1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36
37 #include "src/ia32/assembler-ia32.h"
38
39 #include <cstring>
40
41 #if V8_TARGET_ARCH_IA32
42
43 #if V8_LIBC_MSVCRT
44 #include <intrin.h> // _xgetbv()
45 #endif
46 #if V8_OS_MACOSX
47 #include <sys/sysctl.h>
48 #endif
49
50 #include "src/base/bits.h"
51 #include "src/base/cpu.h"
52 #include "src/disassembler.h"
53 #include "src/macro-assembler.h"
54 #include "src/v8.h"
55
56 namespace v8 {
57 namespace internal {
58
59 // -----------------------------------------------------------------------------
60 // Implementation of CpuFeatures
61
62 namespace {
63
64 #if !V8_LIBC_MSVCRT
65
_xgetbv(unsigned int xcr)66 V8_INLINE uint64_t _xgetbv(unsigned int xcr) {
67 unsigned eax, edx;
68 // Check xgetbv; this uses a .byte sequence instead of the instruction
69 // directly because older assemblers do not include support for xgetbv and
70 // there is no easy way to conditionally compile based on the assembler
71 // used.
72 __asm__ volatile(".byte 0x0f, 0x01, 0xd0" : "=a"(eax), "=d"(edx) : "c"(xcr));
73 return static_cast<uint64_t>(eax) | (static_cast<uint64_t>(edx) << 32);
74 }
75
76 #define _XCR_XFEATURE_ENABLED_MASK 0
77
78 #endif // !V8_LIBC_MSVCRT
79
80
OSHasAVXSupport()81 bool OSHasAVXSupport() {
82 #if V8_OS_MACOSX
83 // Mac OS X up to 10.9 has a bug where AVX transitions were indeed being
84 // caused by ISRs, so we detect that here and disable AVX in that case.
85 char buffer[128];
86 size_t buffer_size = arraysize(buffer);
87 int ctl_name[] = {CTL_KERN, KERN_OSRELEASE};
88 if (sysctl(ctl_name, 2, buffer, &buffer_size, nullptr, 0) != 0) {
89 V8_Fatal(__FILE__, __LINE__, "V8 failed to get kernel version");
90 }
91 // The buffer now contains a string of the form XX.YY.ZZ, where
92 // XX is the major kernel version component.
93 char* period_pos = strchr(buffer, '.');
94 DCHECK_NOT_NULL(period_pos);
95 *period_pos = '\0';
96 long kernel_version_major = strtol(buffer, nullptr, 10); // NOLINT
97 if (kernel_version_major <= 13) return false;
98 #endif // V8_OS_MACOSX
99 // Check whether OS claims to support AVX.
100 uint64_t feature_mask = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
101 return (feature_mask & 0x6) == 0x6;
102 }
103
104 } // namespace
105
106
ProbeImpl(bool cross_compile)107 void CpuFeatures::ProbeImpl(bool cross_compile) {
108 base::CPU cpu;
109 CHECK(cpu.has_sse2()); // SSE2 support is mandatory.
110 CHECK(cpu.has_cmov()); // CMOV support is mandatory.
111
112 // Only use statically determined features for cross compile (snapshot).
113 if (cross_compile) return;
114
115 if (cpu.has_sse41() && FLAG_enable_sse4_1) supported_ |= 1u << SSE4_1;
116 if (cpu.has_sse3() && FLAG_enable_sse3) supported_ |= 1u << SSE3;
117 if (cpu.has_avx() && FLAG_enable_avx && cpu.has_osxsave() &&
118 OSHasAVXSupport()) {
119 supported_ |= 1u << AVX;
120 }
121 if (cpu.has_fma3() && FLAG_enable_fma3 && cpu.has_osxsave() &&
122 OSHasAVXSupport()) {
123 supported_ |= 1u << FMA3;
124 }
125 if (cpu.has_bmi1() && FLAG_enable_bmi1) supported_ |= 1u << BMI1;
126 if (cpu.has_bmi2() && FLAG_enable_bmi2) supported_ |= 1u << BMI2;
127 if (cpu.has_lzcnt() && FLAG_enable_lzcnt) supported_ |= 1u << LZCNT;
128 if (cpu.has_popcnt() && FLAG_enable_popcnt) supported_ |= 1u << POPCNT;
129 if (strcmp(FLAG_mcpu, "auto") == 0) {
130 if (cpu.is_atom()) supported_ |= 1u << ATOM;
131 } else if (strcmp(FLAG_mcpu, "atom") == 0) {
132 supported_ |= 1u << ATOM;
133 }
134 }
135
136
PrintTarget()137 void CpuFeatures::PrintTarget() { }
PrintFeatures()138 void CpuFeatures::PrintFeatures() {
139 printf(
140 "SSE3=%d SSE4_1=%d AVX=%d FMA3=%d BMI1=%d BMI2=%d LZCNT=%d POPCNT=%d "
141 "ATOM=%d\n",
142 CpuFeatures::IsSupported(SSE3), CpuFeatures::IsSupported(SSE4_1),
143 CpuFeatures::IsSupported(AVX), CpuFeatures::IsSupported(FMA3),
144 CpuFeatures::IsSupported(BMI1), CpuFeatures::IsSupported(BMI2),
145 CpuFeatures::IsSupported(LZCNT), CpuFeatures::IsSupported(POPCNT),
146 CpuFeatures::IsSupported(ATOM));
147 }
148
149
150 // -----------------------------------------------------------------------------
151 // Implementation of Displacement
152
init(Label * L,Type type)153 void Displacement::init(Label* L, Type type) {
154 DCHECK(!L->is_bound());
155 int next = 0;
156 if (L->is_linked()) {
157 next = L->pos();
158 DCHECK(next > 0); // Displacements must be at positions > 0
159 }
160 // Ensure that we _never_ overflow the next field.
