1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "CriticalAntiDepBreaker.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetSubtargetInfo.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "post-RA-sched"
29
CriticalAntiDepBreaker(MachineFunction & MFi,const RegisterClassInfo & RCI)30 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
31 const RegisterClassInfo &RCI)
32 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
33 TII(MF.getSubtarget().getInstrInfo()),
34 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
35 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
36 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
37
~CriticalAntiDepBreaker()38 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
39 }
40
StartBlock(MachineBasicBlock * BB)41 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
42 const unsigned BBSize = BB->size();
43 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
44 // Clear out the register class data.
45 Classes[i] = nullptr;
46
47 // Initialize the indices to indicate that no registers are live.
48 KillIndices[i] = ~0u;
49 DefIndices[i] = BBSize;
50 }
51
52 // Clear "do not change" set.
53 KeepRegs.reset();
54
55 bool IsReturnBlock = BB->isReturnBlock();
56
57 // Examine the live-in regs of all successors.
58 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
59 SE = BB->succ_end(); SI != SE; ++SI)
60 for (const auto &LI : (*SI)->liveins()) {
61 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
62 unsigned Reg = *AI;
63 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
64 KillIndices[Reg] = BBSize;
65 DefIndices[Reg] = ~0u;
66 }
67 }
68
69 // Mark live-out callee-saved registers. In a return block this is
70 // all callee-saved registers. In non-return this is any
71 // callee-saved register that is not saved in the prolog.
72 const MachineFrameInfo *MFI = MF.getFrameInfo();
73 BitVector Pristine = MFI->getPristineRegs(MF);
74 for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
75 if (!IsReturnBlock && !Pristine.test(*I)) continue;
76 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
77 unsigned Reg = *AI;
78 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
79 KillIndices[Reg] = BBSize;
80 DefIndices[Reg] = ~0u;
81 }
82 }
83 }
84
FinishBlock()85 void CriticalAntiDepBreaker::FinishBlock() {
86 RegRefs.clear();
87 KeepRegs.reset();
88 }
89
Observe(MachineInstr * MI,unsigned Count,unsigned InsertPosIndex)90 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
91 unsigned InsertPosIndex) {
92 // Kill instructions can define registers but are really nops, and there might
93 // be a real definition earlier that needs to be paired with uses dominated by
94 // this kill.
95
96 // FIXME: It may be possible to remove the isKill() restriction once PR18663
97 // has been properly fixed. There can be value in processing kills as seen in
98 // the AggressiveAntiDepBreaker class.
99 if (MI->isDebugValue() || MI->isKill())
100 return;
101 assert(Count < InsertPosIndex && "Instruction index out of expected range!");
102
103 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
104 if (KillIndices[Reg] != ~0u) {
105 // If Reg is currently live, then mark that it can't be renamed as
106 // we don't know the extent of its live-range anymore (now that it
107 // has been scheduled).
108 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
109 KillIndices[Reg] = Count;
110 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
111 // Any register which was defined within the previous scheduling region
112 // may have been rescheduled and its lifetime may overlap with registers
113 // in ways not reflected in our current liveness state. For each such
114 // register, adjust the liveness state to be conservatively correct.
115 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
116
117 // Move the def index to the end of the previous region, to reflect
118 // that the def could theoretically have been scheduled at the end.
119 DefIndices[Reg] = InsertPosIndex;
120 }
121 }
122
123 PrescanInstruction(MI);
124 ScanInstruction(MI, Count);
125 }
126
127 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
128 /// critical path.
CriticalPathStep(const SUnit * SU)129 static const SDep *CriticalPathStep(const SUnit *SU) {
130 const SDep *Next = nullptr;
131 unsigned NextDepth = 0;
132 // Find the predecessor edge with the greatest depth.
133 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
134 P != PE; ++P) {
135 const SUnit *PredSU = P->getSUnit();
136 unsigned PredLatency = P->getLatency();
137 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
138 // In the case of a latency tie, prefer an anti-dependency edge over
139 // other types of edges.
