• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
17 
18 #include "PPC.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCRegisterInfo.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/Target/TargetLowering.h"
24 
25 namespace llvm {
26   namespace PPCISD {
27     enum NodeType : unsigned {
28       // Start the numbering where the builtin ops and target ops leave off.
29       FIRST_NUMBER = ISD::BUILTIN_OP_END,
30 
31       /// FSEL - Traditional three-operand fsel node.
32       ///
33       FSEL,
34 
35       /// FCFID - The FCFID instruction, taking an f64 operand and producing
36       /// and f64 value containing the FP representation of the integer that
37       /// was temporarily in the f64 operand.
38       FCFID,
39 
40       /// Newer FCFID[US] integer-to-floating-point conversion instructions for
41       /// unsigned integers and single-precision outputs.
42       FCFIDU, FCFIDS, FCFIDUS,
43 
44       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
45       /// operand, producing an f64 value containing the integer representation
46       /// of that FP value.
47       FCTIDZ, FCTIWZ,
48 
49       /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
50       /// unsigned integers.
51       FCTIDUZ, FCTIWUZ,
52 
53       /// Reciprocal estimate instructions (unary FP ops).
54       FRE, FRSQRTE,
55 
56       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
57       // three v4f32 operands and producing a v4f32 result.
58       VMADDFP, VNMSUBFP,
59 
60       /// VPERM - The PPC VPERM Instruction.
61       ///
62       VPERM,
63 
64       /// The CMPB instruction (takes two operands of i32 or i64).
65       CMPB,
66 
67       /// Hi/Lo - These represent the high and low 16-bit parts of a global
68       /// address respectively.  These nodes have two operands, the first of
69       /// which must be a TargetGlobalAddress, and the second of which must be a
70       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
71       /// though these are usually folded into other nodes.
72       Hi, Lo,
73 
74       /// The following two target-specific nodes are used for calls through
75       /// function pointers in the 64-bit SVR4 ABI.
76 
77       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
78       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
79       /// compute an allocation on the stack.
80       DYNALLOC,
81 
82       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
83       /// compute an offset from native SP to the address  of the most recent
84       /// dynamic alloca.
85       DYNAREAOFFSET,
86 
87       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
88       /// at function entry, used for PIC code.
89       GlobalBaseReg,
90 
91       /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
92       /// shift amounts.  These nodes are generated by the multi-precision shift
93       /// code.
94       SRL, SRA, SHL,
95 
96       /// The combination of sra[wd]i and addze used to implemented signed
97       /// integer division by a power of 2. The first operand is the dividend,
98       /// and the second is the constant shift amount (representing the
99       /// divisor).
100       SRA_ADDZE,
101 
102       /// CALL - A direct function call.
103       /// CALL_NOP is a call with the special NOP which follows 64-bit
104       /// SVR4 calls.
105       CALL, CALL_NOP,
106 
107       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
108       /// MTCTR instruction.
109       MTCTR,
110 
111       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
112       /// BCTRL instruction.
113       BCTRL,
114 
115       /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
116       /// instruction and the TOC reload required on SVR4 PPC64.
117       BCTRL_LOAD_TOC,
118 
119       /// Return with a flag operand, matched by 'blr'
120       RET_FLAG,
121 
122       /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
123       /// This copies the bits corresponding to the specified CRREG into the
124       /// resultant GPR.  Bits corresponding to other CR regs are undefined.
125       MFOCRF,
126 
127       /// Direct move from a VSX register to a GPR
128       MFVSR,
129 
130       /// Direct move from a GPR to a VSX register (algebraic)
131       MTVSRA,
132 
133       /// Direct move from a GPR to a VSX register (zero)
134       MTVSRZ,
135 
136       // FIXME: Remove these once the ANDI glue bug is fixed:
137       /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
138       /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
139       /// implement truncation of i32 or i64 to i1.
140       ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
141 
142       // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
143       // target (returns (Lo, Hi)). It takes a chain operand.
144       READ_TIME_BASE,
145 
146       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
147       EH_SJLJ_SETJMP,
148 
149       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
150       EH_SJLJ_LONGJMP,
151 
152       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
153       /// instructions.  For lack of better number, we use the opcode number
154       /// encoding for the OPC field to identify the compare.  For example, 838
155       /// is VCMPGTSH.
