• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/RecyclingAllocator.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetSubtargetInfo.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "machine-cse"
33 
34 STATISTIC(NumCoalesces, "Number of copies coalesced");
35 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
36 STATISTIC(NumPhysCSEs,
37           "Number of physreg referencing common subexpr eliminated");
38 STATISTIC(NumCrossBBCSEs,
39           "Number of cross-MBB physreg referencing CS eliminated");
40 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
41 
42 namespace {
43   class MachineCSE : public MachineFunctionPass {
44     const TargetInstrInfo *TII;
45     const TargetRegisterInfo *TRI;
46     AliasAnalysis *AA;
47     MachineDominatorTree *DT;
48     MachineRegisterInfo *MRI;
49   public:
50     static char ID; // Pass identification
MachineCSE()51     MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(0), CurrVN(0) {
52       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
53     }
54 
55     bool runOnMachineFunction(MachineFunction &MF) override;
56 
getAnalysisUsage(AnalysisUsage & AU) const57     void getAnalysisUsage(AnalysisUsage &AU) const override {
58       AU.setPreservesCFG();
59       MachineFunctionPass::getAnalysisUsage(AU);
60       AU.addRequired<AAResultsWrapperPass>();
61       AU.addPreservedID(MachineLoopInfoID);
62       AU.addRequired<MachineDominatorTree>();
63       AU.addPreserved<MachineDominatorTree>();
64     }
65 
releaseMemory()66     void releaseMemory() override {
67       ScopeMap.clear();
68       Exps.clear();
69     }
70 
71   private:
72     unsigned LookAheadLimit;
73     typedef RecyclingAllocator<BumpPtrAllocator,
74         ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
75     typedef ScopedHashTable<MachineInstr*, unsigned,
76         MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
77     typedef ScopedHTType::ScopeTy ScopeType;
78     DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
79     ScopedHTType VNT;
80     SmallVector<MachineInstr*, 64> Exps;
81     unsigned CurrVN;
82 
83     bool PerformTrivialCopyPropagation(MachineInstr *MI,
84                                        MachineBasicBlock *MBB);
85     bool isPhysDefTriviallyDead(unsigned Reg,
86                                 MachineBasicBlock::const_iterator I,
87                                 MachineBasicBlock::const_iterator E) const;
88     bool hasLivePhysRegDefUses(const MachineInstr *MI,
89                                const MachineBasicBlock *MBB,
90                                SmallSet<unsigned,8> &PhysRefs,
91                                SmallVectorImpl<unsigned> &PhysDefs,
92                                bool &PhysUseDef) const;
93     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
94                           SmallSet<unsigned,8> &PhysRefs,
95                           SmallVectorImpl<unsigned> &PhysDefs,
96                           bool &NonLocal) const;
97     bool isCSECandidate(MachineInstr *MI);
98     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
99                            MachineInstr *CSMI, MachineInstr *MI);
100     void EnterScope(MachineBasicBlock *MBB);
101     void ExitScope(MachineBasicBlock *MBB);
102     bool ProcessBlock(MachineBasicBlock *MBB);
103     void ExitScopeIfDone(MachineDomTreeNode *Node,
104                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
105     bool PerformCSE(MachineDomTreeNode *Node);
106   };
107 } // end anonymous namespace
108 
109 char MachineCSE::ID = 0;
110 char &llvm::MachineCSEID = MachineCSE::ID;
111 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
112                 "Machine Common Subexpression Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)113 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
114 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
115 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
116                 "Machine Common Subexpression Elimination", false, false)
117 
118 /// The source register of a COPY machine instruction can be propagated to all
119 /// its users, and this propagation could increase the probability of finding
120 /// common subexpressions. If the COPY has only one user, the COPY itself can
121 /// be removed.