140 if (NextDepth < PredTotalLatency ||
141 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
142 NextDepth = PredTotalLatency;
143 Next = &*P;
144 }
145 }
146 return Next;
147 }
148
PrescanInstruction(MachineInstr * MI)149 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
150 // It's not safe to change register allocation for source operands of
151 // instructions that have special allocation requirements. Also assume all
152 // registers used in a call must not be changed (ABI).
153 // FIXME: The issue with predicated instruction is more complex. We are being
154 // conservative here because the kill markers cannot be trusted after
155 // if-conversion:
156 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
157 // ...
158 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
159 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
160 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
161 //
162 // The first R6 kill is not really a kill since it's killed by a predicated
163 // instruction which may not be executed. The second R6 def may or may not
164 // re-define R6 so it's not safe to change it since the last R6 use cannot be
165 // changed.
166 bool Special = MI->isCall() ||
167 MI->hasExtraSrcRegAllocReq() ||
168 TII->isPredicated(MI);
169
170 // Scan the register operands for this instruction and update
171 // Classes and RegRefs.
172 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
173 MachineOperand &MO = MI->getOperand(i);
174 if (!MO.isReg()) continue;
175 unsigned Reg = MO.getReg();
176 if (Reg == 0) continue;
177 const TargetRegisterClass *NewRC = nullptr;
178
179 if (i < MI->getDesc().getNumOperands())
180 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
181
182 // For now, only allow the register to be changed if its register
183 // class is consistent across all uses.
184 if (!Classes[Reg] && NewRC)
185 Classes[Reg] = NewRC;
186 else if (!NewRC || Classes[Reg] != NewRC)
187 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
188
189 // Now check for aliases.
190 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
191 // If an alias of the reg is used during the live range, give up.
192 // Note that this allows us to skip checking if AntiDepReg
193 // overlaps with any of the aliases, among other things.
194 unsigned AliasReg = *AI;
195 if (Classes[AliasReg]) {
196 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
197 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
198 }
199 }
200
201 // If we're still willing to consider this register, note the reference.
202 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
203 RegRefs.insert(std::make_pair(Reg, &MO));
204
205 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
206 // it or any of its sub or super regs. We need to use KeepRegs to mark the
207 // reg because not all uses of the same reg within an instruction are
208 // necessarily tagged as tied.
209 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
210 // def register but not the second (see PR20020 for details).
211 // FIXME: can this check be relaxed to account for undef uses
212 // of a register? In the above 'xor' example, the uses of %eax are undef, so
213 // earlier instructions could still replace %eax even though the 'xor'
214 // itself can't be changed.
215 if (MI->isRegTiedToUseOperand(i) &&
216 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
217 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
218 SubRegs.isValid(); ++SubRegs) {
219 KeepRegs.set(*SubRegs);
220 }
221 for (MCSuperRegIterator SuperRegs(Reg, TRI);
222 SuperRegs.isValid(); ++SuperRegs) {
223 KeepRegs.set(*SuperRegs);
224 }
225 }
226
227 if (MO.isUse() && Special) {
228 if (!KeepRegs.test(Reg)) {
229 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
230 SubRegs.isValid(); ++SubRegs)
231 KeepRegs.set(*SubRegs);
232 }
233 }
234 }
235 }
236
ScanInstruction(MachineInstr * MI,unsigned Count)237 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
238 unsigned Count) {
239 // Update liveness.
240 // Proceeding upwards, registers that are defed but not used in this
241 // instruction are now dead.
242 assert(!MI->isKill() && "Attempting to scan a kill instruction");
243
244 if (!TII->isPredicated(MI)) {
245 // Predicated defs are modeled as read + write, i.e. similar to two
246 // address updates.
