1 //===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass that performs some optimizations with LEA
11 // instructions in order to improve code size.
12 // Currently, it does one thing:
13 // 1) Address calculations in load and store instructions are replaced by
14 // existing LEA def registers where possible.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "X86.h"
19 #include "X86InstrInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetInstrInfo.h"
31
32 using namespace llvm;
33
34 #define DEBUG_TYPE "x86-optimize-LEAs"
35
36 static cl::opt<bool> EnableX86LEAOpt("enable-x86-lea-opt", cl::Hidden,
37 cl::desc("X86: Enable LEA optimizations."),
38 cl::init(false));
39
40 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
41
42 namespace {
43 class OptimizeLEAPass : public MachineFunctionPass {
44 public:
OptimizeLEAPass()45 OptimizeLEAPass() : MachineFunctionPass(ID) {}
46
getPassName() const47 const char *getPassName() const override { return "X86 LEA Optimize"; }
48
49 /// \brief Loop over all of the basic blocks, replacing address
50 /// calculations in load and store instructions, if it's already
51 /// been calculated by LEA. Also, remove redundant LEAs.
52 bool runOnMachineFunction(MachineFunction &MF) override;
53
54 private:
55 /// \brief Returns a distance between two instructions inside one basic block.
56 /// Negative result means, that instructions occur in reverse order.
57 int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
58
59 /// \brief Choose the best \p LEA instruction from the \p List to replace
60 /// address calculation in \p MI instruction. Return the address displacement
61 /// and the distance between \p MI and the choosen \p LEA in \p AddrDispShift
62 /// and \p Dist.
63 bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
64 const MachineInstr &MI, MachineInstr *&LEA,
65 int64_t &AddrDispShift, int &Dist);
66
67 /// \brief Returns true if two machine operand are identical and they are not
68 /// physical registers.
69 bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2);
70
71 /// \brief Returns true if the instruction is LEA.
72 bool isLEA(const MachineInstr &MI);
73
74 /// \brief Returns true if two instructions have memory operands that only
75 /// differ by displacement. The numbers of the first memory operands for both
76 /// instructions are specified through \p N1 and \p N2. The address
77 /// displacement is returned through AddrDispShift.
78 bool isSimilarMemOp(const MachineInstr &MI1, unsigned N1,
79 const MachineInstr &MI2, unsigned N2,
80 int64_t &AddrDispShift);
81
82 /// \brief Find all LEA instructions in the basic block.
83 void findLEAs(const MachineBasicBlock &MBB,
84 SmallVectorImpl<MachineInstr *> &List);
85
86 /// \brief Removes redundant address calculations.
87 bool removeRedundantAddrCalc(const SmallVectorImpl<MachineInstr *> &List);
88
89 MachineRegisterInfo *MRI;
90 const X86InstrInfo *TII;
91 const X86RegisterInfo *TRI;
92
93 static char ID;
94 };
95 char OptimizeLEAPass::ID = 0;
96 }
97
createX86OptimizeLEAs()98 FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
99
calcInstrDist(const MachineInstr & First,const MachineInstr & Last)100 int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
101 const MachineInstr &Last) {
102 const MachineBasicBlock *MBB = First.getParent();
103
104 // Both instructions must be in the same basic block.
105 assert(Last.getParent() == MBB &&
106 "Instructions are in different basic blocks");
107
108 return std::distance(MBB->begin(), MachineBasicBlock::const_iterator(&Last)) -
109 std::distance(MBB->begin(), MachineBasicBlock::const_iterator(&First));
110 }
111
112 // Find the best LEA instruction in the List to replace address recalculation in
113 // MI. Such LEA must meet these requirements:
114 // 1) The address calculated by the LEA differs only by the displacement from
115 // the address used in MI.
116 // 2) The register class of the definition of the LEA is compatible with the
117 // register class of the address base register of MI.
118 // 3) Displacement of the new memory operand should fit in 1 byte if possible.