156       VCMP,
157 
158       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
159       /// altivec VCMP*o instructions.  For lack of better number, we use the
160       /// opcode number encoding for the OPC field to identify the compare.  For
161       /// example, 838 is VCMPGTSH.
162       VCMPo,
163 
164       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
165       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
166       /// condition register to branch on, OPC is the branch opcode to use (e.g.
167       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
168       /// an optional input flag argument.
169       COND_BRANCH,
170 
171       /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
172       /// loops.
173       BDNZ, BDZ,
174 
175       /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
176       /// towards zero.  Used only as part of the long double-to-int
177       /// conversion sequence.
178       FADDRTZ,
179 
180       /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
181       MFFS,
182 
183       /// TC_RETURN - A tail call return.
184       ///   operand #0 chain
185       ///   operand #1 callee (register or absolute)
186       ///   operand #2 stack adjustment
187       ///   operand #3 optional in flag
188       TC_RETURN,
189 
190       /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
191       CR6SET,
192       CR6UNSET,
193 
194       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
195       /// on PPC32.
196       PPC32_GOT,
197 
198       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
199       /// local dynamic TLS on PPC32.
200       PPC32_PICGOT,
201 
202       /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
203       /// TLS model, produces an ADDIS8 instruction that adds the GOT
204       /// base to sym\@got\@tprel\@ha.
205       ADDIS_GOT_TPREL_HA,
206 
207       /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
208       /// TLS model, produces a LD instruction with base register G8RReg
209       /// and offset sym\@got\@tprel\@l.  This completes the addition that
210       /// finds the offset of "sym" relative to the thread pointer.
211       LD_GOT_TPREL_L,
212 
213       /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
214       /// model, produces an ADD instruction that adds the contents of
215       /// G8RReg to the thread pointer.  Symbol contains a relocation
216       /// sym\@tls which is to be replaced by the thread pointer and
217       /// identifies to the linker that the instruction is part of a
218       /// TLS sequence.
219       ADD_TLS,
220 
221       /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
222       /// model, produces an ADDIS8 instruction that adds the GOT base
223       /// register to sym\@got\@tlsgd\@ha.
224       ADDIS_TLSGD_HA,
225 
226       /// %X3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
227       /// model, produces an ADDI8 instruction that adds G8RReg to
228       /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
229       /// ADDIS_TLSGD_L_ADDR until after register assignment.
230       ADDI_TLSGD_L,
231 
232       /// %X3 = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
233       /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
234       /// ADDIS_TLSGD_L_ADDR until after register assignment.
235       GET_TLS_ADDR,
236 
237       /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
238       /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
239       /// register assignment.
240       ADDI_TLSGD_L_ADDR,
241 
242       /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
243       /// model, produces an ADDIS8 instruction that adds the GOT base
244       /// register to sym\@got\@tlsld\@ha.
245       ADDIS_TLSLD_HA,
246 
247       /// %X3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
248       /// model, produces an ADDI8 instruction that adds G8RReg to
249       /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
250       /// ADDIS_TLSLD_L_ADDR until after register assignment.
251       ADDI_TLSLD_L,
252 
253       /// %X3 = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
254       /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
255       /// ADDIS_TLSLD_L_ADDR until after register assignment.
256       GET_TLSLD_ADDR,
257 
258       /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
259       /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
260       /// following register assignment.
261       ADDI_TLSLD_L_ADDR,
262 
263       /// G8RC = ADDIS_DTPREL_HA %X3, Symbol - For the local-dynamic TLS
264       /// model, produces an ADDIS8 instruction that adds X3 to
265       /// sym\@dtprel\@ha.
266       ADDIS_DTPREL_HA,
267 
268       /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
269       /// model, produces an ADDI8 instruction that adds G8RReg to
270       /// sym\@got\@dtprel\@l.
271       ADDI_DTPREL_L,
272 
273       /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
274       /// during instruction selection to optimize a BUILD_VECTOR into
275       /// operations on splats.  This is necessary to avoid losing these
276       /// optimizations due to constant folding.
277       VADD_SPLAT,
278 
279       /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
280       /// operand identifies the operating system entry point.