247 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
248 MachineOperand &MO = MI->getOperand(i);
249
250 if (MO.isRegMask())
251 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
252 if (MO.clobbersPhysReg(i)) {
253 DefIndices[i] = Count;
254 KillIndices[i] = ~0u;
255 KeepRegs.reset(i);
256 Classes[i] = nullptr;
257 RegRefs.erase(i);
258 }
259
260 if (!MO.isReg()) continue;
261 unsigned Reg = MO.getReg();
262 if (Reg == 0) continue;
263 if (!MO.isDef()) continue;
264
265 // If we've already marked this reg as unchangeable, carry on.
266 if (KeepRegs.test(Reg)) continue;
267
268 // Ignore two-addr defs.
269 if (MI->isRegTiedToUseOperand(i)) continue;
270
271 // For the reg itself and all subregs: update the def to current;
272 // reset the kill state, any restrictions, and references.
273 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
274 unsigned SubregReg = *SRI;
275 DefIndices[SubregReg] = Count;
276 KillIndices[SubregReg] = ~0u;
277 KeepRegs.reset(SubregReg);
278 Classes[SubregReg] = nullptr;
279 RegRefs.erase(SubregReg);
280 }
281 // Conservatively mark super-registers as unusable.
282 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
283 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
284 }
285 }
286 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
287 MachineOperand &MO = MI->getOperand(i);
288 if (!MO.isReg()) continue;
289 unsigned Reg = MO.getReg();
290 if (Reg == 0) continue;
291 if (!MO.isUse()) continue;
292
293 const TargetRegisterClass *NewRC = nullptr;
294 if (i < MI->getDesc().getNumOperands())
295 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
296
297 // For now, only allow the register to be changed if its register
298 // class is consistent across all uses.
299 if (!Classes[Reg] && NewRC)
300 Classes[Reg] = NewRC;
301 else if (!NewRC || Classes[Reg] != NewRC)
302 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
303
304 RegRefs.insert(std::make_pair(Reg, &MO));
305
306 // It wasn't previously live but now it is, this is a kill.
307 // Repeat for all aliases.
308 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
309 unsigned AliasReg = *AI;
310 if (KillIndices[AliasReg] == ~0u) {
311 KillIndices[AliasReg] = Count;
312 DefIndices[AliasReg] = ~0u;
313 }
314 }
315 }
316 }
317
318 // Check all machine operands that reference the antidependent register and must
319 // be replaced by NewReg. Return true if any of their parent instructions may
320 // clobber the new register.
321 //
322 // Note: AntiDepReg may be referenced by a two-address instruction such that
323 // it's use operand is tied to a def operand. We guard against the case in which
324 // the two-address instruction also defines NewReg, as may happen with
325 // pre/postincrement loads. In this case, both the use and def operands are in
326 // RegRefs because the def is inserted by PrescanInstruction and not erased
327 // during ScanInstruction. So checking for an instruction with definitions of
328 // both NewReg and AntiDepReg covers it.
329 bool
isNewRegClobberedByRefs(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned NewReg)330 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
331 RegRefIter RegRefEnd,
332 unsigned NewReg)
333 {
334 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
335 MachineOperand *RefOper = I->second;
336
337 // Don't allow the instruction defining AntiDepReg to earlyclobber its
338 // operands, in case they may be assigned to NewReg. In this case antidep
339 // breaking must fail, but it's too rare to bother optimizing.
340 if (RefOper->isDef() && RefOper->isEarlyClobber())
341 return true;
342
343 // Handle cases in which this instruction defines NewReg.
344 MachineInstr *MI = RefOper->getParent();
345 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
346 const MachineOperand &CheckOper = MI->getOperand(i);
347
348 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
349 return true;
350
351 if (!CheckOper.isReg() || !CheckOper.isDef() ||
352 CheckOper.getReg() != NewReg)
353 continue;
354
355 // Don't allow the instruction to define NewReg and AntiDepReg.
356 // When AntiDepReg is renamed it will be an illegal op.
357 if (RefOper->isDef())
358 return true;
359
360 // Don't allow an instruction using AntiDepReg to be earlyclobbered by
361 // NewReg.