119 // 4) The LEA should be as close to MI as possible, and prior to it if
120 // possible.
chooseBestLEA(const SmallVectorImpl<MachineInstr * > & List,const MachineInstr & MI,MachineInstr * & LEA,int64_t & AddrDispShift,int & Dist)121 bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
122 const MachineInstr &MI, MachineInstr *&LEA,
123 int64_t &AddrDispShift, int &Dist) {
124 const MachineFunction *MF = MI.getParent()->getParent();
125 const MCInstrDesc &Desc = MI.getDesc();
126 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) +
127 X86II::getOperandBias(Desc);
128
129 LEA = nullptr;
130
131 // Loop over all LEA instructions.
132 for (auto DefMI : List) {
133 int64_t AddrDispShiftTemp = 0;
134
135 // Compare instructions memory operands.
136 if (!isSimilarMemOp(MI, MemOpNo, *DefMI, 1, AddrDispShiftTemp))
137 continue;
138
139 // Make sure address displacement fits 4 bytes.
140 if (!isInt<32>(AddrDispShiftTemp))
141 continue;
142
143 // Check that LEA def register can be used as MI address base. Some
144 // instructions can use a limited set of registers as address base, for
145 // example MOV8mr_NOREX. We could constrain the register class of the LEA
146 // def to suit MI, however since this case is very rare and hard to
147 // reproduce in a test it's just more reliable to skip the LEA.
148 if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
149 MRI->getRegClass(DefMI->getOperand(0).getReg()))
150 continue;
151
152 // Choose the closest LEA instruction from the list, prior to MI if
153 // possible. Note that we took into account resulting address displacement
154 // as well. Also note that the list is sorted by the order in which the LEAs
155 // occur, so the break condition is pretty simple.
156 int DistTemp = calcInstrDist(*DefMI, MI);
157 assert(DistTemp != 0 &&
158 "The distance between two different instructions cannot be zero");
159 if (DistTemp > 0 || LEA == nullptr) {
160 // Do not update return LEA, if the current one provides a displacement
161 // which fits in 1 byte, while the new candidate does not.
162 if (LEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
163 isInt<8>(AddrDispShift))
164 continue;
165
166 LEA = DefMI;
167 AddrDispShift = AddrDispShiftTemp;
168 Dist = DistTemp;
169 }
170
171 // FIXME: Maybe we should not always stop at the first LEA after MI.
172 if (DistTemp < 0)
173 break;
174 }
175
176 return LEA != nullptr;
177 }
178
isIdenticalOp(const MachineOperand & MO1,const MachineOperand & MO2)179 bool OptimizeLEAPass::isIdenticalOp(const MachineOperand &MO1,
180 const MachineOperand &MO2) {
181 return MO1.isIdenticalTo(MO2) &&
182 (!MO1.isReg() ||
183 !TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
184 }
185
isLEA(const MachineInstr & MI)186 bool OptimizeLEAPass::isLEA(const MachineInstr &MI) {
187 unsigned Opcode = MI.getOpcode();
188 return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
189 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
190 }
191
192 // Check if MI1 and MI2 have memory operands which represent addresses that
193 // differ only by displacement.
isSimilarMemOp(const MachineInstr & MI1,unsigned N1,const MachineInstr & MI2,unsigned N2,int64_t & AddrDispShift)194 bool OptimizeLEAPass::isSimilarMemOp(const MachineInstr &MI1, unsigned N1,
195 const MachineInstr &MI2, unsigned N2,
196 int64_t &AddrDispShift) {
197 // Address base, scale, index and segment operands must be identical.
198 static const int IdenticalOpNums[] = {X86::AddrBaseReg, X86::AddrScaleAmt,
199 X86::AddrIndexReg, X86::AddrSegmentReg};
200 for (auto &N : IdenticalOpNums)
201 if (!isIdenticalOp(MI1.getOperand(N1 + N), MI2.getOperand(N2 + N)))
202 return false;
203
204 // Address displacement operands may differ by a constant.