281       SC,
282 
283       /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
284       CLRBHRB,
285 
286       /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
287       /// history rolling buffer entry.
288       MFBHRBE,
289 
290       /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
291       RFEBB,
292 
293       /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
294       /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
295       /// or stxvd2x instruction.  The chain is necessary because the
296       /// sequence replaces a load and needs to provide the same number
297       /// of outputs.
298       XXSWAPD,
299 
300       /// QVFPERM = This corresponds to the QPX qvfperm instruction.
301       QVFPERM,
302 
303       /// QVGPCI = This corresponds to the QPX qvgpci instruction.
304       QVGPCI,
305 
306       /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
307       QVALIGNI,
308 
309       /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
310       QVESPLATI,
311 
312       /// QBFLT = Access the underlying QPX floating-point boolean
313       /// representation.
314       QBFLT,
315 
316       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
317       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
318       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
319       /// i32.
320       STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
321 
322       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
323       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
324       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
325       /// or i32.
326       LBRX,
327 
328       /// STFIWX - The STFIWX instruction.  The first operand is an input token
329       /// chain, then an f64 value to store, then an address to store it to.
330       STFIWX,
331 
332       /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
333       /// load which sign-extends from a 32-bit integer value into the
334       /// destination 64-bit register.
335       LFIWAX,
336 
337       /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
338       /// load which zero-extends from a 32-bit integer value into the
339       /// destination 64-bit register.
340       LFIWZX,
341 
342       /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
343       /// Maps directly to an lxvd2x instruction that will be followed by
344       /// an xxswapd.
345       LXVD2X,
346 
347       /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
348       /// Maps directly to an stxvd2x instruction that will be preceded by
349       /// an xxswapd.
350       STXVD2X,
351 
352       /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
353       /// The 4xf32 load used for v4i1 constants.
354       QVLFSb,
355 
356       /// GPRC = TOC_ENTRY GA, TOC
357       /// Loads the entry for GA from the TOC, where the TOC base is given by
358       /// the last operand.
359       TOC_ENTRY
360     };
361   }
362 
363   /// Define some predicates that are used for node matching.
364   namespace PPC {
365     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
366     /// VPKUHUM instruction.
367     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
368                               SelectionDAG &DAG);
369 
370     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
371     /// VPKUWUM instruction.
372     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
373                               SelectionDAG &DAG);
374 
375     /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
376     /// VPKUDUM instruction.
377     bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
378                               SelectionDAG &DAG);
379 
380     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
381     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
382     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
383                             unsigned ShuffleKind, SelectionDAG &DAG);
384 
385     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
386     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
387     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
388                             unsigned ShuffleKind, SelectionDAG &DAG);
389 
390     /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
391     /// a VMRGEW or VMRGOW instruction
392     bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
393                              unsigned ShuffleKind, SelectionDAG &DAG);
394 
395     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
396     /// shift amount, otherwise return -1.
397     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
398                             SelectionDAG &DAG);
399 
400     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
401     /// specifies a splat of a single element that is suitable for input to
402     /// VSPLTB/VSPLTH/VSPLTW.
403     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
404 
405     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
406     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
407     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
408 
409     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
410     /// formed by using a vspltis[bhw] instruction of the specified element
411     /// size, return the constant being splatted.  The ByteSize field indicates
412     /// the number of bytes of each element [124] -> [bhw].
413     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
414 
415     /// If this is a qvaligni shuffle mask, return the shift
416     /// amount, otherwise return -1.
417     int isQVALIGNIShuffleMask(SDNode *N);
418   }
419 
420   class PPCTargetLowering : public TargetLowering {
421     const PPCSubtarget &Subtarget;
422 
423   public:
424     explicit PPCTargetLowering(const PPCTargetMachine &TM,
425                                const PPCSubtarget &STI);
426 
427     /// getTargetNodeName() - This method returns the name of a target specific
428     /// DAG node.
