• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/compiler/js-native-context-specialization.h"
6 
7 #include "src/accessors.h"
8 #include "src/code-factory.h"
9 #include "src/compilation-dependencies.h"
10 #include "src/compiler/access-builder.h"
11 #include "src/compiler/access-info.h"
12 #include "src/compiler/js-graph.h"
13 #include "src/compiler/js-operator.h"
14 #include "src/compiler/linkage.h"
15 #include "src/compiler/node-matchers.h"
16 #include "src/field-index-inl.h"
17 #include "src/isolate-inl.h"
18 #include "src/type-cache.h"
19 #include "src/type-feedback-vector.h"
20 
21 namespace v8 {
22 namespace internal {
23 namespace compiler {
24 
JSNativeContextSpecialization(Editor * editor,JSGraph * jsgraph,Flags flags,MaybeHandle<Context> native_context,CompilationDependencies * dependencies,Zone * zone)25 JSNativeContextSpecialization::JSNativeContextSpecialization(
26     Editor* editor, JSGraph* jsgraph, Flags flags,
27     MaybeHandle<Context> native_context, CompilationDependencies* dependencies,
28     Zone* zone)
29     : AdvancedReducer(editor),
30       jsgraph_(jsgraph),
31       flags_(flags),
32       native_context_(native_context),
33       dependencies_(dependencies),
34       zone_(zone),
35       type_cache_(TypeCache::Get()) {}
36 
37 
Reduce(Node * node)38 Reduction JSNativeContextSpecialization::Reduce(Node* node) {
39   switch (node->opcode()) {
40     case IrOpcode::kJSLoadContext:
41       return ReduceJSLoadContext(node);
42     case IrOpcode::kJSLoadNamed:
43       return ReduceJSLoadNamed(node);
44     case IrOpcode::kJSStoreNamed:
45       return ReduceJSStoreNamed(node);
46     case IrOpcode::kJSLoadProperty:
47       return ReduceJSLoadProperty(node);
48     case IrOpcode::kJSStoreProperty:
49       return ReduceJSStoreProperty(node);
50     default:
51       break;
52   }
53   return NoChange();
54 }
55 
ReduceJSLoadContext(Node * node)56 Reduction JSNativeContextSpecialization::ReduceJSLoadContext(Node* node) {
57   DCHECK_EQ(IrOpcode::kJSLoadContext, node->opcode());
58   ContextAccess const& access = ContextAccessOf(node->op());
59   Handle<Context> native_context;
60   // Specialize JSLoadContext(NATIVE_CONTEXT_INDEX) to the known native
61   // context (if any), so we can constant-fold those fields, which is
62   // safe, since the NATIVE_CONTEXT_INDEX slot is always immutable.
63   if (access.index() == Context::NATIVE_CONTEXT_INDEX &&
64       GetNativeContext(node).ToHandle(&native_context)) {
65     Node* value = jsgraph()->HeapConstant(native_context);
66     ReplaceWithValue(node, value);
67     return Replace(value);
68   }
69   return NoChange();
70 }
71 
ReduceNamedAccess(Node * node,Node * value,MapHandleList const & receiver_maps,Handle<Name> name,AccessMode access_mode,LanguageMode language_mode,Node * index)72 Reduction JSNativeContextSpecialization::ReduceNamedAccess(
73     Node* node, Node* value, MapHandleList const& receiver_maps,
74     Handle<Name> name, AccessMode access_mode, LanguageMode language_mode,
75     Node* index) {
76   DCHECK(node->opcode() == IrOpcode::kJSLoadNamed ||
77          node->opcode() == IrOpcode::kJSStoreNamed ||
78          node->opcode() == IrOpcode::kJSLoadProperty ||
79          node->opcode() == IrOpcode::kJSStoreProperty);
80   Node* receiver = NodeProperties::GetValueInput(node, 0);
81   Node* effect = NodeProperties::GetEffectInput(node);
82   Node* control = NodeProperties::GetControlInput(node);
83   Node* frame_state = NodeProperties::FindFrameStateBefore(node);
84 
85   // Not much we can do if deoptimization support is disabled.
86   if (!(flags() & kDeoptimizationEnabled)) return NoChange();
87 
88   // Retrieve the native context from the given {node}.
89   Handle<Context> native_context;
90   if (!GetNativeContext(node).ToHandle(&native_context)) return NoChange();
91 
92   // Compute property access infos for the receiver maps.
93   AccessInfoFactory access_info_factory(dependencies(), native_context,
94                                         graph()->zone());
95   ZoneVector<PropertyAccessInfo> access_infos(zone());
96   if (!access_info_factory.ComputePropertyAccessInfos(
97           receiver_maps, name, access_mode, &access_infos)) {
98     return NoChange();
99   }
100 
101   // Nothing to do if we have no non-deprecated maps.
102   if (access_infos.empty()) return NoChange();
103 
104   // The final states for every polymorphic branch. We join them with
105   // Merge++Phi+EffectPhi at the bottom.
106   ZoneVector<Node*> values(zone());
107   ZoneVector<Node*> effects(zone());
108   ZoneVector<Node*> controls(zone());
109 
110   // Ensure that {index} matches the specified {name} (if {index} is given).
111   if (index != nullptr) {
112     Node* check = graph()->NewNode(simplified()->ReferenceEqual(Type::Name()),
113                                    index, jsgraph()->HeapConstant(name));
114     control = effect = graph()->NewNode(common()->DeoptimizeUnless(), check,
115                                         frame_state, effect, control);
116   }
117 
118   // Check if {receiver} may be a number.
119   bool receiverissmi_possible = false;
120   for (PropertyAccessInfo const& access_info : access_infos) {
121     if (access_info.receiver_type()->Is(Type::Number())) {
122       receiverissmi_possible = true;
123       break;
124     }
125   }
126 
127   // Ensure that {receiver} is a heap object.
128   Node* receiverissmi_control = nullptr;
129   Node* receiverissmi_effect = effect;
130   if (receiverissmi_possible) {
131     Node* check = graph()->NewNode(simplified()->ObjectIsSmi(), receiver);
132     Node* branch = graph()->NewNode(common()->Branch(), check, control);
133     control = graph()->NewNode(common()->IfFalse(), branch);
134     receiverissmi_control = graph()->NewNode(common()->IfTrue(), branch);
135     receiverissmi_effect = effect;
136   } else {
137     receiver = effect = graph()->NewNode(simplified()->CheckTaggedPointer(),
138                                          receiver, effect, control);
139   }
140 
141   // Load the {receiver} map. The resulting effect is the dominating effect for
142   // all (polymorphic) branches.
