoryManager(this))
901 .create();
902 if (!NewEngine) {
903 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
904 exit(1);
905 }
906
907 if (UseObjectCache)
908 NewEngine->setObjectCache(&OurObjectCache);
909
910 // Get the ModuleID so we can identify IR input files
911 const std::string ModuleID = M->getModuleIdentifier();
912
913 // If we've flagged this as an IR file, it doesn't need function passes run.
914 if (0 != ModuleID.compare(0, 3, "IR:")) {
915 // Create a function pass manager for this engine
916 FunctionPassManager *FPM = new FunctionPassManager(M);
917
918 // Set up the optimizer pipeline. Start with registering info about how the
919 // target lays out data structures.
920 FPM->add(new DataLayout(*NewEngine->getDataLayout()));
921 // Provide basic AliasAnalysis support for GVN.
922 FPM->add(createBasicAliasAnalysisPass());
923 // Promote allocas to registers.
924 FPM->add(createPromoteMemoryToRegisterPass());
925 // Do simple "peephole" optimizations and bit-twiddling optzns.
926 FPM->add(createInstructionCombiningPass());
927 // Reassociate expressions.
928 FPM->add(createReassociatePass());
929 // Eliminate Common SubExpressions.
930 FPM->add(createGVNPass());
931 // Simplify the control flow graph (deleting unreachable blocks, etc).
932 FPM->add(createCFGSimplificationPass());
933 FPM->doInitialization();
934
935 // For each function in the module
936 Module::iterator it;
937 Module::iterator end = M->end();
938 for (it = M->begin(); it != end; ++it) {
939 // Run the FPM on this function
940 FPM->run(*it);
941 }
942
943 // We don't need this anymore
944 delete FPM;
945 }
946
947 // Store this engine
948 EngineMap[M] = NewEngine;
949 NewEngine->finalizeObject();
950
951 return NewEngine;
952 }
953
getPointerToNamedFunction(const std::string & Name)954 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
955 {
956 // Look for the functions in our modules, compiling only as necessary
957 ModuleVector::iterator begin = Modules.begin();
958 ModuleVector::iterator end = Modules.end();
959 ModuleVector::iterator it;
960 for (it = begin; it != end; ++it) {
961 Function *F = (*it)->getFunction(Name);
962 if (F && !F->empty()) {
963 std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
964 if (eeIt != EngineMap.end()) {
965 void *P = eeIt->second->getPointerToFunction(F);
966 if (P)
967 return P;
968 } else {
969 ExecutionEngine *EE = compileModule(*it);
970 void *P = EE->getPointerToFunction(F);
971 if (P)
972 return P;
973 }
974 }
975 }
976 return NULL;
977 }
978
addModule(Module * M)979 void MCJITHelper::addModule(Module* M) {
980 Modules.push_back(M);
981 }
982
dump()983 void MCJITHelper::dump()
984 {
985 ModuleVector::iterator begin = Modules.begin();
986 ModuleVector::iterator end = Modules.end();
987 ModuleVector::iterator it;
988 for (it = begin; it != end; ++it)
989 (*it)->dump();
990 }
991
992 //===----------------------------------------------------------------------===//
993 // Code Generation
994 //===----------------------------------------------------------------------===//
995
996 static MCJITHelper *TheHelper;
997 static IRBuilder<> Builder(getGlobalContext());
998 static std::map<std::string, AllocaInst*> NamedValues;
999
ErrorV(const char * Str)1000 Value *ErrorV(const char *Str) { Error(Str); return 0; }
1001
1002 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
1003 /// the function. This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)1004 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
1005 const std::string &VarName) {
1006 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
1007 TheFunction->getEntryBlock().begin());
1008 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
1009 VarName.c_str());
1010 }
1011
Codegen()1012 Value *NumberExprAST::Codegen() {
1013 return ConstantFP::get(getGlobalContext(), APFloat(Val));
1014 }
1015
Codegen()1016 Value *VariableExprAST::Codegen() {
1017 // Look this variable up in the function.
1018 Value *V = NamedValues[Name];
1019 char ErrStr[256];
1020 sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
1021 if (V == 0) return ErrorV(ErrStr);
1022
1023 // Load the value.
