• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This describes the calling conventions for the X86-32 and X86-64
11// architectures.
12//
13//===----------------------------------------------------------------------===//
14
15/// CCIfSubtarget - Match if the current subtarget has a feature F.
16class CCIfSubtarget<string F, CCAction A>
17    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
18                       "(State.getMachineFunction().getSubtarget()).", F),
19           A>;
20
21//===----------------------------------------------------------------------===//
22// Return Value Calling Conventions
23//===----------------------------------------------------------------------===//
24
25// Return-value conventions common to all X86 CC's.
26def RetCC_X86Common : CallingConv<[
27  // Scalar values are returned in AX first, then DX.  For i8, the ABI
28  // requires the values to be in AL and AH, however this code uses AL and DL
29  // instead. This is because using AH for the second register conflicts with
30  // the way LLVM does multiple return values -- a return of {i16,i8} would end
31  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
32  // for functions that return two i8 values are currently expected to pack the
33  // values into an i16 (which uses AX, and thus AL:AH).
34  //
35  // For code that doesn't care about the ABI, we allow returning more than two
36  // integer values in registers.
37  CCIfType<[i1],  CCPromoteToType<i8>>,
38  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
39  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
40  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
41  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
42
43  // Boolean vectors of AVX-512 are returned in SIMD registers.
44  // The call from AVX to AVX-512 function should work,
45  // since the boolean types in AVX/AVX2 are promoted by default.
46  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
47  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
48  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
49  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
50  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
51  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
52
53  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
54  // can only be used by ABI non-compliant code. If the target doesn't have XMM
55  // registers, it won't have vector types.
56  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
57            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
58
59  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
60  // can only be used by ABI non-compliant code. This vector type is only
61  // supported while using the AVX target feature.
62  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
63            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
64
65  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
66  // can only be used by ABI non-compliant code. This vector type is only
67  // supported while using the AVX-512 target feature.
68  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
69            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
70
71  // MMX vector types are always returned in MM0. If the target doesn't have
72  // MM0, it doesn't support these vector types.
73  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
74
75  // Long double types are always returned in FP0 (even with SSE).
76  CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>
77]>;
78
79// X86-32 C return-value convention.
80def RetCC_X86_32_C : CallingConv<[
81  // The X86-32 calling convention returns FP values in FP0, unless marked
82  // with "inreg" (used here to distinguish one kind of reg from another,
83  // weirdly; this is really the sse-regparm calling convention) in which
84  // case they use XMM0, otherwise it is the same as the common X86 calling
85  // conv.
86  CCIfInReg<CCIfSubtarget<"hasSSE2()",
87    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
88  CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
89  CCDelegateTo<RetCC_X86Common>
90]>;
91
92// X86-32 FastCC return-value convention.
93def RetCC_X86_32_Fast : CallingConv<[
94  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
95  // SSE2.
96  // This can happen when a float, 2 x float, or 3 x float vector is split by
97  // target lowering, and is returned in 1-3 sse regs.
98  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
99  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
100
101  // For integers, ECX can be used as an extra return register
102  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
103  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
104  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
105
106  // Otherwise, it is the same as the common X86 calling convention.
107  CCDelegateTo<RetCC_X86Common>
108]>;
109
110// Intel_OCL_BI return-value convention.
111def RetCC_Intel_OCL_BI : CallingConv<[
112  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
113  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
114            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
115
116  // 256-bit FP vectors
117  // No more than 4 registers
118  CCIfType<[v8f32, v4f64, v8i32, v4i64],
119            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
120
121  // 512-bit FP vectors
122  CCIfType<[v16f32, v8f64, v16i32, v8i64],
123            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
124
125  // i32, i64 in the standard way
126  CCDelegateTo<RetCC_X86Common>
127]>;
128
129// X86-32 HiPE return-value convention.
130def RetCC_X86_32_HiPE : CallingConv<[
131  // Promote all types to i32
132  CCIfType<[i8, i16], CCPromoteToType<i32>>,
133
134  // Return: HP, P, VAL1, VAL2
135  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
136]>;
137
138// X86-32 HiPE return-value convention.
139def RetCC_X86_32_VectorCall : CallingConv<[
140  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
141  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
142            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
143
144  // 256-bit FP vectors
145  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
146            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
147
148  // 512-bit FP vectors
149  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
150            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
151
152  // Return integers in the standard way.