122 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
123                                                MachineBasicBlock *MBB) {
124   bool Changed = false;
125   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
126     MachineOperand &MO = MI->getOperand(i);
127     if (!MO.isReg() || !MO.isUse())
128       continue;
129     unsigned Reg = MO.getReg();
130     if (!TargetRegisterInfo::isVirtualRegister(Reg))
131       continue;
132     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
133     MachineInstr *DefMI = MRI->getVRegDef(Reg);
134     if (!DefMI->isCopy())
135       continue;
136     unsigned SrcReg = DefMI->getOperand(1).getReg();
137     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
138       continue;
139     if (DefMI->getOperand(0).getSubReg())
140       continue;
141     // FIXME: We should trivially coalesce subregister copies to expose CSE
142     // opportunities on instructions with truncated operands (see
143     // cse-add-with-overflow.ll). This can be done here as follows:
144     // if (SrcSubReg)
145     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
146     //                                     SrcSubReg);
147     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
148     //
149     // The 2-addr pass has been updated to handle coalesced subregs. However,
150     // some machine-specific code still can't handle it.
151     // To handle it properly we also need a way find a constrained subregister
152     // class given a super-reg class and subreg index.
153     if (DefMI->getOperand(1).getSubReg())
154       continue;
155     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
156     if (!MRI->constrainRegClass(SrcReg, RC))
157       continue;
158     DEBUG(dbgs() << "Coalescing: " << *DefMI);
159     DEBUG(dbgs() << "***     to: " << *MI);
160     // Propagate SrcReg of copies to MI.
161     MO.setReg(SrcReg);
162     MRI->clearKillFlags(SrcReg);
163     // Coalesce single use copies.
164     if (OnlyOneUse) {
165       DefMI->eraseFromParent();
166       ++NumCoalesces;
167     }
168     Changed = true;
169   }
170 
171   return Changed;
172 }
173 
174 bool
isPhysDefTriviallyDead(unsigned Reg,MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator E) const175 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
176                                    MachineBasicBlock::const_iterator I,
177                                    MachineBasicBlock::const_iterator E) const {
178   unsigned LookAheadLeft = LookAheadLimit;
179   while (LookAheadLeft) {
180     // Skip over dbg_value's.
181     while (I != E && I->isDebugValue())
182       ++I;
183 
184     if (I == E)
185       // Reached end of block, register is obviously dead.
186       return true;
187 
188     bool SeenDef = false;
189     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
190       const MachineOperand &MO = I->getOperand(i);
191       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
192         SeenDef = true;
193       if (!MO.isReg() || !MO.getReg())
194         continue;
195       if (!TRI->regsOverlap(MO.getReg(), Reg))
196         continue;
197       if (MO.isUse())
198         // Found a use!
199         return false;
200       SeenDef = true;
201     }
202     if (SeenDef)
203       // See a def of Reg (or an alias) before encountering any use, it's
204       // trivially dead.
205       return true;
206 
207     --LookAheadLeft;
208     ++I;
209   }
210   return false;
211 }
212 
213 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
214 /// physical registers (except for dead defs of physical registers). It also
215 /// returns the physical register def by reference if it's the only one and the
216 /// instruction does not uses a physical register.
hasLivePhysRegDefUses(const MachineInstr * MI,const MachineBasicBlock * MBB,SmallSet<unsigned,8> & PhysRefs,SmallVectorImpl<unsigned> & PhysDefs,bool & PhysUseDef) const217 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
218                                        const MachineBasicBlock *MBB,
219                                        SmallSet<unsigned,8> &PhysRefs,
220                                        SmallVectorImpl<unsigned> &PhysDefs,
221                                        bool &PhysUseDef) const{
222   // First, add all uses to PhysRefs.
223   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
224     const MachineOperand &MO = MI->getOperand(i);
225     if (!MO.isReg() || MO.isDef())
226       continue;
227     unsigned Reg = MO.getReg();
228     if (!Reg)
229       continue;
230     if (TargetRegisterInfo::isVirtualRegister(Reg))
231       continue;
232     // Reading constant physregs is ok.
233     if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
234       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
235         PhysRefs.insert(*AI);
236   }
237 
238   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
239   // (which currently contains only uses), set the PhysUseDef flag.
