1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PowerPC-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // PPCGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "PPC.h"
17 #include "MCTargetDesc/PPCPredicates.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetMachine.h"
40
41 //===----------------------------------------------------------------------===//
42 //
43 // TBD:
44 // fastLowerArguments: Handle simple cases.
45 // PPCMaterializeGV: Handle TLS.
46 // SelectCall: Handle function pointers.
47 // SelectCall: Handle multi-register return values.
48 // SelectCall: Optimize away nops for local calls.
49 // processCallArgs: Handle bit-converted arguments.
50 // finishCall: Handle multi-register return values.
51 // PPCComputeAddress: Handle parameter references as FrameIndex's.
52 // PPCEmitCmp: Handle immediate as operand 1.
53 // SelectCall: Handle small byval arguments.
54 // SelectIntrinsicCall: Implement.
55 // SelectSelect: Implement.
56 // Consider factoring isTypeLegal into the base class.
57 // Implement switches and jump tables.
58 //
59 //===----------------------------------------------------------------------===//
60 using namespace llvm;
61
62 #define DEBUG_TYPE "ppcfastisel"
63
64 namespace {
65
66 typedef struct Address {
67 enum {
68 RegBase,
69 FrameIndexBase
70 } BaseType;
71
72 union {
73 unsigned Reg;
74 int FI;
75 } Base;
76
77 long Offset;
78
79 // Innocuous defaults for our address.
Address__anon136cc1160111::Address80 Address()
81 : BaseType(RegBase), Offset(0) {
82 Base.Reg = 0;
83 }
84 } Address;
85
86 class PPCFastISel final : public FastISel {
87
88 const TargetMachine &TM;
89 const PPCSubtarget *PPCSubTarget;
90 PPCFunctionInfo *PPCFuncInfo;
91 const TargetInstrInfo &TII;
92 const TargetLowering &TLI;
93 LLVMContext *Context;
94
95 public:
PPCFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
97 const TargetLibraryInfo *LibInfo)
98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
101 TII(*PPCSubTarget->getInstrInfo()),
102 TLI(*PPCSubTarget->getTargetLowering()),
103 Context(&FuncInfo.Fn->getContext()) {}
104
105 // Backend specific FastISel code.
106 private:
107 bool fastSelectInstruction(const Instruction *I) override;
108 unsigned fastMaterializeConstant(const Constant *C) override;
109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
111 const LoadInst *LI) override;
112 bool fastLowerArguments() override;
113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
115 const TargetRegisterClass *RC,
116 unsigned Op0, bool Op0IsKill,
117 uint64_t Imm);
118 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
119 const TargetRegisterClass *RC,
120 unsigned Op0, bool Op0IsKill);
121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
122 const TargetRegisterClass *RC,
123 unsigned Op0, bool Op0IsKill,
124 unsigned Op1, bool Op1IsKill);
125
126 bool fastLowerCall(CallLoweringInfo &CLI) override;
127
128 // Instruction selection routines.
129 private:
130 bool SelectLoad(const Instruction *I);
131 bool SelectStore(const Instruction *I);
132 bool SelectBranch(const Instruction *I);
133 bool SelectIndirectBr(const Instruction *I);
134 bool SelectFPExt(const Instruction *I);
135 bool SelectFPTrunc(const Instruction *I);
136 bool SelectIToFP(const Instruction *I, bool IsSigned);
137 bool SelectFPToI(const Instruction *I, bool IsSigned);
138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
139 bool SelectRet(const Instruction *I);
140 bool SelectTrunc(const Instruction *I);
141 bool SelectIntExt(const Instruction *I);
142
143 // Utility routines.
144 private:
145 bool isTypeLegal(Type *Ty, MVT &VT);
146 bool isLoadTypeLegal(Type *Ty, MVT &VT);
147 bool isValueAvailable(const Value *V) const;
isVSFRCRegister(unsigned Register) const148 bool isVSFRCRegister(unsigned Register) const {
149 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID;
150 }
isVSSRCRegister(unsigned Register) const151 bool isVSSRCRegister(unsigned Register) const {
152 return MRI.getRegClass(Register)->getID() == PPC::VSSRCRegClassID;
153 }
154 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
155 bool isZExt, unsigned DestReg);
156 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
157 const TargetRegisterClass *RC, bool IsZExt = true,
158 unsigned FP64LoadOpc = PPC::LFD);
159 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
160 bool PPCComputeAddress(const Value *Obj, Address &Addr);
161 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
162 unsigned &IndexReg);
163 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
164 unsigned DestReg, bool IsZExt);
165 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
166 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
167 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
168 bool UseSExt = true);
169 unsigned PPCMaterialize32BitInt(int64_t Imm,
170 const TargetRegisterClass *RC);
171 unsigned PPCMaterialize64BitInt(int64_t Imm,
172 const TargetRegisterClass *RC);
173 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
174 unsigned SrcReg, bool IsSigned);
175 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
176
177 // Call handling routines.
178 private:
179 bool processCallArgs(SmallVectorImpl<Value*> &Args,
180 SmallVectorImpl<unsigned> &ArgRegs,
181 SmallVectorImpl<MVT> &ArgVTs,
182 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
183 SmallVectorImpl<unsigned> &RegArgs,
184 CallingConv::ID CC,
185 unsigned &NumBytes,
186 bool IsVarArg);
187 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
188 CCAssignFn *usePPC32CCs(unsigned Flag);
189
190 private:
191 #include "PPCGenFastISel.inc"
192
193 };
194
195 } // end anonymous namespace
196
197 #include "PPCGenCallingConv.inc"
198
199 // Function whose sole purpose is to kill compiler warnings
200 // stemming from unused functions included from PPCGenCallingConv.inc.
usePPC32CCs(unsigned Flag)201 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
202 if (Flag == 1)
203 return CC_PPC32_SVR4;
204 else if (Flag == 2)
205 return CC_PPC32_SVR4_ByVal;
206 else if (Flag == 3)
207 return CC_PPC32_SVR4_VarArg;
208 else
209 return RetCC_PPC;
210 }
211
getComparePred(CmpInst::Predicate Pred)212 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
213 switch (Pred) {
214 // These are not representable with any single compare.
215 case CmpInst::FCMP_FALSE:
216 case CmpInst::FCMP_UEQ:
217 case CmpInst::FCMP_UGT:
218 case CmpInst::FCMP_UGE:
219 case CmpInst::FCMP_ULT:
220 case CmpInst::FCMP_ULE:
221 case CmpInst::FCMP_UNE:
222 case CmpInst::FCMP_TRUE:
223 default:
224 return Optional<PPC::Predicate>();
225
226 case CmpInst::FCMP_OEQ:
227 case CmpInst::ICMP_EQ:
228 return PPC::PRED_EQ;
229
230 case CmpInst::FCMP_OGT:
231 case CmpInst::ICMP_UGT:
232 case CmpInst::ICMP_SGT:
233 return PPC::PRED_GT;
234
235 case CmpInst::FCMP_OGE:
236 case CmpInst::ICMP_UGE:
237 case CmpInst::ICMP_SGE:
238 return PPC::PRED_GE;
239
240 case CmpInst::FCMP_OLT:
241 case CmpInst::ICMP_ULT:
242 case CmpInst::ICMP_SLT:
243 return PPC::PRED_LT;
244
245 case CmpInst::FCMP_OLE:
246 case CmpInst::ICMP_ULE:
247 case CmpInst::ICMP_SLE:
248 return PPC::PRED_LE;
249
250 case CmpInst::FCMP_ONE:
251 case CmpInst::ICMP_NE:
252 return PPC::PRED_NE;
253
254 case CmpInst::FCMP_ORD:
255 return PPC::PRED_NU;
256
257 case CmpInst::FCMP_UNO:
258 return PPC::PRED_UN;
259 }
260 }
261
262 // Determine whether the type Ty is simple enough to be handled by
263 // fast-isel, and return its equivalent machine type in VT.
264 // FIXME: Copied directly from ARM -- factor into base class?
isTypeLegal(Type * Ty,MVT & VT)265 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
266 EVT Evt = TLI.getValueType(DL, Ty, true);
267
268 // Only handle simple types.
269 if (Evt == MVT::Other || !Evt.isSimple()) return false;
270 VT = Evt.getSimpleVT();
271
272 // Handle all legal types, i.e. a register that will directly hold this
273 // value.
274 return TLI.isTypeLegal(VT);
275 }
276
277 // Determine whether the type Ty is simple enough to be handled by
278 // fast-isel as a load target, and return its equivalent machine type in VT.
isLoadTypeLegal(Type * Ty,MVT & VT)279 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
280 if (isTypeLegal(Ty, VT)) return true;
281
282 // If this is a type than can be sign or zero-extended to a basic operation
283 // go ahead and accept it now.
284 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
285 return true;
286 }
287
288 return false;
289 }
290
isValueAvailable(const Value * V) const291 bool PPCFastISel::isValueAvailable(const Value *V) const {
292 if (!isa<Instruction>(V))
293 return true;
294
295 const auto *I = cast<Instruction>(V);
296 if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
297 return true;
298
299 return false;
300 }
301
302 // Given a value Obj, create an Address object Addr that represents its
303 // address. Return false if we can't handle it.