161 DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
162 data_ = NextField::encode(next) | TypeField::encode(type);
163 }
164
165
166 // -----------------------------------------------------------------------------
167 // Implementation of RelocInfo
168
169
170 const int RelocInfo::kApplyMask =
171 RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
172 1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
173 RelocInfo::kDebugBreakSlotMask;
174
175
IsCodedSpecially()176 bool RelocInfo::IsCodedSpecially() {
177 // The deserializer needs to know whether a pointer is specially coded. Being
178 // specially coded on IA32 means that it is a relative address, as used by
179 // branch instructions. These are also the ones that need changing when a
180 // code object moves.
181 return (1 << rmode_) & kApplyMask;
182 }
183
184
IsInConstantPool()185 bool RelocInfo::IsInConstantPool() {
186 return false;
187 }
188
wasm_memory_reference()189 Address RelocInfo::wasm_memory_reference() {
190 DCHECK(IsWasmMemoryReference(rmode_));
191 return Memory::Address_at(pc_);
192 }
193
wasm_global_reference()194 Address RelocInfo::wasm_global_reference() {
195 DCHECK(IsWasmGlobalReference(rmode_));
196 return Memory::Address_at(pc_);
197 }
198
wasm_memory_size_reference()199 uint32_t RelocInfo::wasm_memory_size_reference() {
200 DCHECK(IsWasmMemorySizeReference(rmode_));
201 return Memory::uint32_at(pc_);
202 }
203
unchecked_update_wasm_memory_reference(Address address,ICacheFlushMode flush_mode)204 void RelocInfo::unchecked_update_wasm_memory_reference(
205 Address address, ICacheFlushMode flush_mode) {
206 Memory::Address_at(pc_) = address;
207 }
208
unchecked_update_wasm_memory_size(uint32_t size,ICacheFlushMode flush_mode)209 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
210 ICacheFlushMode flush_mode) {
211 Memory::uint32_at(pc_) = size;
212 }
213
214 // -----------------------------------------------------------------------------
215 // Implementation of Operand
216
Operand(Register base,int32_t disp,RelocInfo::Mode rmode)217 Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
218 // [base + disp/r]
219 if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
220 // [base]
221 set_modrm(0, base);
222 if (base.is(esp)) set_sib(times_1, esp, base);
223 } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
224 // [base + disp8]
225 set_modrm(1, base);
226 if (base.is(esp)) set_sib(times_1, esp, base);
227 set_disp8(disp);
228 } else {
229 // [base + disp/r]
230 set_modrm(2, base);
231 if (base.is(esp)) set_sib(times_1, esp, base);
232 set_dispr(disp, rmode);
233 }
234 }
235
236
Operand(Register base,Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)237 Operand::Operand(Register base,
238 Register index,
239 ScaleFactor scale,
240 int32_t disp,
241 RelocInfo::Mode rmode) {
242 DCHECK(!index.is(esp)); // illegal addressing mode
243 // [base + index*scale + disp/r]
244 if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
245 // [base + index*scale]
246 set_modrm(0, esp);
247 set_sib(scale, index, base);
248 } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
249 // [base + index*scale + disp8]
250 set_modrm(1, esp);
251 set_sib(scale, index, base);
252 set_disp8(disp);
253 } else {
254 // [base + index*scale + disp/r]
255 set_modrm(2, esp);
256 set_sib(scale, index, base);
257 set_dispr(disp, rmode);
258 }
259 }
260
261
Operand(Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)262 Operand::Operand(Register index,
263 ScaleFactor scale,
264 int32_t disp,
265 RelocInfo::Mode rmode) {
266 DCHECK(!index.is(esp)); // illegal addressing mode
267 // [index*scale + disp/r]
268 set_modrm(0, esp);
269 set_sib(scale, index, ebp);
270 set_dispr(disp, rmode);
271 }
272
273
is_reg(Register reg) const274 bool Operand::is_reg(Register reg) const {
275 return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only.
276 && ((buf_[0] & 0x07) == reg.code()); // register codes match.
277 }
278
279
is_reg_only() const280 bool Operand::is_reg_only() const {
281 return (buf_[0] & 0xF8) == 0xC0; // Addressing mode is register only.
282 }
283
284
reg() const285 Register Operand::reg() const {
286 DCHECK(is_reg_only());
287 return Register::from_code(buf_[0] & 0x07);
288 }
289
290
291 // -----------------------------------------------------------------------------
292 // Implementation of Assembler.
293
294 // Emit a single byte. Must always be inlined.
295 #define EMIT(x) \
296 *pc_++ = (x)
297
298
299 #ifdef GENERATED_CODE_COVERAGE
300 static void InitCoverageLog();
301 #endif
302
Assembler(Isolate * isolate,void * buffer,int buffer_size)303 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
304 : AssemblerBase(isolate, buffer, buffer_size),
305 positions_recorder_(this) {
306 // Clear the buffer in debug mode unless it was provided by the
307 // caller in which case we can't be sure it's okay to overwrite
308 // existing code in it; see CodePatcher::CodePatcher(...).
309 #ifdef DEBUG
310 if (own_buffer_) {
311 memset(buffer_, 0xCC, buffer_size_); // int3
312 }
313 #endif
314
315 reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
316
317 #ifdef GENERATED_CODE_COVERAGE
318 InitCoverageLog();
319 #endif
320 }
321
322
GetCode(CodeDesc * desc)323 void Assembler::GetCode(CodeDesc* desc) {
324 // Finalize code (at this point overflow() may be true, but the gap ensures
325 // that we are still not overlapping instructions and relocation info).
326 reloc_info_writer.Finish();
327 DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
328 // Set up code descriptor.