240   PhysUseDef = false;
241   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
242   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
243     const MachineOperand &MO = MI->getOperand(i);
244     if (!MO.isReg() || !MO.isDef())
245       continue;
246     unsigned Reg = MO.getReg();
247     if (!Reg)
248       continue;
249     if (TargetRegisterInfo::isVirtualRegister(Reg))
250       continue;
251     // Check against PhysRefs even if the def is "dead".
252     if (PhysRefs.count(Reg))
253       PhysUseDef = true;
254     // If the def is dead, it's ok. But the def may not marked "dead". That's
255     // common since this pass is run before livevariables. We can scan
256     // forward a few instructions and check if it is obviously dead.
257     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
258       PhysDefs.push_back(Reg);
259   }
260 
261   // Finally, add all defs to PhysRefs as well.
262   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
263     for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
264       PhysRefs.insert(*AI);
265 
266   return !PhysRefs.empty();
267 }
268 
PhysRegDefsReach(MachineInstr * CSMI,MachineInstr * MI,SmallSet<unsigned,8> & PhysRefs,SmallVectorImpl<unsigned> & PhysDefs,bool & NonLocal) const269 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
270                                   SmallSet<unsigned,8> &PhysRefs,
271                                   SmallVectorImpl<unsigned> &PhysDefs,
272                                   bool &NonLocal) const {
273   // For now conservatively returns false if the common subexpression is
274   // not in the same basic block as the given instruction. The only exception
275   // is if the common subexpression is in the sole predecessor block.
276   const MachineBasicBlock *MBB = MI->getParent();
277   const MachineBasicBlock *CSMBB = CSMI->getParent();
278 
279   bool CrossMBB = false;
280   if (CSMBB != MBB) {
281     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
282       return false;
283 
284     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
285       if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
286         // Avoid extending live range of physical registers if they are
287         //allocatable or reserved.
288         return false;
289     }
290     CrossMBB = true;
291   }
292   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
293   MachineBasicBlock::const_iterator E = MI;
294   MachineBasicBlock::const_iterator EE = CSMBB->end();
295   unsigned LookAheadLeft = LookAheadLimit;
296   while (LookAheadLeft) {
297     // Skip over dbg_value's.
298     while (I != E && I != EE && I->isDebugValue())
299       ++I;
300 
301     if (I == EE) {
302       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
303       (void)CrossMBB;
304       CrossMBB = false;
305       NonLocal = true;
306       I = MBB->begin();
307       EE = MBB->end();
308       continue;
309     }
310 
311     if (I == E)
312       return true;
313 
314     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
315       const MachineOperand &MO = I->getOperand(i);
316       // RegMasks go on instructions like calls that clobber lots of physregs.
317       // Don't attempt to CSE across such an instruction.
318       if (MO.isRegMask())
319         return false;
320       if (!MO.isReg() || !MO.isDef())
321         continue;
322       unsigned MOReg = MO.getReg();
323       if (TargetRegisterInfo::isVirtualRegister(MOReg))
324         continue;
325       if (PhysRefs.count(MOReg))
326         return false;
327     }
328 
329     --LookAheadLeft;
330     ++I;
331   }
332 
333   return false;
334 }
335 
isCSECandidate(MachineInstr * MI)336 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
337   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
338       MI->isInlineAsm() || MI->isDebugValue())
339     return false;
340 
341   // Ignore copies.
342   if (MI->isCopyLike())
343     return false;
344 
345   // Ignore stuff that we obviously can't move.
346   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
347       MI->hasUnmodeledSideEffects())
348     return false;
349 
350   if (MI->mayLoad()) {
351     // Okay, this instruction does a load. As a refinement, we allow the target
352     // to decide whether the loaded value is actually a constant. If so, we can
353     // actually use it as a load.
354     if (!MI->isInvariantLoad(AA))
355       // FIXME: we should be able to hoist loads with no other side effects if
356       // there are no other instructions which can change memory in this loop.
357       // This is a trivial form of alias analysis.
358       return false;
359   }
360   return true;
361 }
362 
363 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
364 /// common expression that defines Reg.
isProfitableToCSE(unsigned CSReg,unsigned Reg,MachineInstr * CSMI,MachineInstr * MI)365 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
366                                    MachineInstr *CSMI, MachineInstr *MI) {
367   // FIXME: Heuristics that works around the lack the live range splitting.