PPCComputeAddress(const Value * Obj,Address & Addr)304 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
305 const User *U = nullptr;
306 unsigned Opcode = Instruction::UserOp1;
307 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
308 // Don't walk into other basic blocks unless the object is an alloca from
309 // another block, otherwise it may not have a virtual register assigned.
310 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
311 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
312 Opcode = I->getOpcode();
313 U = I;
314 }
315 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
316 Opcode = C->getOpcode();
317 U = C;
318 }
319
320 switch (Opcode) {
321 default:
322 break;
323 case Instruction::BitCast:
324 // Look through bitcasts.
325 return PPCComputeAddress(U->getOperand(0), Addr);
326 case Instruction::IntToPtr:
327 // Look past no-op inttoptrs.
328 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
329 TLI.getPointerTy(DL))
330 return PPCComputeAddress(U->getOperand(0), Addr);
331 break;
332 case Instruction::PtrToInt:
333 // Look past no-op ptrtoints.
334 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
335 return PPCComputeAddress(U->getOperand(0), Addr);
336 break;
337 case Instruction::GetElementPtr: {
338 Address SavedAddr = Addr;
339 long TmpOffset = Addr.Offset;
340
341 // Iterate through the GEP folding the constants into offsets where
342 // we can.
343 gep_type_iterator GTI = gep_type_begin(U);
344 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
345 II != IE; ++II, ++GTI) {
346 const Value *Op = *II;
347 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
348 const StructLayout *SL = DL.getStructLayout(STy);
349 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
350 TmpOffset += SL->getElementOffset(Idx);
351 } else {
352 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
353 for (;;) {
354 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
355 // Constant-offset addressing.
356 TmpOffset += CI->getSExtValue() * S;
357 break;
358 }
359 if (canFoldAddIntoGEP(U, Op)) {
360 // A compatible add with a constant operand. Fold the constant.
361 ConstantInt *CI =
362 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
363 TmpOffset += CI->getSExtValue() * S;
364 // Iterate on the other operand.
365 Op = cast<AddOperator>(Op)->getOperand(0);
366 continue;
367 }
368 // Unsupported
369 goto unsupported_gep;
370 }
371 }
372 }
373
374 // Try to grab the base operand now.
375 Addr.Offset = TmpOffset;
376 if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
377
378 // We failed, restore everything and try the other options.
379 Addr = SavedAddr;
380
381 unsupported_gep:
382 break;
383 }
384 case Instruction::Alloca: {
385 const AllocaInst *AI = cast<AllocaInst>(Obj);
386 DenseMap<const AllocaInst*, int>::iterator SI =
387 FuncInfo.StaticAllocaMap.find(AI);
388 if (SI != FuncInfo.StaticAllocaMap.end()) {
389 Addr.BaseType = Address::FrameIndexBase;
390 Addr.Base.FI = SI->second;
391 return true;
392 }
393 break;
394 }
395 }
396
397 // FIXME: References to parameters fall through to the behavior
398 // below. They should be able to reference a frame index since
399 // they are stored to the stack, so we can get "ld rx, offset(r1)"
400 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
401 // just contain the parameter. Try to handle this with a FI.
402
403 // Try to get this in a register if nothing else has worked.
404 if (Addr.Base.Reg == 0)
405 Addr.Base.Reg = getRegForValue(Obj);
406
407 // Prevent assignment of base register to X0, which is inappropriate
408 // for loads and stores alike.
409 if (Addr.Base.Reg != 0)
410 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
411
412 return Addr.Base.Reg != 0;
413 }
414
415 // Fix up some addresses that can't be used directly. For example, if
416 // an offset won't fit in an instruction field, we may need to move it
417 // into an index register.
PPCSimplifyAddress(Address & Addr,MVT VT,bool & UseOffset,unsigned & IndexReg)418 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
419 unsigned &IndexReg) {
420
421 // Check whether the offset fits in the instruction field.
422 if (!isInt<16>(Addr.Offset))
423 UseOffset = false;
424
425 // If this is a stack pointer and the offset needs to be simplified then
426 // put the alloca address into a register, set the base type back to
427 // register and continue. This should almost never happen.
428 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
429 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
430 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
431 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
432 Addr.Base.Reg = ResultReg;
433 Addr.BaseType = Address::RegBase;
434 }
435
436 if (!UseOffset) {
437 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
438 : Type::getInt64Ty(*Context));
439 const ConstantInt *Offset =
440 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
441 IndexReg = PPCMaterializeInt(Offset, MVT::i64);
442 assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
443 }
444 }
445
446 // Emit a load instruction if possible, returning true if we succeeded,
447 // otherwise false. See commentary below for how the register class of
448 // the load is determined.
PPCEmitLoad(MVT VT,unsigned & ResultReg,Address & Addr,const TargetRegisterClass * RC,bool IsZExt,unsigned FP64LoadOpc)449 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
450 const TargetRegisterClass *RC,
451 bool IsZExt, unsigned FP64LoadOpc) {
452 unsigned Opc;
453 bool UseOffset = true;
454
455 // If ResultReg is given, it determines the register class of the load.
456 // Otherwise, RC is the register class to use. If the result of the
457 // load isn't anticipated in this block, both may be zero, in which
458 // case we must make a conservative guess. In particular, don't assign
459 // R0 or X0 to the result register, as the result may be used in a load,
460 // store, add-immediate, or isel that won't permit this. (Though
461 // perhaps the spill and reload of live-exit values would handle this?)
462 const TargetRegisterClass *UseRC =
463 (ResultReg ? MRI.getRegClass(ResultReg) :
464 (RC ? RC :
465 (VT == MVT::f64 ? &PPC::F8RCRegClass :
466 (VT == MVT::f32 ? &PPC::F4RCRegClass :
467 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
468 &PPC::GPRC_and_GPRC_NOR0RegClass)))));
469
470 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
471
472 switch (VT.SimpleTy) {
473 default: // e.g., vector types not handled
474 return false;
475 case MVT::i8:
476 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
477 break;
478 case MVT::i16:
479 Opc = (IsZExt ?
480 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) :
481 (Is32BitInt ? PPC::LHA : PPC::LHA8));
482 break;
483 case MVT::i32:
484 Opc = (IsZExt ?
485 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
486 (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
487 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
488 UseOffset = false;
489 break;
490 case MVT::i64:
491 Opc = PPC::LD;
492 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
493 "64-bit load with 32-bit target??");
494 UseOffset = ((Addr.Offset & 3) == 0);
495 break;
496 case MVT::f32:
497 Opc = PPC::LFS;
498 break;
499 case MVT::f64:
500 Opc = FP64LoadOpc;
501 break;
502 }
503
504 // If necessary, materialize the offset into a register and use
505 // the indexed form. Also handle stack pointers with special needs.
506 unsigned IndexReg = 0;
507 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
508
509 // If this is a potential VSX load with an offset of 0, a VSX indexed load can
510 // be used.
511 bool IsVSSRC = (ResultReg != 0) && isVSSRCRegister(ResultReg);
512 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg);
513 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
514 bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD;
515 if ((Is32VSXLoad || Is64VSXLoad) &&
516 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
517 (Addr.Offset == 0)) {
518 UseOffset = false;
519 }
520
521 if (ResultReg == 0)
522 ResultReg = createResultReg(UseRC);
523
524 // Note: If we still have a frame index here, we know the offset is
525 // in range, as otherwise PPCSimplifyAddress would have converted it
526 // into a RegBase.
527 if (Addr.BaseType == Address::FrameIndexBase) {
528 // VSX only provides an indexed load.
529 if (Is32VSXLoad || Is64VSXLoad) return false;
530
531 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
532 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
533 Addr.Offset),
534 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
535 MFI.getObjectAlignment(Addr.Base.FI));
536
537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
538 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
539
540 // Base reg with offset in range.
541 } else if (UseOffset) {
542 // VSX only provides an indexed load.
543 if (Is32VSXLoad || Is64VSXLoad) return false;
544
545 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
546 .addImm(Addr.Offset).addReg(Addr.Base.Reg);
547
548 // Indexed form.
549 } else {
550 // Get the RR opcode corresponding to the RI one. FIXME: It would be
551 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
552 // is hard to get at.
553 switch (Opc) {
554 default: llvm_unreachable("Unexpected opcode!");
555 case PPC::LBZ: Opc = PPC::LBZX; break;
556 case PPC::LBZ8: Opc = PPC::LBZX8; break;
557 case PPC::LHZ: Opc = PPC::LHZX; break;
558 case PPC::LHZ8: Opc = PPC::LHZX8; break;
559 case PPC::LHA: Opc = PPC::LHAX; break;
560 case PPC::LHA8: Opc = PPC::LHAX8; break;
561 case PPC::LWZ: Opc = PPC::LWZX; break;
562 case PPC::LWZ8: Opc = PPC::LWZX8; break;
563 case PPC::LWA: Opc = PPC::LWAX; break;
564 case PPC::LWA_32: Opc = PPC::LWAX_32; break;
565 case PPC::LD: Opc = PPC::LDX; break;
566 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
567 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
568 }
569 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
570 .addReg(Addr.Base.Reg).addReg(IndexReg);
571 }
572
573 return true;
574 }
575
576 // Attempt to fast-select a load instruction.
SelectLoad(const Instruction * I)577 bool PPCFastISel::SelectLoad(const Instruction *I) {
578 // FIXME: No atomic loads are supported.
