1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MSP430TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MSP430ISelLowering.h"
15 #include "MSP430.h"
16 #include "MSP430MachineFunctionInfo.h"
17 #include "MSP430Subtarget.h"
18 #include "MSP430TargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGISel.h"
25 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 using namespace llvm;
38
39 #define DEBUG_TYPE "msp430-lower"
40
41 typedef enum {
42 NoHWMult,
43 HWMultIntr,
44 HWMultNoIntr
45 } HWMultUseMode;
46
47 static cl::opt<HWMultUseMode>
48 HWMultMode("msp430-hwmult-mode", cl::Hidden,
49 cl::desc("Hardware multiplier use mode"),
50 cl::init(HWMultNoIntr),
51 cl::values(
52 clEnumValN(NoHWMult, "no",
53 "Do not use hardware multiplier"),
54 clEnumValN(HWMultIntr, "interrupts",
55 "Assume hardware multiplier can be used inside interrupts"),
56 clEnumValN(HWMultNoIntr, "use",
57 "Assume hardware multiplier cannot be used inside interrupts"),
58 clEnumValEnd));
59
MSP430TargetLowering(const TargetMachine & TM,const MSP430Subtarget & STI)60 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
61 const MSP430Subtarget &STI)
62 : TargetLowering(TM) {
63
64 // Set up the register classes.
65 addRegisterClass(MVT::i8, &MSP430::GR8RegClass);
66 addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
67
68 // Compute derived properties from the register classes
69 computeRegisterProperties(STI.getRegisterInfo());
70
71 // Provide all sorts of operation actions
72 setStackPointerRegisterToSaveRestore(MSP430::SP);
73 setBooleanContents(ZeroOrOneBooleanContent);
74 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
75
76 // We have post-incremented loads / stores.
77 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
78 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
79
80 for (MVT VT : MVT::integer_valuetypes()) {
81 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
82 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
83 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
84 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
85 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
86 }
87
88 // We don't have any truncstores
89 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
90
91 setOperationAction(ISD::SRA, MVT::i8, Custom);
92 setOperationAction(ISD::SHL, MVT::i8, Custom);
93 setOperationAction(ISD::SRL, MVT::i8, Custom);
94 setOperationAction(ISD::SRA, MVT::i16, Custom);
95 setOperationAction(ISD::SHL, MVT::i16, Custom);
96 setOperationAction(ISD::SRL, MVT::i16, Custom);
97 setOperationAction(ISD::ROTL, MVT::i8, Expand);
98 setOperationAction(ISD::ROTR, MVT::i8, Expand);
99 setOperationAction(ISD::ROTL, MVT::i16, Expand);
100 setOperationAction(ISD::ROTR, MVT::i16, Expand);
101 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
102 setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom);
103 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
104 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
105 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
106 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
107 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
108 setOperationAction(ISD::SETCC, MVT::i8, Custom);
109 setOperationAction(ISD::SETCC, MVT::i16, Custom);
110 setOperationAction(ISD::SELECT, MVT::i8, Expand);
111 setOperationAction(ISD::SELECT, MVT::i16, Expand);
112 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
113 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
114 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom);
115 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
116 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
117
118 setOperationAction(ISD::CTTZ, MVT::i8, Expand);
119 setOperationAction(ISD::CTTZ, MVT::i16, Expand);
120 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i8, Expand);
121 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Expand);
122 setOperationAction(ISD::CTLZ, MVT::i8, Expand);
123 setOperationAction(ISD::CTLZ, MVT::i16, Expand);
124 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8, Expand);
125 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Expand);
126 setOperationAction(ISD::CTPOP, MVT::i8, Expand);
127 setOperationAction(ISD::CTPOP, MVT::i16, Expand);
128
129 setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand);
130 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
131 setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand);
132 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
133 setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand);
134 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
135
136 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
137
138 // FIXME: Implement efficiently multiplication by a constant
139 setOperationAction(ISD::MUL, MVT::i8, Expand);
140 setOperationAction(ISD::MULHS, MVT::i8, Expand);
141 setOperationAction(ISD::MULHU, MVT::i8, Expand);
142 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
143 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
144 setOperationAction(ISD::MUL, MVT::i16, Expand);
145 setOperationAction(ISD::MULHS, MVT::i16, Expand);
146 setOperationAction(ISD::MULHU, MVT::i16, Expand);
147 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
148 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
149
150 setOperationAction(ISD::UDIV, MVT::i8, Expand);
151 setOperationAction(ISD::UDIVREM, MVT::i8, Expand);
152 setOperationAction(ISD::UREM, MVT::i8, Expand);
153 setOperationAction(ISD::SDIV, MVT::i8, Expand);
154 setOperationAction(ISD::SDIVREM, MVT::i8, Expand);
155 setOperationAction(ISD::SREM, MVT::i8, Expand);
156 setOperationAction(ISD::UDIV, MVT::i16, Expand);
157 setOperationAction(ISD::UDIVREM, MVT::i16, Expand);
158 setOperationAction(ISD::UREM, MVT::i16, Expand);
159 setOperationAction(ISD::SDIV, MVT::i16, Expand);
160 setOperationAction(ISD::SDIVREM, MVT::i16, Expand);
161 setOperationAction(ISD::SREM, MVT::i16, Expand);
162
163 // varargs support
164 setOperationAction(ISD::VASTART, MVT::Other, Custom);
165 setOperationAction(ISD::VAARG, MVT::Other, Expand);
166 setOperationAction(ISD::VAEND, MVT::Other, Expand);
167 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
168 setOperationAction(ISD::JumpTable, MVT::i16, Custom);
169
170 // Libcalls names.
