1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pass that optimizes call sequences on x86.
11 // Currently, it converts movs of function parameters onto the stack into
12 // pushes. This is beneficial for two main reasons:
13 // 1) The push instruction encoding is much smaller than an esp-relative mov
14 // 2) It is possible to push memory arguments directly. So, if the
15 // the transformation is preformed pre-reg-alloc, it can help relieve
16 // register pressure.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include <algorithm>
21
22 #include "X86.h"
23 #include "X86InstrInfo.h"
24 #include "X86Subtarget.h"
25 #include "X86MachineFunctionInfo.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "x86-cf-opt"
40
41 static cl::opt<bool>
42 NoX86CFOpt("no-x86-call-frame-opt",
43 cl::desc("Avoid optimizing x86 call frames for size"),
44 cl::init(false), cl::Hidden);
45
46 namespace {
47 class X86CallFrameOptimization : public MachineFunctionPass {
48 public:
X86CallFrameOptimization()49 X86CallFrameOptimization() : MachineFunctionPass(ID) {}
50
51 bool runOnMachineFunction(MachineFunction &MF) override;
52
53 private:
54 // Information we know about a particular call site
55 struct CallContext {
CallContext__anond66cecb20111::X86CallFrameOptimization::CallContext56 CallContext()
57 : FrameSetup(nullptr), Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
58 MovVector(4, nullptr), NoStackParams(false), UsePush(false){}
59
60 // Iterator referring to the frame setup instruction
61 MachineBasicBlock::iterator FrameSetup;
62
63 // Actual call instruction
64 MachineInstr *Call;
65
66 // A copy of the stack pointer
67 MachineInstr *SPCopy;
68
69 // The total displacement of all passed parameters
70 int64_t ExpectedDist;
71
72 // The sequence of movs used to pass the parameters
73 SmallVector<MachineInstr *, 4> MovVector;
74
75 // True if this call site has no stack parameters
76 bool NoStackParams;
77
78 // True of this callsite can use push instructions
79 bool UsePush;
80 };
81
82 typedef SmallVector<CallContext, 8> ContextVector;
83
84 bool isLegal(MachineFunction &MF);
85
86 bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
87
88 void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
89 MachineBasicBlock::iterator I, CallContext &Context);
90
91 bool adjustCallSequence(MachineFunction &MF, const CallContext &Context);
92
93 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
94 unsigned Reg);
95
96 enum InstClassification { Convert, Skip, Exit };
97
98 InstClassification classifyInstruction(MachineBasicBlock &MBB,
99 MachineBasicBlock::iterator MI,
100 const X86RegisterInfo &RegInfo,
101 DenseSet<unsigned int> &UsedRegs);
102
getPassName() const103 const char *getPassName() const override { return "X86 Optimize Call Frame"; }
104
105 const TargetInstrInfo *TII;
106 const X86FrameLowering *TFL;
107 const X86Subtarget *STI;
108 const MachineRegisterInfo *MRI;
109 static char ID;
110 };
111
112 char X86CallFrameOptimization::ID = 0;
113 }
114
createX86CallFrameOptimization()115 FunctionPass *llvm::createX86CallFrameOptimization() {
116 return new X86CallFrameOptimization();
117 }
118
119 // This checks whether the transformation is legal.
120 // Also returns false in cases where it's potentially legal, but
121 // we don't even want to try.
isLegal(MachineFunction & MF)122 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
123 if (NoX86CFOpt.getValue())
124 return false;
125
126 // We currently only support call sequences where *all* parameters.
127 // are passed on the stack.
128 // No point in running this in 64-bit mode, since some arguments are
129 // passed in-register in all common calling conventions, so the pattern
130 // we're looking for will never match.
131 if (STI->is64Bit())
132 return false;
133
134 // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
135 // in the compact unwind encoding that Darwin uses. So, bail if there
136 // is a danger of that being generated.
137 if (STI->isTargetDarwin() &&
138 (!MF.getMMI().getLandingPads().empty() ||
139 (MF.getFunction()->needsUnwindTableEntry() && !TFL->hasFP(MF))))
140 return false;
141
142 // You would expect straight-line code between call-frame setup and
143 // call-frame destroy. You would be wrong. There are circumstances (e.g.
144 // CMOV_GR8 expansion of a select that feeds a function call!) where we can
145 // end up with the setup and the destroy in different basic blocks.
146 // This is bad, and breaks SP adjustment.
147 // So, check that all of the frames in the function are closed inside
148 // the same block, and, for good measure, that there are no nested frames.