143   Node* receiver_map = effect =
144       graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()),
145                        receiver, effect, control);
146 
147   // Generate code for the various different property access patterns.
148   Node* fallthrough_control = control;
149   for (size_t j = 0; j < access_infos.size(); ++j) {
150     PropertyAccessInfo const& access_info = access_infos[j];
151     Node* this_value = value;
152     Node* this_receiver = receiver;
153     Node* this_effect = effect;
154     Node* this_control;
155 
156     // Perform map check on {receiver}.
157     Type* receiver_type = access_info.receiver_type();
158     if (receiver_type->Is(Type::String())) {
159       Node* check = graph()->NewNode(simplified()->ObjectIsString(), receiver);
160       if (j == access_infos.size() - 1) {
161         this_control = this_effect =
162             graph()->NewNode(common()->DeoptimizeUnless(), check, frame_state,
163                              this_effect, fallthrough_control);
164         fallthrough_control = nullptr;
165       } else {
166         Node* branch =
167             graph()->NewNode(common()->Branch(), check, fallthrough_control);
168         fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
169         this_control = graph()->NewNode(common()->IfTrue(), branch);
170       }
171     } else {
172       // Emit a (sequence of) map checks for other {receiver}s.
173       ZoneVector<Node*> this_controls(zone());
174       ZoneVector<Node*> this_effects(zone());
175       int num_classes = access_info.receiver_type()->NumClasses();
176       for (auto i = access_info.receiver_type()->Classes(); !i.Done();
177            i.Advance()) {
178         DCHECK_LT(0, num_classes);
179         Handle<Map> map = i.Current();
180         Node* check =
181             graph()->NewNode(simplified()->ReferenceEqual(Type::Internal()),
182                              receiver_map, jsgraph()->Constant(map));
183         if (--num_classes == 0 && j == access_infos.size() - 1) {
184           Node* deoptimize =
185               graph()->NewNode(common()->DeoptimizeUnless(), check, frame_state,
186                                this_effect, fallthrough_control);
187           this_controls.push_back(deoptimize);
188           this_effects.push_back(deoptimize);
189           fallthrough_control = nullptr;
190         } else {
191           Node* branch =
192               graph()->NewNode(common()->Branch(), check, fallthrough_control);
193           fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
194           this_controls.push_back(graph()->NewNode(common()->IfTrue(), branch));
195           this_effects.push_back(this_effect);
196         }
197       }
198 
199       // The Number case requires special treatment to also deal with Smis.
200       if (receiver_type->Is(Type::Number())) {
201         // Join this check with the "receiver is smi" check above.
202         DCHECK_NOT_NULL(receiverissmi_effect);
203         DCHECK_NOT_NULL(receiverissmi_control);
204         this_effects.push_back(receiverissmi_effect);
205         this_controls.push_back(receiverissmi_control);
206         receiverissmi_effect = receiverissmi_control = nullptr;
207       }
208 
209       // Create dominating Merge+EffectPhi for this {receiver} type.
210       int const this_control_count = static_cast<int>(this_controls.size());
211       this_control =
212           (this_control_count == 1)
213               ? this_controls.front()
214               : graph()->NewNode(common()->Merge(this_control_count),
215                                  this_control_count, &this_controls.front());
216       this_effects.push_back(this_control);
217       int const this_effect_count = static_cast<int>(this_effects.size());
218       this_effect =
219           (this_control_count == 1)
220               ? this_effects.front()
221               : graph()->NewNode(common()->EffectPhi(this_control_count),
222                                  this_effect_count, &this_effects.front());
223     }
224 
225     // Determine actual holder and perform prototype chain checks.
226     Handle<JSObject> holder;
227     if (access_info.holder().ToHandle(&holder)) {
228       AssumePrototypesStable(receiver_type, native_context, holder);
229     }
230 
231     // Generate the actual property access.
232     if (access_info.IsNotFound()) {
233       DCHECK_EQ(AccessMode::kLoad, access_mode);
234       this_value = jsgraph()->UndefinedConstant();
235     } else if (access_info.IsDataConstant()) {
236       this_value = jsgraph()->Constant(access_info.constant());
237       if (access_mode == AccessMode::kStore) {
238         Node* check = graph()->NewNode(
239             simplified()->ReferenceEqual(Type::Tagged()), value, this_value);
240         this_control = this_effect =
241             graph()->NewNode(common()->DeoptimizeUnless(), check, frame_state,
242                              this_effect, this_control);
243       }
244     } else {
245       DCHECK(access_info.IsDataField());
246       FieldIndex const field_index = access_info.field_index();
247       Type* const field_type = access_info.field_type();
248       if (access_mode == AccessMode::kLoad &&
249           access_info.holder().ToHandle(&holder)) {
250         this_receiver = jsgraph()->Constant(holder);
251       }
252       Node* this_storage = this_receiver;
253       if (!field_index.is_inobject()) {
254         this_storage = this_effect = graph()->NewNode(
255             simplified()->LoadField(AccessBuilder::ForJSObjectProperties()),
256             this_storage, this_effect, this_control);
257       }
258       FieldAccess field_access = {
259           kTaggedBase, field_index.offset(),     name,
260           field_type,  MachineType::AnyTagged(), kFullWriteBarrier};
261       if (access_mode == AccessMode::kLoad) {
262         if (field_type->Is(Type::UntaggedFloat64())) {
263           // TODO(turbofan): We remove the representation axis from the type to
264           // avoid uninhabited representation types. This is a workaround until
265           // the {PropertyAccessInfo} is using {MachineRepresentation} instead.
266           field_access.type = Type::Union(
267               field_type, Type::Representation(Type::Number(), zone()), zone());
268           if (!field_index.is_inobject() || field_index.is_hidden_field() ||
269               !FLAG_unbox_double_fields) {
270             this_storage = this_effect =
271                 graph()->NewNode(simplified()->LoadField(field_access),
272                                  this_storage, this_effect, this_control);
273             field_access.offset = HeapNumber::kValueOffset;
274             field_access.name = MaybeHandle<Name>();
275           }
276           field_access.machine_type = MachineType::Float64();
277         }
278         this_value = this_effect =
279             graph()->NewNode(simplified()->LoadField(field_access),
280                              this_storage, this_effect, this_control);
281       } else {
282         DCHECK_EQ(AccessMode::kStore, access_mode);
283         if (field_type->Is(Type::UntaggedFloat64())) {
284           // TODO(turbofan): We remove the representation axis from the type to
285           // avoid uninhabited representation types. This is a workaround until
286           // the {PropertyAccessInfo} is using {MachineRepresentation} instead.