153  CCDelegateTo<RetCC_X86Common>
154]>;
155
156// X86-64 C return-value convention.
157def RetCC_X86_64_C : CallingConv<[
158  // The X86-64 calling convention always returns FP values in XMM0.
159  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
160  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
161  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
162
163  // MMX vector types are always returned in XMM0.
164  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
165  CCDelegateTo<RetCC_X86Common>
166]>;
167
168// X86-Win64 C return-value convention.
169def RetCC_X86_Win64_C : CallingConv<[
170  // The X86-Win64 calling convention always returns __m64 values in RAX.
171  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
172
173  // Otherwise, everything is the same as 'normal' X86-64 C CC.
174  CCDelegateTo<RetCC_X86_64_C>
175]>;
176
177// X86-64 HiPE return-value convention.
178def RetCC_X86_64_HiPE : CallingConv<[
179  // Promote all types to i64
180  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
181
182  // Return: HP, P, VAL1, VAL2
183  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
184]>;
185
186// X86-64 WebKit_JS return-value convention.
187def RetCC_X86_64_WebKit_JS : CallingConv<[
188  // Promote all types to i64
189  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
190
191  // Return: RAX
192  CCIfType<[i64], CCAssignToReg<[RAX]>>
193]>;
194
195// X86-64 AnyReg return-value convention. No explicit register is specified for
196// the return-value. The register allocator is allowed and expected to choose
197// any free register.
198//
199// This calling convention is currently only supported by the stackmap and
200// patchpoint intrinsics. All other uses will result in an assert on Debug
201// builds. On Release builds we fallback to the X86 C calling convention.
202def RetCC_X86_64_AnyReg : CallingConv<[
203  CCCustom<"CC_X86_AnyReg_Error">
204]>;
205
206// X86-64 HHVM return-value convention.
207def RetCC_X86_64_HHVM: CallingConv<[
208  // Promote all types to i64
209  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
210
211  // Return: could return in any GP register save RSP and R12.
212  CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
213                                 RAX, R10, R11, R13, R14, R15]>>
214]>;
215
216// This is the root return-value convention for the X86-32 backend.
217def RetCC_X86_32 : CallingConv<[
218  // If FastCC, use RetCC_X86_32_Fast.
219  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
220  // If HiPE, use RetCC_X86_32_HiPE.
221  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
222  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
223
224  // Otherwise, use RetCC_X86_32_C.
225  CCDelegateTo<RetCC_X86_32_C>
226]>;
227
228// This is the root return-value convention for the X86-64 backend.
229def RetCC_X86_64 : CallingConv<[
230  // HiPE uses RetCC_X86_64_HiPE
231  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
232
233  // Handle JavaScript calls.
234  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
235  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
236
237  // Handle explicit CC selection
238  CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
239  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
240
241  // Handle HHVM calls.
242  CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
243
244  // Mingw64 and native Win64 use Win64 CC
245  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
246
247  // Otherwise, drop to normal X86-64 CC
248  CCDelegateTo<RetCC_X86_64_C>
249]>;
250
251// This is the return-value convention used for the entire X86 backend.
252def RetCC_X86 : CallingConv<[
253
254  // Check if this is the Intel OpenCL built-ins calling convention
255  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
256
257  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
258  CCDelegateTo<RetCC_X86_32>
259]>;
260
261//===----------------------------------------------------------------------===//
262// X86-64 Argument Calling Conventions
263//===----------------------------------------------------------------------===//
264
265def CC_X86_64_C : CallingConv<[
266  // Handles byval parameters.
267  CCIfByVal<CCPassByVal<8, 8>>,
268
269  // Promote i1/i8/i16 arguments to i32.
270  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
271
272  // The 'nest' parameter, if any, is passed in R10.
273  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
274  CCIfNest<CCAssignToReg<[R10]>>,
275
276  // The first 6 integer arguments are passed in integer registers.
277  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
278  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
279
280  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
281  CCIfType<[x86mmx],
282            CCIfSubtarget<"isTargetDarwin()",
283            CCIfSubtarget<"hasSSE2()",
284            CCPromoteToType<v2i64>>>>,
285
286  // Boolean vectors of AVX-512 are passed in SIMD registers.
287  // The call from AVX to AVX-512 function should work,
288  // since the boolean types in AVX/AVX2 are promoted by default.
289  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
290  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
291  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
292  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
293  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
294  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
295
296  // The first 8 FP/Vector arguments are passed in XMM registers.