579 if (cast<LoadInst>(I)->isAtomic())
580 return false;
581
582 // Verify we have a legal type before going any further.
583 MVT VT;
584 if (!isLoadTypeLegal(I->getType(), VT))
585 return false;
586
587 // See if we can handle this address.
588 Address Addr;
589 if (!PPCComputeAddress(I->getOperand(0), Addr))
590 return false;
591
592 // Look at the currently assigned register for this instruction
593 // to determine the required register class. This is necessary
594 // to constrain RA from using R0/X0 when this is not legal.
595 unsigned AssignedReg = FuncInfo.ValueMap[I];
596 const TargetRegisterClass *RC =
597 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
598
599 unsigned ResultReg = 0;
600 if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
601 return false;
602 updateValueMap(I, ResultReg);
603 return true;
604 }
605
606 // Emit a store instruction to store SrcReg at Addr.
PPCEmitStore(MVT VT,unsigned SrcReg,Address & Addr)607 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
608 assert(SrcReg && "Nothing to store!");
609 unsigned Opc;
610 bool UseOffset = true;
611
612 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
613 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
614
615 switch (VT.SimpleTy) {
616 default: // e.g., vector types not handled
617 return false;
618 case MVT::i8:
619 Opc = Is32BitInt ? PPC::STB : PPC::STB8;
620 break;
621 case MVT::i16:
622 Opc = Is32BitInt ? PPC::STH : PPC::STH8;
623 break;
624 case MVT::i32:
625 assert(Is32BitInt && "Not GPRC for i32??");
626 Opc = PPC::STW;
627 break;
628 case MVT::i64:
629 Opc = PPC::STD;
630 UseOffset = ((Addr.Offset & 3) == 0);
631 break;
632 case MVT::f32:
633 Opc = PPC::STFS;
634 break;
635 case MVT::f64:
636 Opc = PPC::STFD;
637 break;
638 }
639
640 // If necessary, materialize the offset into a register and use
641 // the indexed form. Also handle stack pointers with special needs.
642 unsigned IndexReg = 0;
643 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
644
645 // If this is a potential VSX store with an offset of 0, a VSX indexed store
646 // can be used.
647 bool IsVSSRC = isVSSRCRegister(SrcReg);
648 bool IsVSFRC = isVSFRCRegister(SrcReg);
649 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
650 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
651 if ((Is32VSXStore || Is64VSXStore) &&
652 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
653 (Addr.Offset == 0)) {
654 UseOffset = false;
655 }
656
657 // Note: If we still have a frame index here, we know the offset is
658 // in range, as otherwise PPCSimplifyAddress would have converted it
659 // into a RegBase.
660 if (Addr.BaseType == Address::FrameIndexBase) {
661 // VSX only provides an indexed store.
662 if (Is32VSXStore || Is64VSXStore) return false;
663
664 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
665 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
666 Addr.Offset),
667 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
668 MFI.getObjectAlignment(Addr.Base.FI));
669
670 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
671 .addReg(SrcReg)
672 .addImm(Addr.Offset)
673 .addFrameIndex(Addr.Base.FI)
674 .addMemOperand(MMO);
675
676 // Base reg with offset in range.
677 } else if (UseOffset) {
678 // VSX only provides an indexed store.
679 if (Is32VSXStore || Is64VSXStore) return false;
680
681 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
682 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
683
684 // Indexed form.
685 } else {
686 // Get the RR opcode corresponding to the RI one. FIXME: It would be
687 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
688 // is hard to get at.
689 switch (Opc) {
690 default: llvm_unreachable("Unexpected opcode!");
691 case PPC::STB: Opc = PPC::STBX; break;
692 case PPC::STH : Opc = PPC::STHX; break;
693 case PPC::STW : Opc = PPC::STWX; break;
694 case PPC::STB8: Opc = PPC::STBX8; break;
695 case PPC::STH8: Opc = PPC::STHX8; break;
696 case PPC::STW8: Opc = PPC::STWX8; break;
697 case PPC::STD: Opc = PPC::STDX; break;
698 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
699 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
700 }
701
702 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
703 .addReg(SrcReg);
704
705 // If we have an index register defined we use it in the store inst,
706 // otherwise we use X0 as base as it makes the vector instructions to
707 // use zero in the computation of the effective address regardless the
708 // content of the register.
709 if (IndexReg)
710 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
711 else
712 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
713 }
714
715 return true;
716 }
717
718 // Attempt to fast-select a store instruction.
SelectStore(const Instruction * I)719 bool PPCFastISel::SelectStore(const Instruction *I) {
720 Value *Op0 = I->getOperand(0);
721 unsigned SrcReg = 0;
722
723 // FIXME: No atomics loads are supported.
724 if (cast<StoreInst>(I)->isAtomic())
725 return false;
726
727 // Verify we have a legal type before going any further.
728 MVT VT;
729 if (!isLoadTypeLegal(Op0->getType(), VT))
730 return false;
731
732 // Get the value to be stored into a register.
733 SrcReg = getRegForValue(Op0);
734 if (SrcReg == 0)
735 return false;
736
737 // See if we can handle this address.
738 Address Addr;
739 if (!PPCComputeAddress(I->getOperand(1), Addr))
740 return false;
741
742 if (!PPCEmitStore(VT, SrcReg, Addr))
743 return false;
744
745 return true;
746 }
747
748 // Attempt to fast-select a branch instruction.
SelectBranch(const Instruction * I)749 bool PPCFastISel::SelectBranch(const Instruction *I) {
750 const BranchInst *BI = cast<BranchInst>(I);
751 MachineBasicBlock *BrBB = FuncInfo.MBB;
752 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
753 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
754
755 // For now, just try the simplest case where it's fed by a compare.
756 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
757 if (isValueAvailable(CI)) {
758 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
759 if (!OptPPCPred)
760 return false;
761
762 PPC::Predicate PPCPred = OptPPCPred.getValue();
763
764 // Take advantage of fall-through opportunities.
765 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
766 std::swap(TBB, FBB);
767 PPCPred = PPC::InvertPredicate(PPCPred);
768 }
769
770 unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
771
772 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
773 CondReg))
774 return false;
775
776 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
777 .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
778 finishCondBranch(BI->getParent(), TBB, FBB);
779 return true;
780 }
781 } else if (const ConstantInt *CI =
782 dyn_cast<ConstantInt>(BI->getCondition())) {
783 uint64_t Imm = CI->getZExtValue();
784 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
785 fastEmitBranch(Target, DbgLoc);
786 return true;
787 }
788
789 // FIXME: ARM looks for a case where the block containing the compare
790 // has been split from the block containing the branch. If this happens,
791 // there is a vreg available containing the result of the compare. I'm
792 // not sure we can do much, as we've lost the predicate information with
793 // the compare instruction -- we have a 4-bit CR but don't know which bit
794 // to test here.
795 return false;
796 }
797
798 // Attempt to emit a compare of the two source values. Signed and unsigned
799 // comparisons are supported. Return false if we can't handle it.
PPCEmitCmp(const Value * SrcValue1,const Value * SrcValue2,bool IsZExt,unsigned DestReg)800 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
801 bool IsZExt, unsigned DestReg) {
802 Type *Ty = SrcValue1->getType();
803 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
804 if (!SrcEVT.isSimple())
805 return false;
806 MVT SrcVT = SrcEVT.getSimpleVT();
807
808 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
809 return false;
810
811 // See if operand 2 is an immediate encodeable in the compare.
812 // FIXME: Operands are not in canonical order at -O0, so an immediate
813 // operand in position 1 is a lost opportunity for now. We are
814 // similar to ARM in this regard.
815 long Imm = 0;
816 bool UseImm = false;
817
818 // Only 16-bit integer constants can be represented in compares for
819 // PowerPC. Others will be materialized into a register.
820 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
821 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
822 SrcVT == MVT::i8 || SrcVT == MVT::i1) {
823 const APInt &CIVal = ConstInt->getValue();
824 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
825 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
826 UseImm = true;
827 }
828 }
829
830 unsigned CmpOpc;
831 bool NeedsExt = false;
832 switch (SrcVT.SimpleTy) {
833 default: return false;
834 case MVT::f32:
835 CmpOpc = PPC::FCMPUS;
836 break;
837 case MVT::f64:
838 CmpOpc = PPC::FCMPUD;
839 break;
840 case MVT::i1:
841 case MVT::i8:
842 case MVT::i16:
843 NeedsExt = true;
844 // Intentional fall-through.
845 case MVT::i32:
846 if (!UseImm)
847 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
848 else
849 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
850 break;
851 case MVT::i64:
852 if (!UseImm)
853 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
854 else
855 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
856 break;
857 }
858
859 unsigned SrcReg1 = getRegForValue(SrcValue1);
860 if (SrcReg1 == 0)
861 return false;
862
863 unsigned SrcReg2 = 0;
864 if (!UseImm) {
865 SrcReg2 = getRegForValue(SrcValue2);
866 if (SrcReg2 == 0)
867 return false;
868 }
869
870 if (NeedsExt) {
871 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
872 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
873 return false;
874 SrcReg1 = ExtReg;
875
876 if (!UseImm) {
877 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
878 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
879 return false;
880 SrcReg2 = ExtReg;
881 }
882 }
883
884 if (!UseImm)
885 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
886 .addReg(SrcReg1).addReg(SrcReg2);
887 else
888 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
889 .addReg(SrcReg1).addImm(Imm);
890
891 return true;
892 }
893
894 // Attempt to fast-select a floating-point extend instruction.
