1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/crankshaft/arm/lithium-codegen-arm.h"
6 #include "src/crankshaft/arm/lithium-gap-resolver-arm.h"
7
8 namespace v8 {
9 namespace internal {
10
11 // We use the root register to spill a value while breaking a cycle in parallel
12 // moves. We don't need access to roots while resolving the move list and using
13 // the root register has two advantages:
14 // - It is not in crankshaft allocatable registers list, so it can't interfere
15 // with any of the moves we are resolving.
16 // - We don't need to push it on the stack, as we can reload it with its value
17 // once we have resolved a cycle.
18 #define kSavedValueRegister kRootRegister
19
20
LGapResolver(LCodeGen * owner)21 LGapResolver::LGapResolver(LCodeGen* owner)
22 : cgen_(owner), moves_(32, owner->zone()), root_index_(0), in_cycle_(false),
23 saved_destination_(NULL), need_to_restore_root_(false) { }
24
25
26 #define __ ACCESS_MASM(cgen_->masm())
27
28
Resolve(LParallelMove * parallel_move)29 void LGapResolver::Resolve(LParallelMove* parallel_move) {
30 DCHECK(moves_.is_empty());
31 // Build up a worklist of moves.
32 BuildInitialMoveList(parallel_move);
33
34 for (int i = 0; i < moves_.length(); ++i) {
35 LMoveOperands move = moves_[i];
36 // Skip constants to perform them last. They don't block other moves
37 // and skipping such moves with register destinations keeps those
38 // registers free for the whole algorithm.
39 if (!move.IsEliminated() && !move.source()->IsConstantOperand()) {
40 root_index_ = i; // Any cycle is found when by reaching this move again.
41 PerformMove(i);
42 if (in_cycle_) {
43 RestoreValue();
44 }
45 }
46 }
47
48 // Perform the moves with constant sources.
49 for (int i = 0; i < moves_.length(); ++i) {
50 if (!moves_[i].IsEliminated()) {
51 DCHECK(moves_[i].source()->IsConstantOperand());
52 EmitMove(i);
53 }
54 }
55
56 if (need_to_restore_root_) {
57 DCHECK(kSavedValueRegister.is(kRootRegister));
58 __ InitializeRootRegister();
59 need_to_restore_root_ = false;
60 }
61
62 moves_.Rewind(0);
63 }
64
65
BuildInitialMoveList(LParallelMove * parallel_move)66 void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) {
67 // Perform a linear sweep of the moves to add them to the initial list of
68 // moves to perform, ignoring any move that is redundant (the source is
69 // the same as the destination, the destination is ignored and
70 // unallocated, or the move was already eliminated).
71 const ZoneList<LMoveOperands>* moves = parallel_move->move_operands();
72 for (int i = 0; i < moves->length(); ++i) {
73 LMoveOperands move = moves->at(i);
74 if (!move.IsRedundant()) moves_.Add(move, cgen_->zone());
75 }
76 Verify();
77 }
78
79
PerformMove(int index)80 void LGapResolver::PerformMove(int index) {
81 // Each call to this function performs a move and deletes it from the move
82 // graph. We first recursively perform any move blocking this one. We
83 // mark a move as "pending" on entry to PerformMove in order to detect
84 // cycles in the move graph.
85
86 // We can only find a cycle, when doing a depth-first traversal of moves,
87 // be encountering the starting move again. So by spilling the source of
88 // the starting move, we break the cycle. All moves are then unblocked,
89 // and the starting move is completed by writing the spilled value to
90 // its destination. All other moves from the spilled source have been
91 // completed prior to breaking the cycle.
92 // An additional complication is that moves to MemOperands with large
93 // offsets (more than 1K or 4K) require us to spill this spilled value to
94 // the stack, to free up the register.
95 DCHECK(!moves_[index].IsPending());
96 DCHECK(!moves_[index].IsRedundant());
97
98 // Clear this move's destination to indicate a pending move. The actual
99 // destination is saved in a stack allocated local. Multiple moves can
100 // be pending because this function is recursive.