329 desc->buffer = buffer_;
330 desc->buffer_size = buffer_size_;
331 desc->instr_size = pc_offset();
332 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
333 desc->origin = this;
334 desc->constant_pool_size = 0;
335 desc->unwinding_info_size = 0;
336 desc->unwinding_info = nullptr;
337 }
338
339
Align(int m)340 void Assembler::Align(int m) {
341 DCHECK(base::bits::IsPowerOfTwo32(m));
342 int mask = m - 1;
343 int addr = pc_offset();
344 Nop((m - (addr & mask)) & mask);
345 }
346
347
IsNop(Address addr)348 bool Assembler::IsNop(Address addr) {
349 Address a = addr;
350 while (*a == 0x66) a++;
351 if (*a == 0x90) return true;
352 if (a[0] == 0xf && a[1] == 0x1f) return true;
353 return false;
354 }
355
356
Nop(int bytes)357 void Assembler::Nop(int bytes) {
358 EnsureSpace ensure_space(this);
359
360 // Multi byte nops from http://support.amd.com/us/Processor_TechDocs/40546.pdf
361 while (bytes > 0) {
362 switch (bytes) {
363 case 2:
364 EMIT(0x66);
365 case 1:
366 EMIT(0x90);
367 return;
368 case 3:
369 EMIT(0xf);
370 EMIT(0x1f);
371 EMIT(0);
372 return;
373 case 4:
374 EMIT(0xf);
375 EMIT(0x1f);
376 EMIT(0x40);
377 EMIT(0);
378 return;
379 case 6:
380 EMIT(0x66);
381 case 5:
382 EMIT(0xf);
383 EMIT(0x1f);
384 EMIT(0x44);
385 EMIT(0);
386 EMIT(0);
387 return;
388 case 7:
389 EMIT(0xf);
390 EMIT(0x1f);
391 EMIT(0x80);
392 EMIT(0);
393 EMIT(0);
394 EMIT(0);
395 EMIT(0);
396 return;
397 default:
398 case 11:
399 EMIT(0x66);
400 bytes--;
401 case 10:
402 EMIT(0x66);
403 bytes--;
404 case 9:
405 EMIT(0x66);
406 bytes--;
407 case 8:
408 EMIT(0xf);
409 EMIT(0x1f);
410 EMIT(0x84);
411 EMIT(0);
412 EMIT(0);
413 EMIT(0);
414 EMIT(0);
415 EMIT(0);
416 bytes -= 8;
417 }
418 }
419 }
420
421
CodeTargetAlign()422 void Assembler::CodeTargetAlign() {
423 Align(16); // Preferred alignment of jump targets on ia32.
424 }
425
426
cpuid()427 void Assembler::cpuid() {
428 EnsureSpace ensure_space(this);
429 EMIT(0x0F);
430 EMIT(0xA2);
431 }
432
433
pushad()434 void Assembler::pushad() {
435 EnsureSpace ensure_space(this);
436 EMIT(0x60);
437 }
438
439
popad()440 void Assembler::popad() {
441 EnsureSpace ensure_space(this);
442 EMIT(0x61);
443 }
444
445
pushfd()446 void Assembler::pushfd() {
447 EnsureSpace ensure_space(this);
448 EMIT(0x9C);
449 }
450
451
popfd()452 void Assembler::popfd() {
453 EnsureSpace ensure_space(this);
454 EMIT(0x9D);
455 }
456
457
push(const Immediate & x)458 void Assembler::push(const Immediate& x) {
459 EnsureSpace ensure_space(this);
460 if (x.is_int8()) {
461 EMIT(0x6a);
462 EMIT(x.x_);
463 } else {
464 EMIT(0x68);
465 emit(x);
466 }
467 }
468
469
push_imm32(int32_t imm32)470 void Assembler::push_imm32(int32_t imm32) {
471 EnsureSpace ensure_space(this);
472 EMIT(0x68);
473 emit(imm32);
474 }
475
476
push(Register src)477 void Assembler::push(Register src) {
478 EnsureSpace ensure_space(this);
479 EMIT(0x50 | src.code());
480 }
481
482
push(const Operand & src)483 void Assembler::push(const Operand& src) {
484 EnsureSpace ensure_space(this);
485 EMIT(0xFF);
486 emit_operand(esi, src);
487 }
488
489
pop(Register dst)490 void Assembler::pop(Register dst) {
491 DCHECK(reloc_info_writer.last_pc() != NULL);
492 EnsureSpace ensure_space(this);
493 EMIT(0x58 | dst.code());
494 }
495
496
pop(const Operand & dst)497 void Assembler::pop(const Operand& dst) {
498 EnsureSpace ensure_space(this);
499 EMIT(0x8F);
500 emit_operand(eax, dst);
501 }
502
503
enter(const Immediate & size)504 void Assembler::enter(const Immediate& size) {
505 EnsureSpace ensure_space(this);
506 EMIT(0xC8);
507 emit_w(size);
508 EMIT(0);
509 }
510
511
leave()512 void Assembler::leave() {
513 EnsureSpace ensure_space(this);
514 EMIT(0xC9);
515 }
516
517
mov_b(Register dst,const Operand & src)518 void Assembler::mov_b(Register dst, const Operand& src) {
519 CHECK(dst.is_byte_register());
520 EnsureSpace ensure_space(this);
521 EMIT(0x8A);
522 emit_operand(dst, src);
523 }
524
525
mov_b(const Operand & dst,const Immediate & src)526 void Assembler::mov_b(const Operand& dst, const Immediate& src) {
527 EnsureSpace ensure_space(this);
528 EMIT(0xC6);
529 emit_operand(eax, dst);
530 EMIT(static_cast<int8_t>(src.x_));
531 }
532
533
mov_b(const Operand & dst,Register src)534 void Assembler::mov_b(const Operand& dst, Register src) {