SelectFPExt(const Instruction * I)895 bool PPCFastISel::SelectFPExt(const Instruction *I) {
896 Value *Src = I->getOperand(0);
897 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
898 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
899
900 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
901 return false;
902
903 unsigned SrcReg = getRegForValue(Src);
904 if (!SrcReg)
905 return false;
906
907 // No code is generated for a FP extend.
908 updateValueMap(I, SrcReg);
909 return true;
910 }
911
912 // Attempt to fast-select a floating-point truncate instruction.
SelectFPTrunc(const Instruction * I)913 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
914 Value *Src = I->getOperand(0);
915 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
916 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
917
918 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
919 return false;
920
921 unsigned SrcReg = getRegForValue(Src);
922 if (!SrcReg)
923 return false;
924
925 // Round the result to single precision.
926 unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg)
928 .addReg(SrcReg);
929
930 updateValueMap(I, DestReg);
931 return true;
932 }
933
934 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
935 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
936 // those should be used instead of moving via a stack slot when the
937 // subtarget permits.
938 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
939 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte
940 // case to 8 bytes which produces tighter code but wastes stack space.
PPCMoveToFPReg(MVT SrcVT,unsigned SrcReg,bool IsSigned)941 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
942 bool IsSigned) {
943
944 // If necessary, extend 32-bit int to 64-bit.
945 if (SrcVT == MVT::i32) {
946 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
947 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
948 return 0;
949 SrcReg = TmpReg;
950 }
951
952 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
953 Address Addr;
954 Addr.BaseType = Address::FrameIndexBase;
955 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
956
957 // Store the value from the GPR.
958 if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
959 return 0;
960
961 // Load the integer value into an FPR. The kind of load used depends
962 // on a number of conditions.
963 unsigned LoadOpc = PPC::LFD;
964
965 if (SrcVT == MVT::i32) {
966 if (!IsSigned) {
967 LoadOpc = PPC::LFIWZX;
968 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
969 } else if (PPCSubTarget->hasLFIWAX()) {
970 LoadOpc = PPC::LFIWAX;
971 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
972 }
973 }
974
975 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
976 unsigned ResultReg = 0;
977 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
978 return 0;
979
980 return ResultReg;
981 }
982
983 // Attempt to fast-select an integer-to-floating-point conversion.
984 // FIXME: Once fast-isel has better support for VSX, conversions using
985 // direct moves should be implemented.
SelectIToFP(const Instruction * I,bool IsSigned)986 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
987 MVT DstVT;
988 Type *DstTy = I->getType();
989 if (!isTypeLegal(DstTy, DstVT))
990 return false;
991
992 if (DstVT != MVT::f32 && DstVT != MVT::f64)
993 return false;
994
995 Value *Src = I->getOperand(0);
996 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
997 if (!SrcEVT.isSimple())
998 return false;
999
1000 MVT SrcVT = SrcEVT.getSimpleVT();
1001
1002 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
1003 SrcVT != MVT::i32 && SrcVT != MVT::i64)
1004 return false;
1005
1006 unsigned SrcReg = getRegForValue(Src);
1007 if (SrcReg == 0)
1008 return false;
1009
1010 // We can only lower an unsigned convert if we have the newer
1011 // floating-point conversion operations.
1012 if (!IsSigned && !PPCSubTarget->hasFPCVT())
1013 return false;
1014
1015 // FIXME: For now we require the newer floating-point conversion operations
1016 // (which are present only on P7 and A2 server models) when converting
1017 // to single-precision float. Otherwise we have to generate a lot of
1018 // fiddly code to avoid double rounding. If necessary, the fiddly code
1019 // can be found in PPCTargetLowering::LowerINT_TO_FP().
1020 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
1021 return false;
1022
1023 // Extend the input if necessary.
1024 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1025 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1026 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1027 return false;
1028 SrcVT = MVT::i64;
1029 SrcReg = TmpReg;
1030 }
1031
1032 // Move the integer value to an FPR.
1033 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1034 if (FPReg == 0)
1035 return false;
1036
1037 // Determine the opcode for the conversion.
1038 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1039 unsigned DestReg = createResultReg(RC);
1040 unsigned Opc;
1041
1042 if (DstVT == MVT::f32)
1043 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1044 else
1045 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1046
1047 // Generate the convert.
1048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1049 .addReg(FPReg);
1050
1051 updateValueMap(I, DestReg);
1052 return true;
1053 }
1054
1055 // Move the floating-point value in SrcReg into an integer destination
1056 // register, and return the register (or zero if we can't handle it).
1057 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1058 // those should be used instead of moving via a stack slot when the
1059 // subtarget permits.
PPCMoveToIntReg(const Instruction * I,MVT VT,unsigned SrcReg,bool IsSigned)1060 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1061 unsigned SrcReg, bool IsSigned) {
1062 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1063 // Note that if have STFIWX available, we could use a 4-byte stack
1064 // slot for i32, but this being fast-isel we'll just go with the
1065 // easiest code gen possible.
1066 Address Addr;
1067 Addr.BaseType = Address::FrameIndexBase;
1068 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1069
1070 // Store the value from the FPR.
1071 if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1072 return 0;
1073
1074 // Reload it into a GPR. If we want an i32, modify the address
1075 // to have a 4-byte offset so we load from the right place.
1076 if (VT == MVT::i32)
1077 Addr.Offset = 4;
1078
1079 // Look at the currently assigned register for this instruction
1080 // to determine the required register class.
1081 unsigned AssignedReg = FuncInfo.ValueMap[I];
1082 const TargetRegisterClass *RC =
1083 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1084
1085 unsigned ResultReg = 0;
1086 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1087 return 0;
1088
1089 return ResultReg;
1090 }
1091
1092 // Attempt to fast-select a floating-point-to-integer conversion.
1093 // FIXME: Once fast-isel has better support for VSX, conversions using
1094 // direct moves should be implemented.
SelectFPToI(const Instruction * I,bool IsSigned)1095 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1096 MVT DstVT, SrcVT;
1097 Type *DstTy = I->getType();
1098 if (!isTypeLegal(DstTy, DstVT))
1099 return false;
1100
1101 if (DstVT != MVT::i32 && DstVT != MVT::i64)
1102 return false;
1103
1104 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG.
1105 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT())
1106 return false;
1107
1108 Value *Src = I->getOperand(0);
1109 Type *SrcTy = Src->getType();
1110 if (!isTypeLegal(SrcTy, SrcVT))
1111 return false;
1112
1113 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1114 return false;
1115
1116 unsigned SrcReg = getRegForValue(Src);
1117 if (SrcReg == 0)
1118 return false;
1119
1120 // Convert f32 to f64 if necessary. This is just a meaningless copy
1121 // to get the register class right. COPY_TO_REGCLASS is needed since
1122 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream.
1123 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1124 if (InRC == &PPC::F4RCRegClass) {
1125 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1126 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1127 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg)
1128 .addReg(SrcReg).addImm(PPC::F8RCRegClassID);
1129 SrcReg = TmpReg;
1130 }
1131
1132 // Determine the opcode for the conversion, which takes place
1133 // entirely within FPRs.
1134 unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
1135 unsigned Opc;
1136
1137 if (DstVT == MVT::i32)
1138 if (IsSigned)
1139 Opc = PPC::FCTIWZ;
1140 else
1141 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1142 else
1143 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1144
1145 // Generate the convert.
1146 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1147 .addReg(SrcReg);
1148
1149 // Now move the integer value from a float register to an integer register.
1150 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1151 if (IntReg == 0)
1152 return false;
1153
1154 updateValueMap(I, IntReg);
1155 return true;
1156 }
1157
1158 // Attempt to fast-select a binary integer operation that isn't already
1159 // handled automatically.
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1160 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1161 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1162
1163 // We can get here in the case when we have a binary operation on a non-legal
1164 // type and the target independent selector doesn't know how to handle it.
1165 if (DestVT != MVT::i16 && DestVT != MVT::i8)
1166 return false;
1167
1168 // Look at the currently assigned register for this instruction
1169 // to determine the required register class. If there is no register,
1170 // make a conservative choice (don't assign R0).
1171 unsigned AssignedReg = FuncInfo.ValueMap[I];
1172 const TargetRegisterClass *RC =
1173 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1174 &PPC::GPRC_and_GPRC_NOR0RegClass);
1175 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1176
1177 unsigned Opc;
1178 switch (ISDOpcode) {
1179 default: return false;
1180 case ISD::ADD:
1181 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1182 break;
1183 case ISD::OR:
1184 Opc = IsGPRC ? PPC::OR : PPC::OR8;
1185 break;
1186 case ISD::SUB:
1187 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1188 break;
1189 }
1190
1191 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1192 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1193 if (SrcReg1 == 0) return false;
1194
1195 // Handle case of small immediate operand.
