• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_
6 #define V8_COMPILER_CONTROL_EQUIVALENCE_H_
7 
8 #include "src/compiler/graph.h"
9 #include "src/compiler/node.h"
10 #include "src/zone-containers.h"
11 
12 namespace v8 {
13 namespace internal {
14 namespace compiler {
15 
16 // Determines control dependence equivalence classes for control nodes. Any two
17 // nodes having the same set of control dependences land in one class. These
18 // classes can in turn be used to:
19 //  - Build a program structure tree (PST) for controls in the graph.
20 //  - Determine single-entry single-exit (SESE) regions within the graph.
21 //
22 // Note that this implementation actually uses cycle equivalence to establish
23 // class numbers. Any two nodes are cycle equivalent if they occur in the same
24 // set of cycles. It can be shown that control dependence equivalence reduces
25 // to undirected cycle equivalence for strongly connected control flow graphs.
26 //
27 // The algorithm is based on the paper, "The program structure tree: computing
28 // control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which
29 // also contains proofs for the aforementioned equivalence. References to line
30 // numbers in the algorithm from figure 4 have been added [line:x].
31 class ControlEquivalence final : public ZoneObject {
32  public:
ControlEquivalence(Zone * zone,Graph * graph)33   ControlEquivalence(Zone* zone, Graph* graph)
34       : zone_(zone),
35         graph_(graph),
36         dfs_number_(0),
37         class_number_(1),
38         node_data_(graph->NodeCount(), EmptyData(), zone) {}
39 
40   // Run the main algorithm starting from the {exit} control node. This causes
41   // the following iterations over control edges of the graph:
42   //  1) A breadth-first backwards traversal to determine the set of nodes that
43   //     participate in the next step. Takes O(E) time and O(N) space.
44   //  2) An undirected depth-first backwards traversal that determines class
45   //     numbers for all participating nodes. Takes O(E) time and O(N) space.
46   void Run(Node* exit);
47 
48   // Retrieves a previously computed class number.
ClassOf(Node * node)49   size_t ClassOf(Node* node) {
50     DCHECK_NE(kInvalidClass, GetClass(node));
51     return GetClass(node);
52   }
53 
54  private:
55   static const size_t kInvalidClass = static_cast<size_t>(-1);
56   typedef enum { kInputDirection, kUseDirection } DFSDirection;
57 
58   struct Bracket {
59     DFSDirection direction;  // Direction in which this bracket was added.
60     size_t recent_class;     // Cached class when bracket was topmost.
61     size_t recent_size;      // Cached set-size when bracket was topmost.
62     Node* from;              // Node that this bracket originates from.
63     Node* to;                // Node that this bracket points to.
64   };
65 
66   // The set of brackets for each node during the DFS walk.
67   typedef ZoneLinkedList<Bracket> BracketList;
68 
69   struct DFSStackEntry {
70     DFSDirection direction;            // Direction currently used in DFS walk.
71     Node::InputEdges::iterator input;  // Iterator used for "input" direction.
72     Node::UseEdges::iterator use;      // Iterator used for "use" direction.
73     Node* parent_node;                 // Parent node of entry during DFS walk.
74     Node* node;                        // Node that this stack entry belongs to.
75   };
76 
77   // The stack is used during the undirected DFS walk.
78   typedef ZoneStack<DFSStackEntry> DFSStack;
79 
80   struct NodeData {
81     size_t class_number;  // Equivalence class number assigned to node.
82     size_t dfs_number;    // Pre-order DFS number assigned to node.
83     bool visited;         // Indicates node has already been visited.
84     bool on_stack;        // Indicates node is on DFS stack during walk.
85     bool participates;    // Indicates node participates in DFS walk.
86     BracketList blist;    // List of brackets per node.
87   };
88 
89   // The per-node data computed during the DFS walk.
90   typedef ZoneVector<NodeData> Data;
91 
92   // Called at pre-visit during DFS walk.
93   void VisitPre(Node* node);
94 
95   // Called at mid-visit during DFS walk.
96   void VisitMid(Node* node, DFSDirection direction);
97 
98   // Called at post-visit during DFS walk.
99   void VisitPost(Node* node, Node* parent_node, DFSDirection direction);
100 
101   // Called when hitting a back edge in the DFS walk.
102   void VisitBackedge(Node* from, Node* to, DFSDirection direction);
103 
104   // Performs and undirected DFS walk of the graph. Conceptually all nodes are
105   // expanded, splitting "input" and "use" out into separate nodes. During the
106   // traversal, edges towards the representative nodes are preferred.
107   //
108   //   \ /        - Pre-visit: When N1 is visited in direction D the preferred
109   //    x   N1      edge towards N is taken next, calling VisitPre(N).
110   //    |         - Mid-visit: After all edges out of N2 in direction D have
111   //    |   N       been visited, we switch the direction and start considering
112   //    |           edges out of N1 now, and we call VisitMid(N).
113   //    x   N2    - Post-visit: After all edges out of N1 in direction opposite
114   //   / \          to D have been visited, we pop N and call VisitPost(N).
115   //
116   // This will yield a true spanning tree (without cross or forward edges) and
117   // also discover proper back edges in both directions.
118   void RunUndirectedDFS(Node* exit);
119 
120   void DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, Node* node);
121   void DetermineParticipation(Node* exit);
122 
123  private:
GetData(Node * node)124   NodeData* GetData(Node* node) { return &node_data_[node->id()]; }
NewClassNumber()125   int NewClassNumber() { return class_number_++; }
NewDFSNumber()126   int NewDFSNumber() { return dfs_number_++; }
127 
128   // Template used to initialize per-node data.
EmptyData()129   NodeData EmptyData() {
130     return {kInvalidClass, 0, false, false, false, BracketList(zone_)};
131   }
132 
133   // Accessors for the DFS number stored within the per-node data.
GetNumber(Node * node)134   size_t GetNumber(Node* node) { return GetData(node)->dfs_number; }
SetNumber(Node * node,size_t number)135   void SetNumber(Node* node, size_t number) {
136     GetData(node)->dfs_number = number;
137   }
138 
139   // Accessors for the equivalence class stored within the per-node data.
GetClass(Node * node)140   size_t GetClass(Node* node) { return GetData(node)->class_number; }
SetClass(Node * node,size_t number)141   void SetClass(Node* node, size_t number) {
142     GetData(node)->class_number = number;
143   }
144 
145   // Accessors for the bracket list stored within the per-node data.
GetBracketList(Node * node)146   BracketList& GetBracketList(Node* node) { return GetData(node)->blist; }
SetBracketList(Node * node,BracketList & list)147   void SetBracketList(Node* node, BracketList& list) {
148     GetData(node)->blist = list;
149   }
150 
151   // Mutates the DFS stack by pushing an entry.
152   void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir);
153 
154   // Mutates the DFS stack by popping an entry.
155   void DFSPop(DFSStack& stack, Node* node);
156 
157   void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction);
158   void BracketListTRACE(BracketList& blist);
159 
160   Zone* const zone_;
161   Graph* const graph_;
162   int dfs_number_;    // Generates new DFS pre-order numbers on demand.
163   int class_number_;  // Generates new equivalence class numbers on demand.
164   Data node_data_;    // Per-node data stored as a side-table.
165 };
166 
167 }  // namespace compiler
168 }  // namespace internal
169 }  // namespace v8
170 
171 #endif  // V8_COMPILER_CONTROL_EQUIVALENCE_H_
172