535 CHECK(src.is_byte_register());
536 EnsureSpace ensure_space(this);
537 EMIT(0x88);
538 emit_operand(src, dst);
539 }
540
541
mov_w(Register dst,const Operand & src)542 void Assembler::mov_w(Register dst, const Operand& src) {
543 EnsureSpace ensure_space(this);
544 EMIT(0x66);
545 EMIT(0x8B);
546 emit_operand(dst, src);
547 }
548
549
mov_w(const Operand & dst,Register src)550 void Assembler::mov_w(const Operand& dst, Register src) {
551 EnsureSpace ensure_space(this);
552 EMIT(0x66);
553 EMIT(0x89);
554 emit_operand(src, dst);
555 }
556
557
mov_w(const Operand & dst,const Immediate & src)558 void Assembler::mov_w(const Operand& dst, const Immediate& src) {
559 EnsureSpace ensure_space(this);
560 EMIT(0x66);
561 EMIT(0xC7);
562 emit_operand(eax, dst);
563 EMIT(static_cast<int8_t>(src.x_ & 0xff));
564 EMIT(static_cast<int8_t>(src.x_ >> 8));
565 }
566
567
mov(Register dst,int32_t imm32)568 void Assembler::mov(Register dst, int32_t imm32) {
569 EnsureSpace ensure_space(this);
570 EMIT(0xB8 | dst.code());
571 emit(imm32);
572 }
573
574
mov(Register dst,const Immediate & x)575 void Assembler::mov(Register dst, const Immediate& x) {
576 EnsureSpace ensure_space(this);
577 EMIT(0xB8 | dst.code());
578 emit(x);
579 }
580
581
mov(Register dst,Handle<Object> handle)582 void Assembler::mov(Register dst, Handle<Object> handle) {
583 EnsureSpace ensure_space(this);
584 EMIT(0xB8 | dst.code());
585 emit(handle);
586 }
587
588
mov(Register dst,const Operand & src)589 void Assembler::mov(Register dst, const Operand& src) {
590 EnsureSpace ensure_space(this);
591 EMIT(0x8B);
592 emit_operand(dst, src);
593 }
594
595
mov(Register dst,Register src)596 void Assembler::mov(Register dst, Register src) {
597 EnsureSpace ensure_space(this);
598 EMIT(0x89);
599 EMIT(0xC0 | src.code() << 3 | dst.code());
600 }
601
602
mov(const Operand & dst,const Immediate & x)603 void Assembler::mov(const Operand& dst, const Immediate& x) {
604 EnsureSpace ensure_space(this);
605 EMIT(0xC7);
606 emit_operand(eax, dst);
607 emit(x);
608 }
609
610
mov(const Operand & dst,Handle<Object> handle)611 void Assembler::mov(const Operand& dst, Handle<Object> handle) {
612 EnsureSpace ensure_space(this);
613 EMIT(0xC7);
614 emit_operand(eax, dst);
615 emit(handle);
616 }
617
618
mov(const Operand & dst,Register src)619 void Assembler::mov(const Operand& dst, Register src) {
620 EnsureSpace ensure_space(this);
621 EMIT(0x89);
622 emit_operand(src, dst);
623 }
624
625
movsx_b(Register dst,const Operand & src)626 void Assembler::movsx_b(Register dst, const Operand& src) {
627 EnsureSpace ensure_space(this);
628 EMIT(0x0F);
629 EMIT(0xBE);
630 emit_operand(dst, src);
631 }
632
633
movsx_w(Register dst,const Operand & src)634 void Assembler::movsx_w(Register dst, const Operand& src) {
635 EnsureSpace ensure_space(this);
636 EMIT(0x0F);
637 EMIT(0xBF);
638 emit_operand(dst, src);
639 }
640
641
movzx_b(Register dst,const Operand & src)642 void Assembler::movzx_b(Register dst, const Operand& src) {
643 EnsureSpace ensure_space(this);
644 EMIT(0x0F);
645 EMIT(0xB6);
646 emit_operand(dst, src);
647 }
648
649
movzx_w(Register dst,const Operand & src)650 void Assembler::movzx_w(Register dst, const Operand& src) {
651 EnsureSpace ensure_space(this);
652 EMIT(0x0F);
653 EMIT(0xB7);
654 emit_operand(dst, src);
655 }
656
657
cmov(Condition cc,Register dst,const Operand & src)658 void Assembler::cmov(Condition cc, Register dst, const Operand& src) {
659 EnsureSpace ensure_space(this);
660 // Opcode: 0f 40 + cc /r.
661 EMIT(0x0F);
662 EMIT(0x40 + cc);
663 emit_operand(dst, src);
664 }
665
666
cld()667 void Assembler::cld() {
668 EnsureSpace ensure_space(this);
669 EMIT(0xFC);
670 }
671
672
rep_movs()673 void Assembler::rep_movs() {
674 EnsureSpace ensure_space(this);
675 EMIT(0xF3);
676 EMIT(0xA5);
677 }
678
679
rep_stos()680 void Assembler::rep_stos() {
681 EnsureSpace ensure_space(this);
682 EMIT(0xF3);
683 EMIT(0xAB);
684 }
685
686
stos()687 void Assembler::stos() {
688 EnsureSpace ensure_space(this);
689 EMIT(0xAB);
690 }
691
692
xchg(Register dst,Register src)693 void Assembler::xchg(Register dst, Register src) {
694 EnsureSpace ensure_space(this);
695 if (src.is(eax) || dst.is(eax)) { // Single-byte encoding.