429     const char *getTargetNodeName(unsigned Opcode) const override;
430 
431     bool useSoftFloat() const override;
432 
getScalarShiftAmountTy(const DataLayout &,EVT)433     MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
434       return MVT::i32;
435     }
436 
isCheapToSpeculateCttz()437     bool isCheapToSpeculateCttz() const override {
438       return true;
439     }
440 
isCheapToSpeculateCtlz()441     bool isCheapToSpeculateCtlz() const override {
442       return true;
443     }
444 
445     /// getSetCCResultType - Return the ISD::SETCC ValueType
446     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
447                            EVT VT) const override;
448 
449     /// Return true if target always beneficiates from combining into FMA for a
450     /// given value type. This must typically return false on targets where FMA
451     /// takes more cycles to execute than FADD.
452     bool enableAggressiveFMAFusion(EVT VT) const override;
453 
454     /// getPreIndexedAddressParts - returns true by value, base pointer and
455     /// offset pointer and addressing mode by reference if the node's address
456     /// can be legally represented as pre-indexed load / store address.
457     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
458                                    SDValue &Offset,
459                                    ISD::MemIndexedMode &AM,
460                                    SelectionDAG &DAG) const override;
461 
462     /// SelectAddressRegReg - Given the specified addressed, check to see if it
463     /// can be represented as an indexed [r+r] operation.  Returns false if it
464     /// can be more efficiently represented with [r+imm].
465     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
466                              SelectionDAG &DAG) const;
467 
468     /// SelectAddressRegImm - Returns true if the address N can be represented
469     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
470     /// is not better represented as reg+reg.  If Aligned is true, only accept
471     /// displacements suitable for STD and friends, i.e. multiples of 4.
472     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
473                              SelectionDAG &DAG, bool Aligned) const;
474 
475     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
476     /// represented as an indexed [r+r] operation.
477     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
478                                  SelectionDAG &DAG) const;
479 
480     Sched::Preference getSchedulingPreference(SDNode *N) const override;
481 
482     /// LowerOperation - Provide custom lowering hooks for some operations.
483     ///
484     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
485 
486     /// ReplaceNodeResults - Replace the results of node with an illegal result
487     /// type with new values built out of custom code.
488     ///
489     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
490                             SelectionDAG &DAG) const override;
491 
492     SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
493     SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
494 
495     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
496 
497     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
498                           std::vector<SDNode *> *Created) const override;
499 
500     unsigned getRegisterByName(const char* RegName, EVT VT,
501                                SelectionDAG &DAG) const override;
502 
503     void computeKnownBitsForTargetNode(const SDValue Op,
504                                        APInt &KnownZero,
505                                        APInt &KnownOne,
506                                        const SelectionDAG &DAG,
507                                        unsigned Depth = 0) const override;
508 
509     unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
510 
511     Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
512                                   bool IsStore, bool IsLoad) const override;
513     Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
514                                    bool IsStore, bool IsLoad) const override;
515 
516     MachineBasicBlock *
517       EmitInstrWithCustomInserter(MachineInstr *MI,
518                                   MachineBasicBlock *MBB) const override;
519     MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
520                                         MachineBasicBlock *MBB,
521                                         unsigned AtomicSize,
522                                         unsigned BinOpcode) const;
523     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
524                                                 MachineBasicBlock *MBB,
525                                             bool is8bit, unsigned Opcode) const;
526 
527     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
528                                         MachineBasicBlock *MBB) const;
529 
530     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
531                                          MachineBasicBlock *MBB) const;
532 
533     ConstraintType getConstraintType(StringRef Constraint) const override;
534 
535     /// Examine constraint string and operand type and determine a weight value.
536     /// The operand object must already have been set up with the operand type.
537     ConstraintWeight getSingleConstraintMatchWeight(
538       AsmOperandInfo &info, const char *constraint) const override;
539 
540     std::pair<unsigned, const TargetRegisterClass *>
541     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
542                                  StringRef Constraint, MVT VT) const override;
543 
544     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
545     /// function arguments in the caller parameter area.  This is the actual
546     /// alignment, not its logarithm.
547     unsigned getByValTypeAlignment(Type *Ty,
548                                    const DataLayout &DL) const override;
549 
550     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
551     /// vector.  If it is invalid, don't add anything to Ops.