171 if (HWMultMode == HWMultIntr) {
172 setLibcallName(RTLIB::MUL_I8, "__mulqi3hw");
173 setLibcallName(RTLIB::MUL_I16, "__mulhi3hw");
174 } else if (HWMultMode == HWMultNoIntr) {
175 setLibcallName(RTLIB::MUL_I8, "__mulqi3hw_noint");
176 setLibcallName(RTLIB::MUL_I16, "__mulhi3hw_noint");
177 }
178
179 setMinFunctionAlignment(1);
180 setPrefFunctionAlignment(2);
181 }
182
LowerOperation(SDValue Op,SelectionDAG & DAG) const183 SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
184 SelectionDAG &DAG) const {
185 switch (Op.getOpcode()) {
186 case ISD::SHL: // FALLTHROUGH
187 case ISD::SRL:
188 case ISD::SRA: return LowerShifts(Op, DAG);
189 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
190 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
191 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
192 case ISD::SETCC: return LowerSETCC(Op, DAG);
193 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
194 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
195 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
196 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
197 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
198 case ISD::VASTART: return LowerVASTART(Op, DAG);
199 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
200 default:
201 llvm_unreachable("unimplemented operand");
202 }
203 }
204
205 //===----------------------------------------------------------------------===//
206 // MSP430 Inline Assembly Support
207 //===----------------------------------------------------------------------===//
208
209 /// getConstraintType - Given a constraint letter, return the type of
210 /// constraint it is for this target.
211 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const212 MSP430TargetLowering::getConstraintType(StringRef Constraint) const {
213 if (Constraint.size() == 1) {
214 switch (Constraint[0]) {
215 case 'r':
216 return C_RegisterClass;
217 default:
218 break;
219 }
220 }
221 return TargetLowering::getConstraintType(Constraint);
222 }
223
224 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const225 MSP430TargetLowering::getRegForInlineAsmConstraint(
226 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
227 if (Constraint.size() == 1) {
228 // GCC Constraint Letters
229 switch (Constraint[0]) {
230 default: break;
231 case 'r': // GENERAL_REGS
232 if (VT == MVT::i8)
233 return std::make_pair(0U, &MSP430::GR8RegClass);
234
235 return std::make_pair(0U, &MSP430::GR16RegClass);
236 }
237 }
238
239 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
240 }
241
242 //===----------------------------------------------------------------------===//
243 // Calling Convention Implementation
244 //===----------------------------------------------------------------------===//
245
246 #include "MSP430GenCallingConv.inc"
247
248 /// For each argument in a function store the number of pieces it is composed
249 /// of.
250 template<typename ArgT>
ParseFunctionArgs(const SmallVectorImpl<ArgT> & Args,SmallVectorImpl<unsigned> & Out)251 static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
252 SmallVectorImpl<unsigned> &Out) {
253 unsigned CurrentArgIndex = ~0U;
254 for (unsigned i = 0, e = Args.size(); i != e; i++) {
255 if (CurrentArgIndex == Args[i].OrigArgIndex) {
256 Out.back()++;
257 } else {
258 Out.push_back(1);
259 CurrentArgIndex++;
260 }
261 }
262 }
263
AnalyzeVarArgs(CCState & State,const SmallVectorImpl<ISD::OutputArg> & Outs)264 static void AnalyzeVarArgs(CCState &State,
265 const SmallVectorImpl<ISD::OutputArg> &Outs) {
266 State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
267 }
268
AnalyzeVarArgs(CCState & State,const SmallVectorImpl<ISD::InputArg> & Ins)269 static void AnalyzeVarArgs(CCState &State,
270 const SmallVectorImpl<ISD::InputArg> &Ins) {
271 State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
272 }
273
274 /// Analyze incoming and outgoing function arguments. We need custom C++ code
275 /// to handle special constraints in the ABI like reversing the order of the
276 /// pieces of splitted arguments. In addition, all pieces of a certain argument
277 /// have to be passed either using registers or the stack but never mixing both.
278 template<typename ArgT>
AnalyzeArguments(CCState & State,SmallVectorImpl<CCValAssign> & ArgLocs,const SmallVectorImpl<ArgT> & Args)279 static void AnalyzeArguments(CCState &State,
280 SmallVectorImpl<CCValAssign> &ArgLocs,
281 const SmallVectorImpl<ArgT> &Args) {
282 static const MCPhysReg RegList[] = {
283 MSP430::R15, MSP430::R14, MSP430::R13, MSP430::R12
284 };
285 static const unsigned NbRegs = array_lengthof(RegList);
286
287 if (State.isVarArg()) {
288 AnalyzeVarArgs(State, Args);
289 return;
290 }
291
292 SmallVector<unsigned, 4> ArgsParts;
293 ParseFunctionArgs(Args, ArgsParts);
294
295 unsigned RegsLeft = NbRegs;
296 bool UseStack = false;
297 unsigned ValNo = 0;
298
299 for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
300 MVT ArgVT = Args[ValNo].VT;
301 ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
302 MVT LocVT = ArgVT;
303 CCValAssign::LocInfo LocInfo = CCValAssign::Full;
304
305 // Promote i8 to i16
306 if (LocVT == MVT::i8) {
307 LocVT = MVT::i16;
308 if (ArgFlags.isSExt())
309 LocInfo = CCValAssign::SExt;
310 else if (ArgFlags.isZExt())
311 LocInfo = CCValAssign::ZExt;
312 else
313 LocInfo = CCValAssign::AExt;
314 }
315
316 // Handle byval arguments
317 if (ArgFlags.isByVal()) {
318 State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags);
319 continue;
320 }
321
322 unsigned Parts = ArgsParts[i];
323
324 if (!UseStack && Parts <= RegsLeft) {
325 unsigned FirstVal = ValNo;
326 for (unsigned j = 0; j < Parts; j++) {
327 unsigned Reg = State.AllocateReg(RegList);
328 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
329 RegsLeft--;
330 }
331
332 // Reverse the order of the pieces to agree with the "big endian" format
333 // required in the calling convention ABI.