297  CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
298            CCIfSubtarget<"hasSSE1()",
299            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
300
301  // The first 8 256-bit vector arguments are passed in YMM registers, unless
302  // this is a vararg function.
303  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
304  // fixed arguments to vararg functions are supposed to be passed in
305  // registers.  Actually modeling that would be a lot of work, though.
306  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
307                          CCIfSubtarget<"hasFp256()",
308                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
309                                         YMM4, YMM5, YMM6, YMM7]>>>>,
310
311  // The first 8 512-bit vector arguments are passed in ZMM registers.
312  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
313            CCIfSubtarget<"hasAVX512()",
314            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
315
316  // Integer/FP values get stored in stack slots that are 8 bytes in size and
317  // 8-byte aligned if there are no more registers to hold them.
318  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
319
320  // Long doubles get stack slots whose size and alignment depends on the
321  // subtarget.
322  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
323
324  // Vectors get 16-byte stack slots that are 16-byte aligned.
325  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
326
327  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
328  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
329           CCAssignToStack<32, 32>>,
330
331  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
332  CCIfType<[v16i32, v8i64, v16f32, v8f64],
333           CCAssignToStack<64, 64>>
334]>;
335
336// Calling convention for X86-64 HHVM.
337def CC_X86_64_HHVM : CallingConv<[
338  // Use all/any GP registers for args, except RSP.
339  CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
340                                 RDI, RSI, RDX, RCX, R8, R9,
341                                 RAX, R10, R11, R13, R14]>>
342]>;
343
344// Calling convention for helper functions in HHVM.
345def CC_X86_64_HHVM_C : CallingConv<[
346  // Pass the first argument in RBP.
347  CCIfType<[i64], CCAssignToReg<[RBP]>>,
348
349  // Otherwise it's the same as the regular C calling convention.
350  CCDelegateTo<CC_X86_64_C>
351]>;
352
353// Calling convention used on Win64
354def CC_X86_Win64_C : CallingConv<[
355  // FIXME: Handle byval stuff.
356  // FIXME: Handle varargs.
357
358  // Promote i1/i8/i16 arguments to i32.
359  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
360
361  // The 'nest' parameter, if any, is passed in R10.
362  CCIfNest<CCAssignToReg<[R10]>>,
363
364  // 128 bit vectors are passed by pointer
365  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
366
367
368  // 256 bit vectors are passed by pointer
369  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
370
371  // 512 bit vectors are passed by pointer
372  CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
373
374  // The first 4 MMX vector arguments are passed in GPRs.
375  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
376
377  // The first 4 integer arguments are passed in integer registers.
378  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
379                                          [XMM0, XMM1, XMM2, XMM3]>>,
380
381  // Do not pass the sret argument in RCX, the Win64 thiscall calling
382  // convention requires "this" to be passed in RCX.
383  CCIfCC<"CallingConv::X86_ThisCall",
384    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
385                                                     [XMM1, XMM2, XMM3]>>>>,
386
387  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
388                                          [XMM0, XMM1, XMM2, XMM3]>>,
389
390  // The first 4 FP/Vector arguments are passed in XMM registers.
391  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
392           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
393                                   [RCX , RDX , R8  , R9  ]>>,
394
395  // Integer/FP values get stored in stack slots that are 8 bytes in size and
396  // 8-byte aligned if there are no more registers to hold them.
397  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
398
399  // Long doubles get stack slots whose size and alignment depends on the
400  // subtarget.
401  CCIfType<[f80], CCAssignToStack<0, 0>>
402]>;
403
404def CC_X86_Win64_VectorCall : CallingConv<[
405  // The first 6 floating point and vector types of 128 bits or less use
406  // XMM0-XMM5.
407  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
408           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>,
409
410  // 256-bit vectors use YMM registers.
411  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
412           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>,
413
414  // 512-bit vectors use ZMM registers.
415  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
416           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>,
417
418  // Delegate to fastcall to handle integer types.
419  CCDelegateTo<CC_X86_Win64_C>
420]>;
421
422
423def CC_X86_64_GHC : CallingConv<[
424  // Promote i8/i16/i32 arguments to i64.
425  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
426
427  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
428  CCIfType<[i64],
429            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
430
431  // Pass in STG registers: F1, F2, F3, F4, D1, D2
432  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
433            CCIfSubtarget<"hasSSE1()",
434            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
435]>;
436
437def CC_X86_64_HiPE : CallingConv<[
438  // Promote i8/i16/i32 arguments to i64.