552     void LowerAsmOperandForConstraint(SDValue Op,
553                                       std::string &Constraint,
554                                       std::vector<SDValue> &Ops,
555                                       SelectionDAG &DAG) const override;
556 
557     unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode)558     getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
559       if (ConstraintCode == "es")
560         return InlineAsm::Constraint_es;
561       else if (ConstraintCode == "o")
562         return InlineAsm::Constraint_o;
563       else if (ConstraintCode == "Q")
564         return InlineAsm::Constraint_Q;
565       else if (ConstraintCode == "Z")
566         return InlineAsm::Constraint_Z;
567       else if (ConstraintCode == "Zy")
568         return InlineAsm::Constraint_Zy;
569       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
570     }
571 
572     /// isLegalAddressingMode - Return true if the addressing mode represented
573     /// by AM is legal for this target, for a load/store of the specified type.
574     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
575                                Type *Ty, unsigned AS) const override;
576 
577     /// isLegalICmpImmediate - Return true if the specified immediate is legal
578     /// icmp immediate, that is the target has icmp instructions which can
579     /// compare a register against the immediate without having to materialize
580     /// the immediate into a register.
581     bool isLegalICmpImmediate(int64_t Imm) const override;
582 
583     /// isLegalAddImmediate - Return true if the specified immediate is legal
584     /// add immediate, that is the target has add instructions which can
585     /// add a register and the immediate without having to materialize
586     /// the immediate into a register.
587     bool isLegalAddImmediate(int64_t Imm) const override;
588 
589     /// isTruncateFree - Return true if it's free to truncate a value of
590     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
591     /// register X1 to i32 by referencing its sub-register R1.
592     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
593     bool isTruncateFree(EVT VT1, EVT VT2) const override;
594 
595     bool isZExtFree(SDValue Val, EVT VT2) const override;
596 
597     bool isFPExtFree(EVT VT) const override;
598 
599     /// \brief Returns true if it is beneficial to convert a load of a constant
600     /// to just the constant itself.
601     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
602                                            Type *Ty) const override;
603 
604     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
605 
606     bool getTgtMemIntrinsic(IntrinsicInfo &Info,
607                             const CallInst &I,
608                             unsigned Intrinsic) const override;
609 
610     /// getOptimalMemOpType - Returns the target specific optimal type for load
611     /// and store operations as a result of memset, memcpy, and memmove
612     /// lowering. If DstAlign is zero that means it's safe to destination
613     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
614     /// means there isn't a need to check it against alignment requirement,
615     /// probably because the source does not need to be loaded. If 'IsMemset' is
616     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
617     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
618     /// source is constant so it does not need to be loaded.
619     /// It returns EVT::Other if the type should be determined using generic
620     /// target-independent logic.
621     EVT
622     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
623                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
624                         MachineFunction &MF) const override;
625 
626     /// Is unaligned memory access allowed for the given type, and is it fast
627     /// relative to software emulation.
628     bool allowsMisalignedMemoryAccesses(EVT VT,
629                                         unsigned AddrSpace,
630                                         unsigned Align = 1,
631                                         bool *Fast = nullptr) const override;
632 
633     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
634     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
635     /// expanded to FMAs when this method returns true, otherwise fmuladd is
636     /// expanded to fmul + fadd.
637     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
638 
639     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
640 
641     // Should we expand the build vector with shuffles?
642     bool
643     shouldExpandBuildVectorWithShuffles(EVT VT,
644                                         unsigned DefinedValues) const override;
645 
646     /// createFastISel - This method returns a target-specific FastISel object,
647     /// or null if the target does not support "fast" instruction selection.
648     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
649                              const TargetLibraryInfo *LibInfo) const override;
650 
651     /// \brief Returns true if an argument of type Ty needs to be passed in a
652     /// contiguous block of registers in calling convention CallConv.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg)653     bool functionArgumentNeedsConsecutiveRegisters(
654       Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
655       // We support any array type as "consecutive" block in the parameter
656       // save area.  The element type defines the alignment requirement and
657       // whether the argument should go in GPRs, FPRs, or VRs if available.
658       //
659       // Note that clang uses this capability both to implement the ELFv2
660       // homogeneous float/vector aggregate ABI, and to avoid having to use
661       // "byval" when passing aggregates that might fully fit in registers.