287           field_access.type = Type::Union(
288               field_type, Type::Representation(Type::Number(), zone()), zone());
289           Node* check =
290               graph()->NewNode(simplified()->ObjectIsNumber(), this_value);
291           this_control = this_effect =
292               graph()->NewNode(common()->DeoptimizeUnless(), check, frame_state,
293                                this_effect, this_control);
294           this_value = graph()->NewNode(simplified()->TypeGuard(Type::Number()),
295                                         this_value, this_control);
296 
297           if (!field_index.is_inobject() || field_index.is_hidden_field() ||
298               !FLAG_unbox_double_fields) {
299             if (access_info.HasTransitionMap()) {
300               // Allocate a MutableHeapNumber for the new property.
301               this_effect = graph()->NewNode(
302                   common()->BeginRegion(RegionObservability::kNotObservable),
303                   this_effect);
304               Node* this_box = this_effect =
305                   graph()->NewNode(simplified()->Allocate(NOT_TENURED),
306                                    jsgraph()->Constant(HeapNumber::kSize),
307                                    this_effect, this_control);
308               this_effect = graph()->NewNode(
309                   simplified()->StoreField(AccessBuilder::ForMap()), this_box,
310                   jsgraph()->HeapConstant(factory()->mutable_heap_number_map()),
311                   this_effect, this_control);
312               this_effect = graph()->NewNode(
313                   simplified()->StoreField(AccessBuilder::ForHeapNumberValue()),
314                   this_box, this_value, this_effect, this_control);
315               this_value = this_effect = graph()->NewNode(
316                   common()->FinishRegion(), this_box, this_effect);
317 
318               field_access.type = Type::TaggedPointer();
319             } else {
320               // We just store directly to the MutableHeapNumber.
321               this_storage = this_effect =
322                   graph()->NewNode(simplified()->LoadField(field_access),
323                                    this_storage, this_effect, this_control);
324               field_access.offset = HeapNumber::kValueOffset;
325               field_access.name = MaybeHandle<Name>();
326               field_access.machine_type = MachineType::Float64();
327             }
328           } else {
329             // Unboxed double field, we store directly to the field.
330             field_access.machine_type = MachineType::Float64();
331           }
332         } else if (field_type->Is(Type::TaggedSigned())) {
333           this_value = this_effect =
334               graph()->NewNode(simplified()->CheckTaggedSigned(), this_value,
335                                this_effect, this_control);
336         } else if (field_type->Is(Type::TaggedPointer())) {
337           this_value = this_effect =
338               graph()->NewNode(simplified()->CheckTaggedPointer(), this_value,
339                                this_effect, this_control);
340           if (field_type->NumClasses() == 1) {
341             // Emit a map check for the value.
342             Node* this_value_map = this_effect = graph()->NewNode(
343                 simplified()->LoadField(AccessBuilder::ForMap()), this_value,
344                 this_effect, this_control);
345             Node* check = graph()->NewNode(
346                 simplified()->ReferenceEqual(Type::Internal()), this_value_map,
347                 jsgraph()->Constant(field_type->Classes().Current()));
348             this_control = this_effect =
349                 graph()->NewNode(common()->DeoptimizeUnless(), check,
350                                  frame_state, this_effect, this_control);
351           } else {
352             DCHECK_EQ(0, field_type->NumClasses());
353           }
354         } else {
355           DCHECK(field_type->Is(Type::Tagged()));
356         }
357         Handle<Map> transition_map;
358         if (access_info.transition_map().ToHandle(&transition_map)) {
359           this_effect = graph()->NewNode(
360               common()->BeginRegion(RegionObservability::kObservable),
361               this_effect);
362           this_effect = graph()->NewNode(
363               simplified()->StoreField(AccessBuilder::ForMap()), this_receiver,
364               jsgraph()->Constant(transition_map), this_effect, this_control);
365         }
366         this_effect = graph()->NewNode(simplified()->StoreField(field_access),
367                                        this_storage, this_value, this_effect,
368                                        this_control);
369         if (access_info.HasTransitionMap()) {
370           this_effect =
371               graph()->NewNode(common()->FinishRegion(),
372                                jsgraph()->UndefinedConstant(), this_effect);
373         }
374       }
375     }
376 
377     // Remember the final state for this property access.
378     values.push_back(this_value);
379     effects.push_back(this_effect);
380     controls.push_back(this_control);
381   }
382 
383   DCHECK_NULL(fallthrough_control);
384 
385   // Generate the final merge point for all (polymorphic) branches.
386   int const control_count = static_cast<int>(controls.size());
387   if (control_count == 0) {
388     value = effect = control = jsgraph()->Dead();
389   } else if (control_count == 1) {
390     value = values.front();
391     effect = effects.front();
392     control = controls.front();
393   } else {
394     control = graph()->NewNode(common()->Merge(control_count), control_count,
395                                &controls.front());
396     values.push_back(control);
397     value = graph()->NewNode(
398         common()->Phi(MachineRepresentation::kTagged, control_count),
399         control_count + 1, &values.front());
400     effects.push_back(control);
401     effect = graph()->NewNode(common()->EffectPhi(control_count),
402                               control_count + 1, &effects.front());
403   }
404   ReplaceWithValue(node, value, effect, control);
405   return Replace(value);
406 }
407 
408 
ReduceNamedAccess(Node * node,Node * value,FeedbackNexus const & nexus,Handle<Name> name,AccessMode access_mode,LanguageMode language_mode)409 Reduction JSNativeContextSpecialization::ReduceNamedAccess(
410     Node* node, Node* value, FeedbackNexus const& nexus, Handle<Name> name,
411     AccessMode access_mode, LanguageMode language_mode) {
412   DCHECK(node->opcode() == IrOpcode::kJSLoadNamed ||
413          node->opcode() == IrOpcode::kJSStoreNamed);
414   Node* const receiver = NodeProperties::GetValueInput(node, 0);
415   Node* const effect = NodeProperties::GetEffectInput(node);
416 
417   // Check if the {nexus} reports type feedback for the IC.