1024 return Builder.CreateLoad(V, Name.c_str());
1025 }
1026
Codegen()1027 Value *UnaryExprAST::Codegen() {
1028 Value *OperandV = Operand->Codegen();
1029 if (OperandV == 0) return 0;
1030
1031 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
1032 if (F == 0)
1033 return ErrorV("Unknown unary operator");
1034
1035 return Builder.CreateCall(F, OperandV, "unop");
1036 }
1037
Codegen()1038 Value *BinaryExprAST::Codegen() {
1039 // Special case '=' because we don't want to emit the LHS as an expression.
1040 if (Op == '=') {
1041 // Assignment requires the LHS to be an identifier.
1042 VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS);
1043 if (!LHSE)
1044 return ErrorV("destination of '=' must be a variable");
1045 // Codegen the RHS.
1046 Value *Val = RHS->Codegen();
1047 if (Val == 0) return 0;
1048
1049 // Look up the name.
1050 Value *Variable = NamedValues[LHSE->getName()];
1051 if (Variable == 0) return ErrorV("Unknown variable name");
1052
1053 Builder.CreateStore(Val, Variable);
1054 return Val;
1055 }
1056
1057 Value *L = LHS->Codegen();
1058 Value *R = RHS->Codegen();
1059 if (L == 0 || R == 0) return 0;
1060
1061 switch (Op) {
1062 case '+': return Builder.CreateFAdd(L, R, "addtmp");
1063 case '-': return Builder.CreateFSub(L, R, "subtmp");
1064 case '*': return Builder.CreateFMul(L, R, "multmp");
1065 case '/': return Builder.CreateFDiv(L, R, "divtmp");
1066 case '<':
1067 L = Builder.CreateFCmpULT(L, R, "cmptmp");
1068 // Convert bool 0/1 to double 0.0 or 1.0
1069 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
1070 "booltmp");
1071 default: break;
1072 }
1073
1074 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
1075 // a call to it.
1076 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
1077 assert(F && "binary operator not found!");
1078
1079 Value *Ops[] = { L, R };
1080 return Builder.CreateCall(F, Ops, "binop");
1081 }
1082
Codegen()1083 Value *CallExprAST::Codegen() {
1084 // Look up the name in the global module table.
1085 Function *CalleeF = TheHelper->getFunction(Callee);
1086 if (CalleeF == 0)
1087 return ErrorV("Unknown function referenced");
1088
1089 // If argument mismatch error.
1090 if (CalleeF->arg_size() != Args.size())
1091 return ErrorV("Incorrect # arguments passed");
1092
1093 std::vector<Value*> ArgsV;
1094 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1095 ArgsV.push_back(Args[i]->Codegen());
1096 if (ArgsV.back() == 0) return 0;
1097 }
1098
1099 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
1100 }
1101
Codegen()1102 Value *IfExprAST::Codegen() {
1103 Value *CondV = Cond->Codegen();
1104 if (CondV == 0) return 0;
1105
1106 // Convert condition to a bool by comparing equal to 0.0.
1107 CondV = Builder.CreateFCmpONE(CondV,
1108 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1109 "ifcond");
1110
1111 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1112
1113 // Create blocks for the then and else cases. Insert the 'then' block at the
1114 // end of the function.
1115 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
1116 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
1117 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
1118
1119 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
1120
1121 // Emit then value.
1122 Builder.SetInsertPoint(ThenBB);
1123
1124 Value *ThenV = Then->Codegen();
1125 if (ThenV == 0) return 0;
1126
1127 Builder.CreateBr(MergeBB);
1128 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
1129 ThenBB = Builder.GetInsertBlock();
1130
1131 // Emit else block.
1132 TheFunction->getBasicBlockList().push_back(ElseBB);
1133 Builder.SetInsertPoint(ElseBB);
1134
1135 Value *ElseV = Else->Codegen();
1136 if (ElseV == 0) return 0;
1137
1138 Builder.CreateBr(MergeBB);
1139 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
1140 ElseBB = Builder.GetInsertBlock();
1141
1142 // Emit merge block.
1143 TheFunction->getBasicBlockList().push_back(MergeBB);
1144 Builder.SetInsertPoint(MergeBB);
1145 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
1146 "iftmp");
1147
1148 PN->addIncoming(ThenV, ThenBB);
1149 PN->addIncoming(ElseV, ElseBB);
1150 return PN;
1151 }
1152
Codegen()1153 Value *ForExprAST::Codegen() {
1154 // Output this as:
1155 // var = alloca double
1156 // ...