334 SmallVectorImpl<CCValAssign>::iterator B = ArgLocs.begin() + FirstVal;
335 std::reverse(B, B + Parts);
336 } else {
337 UseStack = true;
338 for (unsigned j = 0; j < Parts; j++)
339 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
340 }
341 }
342 }
343
AnalyzeRetResult(CCState & State,const SmallVectorImpl<ISD::InputArg> & Ins)344 static void AnalyzeRetResult(CCState &State,
345 const SmallVectorImpl<ISD::InputArg> &Ins) {
346 State.AnalyzeCallResult(Ins, RetCC_MSP430);
347 }
348
AnalyzeRetResult(CCState & State,const SmallVectorImpl<ISD::OutputArg> & Outs)349 static void AnalyzeRetResult(CCState &State,
350 const SmallVectorImpl<ISD::OutputArg> &Outs) {
351 State.AnalyzeReturn(Outs, RetCC_MSP430);
352 }
353
354 template<typename ArgT>
AnalyzeReturnValues(CCState & State,SmallVectorImpl<CCValAssign> & RVLocs,const SmallVectorImpl<ArgT> & Args)355 static void AnalyzeReturnValues(CCState &State,
356 SmallVectorImpl<CCValAssign> &RVLocs,
357 const SmallVectorImpl<ArgT> &Args) {
358 AnalyzeRetResult(State, Args);
359
360 // Reverse splitted return values to get the "big endian" format required
361 // to agree with the calling convention ABI.
362 std::reverse(RVLocs.begin(), RVLocs.end());
363 }
364
365 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const366 MSP430TargetLowering::LowerFormalArguments(SDValue Chain,
367 CallingConv::ID CallConv,
368 bool isVarArg,
369 const SmallVectorImpl<ISD::InputArg>
370 &Ins,
371 SDLoc dl,
372 SelectionDAG &DAG,
373 SmallVectorImpl<SDValue> &InVals)
374 const {
375
376 switch (CallConv) {
377 default:
378 llvm_unreachable("Unsupported calling convention");
379 case CallingConv::C:
380 case CallingConv::Fast:
381 return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
382 case CallingConv::MSP430_INTR:
383 if (Ins.empty())
384 return Chain;
385 report_fatal_error("ISRs cannot have arguments");
386 }
387 }
388
389 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const390 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
391 SmallVectorImpl<SDValue> &InVals) const {
392 SelectionDAG &DAG = CLI.DAG;
393 SDLoc &dl = CLI.DL;
394 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
395 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
396 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
397 SDValue Chain = CLI.Chain;
398 SDValue Callee = CLI.Callee;
399 bool &isTailCall = CLI.IsTailCall;
400 CallingConv::ID CallConv = CLI.CallConv;
401 bool isVarArg = CLI.IsVarArg;
402
403 // MSP430 target does not yet support tail call optimization.
404 isTailCall = false;
405
406 switch (CallConv) {
407 default:
408 llvm_unreachable("Unsupported calling convention");
409 case CallingConv::Fast:
410 case CallingConv::C:
411 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
412 Outs, OutVals, Ins, dl, DAG, InVals);
413 case CallingConv::MSP430_INTR:
414 report_fatal_error("ISRs cannot be called directly");
415 }
416 }
417
418 /// LowerCCCArguments - transform physical registers into virtual registers and
419 /// generate load operations for arguments places on the stack.
420 // FIXME: struct return stuff
421 SDValue
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const422 MSP430TargetLowering::LowerCCCArguments(SDValue Chain,
423 CallingConv::ID CallConv,
424 bool isVarArg,
425 const SmallVectorImpl<ISD::InputArg>
426 &Ins,
427 SDLoc dl,
428 SelectionDAG &DAG,
429 SmallVectorImpl<SDValue> &InVals)
430 const {
431 MachineFunction &MF = DAG.getMachineFunction();
432 MachineFrameInfo *MFI = MF.getFrameInfo();
433 MachineRegisterInfo &RegInfo = MF.getRegInfo();
434 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
435
436 // Assign locations to all of the incoming arguments.
437 SmallVector<CCValAssign, 16> ArgLocs;
438 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
439 *DAG.getContext());
440 AnalyzeArguments(CCInfo, ArgLocs, Ins);
441
442 // Create frame index for the start of the first vararg value
443 if (isVarArg) {
444 unsigned Offset = CCInfo.getNextStackOffset();
445 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, Offset, true));
446 }
447
448 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
449 CCValAssign &VA = ArgLocs[i];
450 if (VA.isRegLoc()) {
451 // Arguments passed in registers
452 EVT RegVT = VA.getLocVT();
453 switch (RegVT.getSimpleVT().SimpleTy) {
454 default:
455 {
456 #ifndef NDEBUG
457 errs() << "LowerFormalArguments Unhandled argument type: "
458 << RegVT.getSimpleVT().SimpleTy << "\n";
459 #endif
460 llvm_unreachable(nullptr);
461 }
462 case MVT::i16:
463 unsigned VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
464 RegInfo.addLiveIn(VA.getLocReg(), VReg);
465 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
466
467 // If this is an 8-bit value, it is really passed promoted to 16
468 // bits. Insert an assert[sz]ext to capture this, then truncate to the
469 // right size.