439  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
440
441  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
442  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
443
444  // Integer/FP values get stored in stack slots that are 8 bytes in size and
445  // 8-byte aligned if there are no more registers to hold them.
446  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
447]>;
448
449def CC_X86_64_WebKit_JS : CallingConv<[
450  // Promote i8/i16 arguments to i32.
451  CCIfType<[i8, i16], CCPromoteToType<i32>>,
452
453  // Only the first integer argument is passed in register.
454  CCIfType<[i32], CCAssignToReg<[EAX]>>,
455  CCIfType<[i64], CCAssignToReg<[RAX]>>,
456
457  // The remaining integer arguments are passed on the stack. 32bit integer and
458  // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
459  // 64bit integer and floating-point arguments are aligned to 8 byte and stored
460  // in 8 byte stack slots.
461  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
462  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
463]>;
464
465// No explicit register is specified for the AnyReg calling convention. The
466// register allocator may assign the arguments to any free register.
467//
468// This calling convention is currently only supported by the stackmap and
469// patchpoint intrinsics. All other uses will result in an assert on Debug
470// builds. On Release builds we fallback to the X86 C calling convention.
471def CC_X86_64_AnyReg : CallingConv<[
472  CCCustom<"CC_X86_AnyReg_Error">
473]>;
474
475//===----------------------------------------------------------------------===//
476// X86 C Calling Convention
477//===----------------------------------------------------------------------===//
478
479/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
480/// values are spilled on the stack.
481def CC_X86_32_Vector_Common : CallingConv<[
482  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
483  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
484
485  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
486  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
487           CCAssignToStack<32, 32>>,
488
489  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
490  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
491           CCAssignToStack<64, 64>>
492]>;
493
494// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
495// vector registers
496def CC_X86_32_Vector_Standard : CallingConv<[
497  // SSE vector arguments are passed in XMM registers.
498  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
499                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
500
501  // AVX 256-bit vector arguments are passed in YMM registers.
502  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
503                CCIfSubtarget<"hasFp256()",
504                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
505
506  // AVX 512-bit vector arguments are passed in ZMM registers.
507  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
508                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
509
510  CCDelegateTo<CC_X86_32_Vector_Common>
511]>;
512
513// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
514// vector registers.
515def CC_X86_32_Vector_Darwin : CallingConv<[
516  // SSE vector arguments are passed in XMM registers.
517  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
518                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
519
520  // AVX 256-bit vector arguments are passed in YMM registers.
521  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
522                CCIfSubtarget<"hasFp256()",
523                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
524
525  // AVX 512-bit vector arguments are passed in ZMM registers.
526  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
527                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
528
529  CCDelegateTo<CC_X86_32_Vector_Common>
530]>;
531
532/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
533/// values are spilled on the stack.
534def CC_X86_32_Common : CallingConv<[
535  // Handles byval parameters.
536  CCIfByVal<CCPassByVal<4, 4>>,
537
538  // The first 3 float or double arguments, if marked 'inreg' and if the call
539  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
540  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
541                CCIfSubtarget<"hasSSE2()",
542                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
543
544  // The first 3 __m64 vector arguments are passed in mmx registers if the
545  // call is not a vararg call.
546  CCIfNotVarArg<CCIfType<[x86mmx],
547                CCAssignToReg<[MM0, MM1, MM2]>>>,
548
549  // Integer/Float values get stored in stack slots that are 4 bytes in
550  // size and 4-byte aligned.
551  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
552
553  // Doubles get 8-byte slots that are 4-byte aligned.
554  CCIfType<[f64], CCAssignToStack<8, 4>>,
555
556  // Long doubles get slots whose size depends on the subtarget.
557  CCIfType<[f80], CCAssignToStack<0, 4>>,
558
559  // Boolean vectors of AVX-512 are passed in SIMD registers.
560  // The call from AVX to AVX-512 function should work,
561  // since the boolean types in AVX/AVX2 are promoted by default.
562  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
563  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
564  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
565  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
566  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
567  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
568
569  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
570  // passed in the parameter area.
571  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
572
573  // Darwin passes vectors in a form that differs from the i386 psABI
574  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
575
576  // Otherwise, drop to 'normal' X86-32 CC
577  CCDelegateTo<CC_X86_32_Vector_Standard>
578]>;
579
580def CC_X86_32_C : CallingConv<[
581  // Promote i1/i8/i16 arguments to i32.