1196 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1197 const APInt &CIVal = ConstInt->getValue();
1198 int Imm = (int)CIVal.getSExtValue();
1199 bool UseImm = true;
1200 if (isInt<16>(Imm)) {
1201 switch (Opc) {
1202 default:
1203 llvm_unreachable("Missing case!");
1204 case PPC::ADD4:
1205 Opc = PPC::ADDI;
1206 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1207 break;
1208 case PPC::ADD8:
1209 Opc = PPC::ADDI8;
1210 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1211 break;
1212 case PPC::OR:
1213 Opc = PPC::ORI;
1214 break;
1215 case PPC::OR8:
1216 Opc = PPC::ORI8;
1217 break;
1218 case PPC::SUBF:
1219 if (Imm == -32768)
1220 UseImm = false;
1221 else {
1222 Opc = PPC::ADDI;
1223 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1224 Imm = -Imm;
1225 }
1226 break;
1227 case PPC::SUBF8:
1228 if (Imm == -32768)
1229 UseImm = false;
1230 else {
1231 Opc = PPC::ADDI8;
1232 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1233 Imm = -Imm;
1234 }
1235 break;
1236 }
1237
1238 if (UseImm) {
1239 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1240 ResultReg)
1241 .addReg(SrcReg1)
1242 .addImm(Imm);
1243 updateValueMap(I, ResultReg);
1244 return true;
1245 }
1246 }
1247 }
1248
1249 // Reg-reg case.
1250 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1251 if (SrcReg2 == 0) return false;
1252
1253 // Reverse operands for subtract-from.
1254 if (ISDOpcode == ISD::SUB)
1255 std::swap(SrcReg1, SrcReg2);
1256
1257 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1258 .addReg(SrcReg1).addReg(SrcReg2);
1259 updateValueMap(I, ResultReg);
1260 return true;
1261 }
1262
1263 // Handle arguments to a call that we're attempting to fast-select.
1264 // Return false if the arguments are too complex for us at the moment.
processCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool IsVarArg)1265 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1266 SmallVectorImpl<unsigned> &ArgRegs,
1267 SmallVectorImpl<MVT> &ArgVTs,
1268 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1269 SmallVectorImpl<unsigned> &RegArgs,
1270 CallingConv::ID CC,
1271 unsigned &NumBytes,
1272 bool IsVarArg) {
1273 SmallVector<CCValAssign, 16> ArgLocs;
1274 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1275
1276 // Reserve space for the linkage area on the stack.
1277 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
1278 CCInfo.AllocateStack(LinkageSize, 8);
1279
1280 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1281
1282 // Bail out if we can't handle any of the arguments.
1283 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1284 CCValAssign &VA = ArgLocs[I];
1285 MVT ArgVT = ArgVTs[VA.getValNo()];
1286
1287 // Skip vector arguments for now, as well as long double and
1288 // uint128_t, and anything that isn't passed in a register.
1289 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1290 !VA.isRegLoc() || VA.needsCustom())
1291 return false;
1292
1293 // Skip bit-converted arguments for now.
1294 if (VA.getLocInfo() == CCValAssign::BCvt)
1295 return false;
1296 }
1297
1298 // Get a count of how many bytes are to be pushed onto the stack.
1299 NumBytes = CCInfo.getNextStackOffset();
1300
1301 // The prolog code of the callee may store up to 8 GPR argument registers to
1302 // the stack, allowing va_start to index over them in memory if its varargs.
1303 // Because we cannot tell if this is needed on the caller side, we have to
1304 // conservatively assume that it is needed. As such, make sure we have at
1305 // least enough stack space for the caller to store the 8 GPRs.
1306 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1307 NumBytes = std::max(NumBytes, LinkageSize + 64);
1308
1309 // Issue CALLSEQ_START.
1310 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1311 TII.get(TII.getCallFrameSetupOpcode()))
1312 .addImm(NumBytes);
1313
1314 // Prepare to assign register arguments. Every argument uses up a
1315 // GPR protocol register even if it's passed in a floating-point
1316 // register (unless we're using the fast calling convention).
1317 unsigned NextGPR = PPC::X3;
1318 unsigned NextFPR = PPC::F1;
1319
1320 // Process arguments.
1321 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1322 CCValAssign &VA = ArgLocs[I];
1323 unsigned Arg = ArgRegs[VA.getValNo()];
1324 MVT ArgVT = ArgVTs[VA.getValNo()];
1325
1326 // Handle argument promotion and bitcasts.
1327 switch (VA.getLocInfo()) {
1328 default:
1329 llvm_unreachable("Unknown loc info!");
1330 case CCValAssign::Full:
1331 break;
1332 case CCValAssign::SExt: {
1333 MVT DestVT = VA.getLocVT();
1334 const TargetRegisterClass *RC =
1335 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1336 unsigned TmpReg = createResultReg(RC);
1337 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1338 llvm_unreachable("Failed to emit a sext!");
1339 ArgVT = DestVT;
1340 Arg = TmpReg;
1341 break;
1342 }
1343 case CCValAssign::AExt:
1344 case CCValAssign::ZExt: {
1345 MVT DestVT = VA.getLocVT();
1346 const TargetRegisterClass *RC =
1347 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1348 unsigned TmpReg = createResultReg(RC);
1349 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1350 llvm_unreachable("Failed to emit a zext!");
1351 ArgVT = DestVT;
1352 Arg = TmpReg;
1353 break;
1354 }
1355 case CCValAssign::BCvt: {
1356 // FIXME: Not yet handled.
1357 llvm_unreachable("Should have bailed before getting here!");
1358 break;
1359 }
1360 }
1361
1362 // Copy this argument to the appropriate register.
1363 unsigned ArgReg;
1364 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1365 ArgReg = NextFPR++;
1366 if (CC != CallingConv::Fast)
1367 ++NextGPR;
1368 } else
1369 ArgReg = NextGPR++;
1370
1371 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1372 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1373 RegArgs.push_back(ArgReg);
1374 }
1375
1376 return true;
1377 }
1378
1379 // For a call that we've determined we can fast-select, finish the
1380 // call sequence and generate a copy to obtain the return value (if any).
finishCall(MVT RetVT,CallLoweringInfo & CLI,unsigned & NumBytes)1381 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1382 CallingConv::ID CC = CLI.CallConv;
1383
1384 // Issue CallSEQ_END.
1385 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1386 TII.get(TII.getCallFrameDestroyOpcode()))
1387 .addImm(NumBytes).addImm(0);
1388
1389 // Next, generate a copy to obtain the return value.
1390 // FIXME: No multi-register return values yet, though I don't foresee
1391 // any real difficulties there.
1392 if (RetVT != MVT::isVoid) {
1393 SmallVector<CCValAssign, 16> RVLocs;
1394 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1395 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1396 CCValAssign &VA = RVLocs[0];
1397 assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1398 assert(VA.isRegLoc() && "Can only return in registers!");
1399
1400 MVT DestVT = VA.getValVT();
1401 MVT CopyVT = DestVT;
1402
1403 // Ints smaller than a register still arrive in a full 64-bit
1404 // register, so make sure we recognize this.
1405 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1406 CopyVT = MVT::i64;
1407
1408 unsigned SourcePhysReg = VA.getLocReg();
1409 unsigned ResultReg = 0;
1410
1411 if (RetVT == CopyVT) {
1412 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1413 ResultReg = createResultReg(CpyRC);
1414
1415 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1416 TII.get(TargetOpcode::COPY), ResultReg)
1417 .addReg(SourcePhysReg);
1418
1419 // If necessary, round the floating result to single precision.
1420 } else if (CopyVT == MVT::f64) {
1421 ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1422 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1423 ResultReg).addReg(SourcePhysReg);
1424
1425 // If only the low half of a general register is needed, generate
1426 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1427 // used along the fast-isel path (not lowered), and downstream logic
1428 // also doesn't like a direct subreg copy on a physical reg.)
1429 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1430 ResultReg = createResultReg(&PPC::GPRCRegClass);
1431 // Convert physical register from G8RC to GPRC.
1432 SourcePhysReg -= PPC::X0 - PPC::R0;
1433 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1434 TII.get(TargetOpcode::COPY), ResultReg)
1435 .addReg(SourcePhysReg);
1436 }
1437
1438 assert(ResultReg && "ResultReg unset!");
1439 CLI.InRegs.push_back(SourcePhysReg);
1440 CLI.ResultReg = ResultReg;
1441 CLI.NumResultRegs = 1;
1442 }
1443
1444 return true;
1445 }
1446
fastLowerCall(CallLoweringInfo & CLI)1447 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1448 CallingConv::ID CC = CLI.CallConv;
1449 bool IsTailCall = CLI.IsTailCall;
1450 bool IsVarArg = CLI.IsVarArg;
1451 const Value *Callee = CLI.Callee;
1452 const MCSymbol *Symbol = CLI.Symbol;
1453
1454 if (!Callee && !Symbol)
1455 return false;
1456
1457 // Allow SelectionDAG isel to handle tail calls.
1458 if (IsTailCall)
1459 return false;
1460
1461 // Let SDISel handle vararg functions.
1462 if (IsVarArg)
1463 return false;
1464
1465 // Handle simple calls for now, with legal return types and
1466 // those that can be extended.
1467 Type *RetTy = CLI.RetTy;
1468 MVT RetVT;
1469 if (RetTy->isVoidTy())
1470 RetVT = MVT::isVoid;
1471 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1472 RetVT != MVT::i8)
1473 return false;
1474 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
1475 // We can't handle boolean returns when CR bits are in use.
1476 return false;
1477
1478 // FIXME: No multi-register return values yet.
