1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass inserts stack protectors into functions which need them. A variable
11 // with a random value in it is stored onto the stack before the local variables
12 // are allocated. Upon exiting the block, the stored value is checked. If it's
13 // changed, then there was some sort of violation and the program aborts.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/CodeGen/StackProtector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <cstdlib>
40 using namespace llvm;
41
42 #define DEBUG_TYPE "stack-protector"
43
44 STATISTIC(NumFunProtected, "Number of functions protected");
45 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
46 " taken.");
47
48 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
49 cl::init(true), cl::Hidden);
50
51 char StackProtector::ID = 0;
52 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
53 false, true)
54
createStackProtectorPass(const TargetMachine * TM)55 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
56 return new StackProtector(TM);
57 }
58
59 StackProtector::SSPLayoutKind
getSSPLayout(const AllocaInst * AI) const60 StackProtector::getSSPLayout(const AllocaInst *AI) const {
61 return AI ? Layout.lookup(AI) : SSPLK_None;
62 }
63
adjustForColoring(const AllocaInst * From,const AllocaInst * To)64 void StackProtector::adjustForColoring(const AllocaInst *From,
65 const AllocaInst *To) {
66 // When coloring replaces one alloca with another, transfer the SSPLayoutKind
67 // tag from the remapped to the target alloca. The remapped alloca should
68 // have a size smaller than or equal to the replacement alloca.
69 SSPLayoutMap::iterator I = Layout.find(From);
70 if (I != Layout.end()) {
71 SSPLayoutKind Kind = I->second;
72 Layout.erase(I);
73
74 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite
75 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that
76 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
77 I = Layout.find(To);
78 if (I == Layout.end())
79 Layout.insert(std::make_pair(To, Kind));
80 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf)
81 I->second = Kind;
82 }
83 }
84
runOnFunction(Function & Fn)85 bool StackProtector::runOnFunction(Function &Fn) {
86 F = &Fn;
87 M = F->getParent();
88 DominatorTreeWrapperPass *DTWP =
89 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
90 DT = DTWP ? &DTWP->getDomTree() : nullptr;
91 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
92
93 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
94 if (Attr.isStringAttribute() &&
95 Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
96 return false; // Invalid integer string
97
98 if (!RequiresStackProtector())
99 return false;
100
101 ++NumFunProtected;
102 return InsertStackProtectors();
103 }
104
105 /// \param [out] IsLarge is set to true if a protectable array is found and
106 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
107 /// multiple arrays, this gets set if any of them is large.
ContainsProtectableArray(Type * Ty,bool & IsLarge,bool Strong,bool InStruct) const108 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
109 bool Strong,
110 bool InStruct) const {
111 if (!Ty)
112 return false;
113 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
114 if (!AT->getElementType()->isIntegerTy(8)) {
115 // If we're on a non-Darwin platform or we're inside of a structure, don't
116 // add stack protectors unless the array is a character array.
117 // However, in strong mode any array, regardless of type and size,
118 // triggers a protector.
119 if (!Strong && (InStruct || !Trip.isOSDarwin()))
120 return false;
121 }
122
123 // If an array has more than SSPBufferSize bytes of allocated space, then we
124 // emit stack protectors.
125 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
126 IsLarge = true;
127 return true;
128 }
129
130 if (Strong)
131 // Require a protector for all arrays in strong mode
132 return true;
133 }
134
135 const StructType *ST = dyn_cast<StructType>(Ty);
136 if (!ST)
137 return false;
138
139 bool NeedsProtector = false;
140 for (StructType::element_iterator I = ST->element_begin(),
141 E = ST->element_end();
142 I != E; ++I)
143 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
144 // If the element is a protectable array and is large (>= SSPBufferSize)
145 // then we are done. If the protectable array is not large, then
146 // keep looking in case a subsequent element is a large array.
147 if (IsLarge)
148 return true;
149 NeedsProtector = true;
150 }
151
152 return NeedsProtector;
153 }
154
HasAddressTaken(const Instruction * AI)155 bool StackProtector::HasAddressTaken(const Instruction *AI) {
156 for (const User *U : AI->users()) {
157 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
158 if (AI == SI->getValueOperand())
159 return true;
160 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
161 if (AI == SI->getOperand(0))
162 return true;
163 } else if (isa<CallInst>(U)) {
164 return true;
165 } else if (isa<InvokeInst>(U)) {
166 return true;
167 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
168 if (HasAddressTaken(SI))
169 return true;
170 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
171 // Keep track of what PHI nodes we have already visited to ensure
172 // they are only visited once.
173 if (VisitedPHIs.insert(PN).second)
174 if (HasAddressTaken(PN))
175 return true;
176 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
177 if (HasAddressTaken(GEP))
178 return true;
179 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
180 if (HasAddressTaken(BI))
181 return true;
182 }
183 }
184 return false;
185 }
186
187 /// \brief Check whether or not this function needs a stack protector based
188 /// upon the stack protector level.