470 if (VA.getLocInfo() == CCValAssign::SExt)
471 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
472 DAG.getValueType(VA.getValVT()));
473 else if (VA.getLocInfo() == CCValAssign::ZExt)
474 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
475 DAG.getValueType(VA.getValVT()));
476
477 if (VA.getLocInfo() != CCValAssign::Full)
478 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
479
480 InVals.push_back(ArgValue);
481 }
482 } else {
483 // Sanity check
484 assert(VA.isMemLoc());
485
486 SDValue InVal;
487 ISD::ArgFlagsTy Flags = Ins[i].Flags;
488
489 if (Flags.isByVal()) {
490 int FI = MFI->CreateFixedObject(Flags.getByValSize(),
491 VA.getLocMemOffset(), true);
492 InVal = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
493 } else {
494 // Load the argument to a virtual register
495 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
496 if (ObjSize > 2) {
497 errs() << "LowerFormalArguments Unhandled argument type: "
498 << EVT(VA.getLocVT()).getEVTString()
499 << "\n";
500 }
501 // Create the frame index object for this incoming parameter...
502 int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
503
504 // Create the SelectionDAG nodes corresponding to a load
505 //from this parameter
506 SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
507 InVal = DAG.getLoad(
508 VA.getLocVT(), dl, Chain, FIN,
509 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
510 false, false, false, 0);
511 }
512
513 InVals.push_back(InVal);
514 }
515 }
516
517 return Chain;
518 }
519
520 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc dl,SelectionDAG & DAG) const521 MSP430TargetLowering::LowerReturn(SDValue Chain,
522 CallingConv::ID CallConv, bool isVarArg,
523 const SmallVectorImpl<ISD::OutputArg> &Outs,
524 const SmallVectorImpl<SDValue> &OutVals,
525 SDLoc dl, SelectionDAG &DAG) const {
526
527 // CCValAssign - represent the assignment of the return value to a location
528 SmallVector<CCValAssign, 16> RVLocs;
529
530 // ISRs cannot return any value.
531 if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
532 report_fatal_error("ISRs cannot return any value");
533
534 // CCState - Info about the registers and stack slot.
535 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
536 *DAG.getContext());
537
538 // Analize return values.
539 AnalyzeReturnValues(CCInfo, RVLocs, Outs);
540
541 SDValue Flag;
542 SmallVector<SDValue, 4> RetOps(1, Chain);
543
544 // Copy the result values into the output registers.
545 for (unsigned i = 0; i != RVLocs.size(); ++i) {
546 CCValAssign &VA = RVLocs[i];
547 assert(VA.isRegLoc() && "Can only return in registers!");
548
549 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
550 OutVals[i], Flag);
551
552 // Guarantee that all emitted copies are stuck together,
553 // avoiding something bad.
554 Flag = Chain.getValue(1);
555 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
556 }
557
558 unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
559 MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
560
561 RetOps[0] = Chain; // Update chain.
562
563 // Add the flag if we have it.
564 if (Flag.getNode())
565 RetOps.push_back(Flag);
566
567 return DAG.getNode(Opc, dl, MVT::Other, RetOps);
568 }
569
570 /// LowerCCCCallTo - functions arguments are copied from virtual regs to
571 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
572 // TODO: sret.
573 SDValue
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const574 MSP430TargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
575 CallingConv::ID CallConv, bool isVarArg,
576 bool isTailCall,
577 const SmallVectorImpl<ISD::OutputArg>
578 &Outs,
579 const SmallVectorImpl<SDValue> &OutVals,
580 const SmallVectorImpl<ISD::InputArg> &Ins,
581 SDLoc dl, SelectionDAG &DAG,
582 SmallVectorImpl<SDValue> &InVals) const {
583 // Analyze operands of the call, assigning locations to each operand.
584 SmallVector<CCValAssign, 16> ArgLocs;
585 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
586 *DAG.getContext());
587 AnalyzeArguments(CCInfo, ArgLocs, Outs);
588
589 // Get a count of how many bytes are to be pushed on the stack.
590 unsigned NumBytes = CCInfo.getNextStackOffset();
591 auto PtrVT = getPointerTy(DAG.getDataLayout());
592
593 Chain = DAG.getCALLSEQ_START(Chain,
594 DAG.getConstant(NumBytes, dl, PtrVT, true), dl);
595
596 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
597 SmallVector<SDValue, 12> MemOpChains;
598 SDValue StackPtr;
599
600 // Walk the register/memloc assignments, inserting copies/loads.
601 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
602 CCValAssign &VA = ArgLocs[i];
603
604 SDValue Arg = OutVals[i];
605
606 // Promote the value if needed.
607 switch (VA.getLocInfo()) {
608 default: llvm_unreachable("Unknown loc info!");
609 case CCValAssign::Full: break;
610 case CCValAssign::SExt:
611 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
612 break;
613 case CCValAssign::ZExt:
614 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
615 break;
616 case CCValAssign::AExt:
617 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
618 break;
619 }
620
621 // Arguments that can be passed on register must be kept at RegsToPass
622 // vector
623 if (VA.isRegLoc()) {
624 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
625 } else {
626 assert(VA.isMemLoc());
627
628 if (!StackPtr.getNode())
629 StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
630
631 SDValue PtrOff =
632 DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
633 DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
634
635 SDValue MemOp;
636 ISD::ArgFlagsTy Flags = Outs[i].Flags;
637
638 if (Flags.isByVal()) {
639 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
640 MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
641 Flags.getByValAlign(),
642 /*isVolatile*/false,
643 /*AlwaysInline=*/true,
644 /*isTailCall=*/false,
645 MachinePointerInfo(),
646 MachinePointerInfo());
647 } else {
648 MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(),
649 false, false, 0);
650 }
651
652 MemOpChains.push_back(MemOp);
653 }
654 }
655
656 // Transform all store nodes into one single node because all store nodes are
657 // independent of each other.
658 if (!MemOpChains.empty())
659 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
660
661 // Build a sequence of copy-to-reg nodes chained together with token chain and
662 // flag operands which copy the outgoing args into registers. The InFlag in
663 // necessary since all emitted instructions must be stuck together.