1479 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1480 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1481 RetVT != MVT::f64) {
1482 SmallVector<CCValAssign, 16> RVLocs;
1483 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1484 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1485 if (RVLocs.size() > 1)
1486 return false;
1487 }
1488
1489 // Bail early if more than 8 arguments, as we only currently
1490 // handle arguments passed in registers.
1491 unsigned NumArgs = CLI.OutVals.size();
1492 if (NumArgs > 8)
1493 return false;
1494
1495 // Set up the argument vectors.
1496 SmallVector<Value*, 8> Args;
1497 SmallVector<unsigned, 8> ArgRegs;
1498 SmallVector<MVT, 8> ArgVTs;
1499 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1500
1501 Args.reserve(NumArgs);
1502 ArgRegs.reserve(NumArgs);
1503 ArgVTs.reserve(NumArgs);
1504 ArgFlags.reserve(NumArgs);
1505
1506 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1507 // Only handle easy calls for now. It would be reasonably easy
1508 // to handle <= 8-byte structures passed ByVal in registers, but we
1509 // have to ensure they are right-justified in the register.
1510 ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1511 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1512 return false;
1513
1514 Value *ArgValue = CLI.OutVals[i];
1515 Type *ArgTy = ArgValue->getType();
1516 MVT ArgVT;
1517 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1518 return false;
1519
1520 if (ArgVT.isVector())
1521 return false;
1522
1523 unsigned Arg = getRegForValue(ArgValue);
1524 if (Arg == 0)
1525 return false;
1526
1527 Args.push_back(ArgValue);
1528 ArgRegs.push_back(Arg);
1529 ArgVTs.push_back(ArgVT);
1530 ArgFlags.push_back(Flags);
1531 }
1532
1533 // Process the arguments.
1534 SmallVector<unsigned, 8> RegArgs;
1535 unsigned NumBytes;
1536
1537 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1538 RegArgs, CC, NumBytes, IsVarArg))
1539 return false;
1540
1541 MachineInstrBuilder MIB;
1542 // FIXME: No handling for function pointers yet. This requires
1543 // implementing the function descriptor (OPD) setup.
1544 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1545 if (!GV) {
1546 // patchpoints are a special case; they always dispatch to a pointer value.
1547 // However, we don't actually want to generate the indirect call sequence
1548 // here (that will be generated, as necessary, during asm printing), and
1549 // the call we generate here will be erased by FastISel::selectPatchpoint,
1550 // so don't try very hard...
1551 if (CLI.IsPatchPoint)
1552 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1553 else
1554 return false;
1555 } else {
1556 // Build direct call with NOP for TOC restore.
1557 // FIXME: We can and should optimize away the NOP for local calls.
1558 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1559 TII.get(PPC::BL8_NOP));
1560 // Add callee.
1561 MIB.addGlobalAddress(GV);
1562 }
1563
1564 // Add implicit physical register uses to the call.
1565 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1566 MIB.addReg(RegArgs[II], RegState::Implicit);
1567
1568 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1569 // into the call.
1570 PPCFuncInfo->setUsesTOCBasePtr();
1571 MIB.addReg(PPC::X2, RegState::Implicit);
1572
1573 // Add a register mask with the call-preserved registers. Proper
1574 // defs for return values will be added by setPhysRegsDeadExcept().
1575 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1576
1577 CLI.Call = MIB;
1578
1579 // Finish off the call including any return values.
1580 return finishCall(RetVT, CLI, NumBytes);
1581 }
1582
1583 // Attempt to fast-select a return instruction.
SelectRet(const Instruction * I)1584 bool PPCFastISel::SelectRet(const Instruction *I) {
1585
1586 if (!FuncInfo.CanLowerReturn)
1587 return false;
1588
1589 const ReturnInst *Ret = cast<ReturnInst>(I);
1590 const Function &F = *I->getParent()->getParent();
1591
1592 // Build a list of return value registers.
1593 SmallVector<unsigned, 4> RetRegs;
1594 CallingConv::ID CC = F.getCallingConv();
1595
1596 if (Ret->getNumOperands() > 0) {
1597 SmallVector<ISD::OutputArg, 4> Outs;
1598 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1599
1600 // Analyze operands of the call, assigning locations to each operand.
1601 SmallVector<CCValAssign, 16> ValLocs;
1602 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1603 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1604 const Value *RV = Ret->getOperand(0);
1605
1606 // FIXME: Only one output register for now.
1607 if (ValLocs.size() > 1)
1608 return false;
1609
1610 // Special case for returning a constant integer of any size - materialize
1611 // the constant as an i64 and copy it to the return register.
1612 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1613 CCValAssign &VA = ValLocs[0];
1614
1615 unsigned RetReg = VA.getLocReg();
1616 // We still need to worry about properly extending the sign. For example,
1617 // we could have only a single bit or a constant that needs zero
1618 // extension rather than sign extension. Make sure we pass the return
1619 // value extension property to integer materialization.
1620 unsigned SrcReg =
1621 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() == CCValAssign::SExt);
1622
1623 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1624 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1625
1626 RetRegs.push_back(RetReg);
1627
1628 } else {
1629 unsigned Reg = getRegForValue(RV);
1630
1631 if (Reg == 0)
1632 return false;
1633
1634 // Copy the result values into the output registers.
1635 for (unsigned i = 0; i < ValLocs.size(); ++i) {
1636
1637 CCValAssign &VA = ValLocs[i];
1638 assert(VA.isRegLoc() && "Can only return in registers!");
1639 RetRegs.push_back(VA.getLocReg());
1640 unsigned SrcReg = Reg + VA.getValNo();
1641
1642 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1643 if (!RVEVT.isSimple())
1644 return false;
1645 MVT RVVT = RVEVT.getSimpleVT();
1646 MVT DestVT = VA.getLocVT();
1647
1648 if (RVVT != DestVT && RVVT != MVT::i8 &&
1649 RVVT != MVT::i16 && RVVT != MVT::i32)
1650 return false;
1651
1652 if (RVVT != DestVT) {
1653 switch (VA.getLocInfo()) {
1654 default:
1655 llvm_unreachable("Unknown loc info!");
1656 case CCValAssign::Full:
1657 llvm_unreachable("Full value assign but types don't match?");
1658 case CCValAssign::AExt:
1659 case CCValAssign::ZExt: {
1660 const TargetRegisterClass *RC =
1661 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1662 unsigned TmpReg = createResultReg(RC);
1663 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1664 return false;
1665 SrcReg = TmpReg;
1666 break;
1667 }
1668 case CCValAssign::SExt: {
1669 const TargetRegisterClass *RC =
1670 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1671 unsigned TmpReg = createResultReg(RC);
1672 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1673 return false;
1674 SrcReg = TmpReg;
1675 break;
1676 }
1677 }
1678 }
1679
1680 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1681 TII.get(TargetOpcode::COPY), RetRegs[i])
1682 .addReg(SrcReg);
1683 }
1684 }
1685 }
1686
1687 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1688 TII.get(PPC::BLR8));
1689
1690 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1691 MIB.addReg(RetRegs[i], RegState::Implicit);
1692
1693 return true;
1694 }
1695
1696 // Attempt to emit an integer extend of SrcReg into DestReg. Both
1697 // signed and zero extensions are supported. Return false if we
1698 // can't handle it.
PPCEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1699 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1700 unsigned DestReg, bool IsZExt) {
1701 if (DestVT != MVT::i32 && DestVT != MVT::i64)
1702 return false;
1703 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1704 return false;
1705
1706 // Signed extensions use EXTSB, EXTSH, EXTSW.
1707 if (!IsZExt) {
1708 unsigned Opc;
1709 if (SrcVT == MVT::i8)
1710 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1711 else if (SrcVT == MVT::i16)
1712 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1713 else {
1714 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1715 Opc = PPC::EXTSW_32_64;
1716 }
1717 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1718 .addReg(SrcReg);
1719
1720 // Unsigned 32-bit extensions use RLWINM.
1721 } else if (DestVT == MVT::i32) {
1722 unsigned MB;
1723 if (SrcVT == MVT::i8)
1724 MB = 24;
1725 else {
1726 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1727 MB = 16;
1728 }
1729 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1730 DestReg)
1731 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1732
1733 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1734 } else {
1735 unsigned MB;
1736 if (SrcVT == MVT::i8)
1737 MB = 56;
1738 else if (SrcVT == MVT::i16)
1739 MB = 48;
1740 else
1741 MB = 32;
1742 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1743 TII.get(PPC::RLDICL_32_64), DestReg)
1744 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1745 }
1746
1747 return true;
1748 }
1749
1750 // Attempt to fast-select an indirect branch instruction.
SelectIndirectBr(const Instruction * I)1751 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1752 unsigned AddrReg = getRegForValue(I->getOperand(0));
1753 if (AddrReg == 0)
1754 return false;
1755
1756 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1757 .addReg(AddrReg);
1758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1759
1760 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1761 for (const BasicBlock *SuccBB : IB->successors())
1762 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1763
1764 return true;
1765 }
1766
1767 // Attempt to fast-select an integer truncate instruction.
SelectTrunc(const Instruction * I)1768 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1769 Value *Src = I->getOperand(0);
1770 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1771 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1772
1773 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1774 return false;
1775
1776 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1777 return false;
1778
1779 unsigned SrcReg = getRegForValue(Src);
1780 if (!SrcReg)
1781 return false;
1782
1783 // The only interesting case is when we need to switch register classes.