1157 // start = startexpr
1158 // store start -> var
1159 // goto loop
1160 // loop:
1161 // ...
1162 // bodyexpr
1163 // ...
1164 // loopend:
1165 // step = stepexpr
1166 // endcond = endexpr
1167 //
1168 // curvar = load var
1169 // nextvar = curvar + step
1170 // store nextvar -> var
1171 // br endcond, loop, endloop
1172 // outloop:
1173
1174 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1175
1176 // Create an alloca for the variable in the entry block.
1177 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1178
1179 // Emit the start code first, without 'variable' in scope.
1180 Value *StartVal = Start->Codegen();
1181 if (StartVal == 0) return 0;
1182
1183 // Store the value into the alloca.
1184 Builder.CreateStore(StartVal, Alloca);
1185
1186 // Make the new basic block for the loop header, inserting after current
1187 // block.
1188 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
1189
1190 // Insert an explicit fall through from the current block to the LoopBB.
1191 Builder.CreateBr(LoopBB);
1192
1193 // Start insertion in LoopBB.
1194 Builder.SetInsertPoint(LoopBB);
1195
1196 // Within the loop, the variable is defined equal to the PHI node. If it
1197 // shadows an existing variable, we have to restore it, so save it now.
1198 AllocaInst *OldVal = NamedValues[VarName];
1199 NamedValues[VarName] = Alloca;
1200
1201 // Emit the body of the loop. This, like any other expr, can change the
1202 // current BB. Note that we ignore the value computed by the body, but don't
1203 // allow an error.
1204 if (Body->Codegen() == 0)
1205 return 0;
1206
1207 // Emit the step value.
1208 Value *StepVal;
1209 if (Step) {
1210 StepVal = Step->Codegen();
1211 if (StepVal == 0) return 0;
1212 } else {
1213 // If not specified, use 1.0.
1214 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
1215 }
1216
1217 // Compute the end condition.
1218 Value *EndCond = End->Codegen();
1219 if (EndCond == 0) return EndCond;
1220
1221 // Reload, increment, and restore the alloca. This handles the case where
1222 // the body of the loop mutates the variable.
1223 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1224 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
1225 Builder.CreateStore(NextVar, Alloca);
1226
1227 // Convert condition to a bool by comparing equal to 0.0.
1228 EndCond = Builder.CreateFCmpONE(EndCond,
1229 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1230 "loopcond");
1231
1232 // Create the "after loop" block and insert it.
1233 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
1234
1235 // Insert the conditional branch into the end of LoopEndBB.
1236 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1237
1238 // Any new code will be inserted in AfterBB.
1239 Builder.SetInsertPoint(AfterBB);
1240
1241 // Restore the unshadowed variable.
1242 if (OldVal)
1243 NamedValues[VarName] = OldVal;
1244 else
1245 NamedValues.erase(VarName);
1246
1247
1248 // for expr always returns 0.0.
1249 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
1250 }
1251
Codegen()1252 Value *VarExprAST::Codegen() {
1253 std::vector<AllocaInst *> OldBindings;
1254
1255 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1256
1257 // Register all variables and emit their initializer.
1258 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1259 const std::string &VarName = VarNames[i].first;
1260 ExprAST *Init = VarNames[i].second;
1261
1262 // Emit the initializer before adding the variable to scope, this prevents
1263 // the initializer from referencing the variable itself, and permits stuff
1264 // like this:
1265 // var a = 1 in
1266 // var a = a in ... # refers to outer 'a'.
1267 Value *InitVal;
1268 if (Init) {
1269 InitVal = Init->Codegen();
1270 if (InitVal == 0) return 0;
1271 } else { // If not specified, use 0.0.
1272 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1273 }
1274
1275 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1276 Builder.CreateStore(InitVal, Alloca);
1277
1278 // Remember the old variable binding so that we can restore the binding when
1279 // we unrecurse.
1280 OldBindings.push_back(NamedValues[VarName]);
1281
1282 // Remember this binding.
1283 NamedValues[VarName] = Alloca;
1284 }
1285
1286 // Codegen the body, now that all vars are in scope.
1287 Value *BodyVal = Body->Codegen();
1288 if (BodyVal == 0) return 0;
1289
1290 // Pop all our variables from scope.
1291 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1292 NamedValues[VarNames[i].first] = OldBindings[i];
1293
1294 // Return the body computation.