664 SDValue InFlag;
665 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
666 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
667 RegsToPass[i].second, InFlag);
668 InFlag = Chain.getValue(1);
669 }
670
671 // If the callee is a GlobalAddress node (quite common, every direct call is)
672 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
673 // Likewise ExternalSymbol -> TargetExternalSymbol.
674 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
675 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
676 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
677 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
678
679 // Returns a chain & a flag for retval copy to use.
680 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
681 SmallVector<SDValue, 8> Ops;
682 Ops.push_back(Chain);
683 Ops.push_back(Callee);
684
685 // Add argument registers to the end of the list so that they are
686 // known live into the call.
687 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
688 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
689 RegsToPass[i].second.getValueType()));
690
691 if (InFlag.getNode())
692 Ops.push_back(InFlag);
693
694 Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
695 InFlag = Chain.getValue(1);
696
697 // Create the CALLSEQ_END node.
698 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
699 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
700 InFlag = Chain.getValue(1);
701
702 // Handle result values, copying them out of physregs into vregs that we
703 // return.
704 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
705 DAG, InVals);
706 }
707
708 /// LowerCallResult - Lower the result values of a call into the
709 /// appropriate copies out of appropriate physical registers.
710 ///
711 SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const712 MSP430TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
713 CallingConv::ID CallConv, bool isVarArg,
714 const SmallVectorImpl<ISD::InputArg> &Ins,
715 SDLoc dl, SelectionDAG &DAG,
716 SmallVectorImpl<SDValue> &InVals) const {
717
718 // Assign locations to each value returned by this call.
719 SmallVector<CCValAssign, 16> RVLocs;
720 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
721 *DAG.getContext());
722
723 AnalyzeReturnValues(CCInfo, RVLocs, Ins);
724
725 // Copy all of the result registers out of their specified physreg.
726 for (unsigned i = 0; i != RVLocs.size(); ++i) {
727 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
728 RVLocs[i].getValVT(), InFlag).getValue(1);
729 InFlag = Chain.getValue(2);
730 InVals.push_back(Chain.getValue(0));
731 }
732
733 return Chain;
734 }
735
LowerShifts(SDValue Op,SelectionDAG & DAG) const736 SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
737 SelectionDAG &DAG) const {
738 unsigned Opc = Op.getOpcode();
739 SDNode* N = Op.getNode();
740 EVT VT = Op.getValueType();
741 SDLoc dl(N);
742
743 // Expand non-constant shifts to loops:
744 if (!isa<ConstantSDNode>(N->getOperand(1)))
745 switch (Opc) {
746 default: llvm_unreachable("Invalid shift opcode!");
747 case ISD::SHL:
748 return DAG.getNode(MSP430ISD::SHL, dl,
749 VT, N->getOperand(0), N->getOperand(1));
750 case ISD::SRA:
751 return DAG.getNode(MSP430ISD::SRA, dl,
752 VT, N->getOperand(0), N->getOperand(1));
753 case ISD::SRL:
754 return DAG.getNode(MSP430ISD::SRL, dl,
755 VT, N->getOperand(0), N->getOperand(1));
756 }
757
758 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
759
760 // Expand the stuff into sequence of shifts.
761 // FIXME: for some shift amounts this might be done better!
762 // E.g.: foo >> (8 + N) => sxt(swpb(foo)) >> N
763 SDValue Victim = N->getOperand(0);
764
765 if (Opc == ISD::SRL && ShiftAmount) {
766 // Emit a special goodness here:
767 // srl A, 1 => clrc; rrc A
768 Victim = DAG.getNode(MSP430ISD::RRC, dl, VT, Victim);
769 ShiftAmount -= 1;
770 }
771
772 while (ShiftAmount--)
773 Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
774 dl, VT, Victim);
775
776 return Victim;
777 }
778
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const779 SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
780 SelectionDAG &DAG) const {
781 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
782 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
783 auto PtrVT = getPointerTy(DAG.getDataLayout());
784
785 // Create the TargetGlobalAddress node, folding in the constant offset.
786 SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
787 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
788 }
789
LowerExternalSymbol(SDValue Op,SelectionDAG & DAG) const790 SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
791 SelectionDAG &DAG) const {
792 SDLoc dl(Op);
793 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
794 auto PtrVT = getPointerTy(DAG.getDataLayout());
795 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
796
797 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
798 }
799
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const800 SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
801 SelectionDAG &DAG) const {
802 SDLoc dl(Op);
803 auto PtrVT = getPointerTy(DAG.getDataLayout());
804 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
805 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
806
807 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
808 }
809
EmitCMP(SDValue & LHS,SDValue & RHS,SDValue & TargetCC,ISD::CondCode CC,SDLoc dl,SelectionDAG & DAG)810 static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
811 ISD::CondCode CC,
812 SDLoc dl, SelectionDAG &DAG) {
813 // FIXME: Handle bittests someday
814 assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
815
816 // FIXME: Handle jump negative someday
817 MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
818 switch (CC) {
819 default: llvm_unreachable("Invalid integer condition!");
820 case ISD::SETEQ:
821 TCC = MSP430CC::COND_E; // aka COND_Z
822 // Minor optimization: if LHS is a constant, swap operands, then the
823 // constant can be folded into comparison.
824 if (LHS.getOpcode() == ISD::Constant)
825 std::swap(LHS, RHS);
826 break;
827 case ISD::SETNE:
828 TCC = MSP430CC::COND_NE; // aka COND_NZ
829 // Minor optimization: if LHS is a constant, swap operands, then the
830 // constant can be folded into comparison.
831 if (LHS.getOpcode() == ISD::Constant)
832 std::swap(LHS, RHS);
833 break;
834 case ISD::SETULE:
835 std::swap(LHS, RHS); // FALLTHROUGH
836 case ISD::SETUGE:
837 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
838 // fold constant into instruction.