368 
369   // If CSReg is used at all uses of Reg, CSE should not increase register
370   // pressure of CSReg.
371   bool MayIncreasePressure = true;
372   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
373       TargetRegisterInfo::isVirtualRegister(Reg)) {
374     MayIncreasePressure = false;
375     SmallPtrSet<MachineInstr*, 8> CSUses;
376     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
377       CSUses.insert(&MI);
378     }
379     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
380       if (!CSUses.count(&MI)) {
381         MayIncreasePressure = true;
382         break;
383       }
384     }
385   }
386   if (!MayIncreasePressure) return true;
387 
388   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
389   // an immediate predecessor. We don't want to increase register pressure and
390   // end up causing other computation to be spilled.
391   if (TII->isAsCheapAsAMove(MI)) {
392     MachineBasicBlock *CSBB = CSMI->getParent();
393     MachineBasicBlock *BB = MI->getParent();
394     if (CSBB != BB && !CSBB->isSuccessor(BB))
395       return false;
396   }
397 
398   // Heuristics #2: If the expression doesn't not use a vr and the only use
399   // of the redundant computation are copies, do not cse.
400   bool HasVRegUse = false;
401   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
402     const MachineOperand &MO = MI->getOperand(i);
403     if (MO.isReg() && MO.isUse() &&
404         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
405       HasVRegUse = true;
406       break;
407     }
408   }
409   if (!HasVRegUse) {
410     bool HasNonCopyUse = false;
411     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
412       // Ignore copies.
413       if (!MI.isCopyLike()) {
414         HasNonCopyUse = true;
415         break;
416       }
417     }
418     if (!HasNonCopyUse)
419       return false;
420   }
421 
422   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
423   // it unless the defined value is already used in the BB of the new use.
424   bool HasPHI = false;
425   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
426   for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
427     HasPHI |= MI.isPHI();
428     CSBBs.insert(MI.getParent());
429   }
430 
431   if (!HasPHI)
432     return true;
433   return CSBBs.count(MI->getParent());
434 }
435 
EnterScope(MachineBasicBlock * MBB)436 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
437   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
438   ScopeType *Scope = new ScopeType(VNT);
439   ScopeMap[MBB] = Scope;
440 }
441 
ExitScope(MachineBasicBlock * MBB)442 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
443   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
444   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
445   assert(SI != ScopeMap.end());
446   delete SI->second;
447   ScopeMap.erase(SI);
448 }
449 
ProcessBlock(MachineBasicBlock * MBB)450 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
451   bool Changed = false;
452 
453   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
454   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
455   SmallVector<unsigned, 2> ImplicitDefs;
456   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
457     MachineInstr *MI = &*I;
458     ++I;
459 
460     if (!isCSECandidate(MI))
461       continue;
462 
463     bool FoundCSE = VNT.count(MI);
464     if (!FoundCSE) {
465       // Using trivial copy propagation to find more CSE opportunities.
466       if (PerformTrivialCopyPropagation(MI, MBB)) {
467         Changed = true;
468 
469         // After coalescing MI itself may become a copy.
470         if (MI->isCopyLike())
471           continue;
472 
473         // Try again to see if CSE is possible.
474         FoundCSE = VNT.count(MI);
475       }
476     }
477 
478     // Commute commutable instructions.
479     bool Commuted = false;
480     if (!FoundCSE && MI->isCommutable()) {
481       MachineInstr *NewMI = TII->commuteInstruction(MI);
482       if (NewMI) {
483         Commuted = true;
484         FoundCSE = VNT.count(NewMI);
485         if (NewMI != MI) {
486           // New instruction. It doesn't need to be kept.
487           NewMI->eraseFromParent();
488           Changed = true;
489         } else if (!FoundCSE)
490           // MI was changed but it didn't help, commute it back!
491           (void)TII->commuteInstruction(MI);
492       }
493     }
494 
495     // If the instruction defines physical registers and the values *may* be
496     // used, then it's not safe to replace it with a common subexpression.