662       return Ty->isArrayTy();
663     }
664 
665     /// If a physical register, this returns the register that receives the
666     /// exception address on entry to an EH pad.
667     unsigned
668     getExceptionPointerRegister(const Constant *PersonalityFn) const override;
669 
670     /// If a physical register, this returns the register that receives the
671     /// exception typeid on entry to a landing pad.
672     unsigned
673     getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
674 
675   private:
676     struct ReuseLoadInfo {
677       SDValue Ptr;
678       SDValue Chain;
679       SDValue ResChain;
680       MachinePointerInfo MPI;
681       bool IsInvariant;
682       unsigned Alignment;
683       AAMDNodes AAInfo;
684       const MDNode *Ranges;
685 
ReuseLoadInfoReuseLoadInfo686       ReuseLoadInfo() : IsInvariant(false), Alignment(0), Ranges(nullptr) {}
687     };
688 
689     bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
690                              SelectionDAG &DAG,
691                              ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
692     void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
693                          SelectionDAG &DAG) const;
694 
695     void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
696                                 SelectionDAG &DAG, SDLoc dl) const;
697     SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
698                                      SDLoc dl) const;
699     SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
700                                      SDLoc dl) const;
701 
702     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
703     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
704 
705     bool
706     IsEligibleForTailCallOptimization(SDValue Callee,
707                                       CallingConv::ID CalleeCC,
708                                       bool isVarArg,
709                                       const SmallVectorImpl<ISD::InputArg> &Ins,
710                                       SelectionDAG& DAG) const;
711 
712     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
713                                          int SPDiff,
714                                          SDValue Chain,
715                                          SDValue &LROpOut,
716                                          SDValue &FPOpOut,
717                                          bool isDarwinABI,
718                                          SDLoc dl) const;
719 
720     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
721     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
722     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
723     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
724     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
725     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
726     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
727     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
728     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
729     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
730     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
731                          const PPCSubtarget &Subtarget) const;
732     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
733                        const PPCSubtarget &Subtarget) const;
734     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG,
735                         const PPCSubtarget &Subtarget) const;
736     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
737                                 const PPCSubtarget &Subtarget) const;
738     SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG,
739                                          const PPCSubtarget &Subtarget) const;
740     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
741                                       const PPCSubtarget &Subtarget) const;
742     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
743     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
744     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
745     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
746     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const;
747     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
748     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
749     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
750     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
751     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
752     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
753     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
754     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
755     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
756     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
757     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
758     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
759 
760     SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
761     SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
762 
763     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
764                             CallingConv::ID CallConv, bool isVarArg,
765                             const SmallVectorImpl<ISD::InputArg> &Ins,
766                             SDLoc dl, SelectionDAG &DAG,
767                             SmallVectorImpl<SDValue> &InVals) const;
768     SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
769                        bool isVarArg, bool IsPatchPoint, bool hasNest,
770                        SelectionDAG &DAG,
771                        SmallVector<std::pair<unsigned, SDValue>, 8>
772                          &RegsToPass,
773                        SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
774                        SDValue &Callee,
775                        int SPDiff, unsigned NumBytes,
776                        const SmallVectorImpl<ISD::InputArg> &Ins,
777                        SmallVectorImpl<SDValue> &InVals,
778                        ImmutableCallSite *CS) const;
779 
780     SDValue
781       LowerFormalArguments(SDValue Chain,