362 if (CheckOper.isEarlyClobber())
363 return true;
364
365 // Don't allow inline asm to define NewReg at all. Who knows what it's
366 // doing with it.
367 if (MI->isInlineAsm())
368 return true;
369 }
370 }
371 return false;
372 }
373
374 unsigned CriticalAntiDepBreaker::
findSuitableFreeRegister(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned AntiDepReg,unsigned LastNewReg,const TargetRegisterClass * RC,SmallVectorImpl<unsigned> & Forbid)375 findSuitableFreeRegister(RegRefIter RegRefBegin,
376 RegRefIter RegRefEnd,
377 unsigned AntiDepReg,
378 unsigned LastNewReg,
379 const TargetRegisterClass *RC,
380 SmallVectorImpl<unsigned> &Forbid)
381 {
382 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
383 for (unsigned i = 0; i != Order.size(); ++i) {
384 unsigned NewReg = Order[i];
385 // Don't replace a register with itself.
386 if (NewReg == AntiDepReg) continue;
387 // Don't replace a register with one that was recently used to repair
388 // an anti-dependence with this AntiDepReg, because that would
389 // re-introduce that anti-dependence.
390 if (NewReg == LastNewReg) continue;
391 // If any instructions that define AntiDepReg also define the NewReg, it's
392 // not suitable. For example, Instruction with multiple definitions can
393 // result in this condition.
394 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
395 // If NewReg is dead and NewReg's most recent def is not before
396 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
397 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
398 && "Kill and Def maps aren't consistent for AntiDepReg!");
399 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
400 && "Kill and Def maps aren't consistent for NewReg!");
401 if (KillIndices[NewReg] != ~0u ||
402 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
403 KillIndices[AntiDepReg] > DefIndices[NewReg])
404 continue;
405 // If NewReg overlaps any of the forbidden registers, we can't use it.
406 bool Forbidden = false;
407 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
408 ite = Forbid.end(); it != ite; ++it)
409 if (TRI->regsOverlap(NewReg, *it)) {
410 Forbidden = true;
411 break;
412 }
413 if (Forbidden) continue;
414 return NewReg;
415 }
416
417 // No registers are free and available!
418 return 0;
419 }
420
421 unsigned CriticalAntiDepBreaker::
BreakAntiDependencies(const std::vector<SUnit> & SUnits,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned InsertPosIndex,DbgValueVector & DbgValues)422 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
423 MachineBasicBlock::iterator Begin,
424 MachineBasicBlock::iterator End,
425 unsigned InsertPosIndex,
426 DbgValueVector &DbgValues) {
427 // The code below assumes that there is at least one instruction,
428 // so just duck out immediately if the block is empty.
429 if (SUnits.empty()) return 0;
430
431 // Keep a map of the MachineInstr*'s back to the SUnit representing them.
432 // This is used for updating debug information.
433 //
434 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
435 DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
436
437 // Find the node at the bottom of the critical path.
438 const SUnit *Max = nullptr;
439 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
440 const SUnit *SU = &SUnits[i];
441 MISUnitMap[SU->getInstr()] = SU;
442 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
443 Max = SU;
444 }
445
446 #ifndef NDEBUG
447 {
448 DEBUG(dbgs() << "Critical path has total latency "
449 << (Max->getDepth() + Max->Latency) << "\n");
450 DEBUG(dbgs() << "Available regs:");
451 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
452 if (KillIndices[Reg] == ~0u)
453 DEBUG(dbgs() << " " << TRI->getName(Reg));
454 }
455 DEBUG(dbgs() << '\n');
456 }
457 #endif
458
459 // Track progress along the critical path through the SUnit graph as we walk
460 // the instructions.
461 const SUnit *CriticalPathSU = Max;
462 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
463
464 // Consider this pattern:
465 // A = ...
466 // ... = A
467 // A = ...
468 // ... = A
469 // A = ...
470 // ... = A
471 // A = ...