839 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
840 LHS = RHS;
841 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
842 TCC = MSP430CC::COND_LO;
843 break;
844 }
845 TCC = MSP430CC::COND_HS; // aka COND_C
846 break;
847 case ISD::SETUGT:
848 std::swap(LHS, RHS); // FALLTHROUGH
849 case ISD::SETULT:
850 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
851 // fold constant into instruction.
852 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
853 LHS = RHS;
854 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
855 TCC = MSP430CC::COND_HS;
856 break;
857 }
858 TCC = MSP430CC::COND_LO; // aka COND_NC
859 break;
860 case ISD::SETLE:
861 std::swap(LHS, RHS); // FALLTHROUGH
862 case ISD::SETGE:
863 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
864 // fold constant into instruction.
865 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
866 LHS = RHS;
867 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
868 TCC = MSP430CC::COND_L;
869 break;
870 }
871 TCC = MSP430CC::COND_GE;
872 break;
873 case ISD::SETGT:
874 std::swap(LHS, RHS); // FALLTHROUGH
875 case ISD::SETLT:
876 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
877 // fold constant into instruction.
878 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
879 LHS = RHS;
880 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
881 TCC = MSP430CC::COND_GE;
882 break;
883 }
884 TCC = MSP430CC::COND_L;
885 break;
886 }
887
888 TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
889 return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
890 }
891
892
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const893 SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
894 SDValue Chain = Op.getOperand(0);
895 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
896 SDValue LHS = Op.getOperand(2);
897 SDValue RHS = Op.getOperand(3);
898 SDValue Dest = Op.getOperand(4);
899 SDLoc dl (Op);
900
901 SDValue TargetCC;
902 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
903
904 return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
905 Chain, Dest, TargetCC, Flag);
906 }
907
LowerSETCC(SDValue Op,SelectionDAG & DAG) const908 SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
909 SDValue LHS = Op.getOperand(0);
910 SDValue RHS = Op.getOperand(1);
911 SDLoc dl (Op);
912
913 // If we are doing an AND and testing against zero, then the CMP
914 // will not be generated. The AND (or BIT) will generate the condition codes,
915 // but they are different from CMP.
916 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
917 // lowering & isel wouldn't diverge.
918 bool andCC = false;
919 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
920 if (RHSC->isNullValue() && LHS.hasOneUse() &&
921 (LHS.getOpcode() == ISD::AND ||
922 (LHS.getOpcode() == ISD::TRUNCATE &&
923 LHS.getOperand(0).getOpcode() == ISD::AND))) {
924 andCC = true;
925 }
926 }
927 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
928 SDValue TargetCC;
929 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
930
931 // Get the condition codes directly from the status register, if its easy.
932 // Otherwise a branch will be generated. Note that the AND and BIT
933 // instructions generate different flags than CMP, the carry bit can be used
934 // for NE/EQ.
935 bool Invert = false;
936 bool Shift = false;
937 bool Convert = true;
938 switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
939 default:
940 Convert = false;
941 break;
942 case MSP430CC::COND_HS:
943 // Res = SR & 1, no processing is required
944 break;
945 case MSP430CC::COND_LO:
946 // Res = ~(SR & 1)
947 Invert = true;
948 break;
949 case MSP430CC::COND_NE:
950 if (andCC) {
951 // C = ~Z, thus Res = SR & 1, no processing is required
952 } else {
953 // Res = ~((SR >> 1) & 1)
954 Shift = true;
955 Invert = true;
956 }
957 break;
958 case MSP430CC::COND_E:
959 Shift = true;
960 // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
961 // Res = (SR >> 1) & 1 is 1 word shorter.
962 break;
963 }
964 EVT VT = Op.getValueType();
965 SDValue One = DAG.getConstant(1, dl, VT);
966 if (Convert) {
967 SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
968 MVT::i16, Flag);
969 if (Shift)
970 // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
971 SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
972 SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
973 if (Invert)
974 SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
975 return SR;
976 } else {
977 SDValue Zero = DAG.getConstant(0, dl, VT);
978 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
979 SDValue Ops[] = {One, Zero, TargetCC, Flag};
980 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
981 }
982 }
983
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const984 SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
985 SelectionDAG &DAG) const {
986 SDValue LHS = Op.getOperand(0);
987 SDValue RHS = Op.getOperand(1);
988 SDValue TrueV = Op.getOperand(2);
989 SDValue FalseV = Op.getOperand(3);
990 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
991 SDLoc dl (Op);
992
993 SDValue TargetCC;
994 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
995
996 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
997 SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
998
999 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
1000 }
1001
LowerSIGN_EXTEND(SDValue Op,SelectionDAG & DAG) const1002 SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
1003 SelectionDAG &DAG) const {
1004 SDValue Val = Op.getOperand(0);
1005 EVT VT = Op.getValueType();
1006 SDLoc dl(Op);
1007
1008 assert(VT == MVT::i16 && "Only support i16 for now!");
1009
1010 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
1011 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
1012 DAG.getValueType(Val.getValueType()));
1013 }
1014
1015 SDValue
getReturnAddressFrameIndex(SelectionDAG & DAG) const1016 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
1017 MachineFunction &MF = DAG.getMachineFunction();
1018 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1019 int ReturnAddrIndex = FuncInfo->getRAIndex();
1020 auto PtrVT = getPointerTy(MF.getDataLayout());
1021
1022 if (ReturnAddrIndex == 0) {
1023 // Set up a frame object for the return address.