582  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
583
584  // The 'nest' parameter, if any, is passed in ECX.
585  CCIfNest<CCAssignToReg<[ECX]>>,
586
587  // The first 3 integer arguments, if marked 'inreg' and if the call is not
588  // a vararg call, are passed in integer registers.
589  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
590
591  // Otherwise, same as everything else.
592  CCDelegateTo<CC_X86_32_Common>
593]>;
594
595def CC_X86_32_FastCall : CallingConv<[
596  // Promote i1/i8/i16 arguments to i32.
597  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
598
599  // The 'nest' parameter, if any, is passed in EAX.
600  CCIfNest<CCAssignToReg<[EAX]>>,
601
602  // The first 2 integer arguments are passed in ECX/EDX
603  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
604
605  // Otherwise, same as everything else.
606  CCDelegateTo<CC_X86_32_Common>
607]>;
608
609def CC_X86_32_VectorCall : CallingConv<[
610  // The first 6 floating point and vector types of 128 bits or less use
611  // XMM0-XMM5.
612  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
613           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>,
614
615  // 256-bit vectors use YMM registers.
616  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
617           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>,
618
619  // 512-bit vectors use ZMM registers.
620  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
621           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>,
622
623  // Otherwise, pass it indirectly.
624  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64,
625            v32i8, v16i16, v8i32, v4i64, v8f32, v4f64,
626            v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
627           CCCustom<"CC_X86_32_VectorCallIndirect">>,
628
629  // Delegate to fastcall to handle integer types.
630  CCDelegateTo<CC_X86_32_FastCall>
631]>;
632
633def CC_X86_32_ThisCall_Common : CallingConv<[
634  // The first integer argument is passed in ECX
635  CCIfType<[i32], CCAssignToReg<[ECX]>>,
636
637  // Otherwise, same as everything else.
638  CCDelegateTo<CC_X86_32_Common>
639]>;
640
641def CC_X86_32_ThisCall_Mingw : CallingConv<[
642  // Promote i1/i8/i16 arguments to i32.
643  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
644
645  CCDelegateTo<CC_X86_32_ThisCall_Common>
646]>;
647
648def CC_X86_32_ThisCall_Win : CallingConv<[
649  // Promote i1/i8/i16 arguments to i32.
650  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
651
652  // Pass sret arguments indirectly through stack.
653  CCIfSRet<CCAssignToStack<4, 4>>,
654
655  CCDelegateTo<CC_X86_32_ThisCall_Common>
656]>;
657
658def CC_X86_32_ThisCall : CallingConv<[
659  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
660  CCDelegateTo<CC_X86_32_ThisCall_Win>
661]>;
662
663def CC_X86_32_FastCC : CallingConv<[
664  // Handles byval parameters.  Note that we can't rely on the delegation
665  // to CC_X86_32_Common for this because that happens after code that
666  // puts arguments in registers.
667  CCIfByVal<CCPassByVal<4, 4>>,
668
669  // Promote i1/i8/i16 arguments to i32.
670  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
671
672  // The 'nest' parameter, if any, is passed in EAX.
673  CCIfNest<CCAssignToReg<[EAX]>>,
674
675  // The first 2 integer arguments are passed in ECX/EDX
676  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
677
678  // The first 3 float or double arguments, if the call is not a vararg
679  // call and if SSE2 is available, are passed in SSE registers.
680  CCIfNotVarArg<CCIfType<[f32,f64],
681                CCIfSubtarget<"hasSSE2()",
682                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
683
684  // Doubles get 8-byte slots that are 8-byte aligned.
685  CCIfType<[f64], CCAssignToStack<8, 8>>,
686
687  // Otherwise, same as everything else.
688  CCDelegateTo<CC_X86_32_Common>
689]>;
690
691def CC_X86_32_GHC : CallingConv<[
692  // Promote i8/i16 arguments to i32.
693  CCIfType<[i8, i16], CCPromoteToType<i32>>,
694
695  // Pass in STG registers: Base, Sp, Hp, R1
696  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
697]>;
698
699def CC_X86_32_HiPE : CallingConv<[
700  // Promote i8/i16 arguments to i32.
701  CCIfType<[i8, i16], CCPromoteToType<i32>>,
702
703  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
704  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
705
706  // Integer/Float values get stored in stack slots that are 4 bytes in
707  // size and 4-byte aligned.