696 EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
697 } else {
698 EMIT(0x87);
699 EMIT(0xC0 | src.code() << 3 | dst.code());
700 }
701 }
702
703
xchg(Register dst,const Operand & src)704 void Assembler::xchg(Register dst, const Operand& src) {
705 EnsureSpace ensure_space(this);
706 EMIT(0x87);
707 emit_operand(dst, src);
708 }
709
xchg_b(Register reg,const Operand & op)710 void Assembler::xchg_b(Register reg, const Operand& op) {
711 EnsureSpace ensure_space(this);
712 EMIT(0x86);
713 emit_operand(reg, op);
714 }
715
xchg_w(Register reg,const Operand & op)716 void Assembler::xchg_w(Register reg, const Operand& op) {
717 EnsureSpace ensure_space(this);
718 EMIT(0x66);
719 EMIT(0x87);
720 emit_operand(reg, op);
721 }
722
lock()723 void Assembler::lock() {
724 EnsureSpace ensure_space(this);
725 EMIT(0xF0);
726 }
727
cmpxchg(const Operand & dst,Register src)728 void Assembler::cmpxchg(const Operand& dst, Register src) {
729 EnsureSpace ensure_space(this);
730 EMIT(0x0F);
731 EMIT(0xB1);
732 emit_operand(src, dst);
733 }
734
cmpxchg_b(const Operand & dst,Register src)735 void Assembler::cmpxchg_b(const Operand& dst, Register src) {
736 EnsureSpace ensure_space(this);
737 EMIT(0x0F);
738 EMIT(0xB0);
739 emit_operand(src, dst);
740 }
741
cmpxchg_w(const Operand & dst,Register src)742 void Assembler::cmpxchg_w(const Operand& dst, Register src) {
743 EnsureSpace ensure_space(this);
744 EMIT(0x66);
745 EMIT(0x0F);
746 EMIT(0xB1);
747 emit_operand(src, dst);
748 }
749
adc(Register dst,int32_t imm32)750 void Assembler::adc(Register dst, int32_t imm32) {
751 EnsureSpace ensure_space(this);
752 emit_arith(2, Operand(dst), Immediate(imm32));
753 }
754
755
adc(Register dst,const Operand & src)756 void Assembler::adc(Register dst, const Operand& src) {
757 EnsureSpace ensure_space(this);
758 EMIT(0x13);
759 emit_operand(dst, src);
760 }
761
762
add(Register dst,const Operand & src)763 void Assembler::add(Register dst, const Operand& src) {
764 EnsureSpace ensure_space(this);
765 EMIT(0x03);
766 emit_operand(dst, src);
767 }
768
769
add(const Operand & dst,Register src)770 void Assembler::add(const Operand& dst, Register src) {
771 EnsureSpace ensure_space(this);
772 EMIT(0x01);
773 emit_operand(src, dst);
774 }
775
776
add(const Operand & dst,const Immediate & x)777 void Assembler::add(const Operand& dst, const Immediate& x) {
778 DCHECK(reloc_info_writer.last_pc() != NULL);
779 EnsureSpace ensure_space(this);
780 emit_arith(0, dst, x);
781 }
782
783
and_(Register dst,int32_t imm32)784 void Assembler::and_(Register dst, int32_t imm32) {
785 and_(dst, Immediate(imm32));
786 }
787
788
and_(Register dst,const Immediate & x)789 void Assembler::and_(Register dst, const Immediate& x) {
790 EnsureSpace ensure_space(this);
791 emit_arith(4, Operand(dst), x);
792 }
793
794
and_(Register dst,const Operand & src)795 void Assembler::and_(Register dst, const Operand& src) {
796 EnsureSpace ensure_space(this);
797 EMIT(0x23);
798 emit_operand(dst, src);
799 }
800
801
and_(const Operand & dst,const Immediate & x)802 void Assembler::and_(const Operand& dst, const Immediate& x) {
803 EnsureSpace ensure_space(this);
804 emit_arith(4, dst, x);
805 }
806
807
and_(const Operand & dst,Register src)808 void Assembler::and_(const Operand& dst, Register src) {
809 EnsureSpace ensure_space(this);
810 EMIT(0x21);
811 emit_operand(src, dst);
812 }
813
cmpb(const Operand & op,Immediate imm8)814 void Assembler::cmpb(const Operand& op, Immediate imm8) {
815 DCHECK(imm8.is_int8() || imm8.is_uint8());
816 EnsureSpace ensure_space(this);
817 if (op.is_reg(eax)) {
818 EMIT(0x3C);
819 } else {
820 EMIT(0x80);
821 emit_operand(edi, op); // edi == 7
822 }
823 emit_b(imm8);
824 }
825
826
cmpb(const Operand & op,Register reg)827 void Assembler::cmpb(const Operand& op, Register reg) {
828 CHECK(reg.is_byte_register());
829 EnsureSpace ensure_space(this);
830 EMIT(0x38);
831 emit_operand(reg, op);
832 }
833
834
cmpb(Register reg,const Operand & op)835 void Assembler::cmpb(Register reg, const Operand& op) {
836 CHECK(reg.is_byte_register());
837 EnsureSpace ensure_space(this);
838 EMIT(0x3A);
839 emit_operand(reg, op);
840 }
841
842
cmpw(const Operand & op,Immediate imm16)843 void Assembler::cmpw(const Operand& op, Immediate imm16) {
844 DCHECK(imm16.is_int16());
845 EnsureSpace ensure_space(this);
846 EMIT(0x66);
847 EMIT(0x81);
848 emit_operand(edi, op);
849 emit_w(imm16);
850 }
851
cmpw(Register reg,const Operand & op)852 void Assembler::cmpw(Register reg, const Operand& op) {
853 EnsureSpace ensure_space(this);
854 EMIT(0x66);
855 EMIT(0x3B);
856 emit_operand(reg, op);
857 }
858
cmpw(const Operand & op,Register reg)859 void Assembler::cmpw(const Operand& op, Register reg) {
860 EnsureSpace ensure_space(this);
861 EMIT(0x66);
862 EMIT(0x39);
863 emit_operand(reg, op);
864 }
865
cmp(Register reg,int32_t imm32)866 void Assembler::cmp(Register reg, int32_t imm32) {
867 EnsureSpace ensure_space(this);
868 emit_arith(7, Operand(reg), Immediate(imm32));
869 }
870
871
cmp(Register reg,Handle<Object> handle)872 void Assembler::cmp(Register reg, Handle<Object> handle) {
873 EnsureSpace ensure_space(this);
874 emit_arith(7, Operand(reg), Immediate(handle));
875 }
876
877
cmp(Register reg,const Operand & op)878 void Assembler::cmp(Register reg, const Operand& op) {
879 EnsureSpace ensure_space(this);
880 EMIT(0x3B);
881 emit_operand(reg, op);
882 }
883
cmp(const Operand & op,Register reg)884 void Assembler::cmp(const Operand& op, Register reg) {
885 EnsureSpace ensure_space(this);
886 EMIT(0x39);
887 emit_operand(reg, op);
888 }
889
cmp(const Operand & op,const Immediate & imm)890 void Assembler::cmp(const Operand& op, const Immediate& imm) {
891 EnsureSpace ensure_space(this);
892 emit_arith(7, op, imm);
893 }
894
895
cmp(const Operand & op,Handle<Object> handle)896 void Assembler::cmp(const Operand& op, Handle<Object> handle) {
897 EnsureSpace ensure_space(this);
898 emit_arith(7, op, Immediate(handle));
899 }
900
901
cmpb_al(const Operand & op)902 void Assembler::cmpb_al(const Operand& op) {
903 EnsureSpace ensure_space(this);
904 EMIT(0x38); // CMP r/m8, r8
905 emit_operand(eax, op); // eax has same code as register al.