497     // It's also not safe if the instruction uses physical registers.
498     bool CrossMBBPhysDef = false;
499     SmallSet<unsigned, 8> PhysRefs;
500     SmallVector<unsigned, 2> PhysDefs;
501     bool PhysUseDef = false;
502     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
503                                           PhysDefs, PhysUseDef)) {
504       FoundCSE = false;
505 
506       // ... Unless the CS is local or is in the sole predecessor block
507       // and it also defines the physical register which is not clobbered
508       // in between and the physical register uses were not clobbered.
509       // This can never be the case if the instruction both uses and
510       // defines the same physical register, which was detected above.
511       if (!PhysUseDef) {
512         unsigned CSVN = VNT.lookup(MI);
513         MachineInstr *CSMI = Exps[CSVN];
514         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
515           FoundCSE = true;
516       }
517     }
518 
519     if (!FoundCSE) {
520       VNT.insert(MI, CurrVN++);
521       Exps.push_back(MI);
522       continue;
523     }
524 
525     // Found a common subexpression, eliminate it.
526     unsigned CSVN = VNT.lookup(MI);
527     MachineInstr *CSMI = Exps[CSVN];
528     DEBUG(dbgs() << "Examining: " << *MI);
529     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
530 
531     // Check if it's profitable to perform this CSE.
532     bool DoCSE = true;
533     unsigned NumDefs = MI->getDesc().getNumDefs() +
534                        MI->getDesc().getNumImplicitDefs();
535 
536     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
537       MachineOperand &MO = MI->getOperand(i);
538       if (!MO.isReg() || !MO.isDef())
539         continue;
540       unsigned OldReg = MO.getReg();
541       unsigned NewReg = CSMI->getOperand(i).getReg();
542 
543       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
544       // we should make sure it is not dead at CSMI.
545       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
546         ImplicitDefsToUpdate.push_back(i);
547 
548       // Keep track of implicit defs of CSMI and MI, to clear possibly
549       // made-redundant kill flags.
550       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
551         ImplicitDefs.push_back(OldReg);
552 
553       if (OldReg == NewReg) {
554         --NumDefs;
555         continue;
556       }
557 
558       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
559              TargetRegisterInfo::isVirtualRegister(NewReg) &&
560              "Do not CSE physical register defs!");
561 
562       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
563         DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
564         DoCSE = false;
565         break;
566       }
567 
568       // Don't perform CSE if the result of the old instruction cannot exist
569       // within the register class of the new instruction.
570       const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
571       if (!MRI->constrainRegClass(NewReg, OldRC)) {
572         DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
573         DoCSE = false;
574         break;
575       }
576 
577       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
578       --NumDefs;
579     }
580 
581     // Actually perform the elimination.
582     if (DoCSE) {
583       for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
584         unsigned OldReg = CSEPairs[i].first;
585         unsigned NewReg = CSEPairs[i].second;
586         // OldReg may have been unused but is used now, clear the Dead flag
587         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
588         assert(Def != nullptr && "CSEd register has no unique definition?");
589         Def->clearRegisterDeads(NewReg);
590         // Replace with NewReg and clear kill flags which may be wrong now.
591         MRI->replaceRegWith(OldReg, NewReg);
592         MRI->clearKillFlags(NewReg);
593       }
594 
595       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
596       // we should make sure it is not dead at CSMI.
597       for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
598         CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
599 
600       // Go through implicit defs of CSMI and MI, and clear the kill flags on
601       // their uses in all the instructions between CSMI and MI.
602       // We might have made some of the kill flags redundant, consider:
603       //   subs  ... %NZCV<imp-def>        <- CSMI
604       //   csinc ... %NZCV<imp-use,kill>   <- this kill flag isn't valid anymore
605       //   subs  ... %NZCV<imp-def>        <- MI, to be eliminated
606       //   csinc ... %NZCV<imp-use,kill>
607       // Since we eliminated MI, and reused a register imp-def'd by CSMI
608       // (here %NZCV), that register, if it was killed before MI, should have
609       // that kill flag removed, because it's lifetime was extended.