189 ///
190 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
191 /// The standard heuristic which will add a guard variable to functions that
192 /// call alloca with a either a variable size or a size >= SSPBufferSize,
193 /// functions with character buffers larger than SSPBufferSize, and functions
194 /// with aggregates containing character buffers larger than SSPBufferSize. The
195 /// strong heuristic will add a guard variables to functions that call alloca
196 /// regardless of size, functions with any buffer regardless of type and size,
197 /// functions with aggregates that contain any buffer regardless of type and
198 /// size, and functions that contain stack-based variables that have had their
199 /// address taken.
RequiresStackProtector()200 bool StackProtector::RequiresStackProtector() {
201 bool Strong = false;
202 bool NeedsProtector = false;
203 if (F->hasFnAttribute(Attribute::StackProtectReq)) {
204 NeedsProtector = true;
205 Strong = true; // Use the same heuristic as strong to determine SSPLayout
206 } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
207 Strong = true;
208 else if (!F->hasFnAttribute(Attribute::StackProtect))
209 return false;
210
211 for (const BasicBlock &BB : *F) {
212 for (const Instruction &I : BB) {
213 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
214 if (AI->isArrayAllocation()) {
215 // SSP-Strong: Enable protectors for any call to alloca, regardless
216 // of size.
217 if (Strong)
218 return true;
219
220 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
221 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
222 // A call to alloca with size >= SSPBufferSize requires
223 // stack protectors.
224 Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
225 NeedsProtector = true;
226 } else if (Strong) {
227 // Require protectors for all alloca calls in strong mode.
228 Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
229 NeedsProtector = true;
230 }
231 } else {
232 // A call to alloca with a variable size requires protectors.
233 Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
234 NeedsProtector = true;
235 }
236 continue;
237 }
238
239 bool IsLarge = false;
240 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
241 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
242 : SSPLK_SmallArray));
243 NeedsProtector = true;
244 continue;
245 }
246
247 if (Strong && HasAddressTaken(AI)) {
248 ++NumAddrTaken;
249 Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
250 NeedsProtector = true;
251 }
252 }
253 }
254 }
255
256 return NeedsProtector;
257 }
258
InstructionWillNotHaveChain(const Instruction * I)259 static bool InstructionWillNotHaveChain(const Instruction *I) {
260 return !I->mayHaveSideEffects() && !I->mayReadFromMemory() &&
261 isSafeToSpeculativelyExecute(I);
262 }
263
264 /// Identify if RI has a previous instruction in the "Tail Position" and return
265 /// it. Otherwise return 0.
266 ///
267 /// This is based off of the code in llvm::isInTailCallPosition. The difference
268 /// is that it inverts the first part of llvm::isInTailCallPosition since
269 /// isInTailCallPosition is checking if a call is in a tail call position, and
270 /// we are searching for an unknown tail call that might be in the tail call
271 /// position. Once we find the call though, the code uses the same refactored
272 /// code, returnTypeIsEligibleForTailCall.
FindPotentialTailCall(BasicBlock * BB,ReturnInst * RI,const TargetLoweringBase * TLI)273 static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
274 const TargetLoweringBase *TLI) {
275 // Establish a reasonable upper bound on the maximum amount of instructions we
276 // will look through to find a tail call.
277 unsigned SearchCounter = 0;
278 const unsigned MaxSearch = 4;
279 bool NoInterposingChain = true;
280
281 for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend();
282 I != E && SearchCounter < MaxSearch; ++I) {
283 Instruction *Inst = &*I;
284
285 // Skip over debug intrinsics and do not allow them to affect our MaxSearch
286 // counter.
287 if (isa<DbgInfoIntrinsic>(Inst))
288 continue;
289
290 // If we find a call and the following conditions are satisifed, then we
291 // have found a tail call that satisfies at least the target independent
292 // requirements of a tail call:
293 //
294 // 1. The call site has the tail marker.
295 //
296 // 2. The call site either will not cause the creation of a chain or if a
297 // chain is necessary there are no instructions in between the callsite and
298 // the call which would create an interposing chain.
299 //
300 // 3. The return type of the function does not impede tail call
301 // optimization.
302 if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
303 if (CI->isTailCall() &&
304 (InstructionWillNotHaveChain(CI) || NoInterposingChain) &&
305 returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI))
306 return CI;
307 }
308
309 // If we did not find a call see if we have an instruction that may create
310 // an interposing chain.
311 NoInterposingChain =
312 NoInterposingChain && InstructionWillNotHaveChain(Inst);
313
314 // Increment max search.
315 SearchCounter++;
316 }
317
318 return nullptr;
319 }
320
321 /// Insert code into the entry block that stores the __stack_chk_guard
322 /// variable onto the stack:
323 ///
324 /// entry:
325 /// StackGuardSlot = alloca i8*
326 /// StackGuard = load __stack_chk_guard
327 /// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
328 ///
329 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
330 /// node.