101 DCHECK(moves_[index].source() != NULL); // Or else it will look eliminated.
102 LOperand* destination = moves_[index].destination();
103 moves_[index].set_destination(NULL);
104
105 // Perform a depth-first traversal of the move graph to resolve
106 // dependencies. Any unperformed, unpending move with a source the same
107 // as this one's destination blocks this one so recursively perform all
108 // such moves.
109 for (int i = 0; i < moves_.length(); ++i) {
110 LMoveOperands other_move = moves_[i];
111 if (other_move.Blocks(destination) && !other_move.IsPending()) {
112 PerformMove(i);
113 // If there is a blocking, pending move it must be moves_[root_index_]
114 // and all other moves with the same source as moves_[root_index_] are
115 // sucessfully executed (because they are cycle-free) by this loop.
116 }
117 }
118
119 // We are about to resolve this move and don't need it marked as
120 // pending, so restore its destination.
121 moves_[index].set_destination(destination);
122
123 // The move may be blocked on a pending move, which must be the starting move.
124 // In this case, we have a cycle, and we save the source of this move to
125 // a scratch register to break it.
126 LMoveOperands other_move = moves_[root_index_];
127 if (other_move.Blocks(destination)) {
128 DCHECK(other_move.IsPending());
129 BreakCycle(index);
130 return;
131 }
132
133 // This move is no longer blocked.
134 EmitMove(index);
135 }
136
137
Verify()138 void LGapResolver::Verify() {
139 #ifdef ENABLE_SLOW_DCHECKS
140 // No operand should be the destination for more than one move.
141 for (int i = 0; i < moves_.length(); ++i) {
142 LOperand* destination = moves_[i].destination();
143 for (int j = i + 1; j < moves_.length(); ++j) {
144 SLOW_DCHECK(!destination->Equals(moves_[j].destination()));
145 }
146 }
147 #endif
148 }
149
150
BreakCycle(int index)151 void LGapResolver::BreakCycle(int index) {
152 // We save in a register the source of that move and we remember its
153 // destination. Then we mark this move as resolved so the cycle is
154 // broken and we can perform the other moves.
155 DCHECK(moves_[index].destination()->Equals(moves_[root_index_].source()));
156 DCHECK(!in_cycle_);
157 in_cycle_ = true;
158 LOperand* source = moves_[index].source();
159 saved_destination_ = moves_[index].destination();
160 if (source->IsRegister()) {
161 need_to_restore_root_ = true;
162 __ mov(kSavedValueRegister, cgen_->ToRegister(source));
163 } else if (source->IsStackSlot()) {
164 need_to_restore_root_ = true;
165 __ ldr(kSavedValueRegister, cgen_->ToMemOperand(source));
166 } else if (source->IsDoubleRegister()) {
167 __ vmov(kScratchDoubleReg, cgen_->ToDoubleRegister(source));
168 } else if (source->IsDoubleStackSlot()) {
169 __ vldr(kScratchDoubleReg, cgen_->ToMemOperand(source));
170 } else {
171 UNREACHABLE();
172 }
173 // This move will be done by restoring the saved value to the destination.
174 moves_[index].Eliminate();
175 }
176
177
RestoreValue()178 void LGapResolver::RestoreValue() {
179 DCHECK(in_cycle_);
180 DCHECK(saved_destination_ != NULL);
181
182 if (saved_destination_->IsRegister()) {
183 __ mov(cgen_->ToRegister(saved_destination_), kSavedValueRegister);
184 } else if (saved_destination_->IsStackSlot()) {
185 __ str(kSavedValueRegister, cgen_->ToMemOperand(saved_destination_));
186 } else if (saved_destination_->IsDoubleRegister()) {
187 __ vmov(cgen_->ToDoubleRegister(saved_destination_), kScratchDoubleReg);
188 } else if (saved_destination_->IsDoubleStackSlot()) {
189 __ vstr(kScratchDoubleReg, cgen_->ToMemOperand(saved_destination_));
190 } else {
191 UNREACHABLE();
192 }
193
194 in_cycle_ = false;
195 saved_destination_ = NULL;
196 }
197
198
EmitMove(int index)199 void LGapResolver::EmitMove(int index) {
200 LOperand* source = moves_[index].source();
201 LOperand* destination = moves_[index].destination();
202
203 // Dispatch on the source and destination operand kinds. Not all
204 // combinations are possible.