205 const MachineOperand *Op1 = &MI1.getOperand(N1 + X86::AddrDisp);
206 const MachineOperand *Op2 = &MI2.getOperand(N2 + X86::AddrDisp);
207 if (!isIdenticalOp(*Op1, *Op2)) {
208 if (Op1->isImm() && Op2->isImm())
209 AddrDispShift = Op1->getImm() - Op2->getImm();
210 else if (Op1->isGlobal() && Op2->isGlobal() &&
211 Op1->getGlobal() == Op2->getGlobal())
212 AddrDispShift = Op1->getOffset() - Op2->getOffset();
213 else
214 return false;
215 }
216
217 return true;
218 }
219
findLEAs(const MachineBasicBlock & MBB,SmallVectorImpl<MachineInstr * > & List)220 void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
221 SmallVectorImpl<MachineInstr *> &List) {
222 for (auto &MI : MBB) {
223 if (isLEA(MI))
224 List.push_back(const_cast<MachineInstr *>(&MI));
225 }
226 }
227
228 // Try to find load and store instructions which recalculate addresses already
229 // calculated by some LEA and replace their memory operands with its def
230 // register.
removeRedundantAddrCalc(const SmallVectorImpl<MachineInstr * > & List)231 bool OptimizeLEAPass::removeRedundantAddrCalc(
232 const SmallVectorImpl<MachineInstr *> &List) {
233 bool Changed = false;
234
235 assert(List.size() > 0);
236 MachineBasicBlock *MBB = List[0]->getParent();
237
238 // Process all instructions in basic block.
239 for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
240 MachineInstr &MI = *I++;
241 unsigned Opcode = MI.getOpcode();
242
243 // Instruction must be load or store.
244 if (!MI.mayLoadOrStore())
245 continue;
246
247 // Get the number of the first memory operand.
248 const MCInstrDesc &Desc = MI.getDesc();
249 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, Opcode);
250
251 // If instruction has no memory operand - skip it.
252 if (MemOpNo < 0)
253 continue;
254
255 MemOpNo += X86II::getOperandBias(Desc);
256
257 // Get the best LEA instruction to replace address calculation.
258 MachineInstr *DefMI;
259 int64_t AddrDispShift;
260 int Dist;
261 if (!chooseBestLEA(List, MI, DefMI, AddrDispShift, Dist))
262 continue;
263
264 // If LEA occurs before current instruction, we can freely replace
265 // the instruction. If LEA occurs after, we can lift LEA above the
266 // instruction and this way to be able to replace it. Since LEA and the
267 // instruction have similar memory operands (thus, the same def
268 // instructions for these operands), we can always do that, without
269 // worries of using registers before their defs.
270 if (Dist < 0) {
271 DefMI->removeFromParent();
272 MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
273 }
274
275 // Since we can possibly extend register lifetime, clear kill flags.
276 MRI->clearKillFlags(DefMI->getOperand(0).getReg());
277
278 ++NumSubstLEAs;
279 DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
280
281 // Change instruction operands.
282 MI.getOperand(MemOpNo + X86::AddrBaseReg)
283 .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
284 MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
285 MI.getOperand(MemOpNo + X86::AddrIndexReg)
286 .ChangeToRegister(X86::NoRegister, false);
287 MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
288 MI.getOperand(MemOpNo + X86::AddrSegmentReg)
289 .ChangeToRegister(X86::NoRegister, false);
290
291 DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
292
293 Changed = true;
294 }
295
296 return Changed;
297 }
298
runOnMachineFunction(MachineFunction & MF)299 bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
300 bool Changed = false;
301
302 // Perform this optimization only if we care about code size.
303 if (!EnableX86LEAOpt || !MF.getFunction()->optForSize())
304 return false;
305
306 MRI = &MF.getRegInfo();
307 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
308 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
309
310 // Process all basic blocks.
311 for (auto &MBB : MF) {
312 SmallVector<MachineInstr *, 16> LEAs;
313
314 // Find all LEA instructions in basic block.
315 findLEAs(MBB, LEAs);
316
317 // If current basic block has no LEAs, move on to the next one.
318 if (LEAs.empty())
319 continue;
320
321 // Remove redundant address calculations.
322 Changed |= removeRedundantAddrCalc(LEAs);
323 }
324
325 return Changed;
326 }
327