906 }
907
908
cmpw_ax(const Operand & op)909 void Assembler::cmpw_ax(const Operand& op) {
910 EnsureSpace ensure_space(this);
911 EMIT(0x66);
912 EMIT(0x39); // CMP r/m16, r16
913 emit_operand(eax, op); // eax has same code as register ax.
914 }
915
916
dec_b(Register dst)917 void Assembler::dec_b(Register dst) {
918 CHECK(dst.is_byte_register());
919 EnsureSpace ensure_space(this);
920 EMIT(0xFE);
921 EMIT(0xC8 | dst.code());
922 }
923
924
dec_b(const Operand & dst)925 void Assembler::dec_b(const Operand& dst) {
926 EnsureSpace ensure_space(this);
927 EMIT(0xFE);
928 emit_operand(ecx, dst);
929 }
930
931
dec(Register dst)932 void Assembler::dec(Register dst) {
933 EnsureSpace ensure_space(this);
934 EMIT(0x48 | dst.code());
935 }
936
937
dec(const Operand & dst)938 void Assembler::dec(const Operand& dst) {
939 EnsureSpace ensure_space(this);
940 EMIT(0xFF);
941 emit_operand(ecx, dst);
942 }
943
944
cdq()945 void Assembler::cdq() {
946 EnsureSpace ensure_space(this);
947 EMIT(0x99);
948 }
949
950
idiv(const Operand & src)951 void Assembler::idiv(const Operand& src) {
952 EnsureSpace ensure_space(this);
953 EMIT(0xF7);
954 emit_operand(edi, src);
955 }
956
957
div(const Operand & src)958 void Assembler::div(const Operand& src) {
959 EnsureSpace ensure_space(this);
960 EMIT(0xF7);
961 emit_operand(esi, src);
962 }
963
964
imul(Register reg)965 void Assembler::imul(Register reg) {
966 EnsureSpace ensure_space(this);
967 EMIT(0xF7);
968 EMIT(0xE8 | reg.code());
969 }
970
971
imul(Register dst,const Operand & src)972 void Assembler::imul(Register dst, const Operand& src) {
973 EnsureSpace ensure_space(this);
974 EMIT(0x0F);
975 EMIT(0xAF);
976 emit_operand(dst, src);
977 }
978
979
imul(Register dst,Register src,int32_t imm32)980 void Assembler::imul(Register dst, Register src, int32_t imm32) {
981 imul(dst, Operand(src), imm32);
982 }
983
984
imul(Register dst,const Operand & src,int32_t imm32)985 void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
986 EnsureSpace ensure_space(this);
987 if (is_int8(imm32)) {
988 EMIT(0x6B);
989 emit_operand(dst, src);
990 EMIT(imm32);
991 } else {
992 EMIT(0x69);
993 emit_operand(dst, src);
994 emit(imm32);
995 }
996 }
997
998
inc(Register dst)999 void Assembler::inc(Register dst) {
1000 EnsureSpace ensure_space(this);
1001 EMIT(0x40 | dst.code());
1002 }
1003
1004
inc(const Operand & dst)1005 void Assembler::inc(const Operand& dst) {
1006 EnsureSpace ensure_space(this);
1007 EMIT(0xFF);
1008 emit_operand(eax, dst);
1009 }
1010
1011
lea(Register dst,const Operand & src)1012 void Assembler::lea(Register dst, const Operand& src) {
1013 EnsureSpace ensure_space(this);
1014 EMIT(0x8D);
1015 emit_operand(dst, src);
1016 }
1017
1018
mul(Register src)1019 void Assembler::mul(Register src) {
1020 EnsureSpace ensure_space(this);
1021 EMIT(0xF7);
1022 EMIT(0xE0 | src.code());
1023 }
1024
1025
neg(Register dst)1026 void Assembler::neg(Register dst) {
1027 EnsureSpace ensure_space(this);
1028 EMIT(0xF7);
1029 EMIT(0xD8 | dst.code());
1030 }
1031
1032
neg(const Operand & dst)1033 void Assembler::neg(const Operand& dst) {
1034 EnsureSpace ensure_space(this);
1035 EMIT(0xF7);
1036 emit_operand(ebx, dst);
1037 }
1038
1039
not_(Register dst)1040 void Assembler::not_(Register dst) {
1041 EnsureSpace ensure_space(this);
1042 EMIT(0xF7);
1043 EMIT(0xD0 | dst.code());
1044 }
1045
1046
not_(const Operand & dst)1047 void Assembler::not_(const Operand& dst) {
1048 EnsureSpace ensure_space(this);
1049 EMIT(0xF7);
1050 emit_operand(edx, dst);
1051 }
1052
1053
or_(Register dst,int32_t imm32)1054 void Assembler::or_(Register dst, int32_t imm32) {
1055 EnsureSpace ensure_space(this);
1056 emit_arith(1, Operand(dst), Immediate(imm32));
1057 }
1058
1059
or_(Register dst,const Operand & src)1060 void Assembler::or_(Register dst, const Operand& src) {
1061 EnsureSpace ensure_space(this);
1062 EMIT(0x0B);