1024 uint64_t SlotSize = MF.getDataLayout().getPointerSize();
1025 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
1026 true);
1027 FuncInfo->setRAIndex(ReturnAddrIndex);
1028 }
1029
1030 return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
1031 }
1032
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1033 SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
1034 SelectionDAG &DAG) const {
1035 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1036 MFI->setReturnAddressIsTaken(true);
1037
1038 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1039 return SDValue();
1040
1041 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1042 SDLoc dl(Op);
1043 auto PtrVT = getPointerTy(DAG.getDataLayout());
1044
1045 if (Depth > 0) {
1046 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1047 SDValue Offset =
1048 DAG.getConstant(DAG.getDataLayout().getPointerSize(), dl, MVT::i16);
1049 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1050 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
1051 MachinePointerInfo(), false, false, false, 0);
1052 }
1053
1054 // Just load the return address.
1055 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
1056 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
1057 MachinePointerInfo(), false, false, false, 0);
1058 }
1059
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1060 SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
1061 SelectionDAG &DAG) const {
1062 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1063 MFI->setFrameAddressIsTaken(true);
1064
1065 EVT VT = Op.getValueType();
1066 SDLoc dl(Op); // FIXME probably not meaningful
1067 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1068 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1069 MSP430::FP, VT);
1070 while (Depth--)
1071 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1072 MachinePointerInfo(),
1073 false, false, false, 0);
1074 return FrameAddr;
1075 }
1076
LowerVASTART(SDValue Op,SelectionDAG & DAG) const1077 SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
1078 SelectionDAG &DAG) const {
1079 MachineFunction &MF = DAG.getMachineFunction();
1080 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1081 auto PtrVT = getPointerTy(DAG.getDataLayout());
1082
1083 // Frame index of first vararg argument
1084 SDValue FrameIndex =
1085 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1086 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1087
1088 // Create a store of the frame index to the location operand
1089 return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex,
1090 Op.getOperand(1), MachinePointerInfo(SV),
1091 false, false, 0);
1092 }
1093
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1094 SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
1095 SelectionDAG &DAG) const {
1096 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1097 auto PtrVT = getPointerTy(DAG.getDataLayout());
1098 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1099 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
1100 }
1101
1102 /// getPostIndexedAddressParts - returns true by value, base pointer and
1103 /// offset pointer and addressing mode by reference if this node can be
1104 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const1105 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
1106 SDValue &Base,
1107 SDValue &Offset,
1108 ISD::MemIndexedMode &AM,
1109 SelectionDAG &DAG) const {
1110
1111 LoadSDNode *LD = cast<LoadSDNode>(N);
1112 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1113 return false;
1114
1115 EVT VT = LD->getMemoryVT();
1116 if (VT != MVT::i8 && VT != MVT::i16)
1117 return false;
1118
1119 if (Op->getOpcode() != ISD::ADD)
1120 return false;
1121
1122 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1123 uint64_t RHSC = RHS->getZExtValue();
1124 if ((VT == MVT::i16 && RHSC != 2) ||
1125 (VT == MVT::i8 && RHSC != 1))
1126 return false;
1127
1128 Base = Op->getOperand(0);
1129 Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
1130 AM = ISD::POST_INC;
1131 return true;
1132 }
1133
1134 return false;
1135 }
1136
1137
getTargetNodeName(unsigned Opcode) const1138 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
1139 switch ((MSP430ISD::NodeType)Opcode) {
1140 case MSP430ISD::FIRST_NUMBER: break;
1141 case MSP430ISD::RET_FLAG: return "MSP430ISD::RET_FLAG";
1142 case MSP430ISD::RETI_FLAG: return "MSP430ISD::RETI_FLAG";
1143 case MSP430ISD::RRA: return "MSP430ISD::RRA";
1144 case MSP430ISD::RLA: return "MSP430ISD::RLA";
1145 case MSP430ISD::RRC: return "MSP430ISD::RRC";
1146 case MSP430ISD::CALL: return "MSP430ISD::CALL";
1147 case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper";
1148 case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC";
1149 case MSP430ISD::CMP: return "MSP430ISD::CMP";
1150 case MSP430ISD::SETCC: return "MSP430ISD::SETCC";
1151 case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC";
1152 case MSP430ISD::SHL: return "MSP430ISD::SHL";
1153 case MSP430ISD::SRA: return "MSP430ISD::SRA";
1154 case MSP430ISD::SRL: return "MSP430ISD::SRL";
1155 }
1156 return nullptr;
1157 }
1158
isTruncateFree(Type * Ty1,Type * Ty2) const1159 bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
1160 Type *Ty2) const {
1161 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1162 return false;
1163
1164 return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits());
1165 }
1166
isTruncateFree(EVT VT1,EVT VT2) const1167 bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1168 if (!VT1.isInteger() || !VT2.isInteger())
1169 return false;
1170
1171 return (VT1.getSizeInBits() > VT2.getSizeInBits());
1172 }
1173
isZExtFree(Type * Ty1,Type * Ty2) const1174 bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
1175 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1176 return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
1177 }
1178
isZExtFree(EVT VT1,EVT VT2) const1179 bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
1180 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1181 return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
1182 }
1183
isZExtFree(SDValue Val,EVT VT2) const1184 bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1185 return isZExtFree(Val.getValueType(), VT2);
1186 }
1187
1188 //===----------------------------------------------------------------------===//
1189 // Other Lowering Code
1190 //===----------------------------------------------------------------------===//
1191
1192 MachineBasicBlock*
EmitShiftInstr(MachineInstr * MI,MachineBasicBlock * BB) const1193 MSP430TargetLowering::EmitShiftInstr(MachineInstr *MI,
1194 MachineBasicBlock *BB) const {
1195 MachineFunction *F = BB->getParent();
1196 MachineRegisterInfo &RI = F->getRegInfo();
1197 DebugLoc dl = MI->getDebugLoc();
1198 const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
1199
1200 unsigned Opc;
1201 const TargetRegisterClass * RC;
1202 switch (MI->getOpcode()) {
1203 default: llvm_unreachable("Invalid shift opcode!");
1204 case MSP430::Shl8:
1205 Opc = MSP430::SHL8r1;
1206 RC = &MSP430::GR8RegClass;
1207 break;
1208 case MSP430::Shl16:
1209 Opc = MSP430::SHL16r1;
1210 RC = &MSP430::GR16RegClass;
1211 break;
1212 case MSP430::Sra8:
1213 Opc = MSP430::SAR8r1;
1214 RC = &MSP430::GR8RegClass;
1215 break;
1216 case MSP430::Sra16:
1217 Opc = MSP430::SAR16r1;
1218 RC = &MSP430::GR16RegClass;
1219 break;
1220 case MSP430::Srl8:
1221 Opc = MSP430::SAR8r1c;
1222 RC = &MSP430::GR8RegClass;
1223 break;
1224 case MSP430::Srl16:
1225 Opc = MSP430::SAR16r1c;
1226 RC = &MSP430::GR16RegClass;
1227 break;
1228 }
1229
1230 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1231 MachineFunction::iterator I = ++BB->getIterator();
1232
1233 // Create loop block
1234 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1235 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1236
1237 F->insert(I, LoopBB);
1238 F->insert(I, RemBB);
1239
1240 // Update machine-CFG edges by transferring all successors of the current
1241 // block to the block containing instructions after shift.