149 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
150 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
151 for (MachineBasicBlock &BB : MF) {
152 bool InsideFrameSequence = false;
153 for (MachineInstr &MI : BB) {
154 if (MI.getOpcode() == FrameSetupOpcode) {
155 if (InsideFrameSequence)
156 return false;
157 InsideFrameSequence = true;
158 } else if (MI.getOpcode() == FrameDestroyOpcode) {
159 if (!InsideFrameSequence)
160 return false;
161 InsideFrameSequence = false;
162 }
163 }
164
165 if (InsideFrameSequence)
166 return false;
167 }
168
169 return true;
170 }
171
172 // Check whether this trasnformation is profitable for a particular
173 // function - in terms of code size.
isProfitable(MachineFunction & MF,ContextVector & CallSeqVector)174 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
175 ContextVector &CallSeqVector) {
176 // This transformation is always a win when we do not expect to have
177 // a reserved call frame. Under other circumstances, it may be either
178 // a win or a loss, and requires a heuristic.
179 bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
180 if (CannotReserveFrame)
181 return true;
182
183 // Don't do this when not optimizing for size.
184 if (!MF.getFunction()->optForSize())
185 return false;
186
187 unsigned StackAlign = TFL->getStackAlignment();
188
189 int64_t Advantage = 0;
190 for (auto CC : CallSeqVector) {
191 // Call sites where no parameters are passed on the stack
192 // do not affect the cost, since there needs to be no
193 // stack adjustment.
194 if (CC.NoStackParams)
195 continue;
196
197 if (!CC.UsePush) {
198 // If we don't use pushes for a particular call site,
199 // we pay for not having a reserved call frame with an
200 // additional sub/add esp pair. The cost is ~3 bytes per instruction,
201 // depending on the size of the constant.
202 // TODO: Callee-pop functions should have a smaller penalty, because
203 // an add is needed even with a reserved call frame.
204 Advantage -= 6;
205 } else {
206 // We can use pushes. First, account for the fixed costs.
207 // We'll need a add after the call.
208 Advantage -= 3;
209 // If we have to realign the stack, we'll also need and sub before
210 if (CC.ExpectedDist % StackAlign)
211 Advantage -= 3;
212 // Now, for each push, we save ~3 bytes. For small constants, we actually,
213 // save more (up to 5 bytes), but 3 should be a good approximation.
214 Advantage += (CC.ExpectedDist / 4) * 3;
215 }
216 }
217
218 return (Advantage >= 0);
219 }
220
runOnMachineFunction(MachineFunction & MF)221 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
222 STI = &MF.getSubtarget<X86Subtarget>();
223 TII = STI->getInstrInfo();
224 TFL = STI->getFrameLowering();
225 MRI = &MF.getRegInfo();
226
227 if (!isLegal(MF))
228 return false;
229
230 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
231
232 bool Changed = false;
233
234 ContextVector CallSeqVector;
235
236 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
237 for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
238 if (I->getOpcode() == FrameSetupOpcode) {
239 CallContext Context;
240 collectCallInfo(MF, *BB, I, Context);
241 CallSeqVector.push_back(Context);
242 }
243
244 if (!isProfitable(MF, CallSeqVector))
245 return false;
246
247 for (auto CC : CallSeqVector)
248 if (CC.UsePush)
249 Changed |= adjustCallSequence(MF, CC);
250
251 return Changed;
252 }
253
254 X86CallFrameOptimization::InstClassification
classifyInstruction(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const X86RegisterInfo & RegInfo,DenseSet<unsigned int> & UsedRegs)255 X86CallFrameOptimization::classifyInstruction(
256 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
257 const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
258 if (MI == MBB.end())
259 return Exit;
260
261 // The instructions we actually care about are movs onto the stack
262 int Opcode = MI->getOpcode();
263 if (Opcode == X86::MOV32mi || Opcode == X86::MOV32mr)
264 return Convert;
265
266 // Not all calling conventions have only stack MOVs between the stack
267 // adjust and the call.
268
269 // We want to tolerate other instructions, to cover more cases.
270 // In particular:
271 // a) PCrel calls, where we expect an additional COPY of the basereg.
272 // b) Passing frame-index addresses.
273 // c) Calling conventions that have inreg parameters. These generate
274 // both copies and movs into registers.
275 // To avoid creating lots of special cases, allow any instruction
276 // that does not write into memory, does not def or use the stack
277 // pointer, and does not def any register that was used by a preceding
278 // push.
279 // (Reading from memory is allowed, even if referenced through a
280 // frame index, since these will get adjusted properly in PEI)
281
282 // The reason for the last condition is that the pushes can't replace
283 // the movs in place, because the order must be reversed.