418   if (nexus.IsUninitialized()) {
419     if ((flags() & kDeoptimizationEnabled) &&
420         (flags() & kBailoutOnUninitialized)) {
421       return ReduceSoftDeoptimize(node);
422     }
423     return NoChange();
424   }
425 
426   // Extract receiver maps from the IC using the {nexus}.
427   MapHandleList receiver_maps;
428   if (!ExtractReceiverMaps(receiver, effect, nexus, &receiver_maps)) {
429     return NoChange();
430   } else if (receiver_maps.length() == 0) {
431     if ((flags() & kDeoptimizationEnabled) &&
432         (flags() & kBailoutOnUninitialized)) {
433       return ReduceSoftDeoptimize(node);
434     }
435     return NoChange();
436   }
437 
438   // Try to lower the named access based on the {receiver_maps}.
439   return ReduceNamedAccess(node, value, receiver_maps, name, access_mode,
440                            language_mode);
441 }
442 
443 
ReduceJSLoadNamed(Node * node)444 Reduction JSNativeContextSpecialization::ReduceJSLoadNamed(Node* node) {
445   DCHECK_EQ(IrOpcode::kJSLoadNamed, node->opcode());
446   NamedAccess const& p = NamedAccessOf(node->op());
447   Node* const receiver = NodeProperties::GetValueInput(node, 0);
448   Node* const value = jsgraph()->Dead();
449 
450   // Check if we have a constant receiver.
451   HeapObjectMatcher m(receiver);
452   if (m.HasValue()) {
453     // Optimize "prototype" property of functions.
454     if (m.Value()->IsJSFunction() &&
455         p.name().is_identical_to(factory()->prototype_string())) {
456       Handle<JSFunction> function = Handle<JSFunction>::cast(m.Value());
457       if (function->has_initial_map()) {
458         // We need to add a code dependency on the initial map of the
459         // {function} in order to be notified about changes to the
460         // "prototype" of {function}, so it doesn't make sense to
461         // continue unless deoptimization is enabled.
462         if (flags() & kDeoptimizationEnabled) {
463           Handle<Map> initial_map(function->initial_map(), isolate());
464           dependencies()->AssumeInitialMapCantChange(initial_map);
465           Handle<Object> prototype(initial_map->prototype(), isolate());
466           Node* value = jsgraph()->Constant(prototype);
467           ReplaceWithValue(node, value);
468           return Replace(value);
469         }
470       }
471     }
472   }
473 
474   // Extract receiver maps from the LOAD_IC using the LoadICNexus.
475   if (!p.feedback().IsValid()) return NoChange();
476   LoadICNexus nexus(p.feedback().vector(), p.feedback().slot());
477 
478   // Try to lower the named access based on the {receiver_maps}.
479   return ReduceNamedAccess(node, value, nexus, p.name(), AccessMode::kLoad,
480                            p.language_mode());
481 }
482 
483 
ReduceJSStoreNamed(Node * node)484 Reduction JSNativeContextSpecialization::ReduceJSStoreNamed(Node* node) {
485   DCHECK_EQ(IrOpcode::kJSStoreNamed, node->opcode());
486   NamedAccess const& p = NamedAccessOf(node->op());
487   Node* const value = NodeProperties::GetValueInput(node, 1);
488 
489   // Extract receiver maps from the STORE_IC using the StoreICNexus.
490   if (!p.feedback().IsValid()) return NoChange();
491   StoreICNexus nexus(p.feedback().vector(), p.feedback().slot());
492 
493   // Try to lower the named access based on the {receiver_maps}.
494   return ReduceNamedAccess(node, value, nexus, p.name(), AccessMode::kStore,
495                            p.language_mode());
496 }
497 
498 
ReduceElementAccess(Node * node,Node * index,Node * value,MapHandleList const & receiver_maps,AccessMode access_mode,LanguageMode language_mode,KeyedAccessStoreMode store_mode)499 Reduction JSNativeContextSpecialization::ReduceElementAccess(
500     Node* node, Node* index, Node* value, MapHandleList const& receiver_maps,
501     AccessMode access_mode, LanguageMode language_mode,
502     KeyedAccessStoreMode store_mode) {
503   DCHECK(node->opcode() == IrOpcode::kJSLoadProperty ||
504          node->opcode() == IrOpcode::kJSStoreProperty);
505   Node* receiver = NodeProperties::GetValueInput(node, 0);
506   Node* context = NodeProperties::GetContextInput(node);
507   Node* effect = NodeProperties::GetEffectInput(node);
508   Node* control = NodeProperties::GetControlInput(node);
509   Node* frame_state = NodeProperties::FindFrameStateBefore(node);
510 
511   // Not much we can do if deoptimization support is disabled.
512   if (!(flags() & kDeoptimizationEnabled)) return NoChange();
513 
514   // TODO(bmeurer): Add support for non-standard stores.
515   if (store_mode != STANDARD_STORE) return NoChange();
516 
517   // Retrieve the native context from the given {node}.
518   Handle<Context> native_context;
519   if (!GetNativeContext(node).ToHandle(&native_context)) return NoChange();
520 
521   // Compute element access infos for the receiver maps.
522   AccessInfoFactory access_info_factory(dependencies(), native_context,
523                                         graph()->zone());
524   ZoneVector<ElementAccessInfo> access_infos(zone());
525   if (!access_info_factory.ComputeElementAccessInfos(receiver_maps, access_mode,
526                                                      &access_infos)) {
527     return NoChange();
528   }
529 
530   // Nothing to do if we have no non-deprecated maps.
531   if (access_infos.empty()) return NoChange();
532 
533   // The final states for every polymorphic branch. We join them with
534   // Merge+Phi+EffectPhi at the bottom.
535   ZoneVector<Node*> values(zone());
536   ZoneVector<Node*> effects(zone());
537   ZoneVector<Node*> controls(zone());
538 
539   // Ensure that {receiver} is a heap object.
540   receiver = effect = graph()->NewNode(simplified()->CheckTaggedPointer(),
541                                        receiver, effect, control);
542 
543   // Load the {receiver} map. The resulting effect is the dominating effect for
544   // all (polymorphic) branches.
545   Node* receiver_map = effect =
546       graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()),
547                        receiver, effect, control);
548 
549   // Generate code for the various different element access patterns.