1784 if (SrcVT == MVT::i64) {
1785 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1786 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1787 TII.get(TargetOpcode::COPY),
1788 ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1789 SrcReg = ResultReg;
1790 }
1791
1792 updateValueMap(I, SrcReg);
1793 return true;
1794 }
1795
1796 // Attempt to fast-select an integer extend instruction.
SelectIntExt(const Instruction * I)1797 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1798 Type *DestTy = I->getType();
1799 Value *Src = I->getOperand(0);
1800 Type *SrcTy = Src->getType();
1801
1802 bool IsZExt = isa<ZExtInst>(I);
1803 unsigned SrcReg = getRegForValue(Src);
1804 if (!SrcReg) return false;
1805
1806 EVT SrcEVT, DestEVT;
1807 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1808 DestEVT = TLI.getValueType(DL, DestTy, true);
1809 if (!SrcEVT.isSimple())
1810 return false;
1811 if (!DestEVT.isSimple())
1812 return false;
1813
1814 MVT SrcVT = SrcEVT.getSimpleVT();
1815 MVT DestVT = DestEVT.getSimpleVT();
1816
1817 // If we know the register class needed for the result of this
1818 // instruction, use it. Otherwise pick the register class of the
1819 // correct size that does not contain X0/R0, since we don't know
1820 // whether downstream uses permit that assignment.
1821 unsigned AssignedReg = FuncInfo.ValueMap[I];
1822 const TargetRegisterClass *RC =
1823 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1824 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1825 &PPC::GPRC_and_GPRC_NOR0RegClass));
1826 unsigned ResultReg = createResultReg(RC);
1827
1828 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1829 return false;
1830
1831 updateValueMap(I, ResultReg);
1832 return true;
1833 }
1834
1835 // Attempt to fast-select an instruction that wasn't handled by
1836 // the table-generated machinery.
fastSelectInstruction(const Instruction * I)1837 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1838
1839 switch (I->getOpcode()) {
1840 case Instruction::Load:
1841 return SelectLoad(I);
1842 case Instruction::Store:
1843 return SelectStore(I);
1844 case Instruction::Br:
1845 return SelectBranch(I);
1846 case Instruction::IndirectBr:
1847 return SelectIndirectBr(I);
1848 case Instruction::FPExt:
1849 return SelectFPExt(I);
1850 case Instruction::FPTrunc:
1851 return SelectFPTrunc(I);
1852 case Instruction::SIToFP:
1853 return SelectIToFP(I, /*IsSigned*/ true);
1854 case Instruction::UIToFP:
1855 return SelectIToFP(I, /*IsSigned*/ false);
1856 case Instruction::FPToSI:
1857 return SelectFPToI(I, /*IsSigned*/ true);
1858 case Instruction::FPToUI:
1859 return SelectFPToI(I, /*IsSigned*/ false);
1860 case Instruction::Add:
1861 return SelectBinaryIntOp(I, ISD::ADD);
1862 case Instruction::Or:
1863 return SelectBinaryIntOp(I, ISD::OR);
1864 case Instruction::Sub:
1865 return SelectBinaryIntOp(I, ISD::SUB);
1866 case Instruction::Call:
1867 return selectCall(I);
1868 case Instruction::Ret:
1869 return SelectRet(I);
1870 case Instruction::Trunc:
1871 return SelectTrunc(I);
1872 case Instruction::ZExt:
1873 case Instruction::SExt:
1874 return SelectIntExt(I);
1875 // Here add other flavors of Instruction::XXX that automated
1876 // cases don't catch. For example, switches are terminators
1877 // that aren't yet handled.
1878 default:
1879 break;
1880 }
1881 return false;
1882 }
1883
1884 // Materialize a floating-point constant into a register, and return
1885 // the register number (or zero if we failed to handle it).
PPCMaterializeFP(const ConstantFP * CFP,MVT VT)1886 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1887 // No plans to handle long double here.
1888 if (VT != MVT::f32 && VT != MVT::f64)
1889 return 0;
1890
1891 // All FP constants are loaded from the constant pool.
1892 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
1893 assert(Align > 0 && "Unexpectedly missing alignment information!");
1894 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1895 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
1896 CodeModel::Model CModel = TM.getCodeModel();
1897
1898 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1899 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
1900 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align);
1901
1902 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
1903 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1904
1905 PPCFuncInfo->setUsesTOCBasePtr();
1906 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
1907 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
1908 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
1909 TmpReg)
1910 .addConstantPoolIndex(Idx).addReg(PPC::X2);
1911 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1912 .addImm(0).addReg(TmpReg).addMemOperand(MMO);
1913 } else {
1914 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
1915 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
1916 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
1917 // But for large code model, we must generate a LDtocL followed
1918 // by the LF[SD].
1919 if (CModel == CodeModel::Large) {
1920 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1921 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
1922 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1924 .addImm(0).addReg(TmpReg2);
1925 } else
1926 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1927 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
1928 .addReg(TmpReg)
1929 .addMemOperand(MMO);
1930 }
1931
1932 return DestReg;
1933 }
1934
1935 // Materialize the address of a global value into a register, and return
1936 // the register number (or zero if we failed to handle it).
PPCMaterializeGV(const GlobalValue * GV,MVT VT)1937 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
1938 assert(VT == MVT::i64 && "Non-address!");
1939 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
1940 unsigned DestReg = createResultReg(RC);
1941
1942 // Global values may be plain old object addresses, TLS object
1943 // addresses, constant pool entries, or jump tables. How we generate
1944 // code for these may depend on small, medium, or large code model.
1945 CodeModel::Model CModel = TM.getCodeModel();
1946
1947 // FIXME: Jump tables are not yet required because fast-isel doesn't
1948 // handle switches; if that changes, we need them as well. For now,
1949 // what follows assumes everything's a generic (or TLS) global address.
1950
1951 // FIXME: We don't yet handle the complexity of TLS.
1952 if (GV->isThreadLocal())
1953 return 0;
1954
1955 PPCFuncInfo->setUsesTOCBasePtr();
1956 // For small code model, generate a simple TOC load.
1957 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
1958 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
1959 DestReg)
1960 .addGlobalAddress(GV)
1961 .addReg(PPC::X2);
1962 else {
1963 // If the address is an externally defined symbol, a symbol with common
1964 // or externally available linkage, a non-local function address, or a
1965 // jump table address (not yet needed), or if we are generating code
1966 // for large code model, we generate:
1967 // LDtocL(GV, ADDIStocHA(%X2, GV))
1968 // Otherwise we generate:
1969 // ADDItocL(ADDIStocHA(%X2, GV), GV)
1970 // Either way, start with the ADDIStocHA:
1971 unsigned HighPartReg = createResultReg(RC);
1972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
1973 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
1974
1975 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
1976 if (GVFlags & PPCII::MO_NLP_FLAG) {
1977 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
1978 DestReg).addGlobalAddress(GV).addReg(HighPartReg);
1979 } else {
1980 // Otherwise generate the ADDItocL.
1981 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
1982 DestReg).addReg(HighPartReg).addGlobalAddress(GV);
1983 }
1984 }
1985
1986 return DestReg;
1987 }
1988
1989 // Materialize a 32-bit integer constant into a register, and return
1990 // the register number (or zero if we failed to handle it).
PPCMaterialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)1991 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
1992 const TargetRegisterClass *RC) {
1993 unsigned Lo = Imm & 0xFFFF;
1994 unsigned Hi = (Imm >> 16) & 0xFFFF;
1995
1996 unsigned ResultReg = createResultReg(RC);
1997 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1998
1999 if (isInt<16>(Imm))
2000 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2001 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2002 .addImm(Imm);
2003 else if (Lo) {
2004 // Both Lo and Hi have nonzero bits.
2005 unsigned TmpReg = createResultReg(RC);
2006 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2007 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2008 .addImm(Hi);
2009 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2010 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2011 .addReg(TmpReg).addImm(Lo);
2012 } else
2013 // Just Hi bits.
2014 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2015 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2016 .addImm(Hi);
2017
2018 return ResultReg;
2019 }
2020
2021 // Materialize a 64-bit integer constant into a register, and return
2022 // the register number (or zero if we failed to handle it).
PPCMaterialize64BitInt(int64_t Imm,const TargetRegisterClass * RC)2023 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2024 const TargetRegisterClass *RC) {
2025 unsigned Remainder = 0;
2026 unsigned Shift = 0;
2027
2028 // If the value doesn't fit in 32 bits, see if we can shift it
2029 // so that it fits in 32 bits.
2030 if (!isInt<32>(Imm)) {
2031 Shift = countTrailingZeros<uint64_t>(Imm);
2032 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2033
2034 if (isInt<32>(ImmSh))
2035 Imm = ImmSh;
2036 else {
2037 Remainder = Imm;
2038 Shift = 32;
2039 Imm >>= 32;
2040 }
2041 }
2042
2043 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2044 // (if not shifted).
2045 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2046 if (!Shift)
2047 return TmpReg1;
2048
2049 // If upper 32 bits were not zero, we've built them and need to shift
2050 // them into place.