284 // So if we have a MOV32mr that uses EDX, then an instruction that defs
285 // EDX, and then the call, after the transformation the push will use
286 // the modified version of EDX, and not the original one.
287 // Since we are still in SSA form at this point, we only need to
288 // make sure we don't clobber any *physical* registers that were
289 // used by an earlier mov that will become a push.
290
291 if (MI->isCall() || MI->mayStore())
292 return Exit;
293
294 for (const MachineOperand &MO : MI->operands()) {
295 if (!MO.isReg())
296 continue;
297 unsigned int Reg = MO.getReg();
298 if (!RegInfo.isPhysicalRegister(Reg))
299 continue;
300 if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
301 return Exit;
302 if (MO.isDef()) {
303 for (unsigned int U : UsedRegs)
304 if (RegInfo.regsOverlap(Reg, U))
305 return Exit;
306 }
307 }
308
309 return Skip;
310 }
311
collectCallInfo(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I,CallContext & Context)312 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
313 MachineBasicBlock &MBB,
314 MachineBasicBlock::iterator I,
315 CallContext &Context) {
316 // Check that this particular call sequence is amenable to the
317 // transformation.
318 const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
319 STI->getRegisterInfo());
320 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
321
322 // We expect to enter this at the beginning of a call sequence
323 assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
324 MachineBasicBlock::iterator FrameSetup = I++;
325 Context.FrameSetup = FrameSetup;
326
327 // How much do we adjust the stack? This puts an upper bound on
328 // the number of parameters actually passed on it.
329 unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
330
331 // A zero adjustment means no stack parameters
332 if (!MaxAdjust) {
333 Context.NoStackParams = true;
334 return;
335 }
336
337 // For globals in PIC mode, we can have some LEAs here.
338 // Ignore them, they don't bother us.
339 // TODO: Extend this to something that covers more cases.
340 while (I->getOpcode() == X86::LEA32r)
341 ++I;
342
343 // We expect a copy instruction here.
344 // TODO: The copy instruction is a lowering artifact.
345 // We should also support a copy-less version, where the stack
346 // pointer is used directly.
347 if (!I->isCopy() || !I->getOperand(0).isReg())
348 return;
349 Context.SPCopy = I++;
350
351 unsigned StackPtr = Context.SPCopy->getOperand(0).getReg();
352
353 // Scan the call setup sequence for the pattern we're looking for.
354 // We only handle a simple case - a sequence of MOV32mi or MOV32mr
355 // instructions, that push a sequence of 32-bit values onto the stack, with
356 // no gaps between them.
357 if (MaxAdjust > 4)
358 Context.MovVector.resize(MaxAdjust, nullptr);
359
360 InstClassification Classification;
361 DenseSet<unsigned int> UsedRegs;
362
363 while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) !=
364 Exit) {
365 if (Classification == Skip) {
366 ++I;
367 continue;
368 }
369
370 // We know the instruction is a MOV32mi/MOV32mr.
371 // We only want movs of the form:
372 // movl imm/r32, k(%esp)
373 // If we run into something else, bail.
374 // Note that AddrBaseReg may, counter to its name, not be a register,
375 // but rather a frame index.
376 // TODO: Support the fi case. This should probably work now that we
377 // have the infrastructure to track the stack pointer within a call
378 // sequence.
379 if (!I->getOperand(X86::AddrBaseReg).isReg() ||
380 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
381 !I->getOperand(X86::AddrScaleAmt).isImm() ||
382 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
383 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
384 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
385 !I->getOperand(X86::AddrDisp).isImm())
386 return;
387
388 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
389 assert(StackDisp >= 0 &&
390 "Negative stack displacement when passing parameters");
391
392 // We really don't want to consider the unaligned case.
393 if (StackDisp % 4)
394 return;
395 StackDisp /= 4;
396
397 assert((size_t)StackDisp < Context.MovVector.size() &&
398 "Function call has more parameters than the stack is adjusted for.");
399
400 // If the same stack slot is being filled twice, something's fishy.
401 if (Context.MovVector[StackDisp] != nullptr)
402 return;
403 Context.MovVector[StackDisp] = I;
404
405 for (const MachineOperand &MO : I->uses()) {
406 if (!MO.isReg())
407 continue;
408 unsigned int Reg = MO.getReg();
409 if (RegInfo.isPhysicalRegister(Reg))
410 UsedRegs.insert(Reg);
411 }
412
413 ++I;
414 }
415
416 // We now expect the end of the sequence. If we stopped early,
417 // or reached the end of the block without finding a call, bail.