CreatePrologue(Function * F,Module * M,ReturnInst * RI,const TargetLoweringBase * TLI,const Triple & TT,AllocaInst * & AI,Value * & StackGuardVar)331 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
332 const TargetLoweringBase *TLI, const Triple &TT,
333 AllocaInst *&AI, Value *&StackGuardVar) {
334 bool SupportsSelectionDAGSP = false;
335 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
336 unsigned AddressSpace, Offset;
337 if (TLI->getStackCookieLocation(AddressSpace, Offset)) {
338 Constant *OffsetVal =
339 ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
340
341 StackGuardVar =
342 ConstantExpr::getIntToPtr(OffsetVal, PointerType::get(PtrTy,
343 AddressSpace));
344 } else if (TT.isOSOpenBSD()) {
345 StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
346 cast<GlobalValue>(StackGuardVar)
347 ->setVisibility(GlobalValue::HiddenVisibility);
348 } else {
349 SupportsSelectionDAGSP = true;
350 StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
351 }
352
353 IRBuilder<> B(&F->getEntryBlock().front());
354 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
355 LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard");
356 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
357 {LI, AI});
358
359 return SupportsSelectionDAGSP;
360 }
361
362 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
363 /// function.
364 ///
365 /// - The prologue code loads and stores the stack guard onto the stack.
366 /// - The epilogue checks the value stored in the prologue against the original
367 /// value. It calls __stack_chk_fail if they differ.
InsertStackProtectors()368 bool StackProtector::InsertStackProtectors() {
369 bool HasPrologue = false;
370 bool SupportsSelectionDAGSP =
371 EnableSelectionDAGSP && !TM->Options.EnableFastISel;
372 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
373 Value *StackGuardVar = nullptr; // The stack guard variable.
374
375 for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
376 BasicBlock *BB = &*I++;
377 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
378 if (!RI)
379 continue;
380
381 if (!HasPrologue) {
382 HasPrologue = true;
383 SupportsSelectionDAGSP &=
384 CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar);
385 }
386
387 if (SupportsSelectionDAGSP) {
388 // Since we have a potential tail call, insert the special stack check
389 // intrinsic.
390 Instruction *InsertionPt = nullptr;
391 if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) {
392 InsertionPt = CI;
393 } else {
394 InsertionPt = RI;
395 // At this point we know that BB has a return statement so it *DOES*
396 // have a terminator.
397 assert(InsertionPt != nullptr &&
398 "BB must have a terminator instruction at this point.");
399 }
400
401 Function *Intrinsic =
402 Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
403 CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
404 } else {
405 // If we do not support SelectionDAG based tail calls, generate IR level
406 // tail calls.
407 //
408 // For each block with a return instruction, convert this:
409 //
410 // return:
411 // ...
412 // ret ...
413 //
414 // into this:
415 //
416 // return:
417 // ...
418 // %1 = load __stack_chk_guard
419 // %2 = load StackGuardSlot
420 // %3 = cmp i1 %1, %2
421 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
422 //
423 // SP_return:
424 // ret ...
425 //
426 // CallStackCheckFailBlk:
427 // call void @__stack_chk_fail()
428 // unreachable
429
430 // Create the FailBB. We duplicate the BB every time since the MI tail
431 // merge pass will merge together all of the various BB into one including
432 // fail BB generated by the stack protector pseudo instruction.
433 BasicBlock *FailBB = CreateFailBB();
434
435 // Split the basic block before the return instruction.
436 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
437
438 // Update the dominator tree if we need to.
439 if (DT && DT->isReachableFromEntry(BB)) {
440 DT->addNewBlock(NewBB, BB);
441 DT->addNewBlock(FailBB, BB);
442 }
443
444 // Remove default branch instruction to the new BB.
445 BB->getTerminator()->eraseFromParent();
446
447 // Move the newly created basic block to the point right after the old
448 // basic block so that it's in the "fall through" position.
449 NewBB->moveAfter(BB);
450
451 // Generate the stack protector instructions in the old basic block.
452 IRBuilder<> B(BB);
453 LoadInst *LI1 = B.CreateLoad(StackGuardVar);
454 LoadInst *LI2 = B.CreateLoad(AI);
455 Value *Cmp = B.CreateICmpEQ(LI1, LI2);
456 unsigned SuccessWeight =
457 BranchProbabilityInfo::getBranchWeightStackProtector(true);
458 unsigned FailureWeight =
459 BranchProbabilityInfo::getBranchWeightStackProtector(false);
460 MDNode *Weights = MDBuilder(F->getContext())
461 .createBranchWeights(SuccessWeight, FailureWeight);
462 B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
463 }
464 }
465
466 // Return if we didn't modify any basic blocks. i.e., there are no return
467 // statements in the function.
468 return HasPrologue;
469 }
470
471 /// CreateFailBB - Create a basic block to jump to when the stack protector
472 /// check fails.
CreateFailBB()473 BasicBlock *StackProtector::CreateFailBB() {
474 LLVMContext &Context = F->getContext();
475 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
476 IRBuilder<> B(FailBB);
477 if (Trip.isOSOpenBSD()) {
478 Constant *StackChkFail =
479 M->getOrInsertFunction("__stack_smash_handler",
480 Type::getVoidTy(Context),
481 Type::getInt8PtrTy(Context), nullptr);
482
483 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
484 } else {
485 Constant *StackChkFail =
486 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context),
487 nullptr);
488 B.CreateCall(StackChkFail, {});
489 }
490 B.CreateUnreachable();
491 return FailBB;
492 }
493