2051 unsigned TmpReg2;
2052 if (Imm) {
2053 TmpReg2 = createResultReg(RC);
2054 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2055 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2056 } else
2057 TmpReg2 = TmpReg1;
2058
2059 unsigned TmpReg3, Hi, Lo;
2060 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2061 TmpReg3 = createResultReg(RC);
2062 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2063 TmpReg3).addReg(TmpReg2).addImm(Hi);
2064 } else
2065 TmpReg3 = TmpReg2;
2066
2067 if ((Lo = Remainder & 0xFFFF)) {
2068 unsigned ResultReg = createResultReg(RC);
2069 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2070 ResultReg).addReg(TmpReg3).addImm(Lo);
2071 return ResultReg;
2072 }
2073
2074 return TmpReg3;
2075 }
2076
2077
2078 // Materialize an integer constant into a register, and return
2079 // the register number (or zero if we failed to handle it).
PPCMaterializeInt(const ConstantInt * CI,MVT VT,bool UseSExt)2080 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2081 bool UseSExt) {
2082 // If we're using CR bit registers for i1 values, handle that as a special
2083 // case first.
2084 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2085 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2087 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2088 return ImmReg;
2089 }
2090
2091 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2092 VT != MVT::i8 && VT != MVT::i1)
2093 return 0;
2094
2095 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2096 &PPC::GPRCRegClass);
2097
2098 // If the constant is in range, use a load-immediate.
2099 if (UseSExt && isInt<16>(CI->getSExtValue())) {
2100 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2101 unsigned ImmReg = createResultReg(RC);
2102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2103 .addImm(CI->getSExtValue());
2104 return ImmReg;
2105 } else if (!UseSExt && isUInt<16>(CI->getZExtValue())) {
2106 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2107 unsigned ImmReg = createResultReg(RC);
2108 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2109 .addImm(CI->getZExtValue());
2110 return ImmReg;
2111 }
2112
2113 // Construct the constant piecewise.
2114 int64_t Imm = CI->getZExtValue();
2115
2116 if (VT == MVT::i64)
2117 return PPCMaterialize64BitInt(Imm, RC);
2118 else if (VT == MVT::i32)
2119 return PPCMaterialize32BitInt(Imm, RC);
2120
2121 return 0;
2122 }
2123
2124 // Materialize a constant into a register, and return the register
2125 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)2126 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2127 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2128
2129 // Only handle simple types.
2130 if (!CEVT.isSimple()) return 0;
2131 MVT VT = CEVT.getSimpleVT();
2132
2133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2134 return PPCMaterializeFP(CFP, VT);
2135 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2136 return PPCMaterializeGV(GV, VT);
2137 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2138 return PPCMaterializeInt(CI, VT, VT != MVT::i1);
2139
2140 return 0;
2141 }
2142
2143 // Materialize the address created by an alloca into a register, and
2144 // return the register number (or zero if we failed to handle it).
fastMaterializeAlloca(const AllocaInst * AI)2145 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2146 // Don't handle dynamic allocas.
2147 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2148
2149 MVT VT;
2150 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2151
2152 DenseMap<const AllocaInst*, int>::iterator SI =
2153 FuncInfo.StaticAllocaMap.find(AI);
2154
2155 if (SI != FuncInfo.StaticAllocaMap.end()) {
2156 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2157 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2158 ResultReg).addFrameIndex(SI->second).addImm(0);
2159 return ResultReg;
2160 }
2161
2162 return 0;
2163 }
2164
2165 // Fold loads into extends when possible.
2166 // FIXME: We can have multiple redundant extend/trunc instructions
2167 // following a load. The folding only picks up one. Extend this
2168 // to check subsequent instructions for the same pattern and remove
2169 // them. Thus ResultReg should be the def reg for the last redundant
2170 // instruction in a chain, and all intervening instructions can be
2171 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2172 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2173 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2174 const LoadInst *LI) {
2175 // Verify we have a legal type before going any further.
2176 MVT VT;
2177 if (!isLoadTypeLegal(LI->getType(), VT))
2178 return false;
2179
2180 // Combine load followed by zero- or sign-extend.
2181 bool IsZExt = false;
2182 switch(MI->getOpcode()) {
2183 default:
2184 return false;
2185
2186 case PPC::RLDICL:
2187 case PPC::RLDICL_32_64: {
2188 IsZExt = true;
2189 unsigned MB = MI->getOperand(3).getImm();
2190 if ((VT == MVT::i8 && MB <= 56) ||
2191 (VT == MVT::i16 && MB <= 48) ||
2192 (VT == MVT::i32 && MB <= 32))
2193 break;
2194 return false;
2195 }
2196
2197 case PPC::RLWINM:
2198 case PPC::RLWINM8: {
2199 IsZExt = true;
2200 unsigned MB = MI->getOperand(3).getImm();
2201 if ((VT == MVT::i8 && MB <= 24) ||
2202 (VT == MVT::i16 && MB <= 16))
2203 break;
2204 return false;
2205 }
2206
2207 case PPC::EXTSB:
2208 case PPC::EXTSB8:
2209 case PPC::EXTSB8_32_64:
2210 /* There is no sign-extending load-byte instruction. */
2211 return false;
2212
2213 case PPC::EXTSH:
2214 case PPC::EXTSH8:
2215 case PPC::EXTSH8_32_64: {
2216 if (VT != MVT::i16 && VT != MVT::i8)
2217 return false;
2218 break;
2219 }
2220
2221 case PPC::EXTSW:
2222 case PPC::EXTSW_32_64: {
2223 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2224 return false;
2225 break;
2226 }
2227 }
2228
2229 // See if we can handle this address.
2230 Address Addr;
2231 if (!PPCComputeAddress(LI->getOperand(0), Addr))
2232 return false;
2233
2234 unsigned ResultReg = MI->getOperand(0).getReg();
2235
2236 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt))
2237 return false;
2238
2239 MI->eraseFromParent();
2240 return true;
2241 }
2242
2243 // Attempt to lower call arguments in a faster way than done by
2244 // the selection DAG code.
fastLowerArguments()2245 bool PPCFastISel::fastLowerArguments() {
2246 // Defer to normal argument lowering for now. It's reasonably
2247 // efficient. Consider doing something like ARM to handle the
2248 // case where all args fit in registers, no varargs, no float
2249 // or vector args.
2250 return false;
2251 }
2252
2253 // Handle materializing integer constants into a register. This is not
2254 // automatically generated for PowerPC, so must be explicitly created here.
fastEmit_i(MVT Ty,MVT VT,unsigned Opc,uint64_t Imm)2255 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2256
2257 if (Opc != ISD::Constant)
2258 return 0;
2259
2260 // If we're using CR bit registers for i1 values, handle that as a special
2261 // case first.
2262 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2263 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2264 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2265 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2266 return ImmReg;
2267 }
2268
2269 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2270 VT != MVT::i8 && VT != MVT::i1)
2271 return 0;
2272
2273 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2274 &PPC::GPRCRegClass);
2275 if (VT == MVT::i64)
2276 return PPCMaterialize64BitInt(Imm, RC);
2277 else
2278 return PPCMaterialize32BitInt(Imm, RC);
2279 }
2280
2281 // Override for ADDI and ADDI8 to set the correct register class
2282 // on RHS operand 0. The automatic infrastructure naively assumes
2283 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2284 // for these cases. At the moment, none of the other automatically
2285 // generated RI instructions require special treatment. However, once
2286 // SelectSelect is implemented, "isel" requires similar handling.
2287 //
2288 // Also be conservative about the output register class. Avoid
2289 // assigning R0 or X0 to the output register for GPRC and G8RC
2290 // register classes, as any such result could be used in ADDI, etc.,
2291 // where those regs have another meaning.
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)2292 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2293 const TargetRegisterClass *RC,
2294 unsigned Op0, bool Op0IsKill,
2295 uint64_t Imm) {
2296 if (MachineInstOpcode == PPC::ADDI)
2297 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2298 else if (MachineInstOpcode == PPC::ADDI8)
2299 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2300
2301 const TargetRegisterClass *UseRC =
2302 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2303 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2304
2305 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2306 Op0, Op0IsKill, Imm);
2307 }
2308
2309 // Override for instructions with one register operand to avoid use of
2310 // R0/X0. The automatic infrastructure isn't aware of the context so
2311 // we must be conservative.
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)2312 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2313 const TargetRegisterClass* RC,
2314 unsigned Op0, bool Op0IsKill) {
2315 const TargetRegisterClass *UseRC =
2316 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2317 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2318
2319 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2320 }
2321
2322 // Override for instructions with two register operands to avoid use
2323 // of R0/X0. The automatic infrastructure isn't aware of the context
2324 // so we must be conservative.
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)2325 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2326 const TargetRegisterClass* RC,
2327 unsigned Op0, bool Op0IsKill,
2328 unsigned Op1, bool Op1IsKill) {
2329 const TargetRegisterClass *UseRC =
2330 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2331 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2332
2333 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2334 Op1, Op1IsKill);
2335 }
2336
2337 namespace llvm {
2338 // Create the fast instruction selector for PowerPC64 ELF.
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)2339 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2340 const TargetLibraryInfo *LibInfo) {
2341 // Only available on 64-bit ELF for now.
2342 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2343 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
2344 return new PPCFastISel(FuncInfo, LibInfo);
2345 return nullptr;
2346 }
2347 }
2348