550   Node* fallthrough_control = control;
551   for (size_t j = 0; j < access_infos.size(); ++j) {
552     ElementAccessInfo const& access_info = access_infos[j];
553     Node* this_receiver = receiver;
554     Node* this_value = value;
555     Node* this_index = index;
556     Node* this_effect;
557     Node* this_control;
558 
559     // Perform map check on {receiver}.
560     Type* receiver_type = access_info.receiver_type();
561     bool receiver_is_jsarray = true;
562     {
563       ZoneVector<Node*> this_controls(zone());
564       ZoneVector<Node*> this_effects(zone());
565       size_t num_transitions = access_info.transitions().size();
566       int num_classes = access_info.receiver_type()->NumClasses();
567       for (auto i = access_info.receiver_type()->Classes(); !i.Done();
568            i.Advance()) {
569         DCHECK_LT(0, num_classes);
570         Handle<Map> map = i.Current();
571         Node* check =
572             graph()->NewNode(simplified()->ReferenceEqual(Type::Any()),
573                              receiver_map, jsgraph()->Constant(map));
574         if (--num_classes == 0 && num_transitions == 0 &&
575             j == access_infos.size() - 1) {
576           // Last map check on the fallthrough control path, do a conditional
577           // eager deoptimization exit here.
578           // TODO(turbofan): This is ugly as hell! We should probably introduce
579           // macro-ish operators for property access that encapsulate this whole
580           // mess.
581           Node* deoptimize =
582               graph()->NewNode(common()->DeoptimizeUnless(), check, frame_state,
583                                effect, fallthrough_control);
584           this_controls.push_back(deoptimize);
585           this_effects.push_back(deoptimize);
586           fallthrough_control = nullptr;
587         } else {
588           Node* branch =
589               graph()->NewNode(common()->Branch(), check, fallthrough_control);
590           this_controls.push_back(graph()->NewNode(common()->IfTrue(), branch));
591           this_effects.push_back(effect);
592           fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
593         }
594         if (!map->IsJSArrayMap()) receiver_is_jsarray = false;
595       }
596 
597       // Generate possible elements kind transitions.
598       for (auto transition : access_info.transitions()) {
599         DCHECK_LT(0u, num_transitions);
600         Handle<Map> transition_source = transition.first;
601         Handle<Map> transition_target = transition.second;
602         Node* transition_control;
603         Node* transition_effect = effect;
604 
605         // Check if {receiver} has the specified {transition_source} map.
606         Node* check = graph()->NewNode(
607             simplified()->ReferenceEqual(Type::Any()), receiver_map,
608             jsgraph()->HeapConstant(transition_source));
609         if (--num_transitions == 0 && j == access_infos.size() - 1) {
610           transition_control = transition_effect =
611               graph()->NewNode(common()->DeoptimizeUnless(), check, frame_state,
612                                transition_effect, fallthrough_control);
613           fallthrough_control = nullptr;
614         } else {
615           Node* branch =
616               graph()->NewNode(common()->Branch(), check, fallthrough_control);
617           fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
618           transition_control = graph()->NewNode(common()->IfTrue(), branch);
619         }
620 
621         // Migrate {receiver} from {transition_source} to {transition_target}.
622         if (IsSimpleMapChangeTransition(transition_source->elements_kind(),
623                                         transition_target->elements_kind())) {
624           // In-place migration, just store the {transition_target} map.
625           transition_effect = graph()->NewNode(
626               simplified()->StoreField(AccessBuilder::ForMap()), receiver,
627               jsgraph()->HeapConstant(transition_target), transition_effect,
628               transition_control);
629         } else {
630           // Instance migration, let the stub deal with the {receiver}.
631           TransitionElementsKindStub stub(isolate(),
632                                           transition_source->elements_kind(),
633                                           transition_target->elements_kind());
634           CallDescriptor const* const desc = Linkage::GetStubCallDescriptor(
635               isolate(), graph()->zone(), stub.GetCallInterfaceDescriptor(), 0,
636               CallDescriptor::kNeedsFrameState, node->op()->properties());
637           transition_effect = graph()->NewNode(
638               common()->Call(desc), jsgraph()->HeapConstant(stub.GetCode()),
639               receiver, jsgraph()->HeapConstant(transition_target), context,
640               frame_state, transition_effect, transition_control);
641         }
642 
643         this_controls.push_back(transition_control);
644         this_effects.push_back(transition_effect);
645       }
646 
647       // Create single chokepoint for the control.
648       int const this_control_count = static_cast<int>(this_controls.size());
649       if (this_control_count == 1) {
650         this_control = this_controls.front();
651         this_effect = this_effects.front();
652       } else {
653         this_control =
654             graph()->NewNode(common()->Merge(this_control_count),
655                              this_control_count, &this_controls.front());
656         this_effects.push_back(this_control);
657         this_effect =
658             graph()->NewNode(common()->EffectPhi(this_control_count),
659                              this_control_count + 1, &this_effects.front());
660       }
661 
662       // TODO(turbofan): The effect/control linearization will not find a
663       // FrameState after the StoreField or Call that is generated for the
664       // elements kind transition above. This is because those operators
665       // don't have the kNoWrite flag on it, even though they are not
666       // observable by JavaScript.
667       this_effect = graph()->NewNode(common()->Checkpoint(), frame_state,
668                                      this_effect, this_control);
669     }
670 
671     // Certain stores need a prototype chain check because shape changes
672     // could allow callbacks on elements in the prototype chain that are
673     // not compatible with (monomorphic) keyed stores.
674     Handle<JSObject> holder;
675     if (access_info.holder().ToHandle(&holder)) {
676       AssumePrototypesStable(receiver_type, native_context, holder);
677     }
678 
679     // TODO(bmeurer): We currently specialize based on elements kind. We should
680     // also be able to properly support strings and other JSObjects here.
681     ElementsKind elements_kind = access_info.elements_kind();
682 
683     // Load the elements for the {receiver}.
684     Node* this_elements = this_effect = graph()->NewNode(
685         simplified()->LoadField(AccessBuilder::ForJSObjectElements()),
686         this_receiver, this_effect, this_control);
687 
688     // Don't try to store to a copy-on-write backing store.