472 // ... = A
473 // There are three anti-dependencies here, and without special care,
474 // we'd break all of them using the same register:
475 // A = ...
476 // ... = A
477 // B = ...
478 // ... = B
479 // B = ...
480 // ... = B
481 // B = ...
482 // ... = B
483 // because at each anti-dependence, B is the first register that
484 // isn't A which is free. This re-introduces anti-dependencies
485 // at all but one of the original anti-dependencies that we were
486 // trying to break. To avoid this, keep track of the most recent
487 // register that each register was replaced with, avoid
488 // using it to repair an anti-dependence on the same register.
489 // This lets us produce this:
490 // A = ...
491 // ... = A
492 // B = ...
493 // ... = B
494 // C = ...
495 // ... = C
496 // B = ...
497 // ... = B
498 // This still has an anti-dependence on B, but at least it isn't on the
499 // original critical path.
500 //
501 // TODO: If we tracked more than one register here, we could potentially
502 // fix that remaining critical edge too. This is a little more involved,
503 // because unlike the most recent register, less recent registers should
504 // still be considered, though only if no other registers are available.
505 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
506
507 // Attempt to break anti-dependence edges on the critical path. Walk the
508 // instructions from the bottom up, tracking information about liveness
509 // as we go to help determine which registers are available.
510 unsigned Broken = 0;
511 unsigned Count = InsertPosIndex - 1;
512 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
513 MachineInstr *MI = --I;
514 // Kill instructions can define registers but are really nops, and there
515 // might be a real definition earlier that needs to be paired with uses
516 // dominated by this kill.
517
518 // FIXME: It may be possible to remove the isKill() restriction once PR18663
519 // has been properly fixed. There can be value in processing kills as seen
520 // in the AggressiveAntiDepBreaker class.
521 if (MI->isDebugValue() || MI->isKill())
522 continue;
523
524 // Check if this instruction has a dependence on the critical path that
525 // is an anti-dependence that we may be able to break. If it is, set
526 // AntiDepReg to the non-zero register associated with the anti-dependence.
527 //
528 // We limit our attention to the critical path as a heuristic to avoid
529 // breaking anti-dependence edges that aren't going to significantly
530 // impact the overall schedule. There are a limited number of registers
531 // and we want to save them for the important edges.
532 //
533 // TODO: Instructions with multiple defs could have multiple
534 // anti-dependencies. The current code here only knows how to break one
535 // edge per instruction. Note that we'd have to be able to break all of
536 // the anti-dependencies in an instruction in order to be effective.
537 unsigned AntiDepReg = 0;
538 if (MI == CriticalPathMI) {
539 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
540 const SUnit *NextSU = Edge->getSUnit();
541
542 // Only consider anti-dependence edges.
543 if (Edge->getKind() == SDep::Anti) {
544 AntiDepReg = Edge->getReg();
545 assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
546 if (!MRI.isAllocatable(AntiDepReg))
547 // Don't break anti-dependencies on non-allocatable registers.
548 AntiDepReg = 0;
549 else if (KeepRegs.test(AntiDepReg))
550 // Don't break anti-dependencies if a use down below requires
551 // this exact register.
552 AntiDepReg = 0;
553 else {
554 // If the SUnit has other dependencies on the SUnit that it
555 // anti-depends on, don't bother breaking the anti-dependency
556 // since those edges would prevent such units from being
557 // scheduled past each other regardless.
558 //
559 // Also, if there are dependencies on other SUnits with the
560 // same register as the anti-dependency, don't attempt to
561 // break it.
562 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
563 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
564 if (P->getSUnit() == NextSU ?
565 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
566 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
567 AntiDepReg = 0;
568 break;
569 }
570 }
571 }
572 CriticalPathSU = NextSU;
573 CriticalPathMI = CriticalPathSU->getInstr();
574 } else {
575 // We've reached the end of the critical path.