610       if (CSMI->getParent() == MI->getParent()) {
611         for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
612           for (auto ImplicitDef : ImplicitDefs)
613             if (MachineOperand *MO = II->findRegisterUseOperand(
614                     ImplicitDef, /*isKill=*/true, TRI))
615               MO->setIsKill(false);
616       } else {
617         // If the instructions aren't in the same BB, bail out and clear the
618         // kill flag on all uses of the imp-def'd register.
619         for (auto ImplicitDef : ImplicitDefs)
620           MRI->clearKillFlags(ImplicitDef);
621       }
622 
623       if (CrossMBBPhysDef) {
624         // Add physical register defs now coming in from a predecessor to MBB
625         // livein list.
626         while (!PhysDefs.empty()) {
627           unsigned LiveIn = PhysDefs.pop_back_val();
628           if (!MBB->isLiveIn(LiveIn))
629             MBB->addLiveIn(LiveIn);
630         }
631         ++NumCrossBBCSEs;
632       }
633 
634       MI->eraseFromParent();
635       ++NumCSEs;
636       if (!PhysRefs.empty())
637         ++NumPhysCSEs;
638       if (Commuted)
639         ++NumCommutes;
640       Changed = true;
641     } else {
642       VNT.insert(MI, CurrVN++);
643       Exps.push_back(MI);
644     }
645     CSEPairs.clear();
646     ImplicitDefsToUpdate.clear();
647     ImplicitDefs.clear();
648   }
649 
650   return Changed;
651 }
652 
653 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
654 /// dominator tree node if its a leaf or all of its children are done. Walk
655 /// up the dominator tree to destroy ancestors which are now done.
656 void
ExitScopeIfDone(MachineDomTreeNode * Node,DenseMap<MachineDomTreeNode *,unsigned> & OpenChildren)657 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
658                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
659   if (OpenChildren[Node])
660     return;
661 
662   // Pop scope.
663   ExitScope(Node->getBlock());
664 
665   // Now traverse upwards to pop ancestors whose offsprings are all done.
666   while (MachineDomTreeNode *Parent = Node->getIDom()) {
667     unsigned Left = --OpenChildren[Parent];
668     if (Left != 0)
669       break;
670     ExitScope(Parent->getBlock());
671     Node = Parent;
672   }
673 }
674 
PerformCSE(MachineDomTreeNode * Node)675 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
676   SmallVector<MachineDomTreeNode*, 32> Scopes;
677   SmallVector<MachineDomTreeNode*, 8> WorkList;
678   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
679 
680   CurrVN = 0;
681 
682   // Perform a DFS walk to determine the order of visit.
683   WorkList.push_back(Node);
684   do {
685     Node = WorkList.pop_back_val();
686     Scopes.push_back(Node);
687     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
688     unsigned NumChildren = Children.size();
689     OpenChildren[Node] = NumChildren;
690     for (unsigned i = 0; i != NumChildren; ++i) {
691       MachineDomTreeNode *Child = Children[i];
692       WorkList.push_back(Child);
693     }
694   } while (!WorkList.empty());
695 
696   // Now perform CSE.
697   bool Changed = false;
698   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
699     MachineDomTreeNode *Node = Scopes[i];
700     MachineBasicBlock *MBB = Node->getBlock();
701     EnterScope(MBB);
702     Changed |= ProcessBlock(MBB);
703     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
704     ExitScopeIfDone(Node, OpenChildren);
705   }
706 
707   return Changed;
708 }
709 
runOnMachineFunction(MachineFunction & MF)710 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
711   if (skipOptnoneFunction(*MF.getFunction()))
712     return false;
713 
714   TII = MF.getSubtarget().getInstrInfo();
715   TRI = MF.getSubtarget().getRegisterInfo();
716   MRI = &MF.getRegInfo();
717   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
718   DT = &getAnalysis<MachineDominatorTree>();
719   LookAheadLimit = TII->getMachineCSELookAheadLimit();
720   return PerformCSE(DT->getRootNode());
721 }
722