1295 return BodyVal;
1296 }
1297
Codegen()1298 Function *PrototypeAST::Codegen() {
1299 // Make the function type: double(double,double) etc.
1300 std::vector<Type*> Doubles(Args.size(),
1301 Type::getDoubleTy(getGlobalContext()));
1302 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1303 Doubles, false);
1304
1305 std::string FnName = MakeLegalFunctionName(Name);
1306
1307 Module* M = TheHelper->getModuleForNewFunction();
1308
1309 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
1310
1311 // If F conflicted, there was already something named 'FnName'. If it has a
1312 // body, don't allow redefinition or reextern.
1313 if (F->getName() != FnName) {
1314 // Delete the one we just made and get the existing one.
1315 F->eraseFromParent();
1316 F = M->getFunction(Name);
1317
1318 // If F already has a body, reject this.
1319 if (!F->empty()) {
1320 ErrorF("redefinition of function");
1321 return 0;
1322 }
1323
1324 // If F took a different number of args, reject.
1325 if (F->arg_size() != Args.size()) {
1326 ErrorF("redefinition of function with different # args");
1327 return 0;
1328 }
1329 }
1330
1331 // Set names for all arguments.
1332 unsigned Idx = 0;
1333 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1334 ++AI, ++Idx)
1335 AI->setName(Args[Idx]);
1336
1337 return F;
1338 }
1339
1340 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1341 /// argument in the symbol table so that references to it will succeed.
CreateArgumentAllocas(Function * F)1342 void PrototypeAST::CreateArgumentAllocas(Function *F) {
1343 Function::arg_iterator AI = F->arg_begin();
1344 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1345 // Create an alloca for this variable.
1346 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1347
1348 // Store the initial value into the alloca.
1349 Builder.CreateStore(AI, Alloca);
1350
1351 // Add arguments to variable symbol table.
1352 NamedValues[Args[Idx]] = Alloca;
1353 }
1354 }
1355
Codegen()1356 Function *FunctionAST::Codegen() {
1357 NamedValues.clear();
1358
1359 Function *TheFunction = Proto->Codegen();
1360 if (TheFunction == 0)
1361 return 0;
1362
1363 // If this is an operator, install it.
1364 if (Proto->isBinaryOp())
1365 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
1366
1367 // Create a new basic block to start insertion into.
1368 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1369 Builder.SetInsertPoint(BB);
1370
1371 // Add all arguments to the symbol table and create their allocas.
1372 Proto->CreateArgumentAllocas(TheFunction);
1373
1374 if (Value *RetVal = Body->Codegen()) {
1375 // Finish off the function.
1376 Builder.CreateRet(RetVal);
1377
1378 // Validate the generated code, checking for consistency.
1379 verifyFunction(*TheFunction);
1380
1381 return TheFunction;
1382 }
1383
1384 // Error reading body, remove function.
1385 TheFunction->eraseFromParent();
1386
1387 if (Proto->isBinaryOp())
1388 BinopPrecedence.erase(Proto->getOperatorName());
1389 return 0;
1390 }
1391
1392 //===----------------------------------------------------------------------===//
1393 // Top-Level parsing and JIT Driver
1394 //===----------------------------------------------------------------------===//
1395
HandleDefinition()1396 static void HandleDefinition() {
1397 if (FunctionAST *F = ParseDefinition()) {
1398 TheHelper->closeCurrentModule();
1399 if (Function *LF = F->Codegen()) {
1400 #ifndef MINIMAL_STDERR_OUTPUT
1401 fprintf(stderr, "Read function definition:");
1402 LF->dump();
1403 #endif
1404 }
1405 } else {
1406 // Skip token for error recovery.
1407 getNextToken();
1408 }
1409 }
1410
HandleExtern()1411 static void HandleExtern() {
1412 if (PrototypeAST *P = ParseExtern()) {
1413 if (Function *F = P->Codegen()) {
1414 #ifndef MINIMAL_STDERR_OUTPUT
1415 fprintf(stderr, "Read extern: ");
1416 F->dump();
1417 #endif
1418 }
1419 } else {
1420 // Skip token for error recovery.
1421 getNextToken();
1422 }
1423 }
1424
HandleTopLevelExpression()1425 static void HandleTopLevelExpression() {
1426 // Evaluate a top-level expression into an anonymous function.