689     if (access_mode == AccessMode::kStore &&
690         IsFastSmiOrObjectElementsKind(elements_kind)) {
691       Node* this_elements_map = this_effect =
692           graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()),
693                            this_elements, this_effect, this_control);
694       Node* check = graph()->NewNode(
695           simplified()->ReferenceEqual(Type::Any()), this_elements_map,
696           jsgraph()->HeapConstant(factory()->fixed_array_map()));
697       this_control = this_effect =
698           graph()->NewNode(common()->DeoptimizeUnless(), check, frame_state,
699                            this_effect, this_control);
700     }
701 
702     // Load the length of the {receiver}.
703     Node* this_length = this_effect =
704         receiver_is_jsarray
705             ? graph()->NewNode(
706                   simplified()->LoadField(
707                       AccessBuilder::ForJSArrayLength(elements_kind)),
708                   this_receiver, this_effect, this_control)
709             : graph()->NewNode(
710                   simplified()->LoadField(AccessBuilder::ForFixedArrayLength()),
711                   this_elements, this_effect, this_control);
712 
713     // Check that the {index} is in the valid range for the {receiver}.
714     this_index = this_effect =
715         graph()->NewNode(simplified()->CheckBounds(), this_index, this_length,
716                          this_effect, this_control);
717 
718     // Compute the element access.
719     Type* element_type = Type::Any();
720     MachineType element_machine_type = MachineType::AnyTagged();
721     if (IsFastDoubleElementsKind(elements_kind)) {
722       element_type = Type::Number();
723       element_machine_type = MachineType::Float64();
724     } else if (IsFastSmiElementsKind(elements_kind)) {
725       element_type = type_cache_.kSmi;
726     }
727     ElementAccess element_access = {kTaggedBase, FixedArray::kHeaderSize,
728                                     element_type, element_machine_type,
729                                     kFullWriteBarrier};
730 
731     // Access the actual element.
732     // TODO(bmeurer): Refactor this into separate methods or even a separate
733     // class that deals with the elements access.
734     if (access_mode == AccessMode::kLoad) {
735       // Compute the real element access type, which includes the hole in case
736       // of holey backing stores.
737       if (elements_kind == FAST_HOLEY_ELEMENTS ||
738           elements_kind == FAST_HOLEY_SMI_ELEMENTS) {
739         element_access.type = Type::Union(
740             element_type,
741             Type::Constant(factory()->the_hole_value(), graph()->zone()),
742             graph()->zone());
743       }
744       // Perform the actual backing store access.
745       this_value = this_effect = graph()->NewNode(
746           simplified()->LoadElement(element_access), this_elements, this_index,
747           this_effect, this_control);
748       // Handle loading from holey backing stores correctly, by either mapping
749       // the hole to undefined if possible, or deoptimizing otherwise.
750       if (elements_kind == FAST_HOLEY_ELEMENTS ||
751           elements_kind == FAST_HOLEY_SMI_ELEMENTS) {
752         // Perform the hole check on the result.
753         CheckTaggedHoleMode mode = CheckTaggedHoleMode::kNeverReturnHole;
754         // Check if we are allowed to turn the hole into undefined.
755         Type* initial_holey_array_type = Type::Class(
756             handle(isolate()->get_initial_js_array_map(elements_kind)),
757             graph()->zone());
758         if (receiver_type->NowIs(initial_holey_array_type) &&
759             isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
760           // Add a code dependency on the array protector cell.
761           AssumePrototypesStable(receiver_type, native_context,
762                                  isolate()->initial_object_prototype());
763           dependencies()->AssumePropertyCell(factory()->array_protector());
764           // Turn the hole into undefined.
765           mode = CheckTaggedHoleMode::kConvertHoleToUndefined;
766         }
767         this_value = this_effect =
768             graph()->NewNode(simplified()->CheckTaggedHole(mode), this_value,
769                              this_effect, this_control);
770       } else if (elements_kind == FAST_HOLEY_DOUBLE_ELEMENTS) {
771         // Perform the hole check on the result.
772         CheckFloat64HoleMode mode = CheckFloat64HoleMode::kNeverReturnHole;
773         // Check if we are allowed to return the hole directly.
774         Type* initial_holey_array_type = Type::Class(
775             handle(isolate()->get_initial_js_array_map(elements_kind)),
776             graph()->zone());
777         if (receiver_type->NowIs(initial_holey_array_type) &&
778             isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
779           // Add a code dependency on the array protector cell.
780           AssumePrototypesStable(receiver_type, native_context,
781                                  isolate()->initial_object_prototype());
782           dependencies()->AssumePropertyCell(factory()->array_protector());
783           // Return the signaling NaN hole directly if all uses are truncating.
784           mode = CheckFloat64HoleMode::kAllowReturnHole;
785         }
786         this_value = this_effect =
787             graph()->NewNode(simplified()->CheckFloat64Hole(mode), this_value,
788                              this_effect, this_control);
789       }
790     } else {
791       DCHECK_EQ(AccessMode::kStore, access_mode);
792       if (IsFastSmiElementsKind(elements_kind)) {
793         this_value = this_effect =
794             graph()->NewNode(simplified()->CheckTaggedSigned(), this_value,
795                              this_effect, this_control);
796       } else if (IsFastDoubleElementsKind(elements_kind)) {
797         Node* check =
798             graph()->NewNode(simplified()->ObjectIsNumber(), this_value);
799         this_control = this_effect =
800             graph()->NewNode(common()->DeoptimizeUnless(), check, frame_state,
801                              this_effect, this_control);
802         this_value = graph()->NewNode(simplified()->TypeGuard(Type::Number()),
803                                       this_value, this_control);
804         // Make sure we do not store signalling NaNs into holey double arrays.
805         if (elements_kind == FAST_HOLEY_DOUBLE_ELEMENTS) {
806           this_value =
807               graph()->NewNode(simplified()->NumberSilenceNaN(), this_value);
808         }
809       }
810       this_effect = graph()->NewNode(simplified()->StoreElement(element_access),
811                                      this_elements, this_index, this_value,
812                                      this_effect, this_control);
813     }
814 
815     // Remember the final state for this element access.
816     values.push_back(this_value);
817     effects.push_back(this_effect);
818     controls.push_back(this_control);
819   }
820 
821   DCHECK_NULL(fallthrough_control);
822 
823   // Generate the final merge point for all (polymorphic) branches.