782                            CallingConv::ID CallConv, bool isVarArg,
783                            const SmallVectorImpl<ISD::InputArg> &Ins,
784                            SDLoc dl, SelectionDAG &DAG,
785                            SmallVectorImpl<SDValue> &InVals) const override;
786 
787     SDValue
788       LowerCall(TargetLowering::CallLoweringInfo &CLI,
789                 SmallVectorImpl<SDValue> &InVals) const override;
790 
791     bool
792       CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
793                    bool isVarArg,
794                    const SmallVectorImpl<ISD::OutputArg> &Outs,
795                    LLVMContext &Context) const override;
796 
797     SDValue
798       LowerReturn(SDValue Chain,
799                   CallingConv::ID CallConv, bool isVarArg,
800                   const SmallVectorImpl<ISD::OutputArg> &Outs,
801                   const SmallVectorImpl<SDValue> &OutVals,
802                   SDLoc dl, SelectionDAG &DAG) const override;
803 
804     SDValue
805       extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
806                         SDValue ArgVal, SDLoc dl) const;
807 
808     SDValue
809       LowerFormalArguments_Darwin(SDValue Chain,
810                                   CallingConv::ID CallConv, bool isVarArg,
811                                   const SmallVectorImpl<ISD::InputArg> &Ins,
812                                   SDLoc dl, SelectionDAG &DAG,
813                                   SmallVectorImpl<SDValue> &InVals) const;
814     SDValue
815       LowerFormalArguments_64SVR4(SDValue Chain,
816                                   CallingConv::ID CallConv, bool isVarArg,
817                                   const SmallVectorImpl<ISD::InputArg> &Ins,
818                                   SDLoc dl, SelectionDAG &DAG,
819                                   SmallVectorImpl<SDValue> &InVals) const;
820     SDValue
821       LowerFormalArguments_32SVR4(SDValue Chain,
822                                   CallingConv::ID CallConv, bool isVarArg,
823                                   const SmallVectorImpl<ISD::InputArg> &Ins,
824                                   SDLoc dl, SelectionDAG &DAG,
825                                   SmallVectorImpl<SDValue> &InVals) const;
826 
827     SDValue
828       createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
829                                  SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
830                                  SelectionDAG &DAG, SDLoc dl) const;
831 
832     SDValue
833       LowerCall_Darwin(SDValue Chain, SDValue Callee,
834                        CallingConv::ID CallConv,
835                        bool isVarArg, bool isTailCall, bool IsPatchPoint,
836                        const SmallVectorImpl<ISD::OutputArg> &Outs,
837                        const SmallVectorImpl<SDValue> &OutVals,
838                        const SmallVectorImpl<ISD::InputArg> &Ins,
839                        SDLoc dl, SelectionDAG &DAG,
840                        SmallVectorImpl<SDValue> &InVals,
841                        ImmutableCallSite *CS) const;
842     SDValue
843       LowerCall_64SVR4(SDValue Chain, SDValue Callee,
844                        CallingConv::ID CallConv,
845                        bool isVarArg, bool isTailCall, bool IsPatchPoint,
846                        const SmallVectorImpl<ISD::OutputArg> &Outs,
847                        const SmallVectorImpl<SDValue> &OutVals,
848                        const SmallVectorImpl<ISD::InputArg> &Ins,
849                        SDLoc dl, SelectionDAG &DAG,
850                        SmallVectorImpl<SDValue> &InVals,
851                        ImmutableCallSite *CS) const;
852     SDValue
853     LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
854                      bool isVarArg, bool isTailCall, bool IsPatchPoint,
855                      const SmallVectorImpl<ISD::OutputArg> &Outs,
856                      const SmallVectorImpl<SDValue> &OutVals,
857                      const SmallVectorImpl<ISD::InputArg> &Ins,
858                      SDLoc dl, SelectionDAG &DAG,
859                      SmallVectorImpl<SDValue> &InVals,
860                      ImmutableCallSite *CS) const;
861 
862     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
863     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
864 
865     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
866     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
867     SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
868 
869     SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
870                              unsigned &RefinementSteps,
871                              bool &UseOneConstNR) const override;
872     SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
873                              unsigned &RefinementSteps) const override;
874     unsigned combineRepeatedFPDivisors() const override;
875 
876     CCAssignFn *useFastISelCCs(unsigned Flag) const;
877   };
878 
879   namespace PPC {
880     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
881                              const TargetLibraryInfo *LibInfo);
882   }
883 
884   bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
885                                   CCValAssign::LocInfo &LocInfo,
886                                   ISD::ArgFlagsTy &ArgFlags,
887                                   CCState &State);
888 
889   bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
890                                          MVT &LocVT,
891                                          CCValAssign::LocInfo &LocInfo,
892                                          ISD::ArgFlagsTy &ArgFlags,
893                                          CCState &State);
894 
895   bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
896                                            MVT &LocVT,
897                                            CCValAssign::LocInfo &LocInfo,
898                                            ISD::ArgFlagsTy &ArgFlags,
899                                            CCState &State);
900 }
901 
902 #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
903