1427 if (FunctionAST *F = ParseTopLevelExpr()) {
1428 if (Function *LF = F->Codegen()) {
1429 // JIT the function, returning a function pointer.
1430 void *FPtr = TheHelper->getPointerToFunction(LF);
1431
1432 // Cast it to the right type (takes no arguments, returns a double) so we
1433 // can call it as a native function.
1434 double (*FP)() = (double (*)())(intptr_t)FPtr;
1435 #ifdef MINIMAL_STDERR_OUTPUT
1436 FP();
1437 #else
1438 fprintf(stderr, "Evaluated to %f\n", FP());
1439 #endif
1440 }
1441 } else {
1442 // Skip token for error recovery.
1443 getNextToken();
1444 }
1445 }
1446
1447 /// top ::= definition | external | expression | ';'
MainLoop()1448 static void MainLoop() {
1449 while (1) {
1450 #ifndef MINIMAL_STDERR_OUTPUT
1451 fprintf(stderr, "ready> ");
1452 #endif
1453 switch (CurTok) {
1454 case tok_eof: return;
1455 case ';': getNextToken(); break; // ignore top-level semicolons.
1456 case tok_def: HandleDefinition(); break;
1457 case tok_extern: HandleExtern(); break;
1458 default: HandleTopLevelExpression(); break;
1459 }
1460 }
1461 }
1462
1463 //===----------------------------------------------------------------------===//
1464 // "Library" functions that can be "extern'd" from user code.
1465 //===----------------------------------------------------------------------===//
1466
1467 /// putchard - putchar that takes a double and returns 0.
1468 extern "C"
putchard(double X)1469 double putchard(double X) {
1470 putchar((char)X);
1471 return 0;
1472 }
1473
1474 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1475 extern "C"
printd(double X)1476 double printd(double X) {
1477 printf("%f", X);
1478 return 0;
1479 }
1480
1481 extern "C"
printlf()1482 double printlf() {
1483 printf("\n");
1484 return 0;
1485 }
1486
1487 //===----------------------------------------------------------------------===//
1488 // Command line input file handler
1489 //===----------------------------------------------------------------------===//
1490
parseInputIR(std::string InputFile)1491 Module* parseInputIR(std::string InputFile) {
1492 SMDiagnostic Err;
1493 Module *M = ParseIRFile(InputFile, Err, getGlobalContext());
1494 if (!M) {
1495 Err.print("IR parsing failed: ", errs());
1496 return NULL;
1497 }
1498
1499 char ModID[256];
1500 sprintf(ModID, "IR:%s", InputFile.c_str());
1501 M->setModuleIdentifier(ModID);
1502
1503 TheHelper->addModule(M);
1504 return M;
1505 }
1506
1507 //===----------------------------------------------------------------------===//
1508 // Main driver code.
1509 //===----------------------------------------------------------------------===//
1510
main(int argc,char ** argv)1511 int main(int argc, char **argv) {
1512 InitializeNativeTarget();
1513 InitializeNativeTargetAsmPrinter();
1514 InitializeNativeTargetAsmParser();
1515 LLVMContext &Context = getGlobalContext();
1516
1517 cl::ParseCommandLineOptions(argc, argv,
1518 "Kaleidoscope example program\n");
1519
1520 // Install standard binary operators.
1521 // 1 is lowest precedence.
1522 BinopPrecedence['='] = 2;
1523 BinopPrecedence['<'] = 10;
1524 BinopPrecedence['+'] = 20;
1525 BinopPrecedence['-'] = 20;
1526 BinopPrecedence['/'] = 40;
1527 BinopPrecedence['*'] = 40; // highest.
1528
1529 // Prime the first token.
1530 #ifndef MINIMAL_STDERR_OUTPUT
1531 fprintf(stderr, "ready> ");
1532 #endif
1533 getNextToken();
1534
1535 // Make the helper, which holds all the code.
1536 TheHelper = new MCJITHelper(Context);
1537
1538 if (!InputIR.empty()) {
1539 parseInputIR(InputIR);
1540 }
1541
1542 // Run the main "interpreter loop" now.
1543 MainLoop();
1544
1545 #ifndef MINIMAL_STDERR_OUTPUT
1546 // Print out all of the generated code.
1547 TheHelper->dump();
1548 #endif
1549
1550 return 0;
1551 }
1552