576 CriticalPathSU = nullptr;
577 CriticalPathMI = nullptr;
578 }
579 }
580
581 PrescanInstruction(MI);
582
583 SmallVector<unsigned, 2> ForbidRegs;
584
585 // If MI's defs have a special allocation requirement, don't allow
586 // any def registers to be changed. Also assume all registers
587 // defined in a call must not be changed (ABI).
588 if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI))
589 // If this instruction's defs have special allocation requirement, don't
590 // break this anti-dependency.
591 AntiDepReg = 0;
592 else if (AntiDepReg) {
593 // If this instruction has a use of AntiDepReg, breaking it
594 // is invalid. If the instruction defines other registers,
595 // save a list of them so that we don't pick a new register
596 // that overlaps any of them.
597 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
598 MachineOperand &MO = MI->getOperand(i);
599 if (!MO.isReg()) continue;
600 unsigned Reg = MO.getReg();
601 if (Reg == 0) continue;
602 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
603 AntiDepReg = 0;
604 break;
605 }
606 if (MO.isDef() && Reg != AntiDepReg)
607 ForbidRegs.push_back(Reg);
608 }
609 }
610
611 // Determine AntiDepReg's register class, if it is live and is
612 // consistently used within a single class.
613 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
614 : nullptr;
615 assert((AntiDepReg == 0 || RC != nullptr) &&
616 "Register should be live if it's causing an anti-dependence!");
617 if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
618 AntiDepReg = 0;
619
620 // Look for a suitable register to use to break the anti-dependence.
621 //
622 // TODO: Instead of picking the first free register, consider which might
623 // be the best.
624 if (AntiDepReg != 0) {
625 std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
626 std::multimap<unsigned, MachineOperand *>::iterator>
627 Range = RegRefs.equal_range(AntiDepReg);
628 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
629 AntiDepReg,
630 LastNewReg[AntiDepReg],
631 RC, ForbidRegs)) {
632 DEBUG(dbgs() << "Breaking anti-dependence edge on "
633 << TRI->getName(AntiDepReg)
634 << " with " << RegRefs.count(AntiDepReg) << " references"
635 << " using " << TRI->getName(NewReg) << "!\n");
636
637 // Update the references to the old register to refer to the new
638 // register.
639 for (std::multimap<unsigned, MachineOperand *>::iterator
640 Q = Range.first, QE = Range.second; Q != QE; ++Q) {
641 Q->second->setReg(NewReg);
642 // If the SU for the instruction being updated has debug information
643 // related to the anti-dependency register, make sure to update that
644 // as well.
645 const SUnit *SU = MISUnitMap[Q->second->getParent()];
646 if (!SU) continue;
647 for (DbgValueVector::iterator DVI = DbgValues.begin(),
648 DVE = DbgValues.end(); DVI != DVE; ++DVI)
649 if (DVI->second == Q->second->getParent())
650 UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
651 }
652
653 // We just went back in time and modified history; the
654 // liveness information for the anti-dependence reg is now
655 // inconsistent. Set the state as if it were dead.
656 Classes[NewReg] = Classes[AntiDepReg];
657 DefIndices[NewReg] = DefIndices[AntiDepReg];
658 KillIndices[NewReg] = KillIndices[AntiDepReg];
659 assert(((KillIndices[NewReg] == ~0u) !=
660 (DefIndices[NewReg] == ~0u)) &&
661 "Kill and Def maps aren't consistent for NewReg!");
662
663 Classes[AntiDepReg] = nullptr;
664 DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
665 KillIndices[AntiDepReg] = ~0u;
666 assert(((KillIndices[AntiDepReg] == ~0u) !=
667 (DefIndices[AntiDepReg] == ~0u)) &&
668 "Kill and Def maps aren't consistent for AntiDepReg!");
669
670 RegRefs.erase(AntiDepReg);
671 LastNewReg[AntiDepReg] = NewReg;
672 ++Broken;
673 }
674 }
675
676 ScanInstruction(MI, Count);
677 }
678
679 return Broken;
680 }
681