418 if (I == MBB.end() || !I->isCall())
419 return;
420
421 Context.Call = I;
422 if ((++I)->getOpcode() != FrameDestroyOpcode)
423 return;
424
425 // Now, go through the vector, and see that we don't have any gaps,
426 // but only a series of 32-bit MOVs.
427 auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
428 for (; MMI != MME; ++MMI, Context.ExpectedDist += 4)
429 if (*MMI == nullptr)
430 break;
431
432 // If the call had no parameters, do nothing
433 if (MMI == Context.MovVector.begin())
434 return;
435
436 // We are either at the last parameter, or a gap.
437 // Make sure it's not a gap
438 for (; MMI != MME; ++MMI)
439 if (*MMI != nullptr)
440 return;
441
442 Context.UsePush = true;
443 return;
444 }
445
adjustCallSequence(MachineFunction & MF,const CallContext & Context)446 bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
447 const CallContext &Context) {
448 // Ok, we can in fact do the transformation for this call.
449 // Do not remove the FrameSetup instruction, but adjust the parameters.
450 // PEI will end up finalizing the handling of this.
451 MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
452 MachineBasicBlock &MBB = *(FrameSetup->getParent());
453 FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
454
455 DebugLoc DL = FrameSetup->getDebugLoc();
456 // Now, iterate through the vector in reverse order, and replace the movs
457 // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
458 // replace uses.
459 for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
460 MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
461 MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
462 MachineBasicBlock::iterator Push = nullptr;
463 if (MOV->getOpcode() == X86::MOV32mi) {
464 unsigned PushOpcode = X86::PUSHi32;
465 // If the operand is a small (8-bit) immediate, we can use a
466 // PUSH instruction with a shorter encoding.
467 // Note that isImm() may fail even though this is a MOVmi, because
468 // the operand can also be a symbol.
469 if (PushOp.isImm()) {
470 int64_t Val = PushOp.getImm();
471 if (isInt<8>(Val))
472 PushOpcode = X86::PUSH32i8;
473 }
474 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
475 .addOperand(PushOp);
476 } else {
477 unsigned int Reg = PushOp.getReg();
478
479 // If PUSHrmm is not slow on this target, try to fold the source of the
480 // push into the instruction.
481 bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
482
483 // Check that this is legal to fold. Right now, we're extremely
484 // conservative about that.
485 MachineInstr *DefMov = nullptr;
486 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
487 Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm));
488
489 unsigned NumOps = DefMov->getDesc().getNumOperands();
490 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
491 Push->addOperand(DefMov->getOperand(i));
492
493 DefMov->eraseFromParent();
494 } else {
495 Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r))
496 .addReg(Reg)
497 .getInstr();
498 }
499 }
500
501 // For debugging, when using SP-based CFA, we need to adjust the CFA
502 // offset after each push.
503 // TODO: This is needed only if we require precise CFA.
504 if (!TFL->hasFP(MF))
505 TFL->BuildCFI(MBB, std::next(Push), DL,
506 MCCFIInstruction::createAdjustCfaOffset(nullptr, 4));
507
508 MBB.erase(MOV);
509 }
510
511 // The stack-pointer copy is no longer used in the call sequences.
512 // There should not be any other users, but we can't commit to that, so:
513 if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
514 Context.SPCopy->eraseFromParent();
515
516 // Once we've done this, we need to make sure PEI doesn't assume a reserved
517 // frame.
518 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
519 FuncInfo->setHasPushSequences(true);
520
521 return true;
522 }
523
canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,unsigned Reg)524 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
525 MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
526 // Do an extremely restricted form of load folding.
527 // ISel will often create patterns like:
528 // movl 4(%edi), %eax
529 // movl 8(%edi), %ecx
530 // movl 12(%edi), %edx
531 // movl %edx, 8(%esp)
532 // movl %ecx, 4(%esp)
533 // movl %eax, (%esp)
534 // call
535 // Get rid of those with prejudice.
536 if (!TargetRegisterInfo::isVirtualRegister(Reg))
537 return nullptr;
538
539 // Make sure this is the only use of Reg.
540 if (!MRI->hasOneNonDBGUse(Reg))
541 return nullptr;
542
543 MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
544
545 // Make sure the def is a MOV from memory.
546 // If the def is an another block, give up.
547 if (DefMI->getOpcode() != X86::MOV32rm ||
548 DefMI->getParent() != FrameSetup->getParent())
549 return nullptr;
550
551 // Make sure we don't have any instructions between DefMI and the
552 // push that make folding the load illegal.
553 for (auto I = DefMI; I != FrameSetup; ++I)
554 if (I->isLoadFoldBarrier())
555 return nullptr;
556
557 return DefMI;
558 }
559