708  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
709]>;
710
711// X86-64 Intel OpenCL built-ins calling convention.
712def CC_Intel_OCL_BI : CallingConv<[
713
714  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
715  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
716
717  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
718  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
719
720  CCIfType<[i32], CCAssignToStack<4, 4>>,
721
722  // The SSE vector arguments are passed in XMM registers.
723  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
724           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
725
726  // The 256-bit vector arguments are passed in YMM registers.
727  CCIfType<[v8f32, v4f64, v8i32, v4i64],
728           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
729
730  // The 512-bit vector arguments are passed in ZMM registers.
731  CCIfType<[v16f32, v8f64, v16i32, v8i64],
732           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
733
734  // Pass masks in mask registers
735  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
736
737  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
738  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
739  CCDelegateTo<CC_X86_32_C>
740]>;
741
742def CC_X86_32_Intr : CallingConv<[
743  CCAssignToStack<4, 4>
744]>;
745
746def CC_X86_64_Intr : CallingConv<[
747  CCAssignToStack<8, 8>
748]>;
749
750//===----------------------------------------------------------------------===//
751// X86 Root Argument Calling Conventions
752//===----------------------------------------------------------------------===//
753
754// This is the root argument convention for the X86-32 backend.
755def CC_X86_32 : CallingConv<[
756  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
757  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_32_VectorCall>>,
758  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
759  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
760  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
761  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
762  CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_32_Intr>>,
763
764  // Otherwise, drop to normal X86-32 CC
765  CCDelegateTo<CC_X86_32_C>
766]>;
767
768// This is the root argument convention for the X86-64 backend.
769def CC_X86_64 : CallingConv<[
770  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
771  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
772  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
773  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
774  CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<CC_X86_Win64_C>>,
775  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
776  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
777  CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
778  CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
779  CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_64_Intr>>,
780
781  // Mingw64 and native Win64 use Win64 CC
782  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
783
784  // Otherwise, drop to normal X86-64 CC
785  CCDelegateTo<CC_X86_64_C>
786]>;
787
788// This is the argument convention used for the entire X86 backend.
789def CC_X86 : CallingConv<[
790  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
791  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
792  CCDelegateTo<CC_X86_32>
793]>;
794
795//===----------------------------------------------------------------------===//
796// Callee-saved Registers.
797//===----------------------------------------------------------------------===//
798
799def CSR_NoRegs : CalleeSavedRegs<(add)>;
800
801def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
802def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
803
804def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
805def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
806
807def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15,
808                                     (sequence "XMM%u", 6, 15))>;
809
810// The function used by Darwin to obtain the address of a thread-local variable
811// uses rdi to pass a single parameter and rax for the return value. All other
812// GPRs are preserved.
813def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
814                                             R8, R9, R10, R11)>;
815
816// All GPRs - except r11
817def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
818                                              R8, R9, R10, RSP)>;
819
820// All registers - except r11
821def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
822                                                 (sequence "XMM%u", 0, 15))>;
823def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
824                                                 (sequence "YMM%u", 0, 15))>;
825
826def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
827                                           R11, R12, R13, R14, R15, RBP,
828                                           (sequence "XMM%u", 0, 15))>;
829
830def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
831                                              EDI, ESP)>;
832def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
833                                              (sequence "XMM%u", 0, 7))>;
834
835def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX, RSP,
836                                              (sequence "XMM%u", 16, 31))>;
837def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, RSP,
838                                                   (sequence "YMM%u", 0, 31)),
839                                              (sequence "XMM%u", 0, 15))>;
840
841// Standard C + YMM6-15
842def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
843                                                  R13, R14, R15,
844                                                  (sequence "YMM%u", 6, 15))>;
845
846def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
847                                                     R12, R13, R14, R15,
848                                                     (sequence "ZMM%u", 6, 21),
849                                                     K4, K5, K6, K7)>;
850//Standard C + XMM 8-15
851def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
852                                                 (sequence "XMM%u", 8, 15))>;
853
854//Standard C + YMM 8-15
855def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
856                                                  (sequence "YMM%u", 8, 15))>;
857
858def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
859                                                  (sequence "ZMM%u", 16, 31),
860                                                  K4, K5, K6, K7)>;
861
862// Only R12 is preserved for PHP calls in HHVM.
863def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
864