824   int const control_count = static_cast<int>(controls.size());
825   if (control_count == 0) {
826     value = effect = control = jsgraph()->Dead();
827   } else if (control_count == 1) {
828     value = values.front();
829     effect = effects.front();
830     control = controls.front();
831   } else {
832     control = graph()->NewNode(common()->Merge(control_count), control_count,
833                                &controls.front());
834     values.push_back(control);
835     value = graph()->NewNode(
836         common()->Phi(MachineRepresentation::kTagged, control_count),
837         control_count + 1, &values.front());
838     effects.push_back(control);
839     effect = graph()->NewNode(common()->EffectPhi(control_count),
840                               control_count + 1, &effects.front());
841   }
842   ReplaceWithValue(node, value, effect, control);
843   return Replace(value);
844 }
845 
846 
ReduceKeyedAccess(Node * node,Node * index,Node * value,FeedbackNexus const & nexus,AccessMode access_mode,LanguageMode language_mode,KeyedAccessStoreMode store_mode)847 Reduction JSNativeContextSpecialization::ReduceKeyedAccess(
848     Node* node, Node* index, Node* value, FeedbackNexus const& nexus,
849     AccessMode access_mode, LanguageMode language_mode,
850     KeyedAccessStoreMode store_mode) {
851   DCHECK(node->opcode() == IrOpcode::kJSLoadProperty ||
852          node->opcode() == IrOpcode::kJSStoreProperty);
853   Node* const receiver = NodeProperties::GetValueInput(node, 0);
854   Node* const effect = NodeProperties::GetEffectInput(node);
855 
856   // Check if the {nexus} reports type feedback for the IC.
857   if (nexus.IsUninitialized()) {
858     if ((flags() & kDeoptimizationEnabled) &&
859         (flags() & kBailoutOnUninitialized)) {
860       return ReduceSoftDeoptimize(node);
861     }
862     return NoChange();
863   }
864 
865   // Extract receiver maps from the {nexus}.
866   MapHandleList receiver_maps;
867   if (!ExtractReceiverMaps(receiver, effect, nexus, &receiver_maps)) {
868     return NoChange();
869   } else if (receiver_maps.length() == 0) {
870     if ((flags() & kDeoptimizationEnabled) &&
871         (flags() & kBailoutOnUninitialized)) {
872       return ReduceSoftDeoptimize(node);
873     }
874     return NoChange();
875   }
876 
877   // Optimize access for constant {index}.
878   HeapObjectMatcher mindex(index);
879   if (mindex.HasValue() && mindex.Value()->IsPrimitive()) {
880     // Keyed access requires a ToPropertyKey on the {index} first before
881     // looking up the property on the object (see ES6 section 12.3.2.1).
882     // We can only do this for non-observable ToPropertyKey invocations,
883     // so we limit the constant indices to primitives at this point.
884     Handle<Name> name;
885     if (Object::ToName(isolate(), mindex.Value()).ToHandle(&name)) {
886       uint32_t array_index;
887       if (name->AsArrayIndex(&array_index)) {
888         // Use the constant array index.
889         index = jsgraph()->Constant(static_cast<double>(array_index));
890       } else {
891         name = factory()->InternalizeName(name);
892         return ReduceNamedAccess(node, value, receiver_maps, name, access_mode,
893                                  language_mode);
894       }
895     }
896   }
897 
898   // Check if we have feedback for a named access.
899   if (Name* name = nexus.FindFirstName()) {
900     return ReduceNamedAccess(node, value, receiver_maps,
901                              handle(name, isolate()), access_mode,
902                              language_mode, index);
903   }
904 
905   // Try to lower the element access based on the {receiver_maps}.
906   return ReduceElementAccess(node, index, value, receiver_maps, access_mode,
907                              language_mode, store_mode);
908 }
909 
910 
ReduceSoftDeoptimize(Node * node)911 Reduction JSNativeContextSpecialization::ReduceSoftDeoptimize(Node* node) {
912   Node* effect = NodeProperties::GetEffectInput(node);
913   Node* control = NodeProperties::GetControlInput(node);
914   Node* frame_state = NodeProperties::FindFrameStateBefore(node);
915   Node* deoptimize =
916       graph()->NewNode(common()->Deoptimize(DeoptimizeKind::kSoft), frame_state,
917                        effect, control);
918   // TODO(bmeurer): This should be on the AdvancedReducer somehow.
919   NodeProperties::MergeControlToEnd(graph(), common(), deoptimize);
920   Revisit(graph()->end());
921   node->TrimInputCount(0);
922   NodeProperties::ChangeOp(node, common()->Dead());
923   return Changed(node);
924 }
925 
926 
ReduceJSLoadProperty(Node * node)927 Reduction JSNativeContextSpecialization::ReduceJSLoadProperty(Node* node) {
928   DCHECK_EQ(IrOpcode::kJSLoadProperty, node->opcode());
929   PropertyAccess const& p = PropertyAccessOf(node->op());
930   Node* const index = NodeProperties::GetValueInput(node, 1);
931   Node* const value = jsgraph()->Dead();
932 
933   // Extract receiver maps from the KEYED_LOAD_IC using the KeyedLoadICNexus.
934   if (!p.feedback().IsValid()) return NoChange();
935   KeyedLoadICNexus nexus(p.feedback().vector(), p.feedback().slot());
936 
937   // Try to lower the keyed access based on the {nexus}.
938   return ReduceKeyedAccess(node, index, value, nexus, AccessMode::kLoad,
939                            p.language_mode(), STANDARD_STORE);
940 }
941 
942 
ReduceJSStoreProperty(Node * node)943 Reduction JSNativeContextSpecialization::ReduceJSStoreProperty(Node* node) {
944   DCHECK_EQ(IrOpcode::kJSStoreProperty, node->opcode());
945   PropertyAccess const& p = PropertyAccessOf(node->op());
946   Node* const index = NodeProperties::GetValueInput(node, 1);
947   Node* const value = NodeProperties::GetValueInput(node, 2);
948 
949   // Extract receiver maps from the KEYED_STORE_IC using the KeyedStoreICNexus.
950   if (!p.feedback().IsValid()) return NoChange();
951   KeyedStoreICNexus nexus(p.feedback().vector(), p.feedback().slot());
952 
953   // Extract the keyed access store mode from the KEYED_STORE_IC.
954   KeyedAccessStoreMode store_mode = nexus.GetKeyedAccessStoreMode();
955 
956   // Try to lower the keyed access based on the {nexus}.