1242 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1243 BB->end());
1244 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1245
1246 // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
1247 BB->addSuccessor(LoopBB);
1248 BB->addSuccessor(RemBB);
1249 LoopBB->addSuccessor(RemBB);
1250 LoopBB->addSuccessor(LoopBB);
1251
1252 unsigned ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
1253 unsigned ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
1254 unsigned ShiftReg = RI.createVirtualRegister(RC);
1255 unsigned ShiftReg2 = RI.createVirtualRegister(RC);
1256 unsigned ShiftAmtSrcReg = MI->getOperand(2).getReg();
1257 unsigned SrcReg = MI->getOperand(1).getReg();
1258 unsigned DstReg = MI->getOperand(0).getReg();
1259
1260 // BB:
1261 // cmp 0, N
1262 // je RemBB
1263 BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
1264 .addReg(ShiftAmtSrcReg).addImm(0);
1265 BuildMI(BB, dl, TII.get(MSP430::JCC))
1266 .addMBB(RemBB)
1267 .addImm(MSP430CC::COND_E);
1268
1269 // LoopBB:
1270 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1271 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1272 // ShiftReg2 = shift ShiftReg
1273 // ShiftAmt2 = ShiftAmt - 1;
1274 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
1275 .addReg(SrcReg).addMBB(BB)
1276 .addReg(ShiftReg2).addMBB(LoopBB);
1277 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
1278 .addReg(ShiftAmtSrcReg).addMBB(BB)
1279 .addReg(ShiftAmtReg2).addMBB(LoopBB);
1280 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1281 .addReg(ShiftReg);
1282 BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
1283 .addReg(ShiftAmtReg).addImm(1);
1284 BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
1285 .addMBB(LoopBB)
1286 .addImm(MSP430CC::COND_NE);
1287
1288 // RemBB:
1289 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1290 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
1291 .addReg(SrcReg).addMBB(BB)
1292 .addReg(ShiftReg2).addMBB(LoopBB);
1293
1294 MI->eraseFromParent(); // The pseudo instruction is gone now.
1295 return RemBB;
1296 }
1297
1298 MachineBasicBlock*
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const1299 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1300 MachineBasicBlock *BB) const {
1301 unsigned Opc = MI->getOpcode();
1302
1303 if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
1304 Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
1305 Opc == MSP430::Srl8 || Opc == MSP430::Srl16)
1306 return EmitShiftInstr(MI, BB);
1307
1308 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1309 DebugLoc dl = MI->getDebugLoc();
1310
1311 assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
1312 "Unexpected instr type to insert");
1313
1314 // To "insert" a SELECT instruction, we actually have to insert the diamond
1315 // control-flow pattern. The incoming instruction knows the destination vreg
1316 // to set, the condition code register to branch on, the true/false values to
1317 // select between, and a branch opcode to use.
1318 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1319 MachineFunction::iterator I = ++BB->getIterator();
1320
1321 // thisMBB:
1322 // ...
1323 // TrueVal = ...
1324 // cmpTY ccX, r1, r2
1325 // jCC copy1MBB
1326 // fallthrough --> copy0MBB
1327 MachineBasicBlock *thisMBB = BB;
1328 MachineFunction *F = BB->getParent();
1329 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1330 MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
1331 F->insert(I, copy0MBB);
1332 F->insert(I, copy1MBB);
1333 // Update machine-CFG edges by transferring all successors of the current
1334 // block to the new block which will contain the Phi node for the select.
1335 copy1MBB->splice(copy1MBB->begin(), BB,
1336 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1337 copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
1338 // Next, add the true and fallthrough blocks as its successors.
1339 BB->addSuccessor(copy0MBB);
1340 BB->addSuccessor(copy1MBB);
1341
1342 BuildMI(BB, dl, TII.get(MSP430::JCC))
1343 .addMBB(copy1MBB)
1344 .addImm(MI->getOperand(3).getImm());
1345
1346 // copy0MBB:
1347 // %FalseValue = ...
1348 // # fallthrough to copy1MBB
1349 BB = copy0MBB;
1350
1351 // Update machine-CFG edges
1352 BB->addSuccessor(copy1MBB);
1353
1354 // copy1MBB:
1355 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1356 // ...
1357 BB = copy1MBB;
1358 BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI),
1359 MI->getOperand(0).getReg())
1360 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
1361 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
1362
1363 MI->eraseFromParent(); // The pseudo instruction is gone now.
1364 return BB;
1365 }
1366