205
206 if (source->IsRegister()) {
207 Register source_register = cgen_->ToRegister(source);
208 if (destination->IsRegister()) {
209 __ mov(cgen_->ToRegister(destination), source_register);
210 } else {
211 DCHECK(destination->IsStackSlot());
212 __ str(source_register, cgen_->ToMemOperand(destination));
213 }
214 } else if (source->IsStackSlot()) {
215 MemOperand source_operand = cgen_->ToMemOperand(source);
216 if (destination->IsRegister()) {
217 __ ldr(cgen_->ToRegister(destination), source_operand);
218 } else {
219 DCHECK(destination->IsStackSlot());
220 MemOperand destination_operand = cgen_->ToMemOperand(destination);
221 if (!destination_operand.OffsetIsUint12Encodable()) {
222 // ip is overwritten while saving the value to the destination.
223 // Therefore we can't use ip. It is OK if the read from the source
224 // destroys ip, since that happens before the value is read.
225 __ vldr(kScratchDoubleReg.low(), source_operand);
226 __ vstr(kScratchDoubleReg.low(), destination_operand);
227 } else {
228 __ ldr(ip, source_operand);
229 __ str(ip, destination_operand);
230 }
231 }
232
233 } else if (source->IsConstantOperand()) {
234 LConstantOperand* constant_source = LConstantOperand::cast(source);
235 if (destination->IsRegister()) {
236 Register dst = cgen_->ToRegister(destination);
237 Representation r = cgen_->IsSmi(constant_source)
238 ? Representation::Smi() : Representation::Integer32();
239 if (cgen_->IsInteger32(constant_source)) {
240 __ mov(dst, Operand(cgen_->ToRepresentation(constant_source, r)));
241 } else {
242 __ Move(dst, cgen_->ToHandle(constant_source));
243 }
244 } else if (destination->IsDoubleRegister()) {
245 DwVfpRegister result = cgen_->ToDoubleRegister(destination);
246 double v = cgen_->ToDouble(constant_source);
247 __ Vmov(result, v, ip);
248 } else {
249 DCHECK(destination->IsStackSlot());
250 DCHECK(!in_cycle_); // Constant moves happen after all cycles are gone.
251 need_to_restore_root_ = true;
252 Representation r = cgen_->IsSmi(constant_source)
253 ? Representation::Smi() : Representation::Integer32();
254 if (cgen_->IsInteger32(constant_source)) {
255 __ mov(kSavedValueRegister,
256 Operand(cgen_->ToRepresentation(constant_source, r)));
257 } else {
258 __ Move(kSavedValueRegister, cgen_->ToHandle(constant_source));
259 }
260 __ str(kSavedValueRegister, cgen_->ToMemOperand(destination));
261 }
262
263 } else if (source->IsDoubleRegister()) {
264 DwVfpRegister source_register = cgen_->ToDoubleRegister(source);
265 if (destination->IsDoubleRegister()) {
266 __ vmov(cgen_->ToDoubleRegister(destination), source_register);
267 } else {
268 DCHECK(destination->IsDoubleStackSlot());
269 __ vstr(source_register, cgen_->ToMemOperand(destination));
270 }
271
272 } else if (source->IsDoubleStackSlot()) {
273 MemOperand source_operand = cgen_->ToMemOperand(source);
274 if (destination->IsDoubleRegister()) {
275 __ vldr(cgen_->ToDoubleRegister(destination), source_operand);
276 } else {
277 DCHECK(destination->IsDoubleStackSlot());
278 MemOperand destination_operand = cgen_->ToMemOperand(destination);
279 if (in_cycle_) {
280 // kScratchDoubleReg was used to break the cycle.
281 __ vpush(kScratchDoubleReg);
282 __ vldr(kScratchDoubleReg, source_operand);
283 __ vstr(kScratchDoubleReg, destination_operand);
284 __ vpop(kScratchDoubleReg);
285 } else {
286 __ vldr(kScratchDoubleReg, source_operand);
287 __ vstr(kScratchDoubleReg, destination_operand);
288 }
289 }
290 } else {
291 UNREACHABLE();
292 }
293
294 moves_[index].Eliminate();
295 }
296
297
298 #undef __
299
300 } // namespace internal
301 } // namespace v8
302