957   return ReduceKeyedAccess(node, index, value, nexus, AccessMode::kStore,
958                            p.language_mode(), store_mode);
959 }
960 
961 
AssumePrototypesStable(Type * receiver_type,Handle<Context> native_context,Handle<JSObject> holder)962 void JSNativeContextSpecialization::AssumePrototypesStable(
963     Type* receiver_type, Handle<Context> native_context,
964     Handle<JSObject> holder) {
965   // Determine actual holder and perform prototype chain checks.
966   for (auto i = receiver_type->Classes(); !i.Done(); i.Advance()) {
967     Handle<Map> map = i.Current();
968     // Perform the implicit ToObject for primitives here.
969     // Implemented according to ES6 section 7.3.2 GetV (V, P).
970     Handle<JSFunction> constructor;
971     if (Map::GetConstructorFunction(map, native_context)
972             .ToHandle(&constructor)) {
973       map = handle(constructor->initial_map(), isolate());
974     }
975     dependencies()->AssumePrototypeMapsStable(map, holder);
976   }
977 }
978 
ExtractReceiverMaps(Node * receiver,Node * effect,FeedbackNexus const & nexus,MapHandleList * receiver_maps)979 bool JSNativeContextSpecialization::ExtractReceiverMaps(
980     Node* receiver, Node* effect, FeedbackNexus const& nexus,
981     MapHandleList* receiver_maps) {
982   DCHECK_EQ(0, receiver_maps->length());
983   // See if we can infer a concrete type for the {receiver}.
984   Handle<Map> receiver_map;
985   if (InferReceiverMap(receiver, effect).ToHandle(&receiver_map)) {
986     // We can assume that the {receiver} still has the infered {receiver_map}.
987     receiver_maps->Add(receiver_map);
988     return true;
989   }
990   // Try to extract some maps from the {nexus}.
991   if (nexus.ExtractMaps(receiver_maps) != 0) {
992     // Try to filter impossible candidates based on infered root map.
993     if (InferReceiverRootMap(receiver).ToHandle(&receiver_map)) {
994       for (int i = receiver_maps->length(); --i >= 0;) {
995         if (receiver_maps->at(i)->FindRootMap() != *receiver_map) {
996           receiver_maps->Remove(i);
997         }
998       }
999     }
1000     return true;
1001   }
1002   return false;
1003 }
1004 
InferReceiverMap(Node * receiver,Node * effect)1005 MaybeHandle<Map> JSNativeContextSpecialization::InferReceiverMap(Node* receiver,
1006                                                                  Node* effect) {
1007   NodeMatcher m(receiver);
1008   if (m.IsJSCreate()) {
1009     HeapObjectMatcher mtarget(m.InputAt(0));
1010     HeapObjectMatcher mnewtarget(m.InputAt(1));
1011     if (mtarget.HasValue() && mnewtarget.HasValue()) {
1012       Handle<JSFunction> constructor =
1013           Handle<JSFunction>::cast(mtarget.Value());
1014       if (constructor->has_initial_map()) {
1015         Handle<Map> initial_map(constructor->initial_map(), isolate());
1016         if (initial_map->constructor_or_backpointer() == *mnewtarget.Value()) {
1017           // Walk up the {effect} chain to see if the {receiver} is the
1018           // dominating effect and there's no other observable write in
1019           // between.
1020           while (true) {
1021             if (receiver == effect) return initial_map;
1022             if (!effect->op()->HasProperty(Operator::kNoWrite) ||
1023                 effect->op()->EffectInputCount() != 1) {
1024               break;
1025             }
1026             effect = NodeProperties::GetEffectInput(effect);
1027           }
1028         }
1029       }
1030     }
1031   }
1032   return MaybeHandle<Map>();
1033 }
1034 
InferReceiverRootMap(Node * receiver)1035 MaybeHandle<Map> JSNativeContextSpecialization::InferReceiverRootMap(
1036     Node* receiver) {
1037   HeapObjectMatcher m(receiver);
1038   if (m.HasValue()) {
1039     return handle(m.Value()->map()->FindRootMap(), isolate());
1040   } else if (m.IsJSCreate()) {
1041     HeapObjectMatcher mtarget(m.InputAt(0));
1042     HeapObjectMatcher mnewtarget(m.InputAt(1));
1043     if (mtarget.HasValue() && mnewtarget.HasValue()) {
1044       Handle<JSFunction> constructor =
1045           Handle<JSFunction>::cast(mtarget.Value());
1046       if (constructor->has_initial_map()) {
1047         Handle<Map> initial_map(constructor->initial_map(), isolate());
1048         if (initial_map->constructor_or_backpointer() == *mnewtarget.Value()) {
1049           DCHECK_EQ(*initial_map, initial_map->FindRootMap());
1050           return initial_map;
1051         }
1052       }
1053     }
1054   }
1055   return MaybeHandle<Map>();
1056 }
1057 
GetNativeContext(Node * node)1058 MaybeHandle<Context> JSNativeContextSpecialization::GetNativeContext(
1059     Node* node) {
1060   Node* const context = NodeProperties::GetContextInput(node);
1061   return NodeProperties::GetSpecializationNativeContext(context,
1062                                                         native_context());
1063 }
1064 
1065 
graph() const1066 Graph* JSNativeContextSpecialization::graph() const {
1067   return jsgraph()->graph();
1068 }
1069 
1070 
isolate() const1071 Isolate* JSNativeContextSpecialization::isolate() const {
1072   return jsgraph()->isolate();
1073 }
1074 
1075 
factory() const1076 Factory* JSNativeContextSpecialization::factory() const {
1077   return isolate()->factory();
1078 }
1079 
1080 
machine() const1081 MachineOperatorBuilder* JSNativeContextSpecialization::machine() const {
1082   return jsgraph()->machine();
1083 }
1084 
1085 
common() const1086 CommonOperatorBuilder* JSNativeContextSpecialization::common() const {
1087   return jsgraph()->common();
1088 }
1089 
1090 
javascript() const1091 JSOperatorBuilder* JSNativeContextSpecialization::javascript() const {
1092   return jsgraph()->javascript();
1093 }
1094 
1095 
simplified() const1096 SimplifiedOperatorBuilder* JSNativeContextSpecialization::simplified() const {
1097   return jsgraph()->simplified();
1098 }
1099 
1100 }  // namespace compiler
1101 }  // namespace internal
1102 }  // namespace v8
1103