1063 emit_operand(dst, src);
1064 }
1065
1066
or_(const Operand & dst,const Immediate & x)1067 void Assembler::or_(const Operand& dst, const Immediate& x) {
1068 EnsureSpace ensure_space(this);
1069 emit_arith(1, dst, x);
1070 }
1071
1072
or_(const Operand & dst,Register src)1073 void Assembler::or_(const Operand& dst, Register src) {
1074 EnsureSpace ensure_space(this);
1075 EMIT(0x09);
1076 emit_operand(src, dst);
1077 }
1078
1079
rcl(Register dst,uint8_t imm8)1080 void Assembler::rcl(Register dst, uint8_t imm8) {
1081 EnsureSpace ensure_space(this);
1082 DCHECK(is_uint5(imm8)); // illegal shift count
1083 if (imm8 == 1) {
1084 EMIT(0xD1);
1085 EMIT(0xD0 | dst.code());
1086 } else {
1087 EMIT(0xC1);
1088 EMIT(0xD0 | dst.code());
1089 EMIT(imm8);
1090 }
1091 }
1092
1093
rcr(Register dst,uint8_t imm8)1094 void Assembler::rcr(Register dst, uint8_t imm8) {
1095 EnsureSpace ensure_space(this);
1096 DCHECK(is_uint5(imm8)); // illegal shift count
1097 if (imm8 == 1) {
1098 EMIT(0xD1);
1099 EMIT(0xD8 | dst.code());
1100 } else {
1101 EMIT(0xC1);
1102 EMIT(0xD8 | dst.code());
1103 EMIT(imm8);
1104 }
1105 }
1106
1107
ror(const Operand & dst,uint8_t imm8)1108 void Assembler::ror(const Operand& dst, uint8_t imm8) {
1109 EnsureSpace ensure_space(this);
1110 DCHECK(is_uint5(imm8)); // illegal shift count
1111 if (imm8 == 1) {
1112 EMIT(0xD1);
1113 emit_operand(ecx, dst);
1114 } else {
1115 EMIT(0xC1);
1116 emit_operand(ecx, dst);
1117 EMIT(imm8);
1118 }
1119 }
1120
1121
ror_cl(const Operand & dst)1122 void Assembler::ror_cl(const Operand& dst) {
1123 EnsureSpace ensure_space(this);
1124 EMIT(0xD3);
1125 emit_operand(ecx, dst);
1126 }
1127
1128
sar(const Operand & dst,uint8_t imm8)1129 void Assembler::sar(const Operand& dst, uint8_t imm8) {
1130 EnsureSpace ensure_space(this);
1131 DCHECK(is_uint5(imm8)); // illegal shift count
1132 if (imm8 == 1) {
1133 EMIT(0xD1);
1134 emit_operand(edi, dst);
1135 } else {
1136 EMIT(0xC1);
1137 emit_operand(edi, dst);
1138 EMIT(imm8);
1139 }
1140 }
1141
1142
sar_cl(const Operand & dst)1143 void Assembler::sar_cl(const Operand& dst) {
1144 EnsureSpace ensure_space(this);
1145 EMIT(0xD3);
1146 emit_operand(edi, dst);
1147 }
1148
sbb(Register dst,const Operand & src)1149 void Assembler::sbb(Register dst, const Operand& src) {
1150 EnsureSpace ensure_space(this);
1151 EMIT(0x1B);
1152 emit_operand(dst, src);
1153 }
1154
shld(Register dst,Register src,uint8_t shift)1155 void Assembler::shld(Register dst, Register src, uint8_t shift) {
1156 DCHECK(is_uint5(shift));
1157 EnsureSpace ensure_space(this);
1158 EMIT(0x0F);
1159 EMIT(0xA4);
1160 emit_operand(src, Operand(dst));
1161 EMIT(shift);
1162 }
1163
shld_cl(Register dst,Register src)1164 void Assembler::shld_cl(Register dst, Register src) {
1165 EnsureSpace ensure_space(this);
1166 EMIT(0x0F);
1167 EMIT(0xA5);
1168 emit_operand(src, Operand(dst));
1169 }
1170
1171
shl(const Operand & dst,uint8_t imm8)1172 void Assembler::shl(const Operand& dst, uint8_t imm8) {
1173 EnsureSpace ensure_space(this);
1174 DCHECK(is_uint5(imm8)); // illegal shift count
1175 if (imm8 == 1) {
1176 EMIT(0xD1);
1177 emit_operand(esp, dst);
1178 } else {
1179 EMIT(0xC1);
1180 emit_operand(esp, dst);
1181 EMIT(imm8);
1182 }
1183 }
1184
1185
shl_cl(const Operand & dst)1186 void Assembler::shl_cl(const Operand& dst) {
1187 EnsureSpace ensure_space(this);
1188 EMIT(0xD3);
1189 emit_operand(esp, dst);
1190 }
1191
shr(const Operand & dst,uint8_t imm8)1192 void Assembler::shr(const Operand& dst, uint8_t imm8) {
1193 EnsureSpace ensure_space(this);
1194 DCHECK(is_uint5(imm8)); // illegal shift count
1195 if (imm8 == 1) {
1196 EMIT(0xD1);
1197 emit_operand(ebp, dst);
1198 } else {
1199 EMIT(0xC1);
1200 emit_operand(ebp, dst);
1201 EMIT(imm8);
1202 }
1203 }
1204
1205
shr_cl(const Operand & dst)1206 void Assembler::shr_cl(const Operand& dst) {
1207 EnsureSpace ensure_space(this);
1208 EMIT(0xD3);
1209 emit_operand(ebp, dst);
1210 }
1211
shrd(Register dst,Register src,uint8_t shift)1212 void Assembler::shrd(Register dst, Register src, uint8_t shift) {
1213 DCHECK(is_uint5(shift));
1214 EnsureSpace ensure_space(this);
1215 EMIT(0x0F);
1216 EMIT(0xAC);
1217 emit_operand(dst, Operand(src));
1218 EMIT(shift);
1219 }
1220
shrd_cl(const Operand & dst,Register src)1221 void Assembler::shrd_cl(const Operand& dst, Register src) {
1222 EnsureSpace ensure_space(this);
1223 EMIT(0x0F);
1224 EMIT(0xAD);
1225 emit_operand(src, dst);
1226 }
1227
sub(const Operand & dst,const Immediate & x)1228 void Assembler::sub(const Operand& dst, const Immediate& x) {
1229 EnsureSpace ensure_space(this);
1230 emit_arith(5, dst, x);
1231 }
1232
1233
sub(Register dst,const Operand & src)1234 void Assembler::sub(Register dst, const Operand& src) {
1235 EnsureSpace ensure_space(this);
1236 EMIT(0x2B);
1237 emit_operand(dst, src);
1238 }
1239
1240
sub(const Operand & dst,Register src)1241 void Assembler::sub(const Operand& dst, Register src) {
1242 EnsureSpace ensure_space(this);
1243 EMIT(0x29);
1244 emit_operand(src, dst);
1245 }
1246
1247
test(Register reg,const Immediate & imm)1248 void Assembler::test(Register reg, const Immediate& imm) {
1249 if (imm.is_uint8()) {
1250 test_b(reg, imm);
1251 return;
1252 }
1253
1254 EnsureSpace ensure_space(this);
1255 // This is not using emit_arith because test doesn't support
1256 // sign-extension of 8-bit operands.
1257 if (reg.is(eax)) {
1258 EMIT(0xA9);
1259 } else {
1260 EMIT(0xF7);
1261 EMIT(0xC0 | reg.code());
1262 }
1263 emit(imm);
1264 }
1265
1266
test(Register reg,const Operand & op)1267 void Assembler::test(Register reg, const Operand& op) {
1268 EnsureSpace ensure_space(this);
1269 EMIT(0x85);
1270 emit_operand(reg, op);
1271 }
1272
1273
test_b(Register reg,const Operand & op)1274 void Assembler::test_b(Register reg, const Operand& op) {
1275 CHECK(reg.is_byte_register());
1276 EnsureSpace ensure_space(this);
1277 EMIT(0x84);
1278 emit_operand(reg, op);
1279 }
1280
1281
test(const Operand & op,const Immediate & imm)1282 void Assembler::test(const Operand& op, const Immediate& imm) {
1283 if (op.is_reg_only()) {
1284 test(op.reg(), imm);
1285 return;
1286 }
1287 if (imm.is_uint8()) {
1288 return test_b(op, imm);
1289 }
1290 EnsureSpace ensure_space(this);
1291 EMIT(0xF7);
1292 emit_operand(eax, op);
1293 emit(imm);
1294 }
1295
test_b(Register reg,Immediate imm8)1296 void Assembler::test_b(Register reg, Immediate imm8) {
1297 DCHECK(imm8.is_uint8());
1298 EnsureSpace ensure_space(this);
1299 // Only use test against byte for registers that have a byte
1300 // variant: eax, ebx, ecx, and edx.
1301 if (reg.is(eax)) {
1302 EMIT(0xA8);
1303 emit_b(imm8);
1304 } else if (reg.is_byte_register()) {
1305 emit_arith_b(0xF6, 0xC0, reg, static_cast<uint8_t>(imm8.x_));
1306 } else {
1307 EMIT(0x66);
1308 EMIT(0xF7);
1309 EMIT(0xC0 | reg.code());
1310 emit_w(imm8);
1311 }
1312 }
1313
test_b(const Operand & op,Immediate imm8)1314 void Assembler::test_b(const Operand& op, Immediate imm8) {
1315 if (op.is_reg_only()) {
1316 test_b(op.reg(), imm8);
1317 return;
1318 }
1319 EnsureSpace ensure_space(this);
1320 EMIT(0xF6);
1321 emit_operand(eax, op);
1322 emit_b(imm8);
1323 }
1324
test_w(Register reg,Immediate imm16)1325 void Assembler::test_w(Register reg, Immediate imm16) {
1326 DCHECK(imm16.is_int16() || imm16.is_uint16());
1327 EnsureSpace ensure_space(this);
1328 if (reg.is(eax)) {
1329 EMIT(0xA9);
1330 emit_w(imm16);
1331 } else {
1332 EMIT(0x66);
1333 EMIT(0xF7);
1334 EMIT(0xc0 | reg.code());
1335 emit_w(imm16);
1336 }
1337 }
1338
test_w(Register reg,const Operand & op)1339 void Assembler::test_w(Register reg, const Operand& op) {
1340 EnsureSpace ensure_space(this);
1341 EMIT(0x66);
1342 EMIT(0x85);
1343 emit_operand(reg, op);
1344 }
1345
test_w(const Operand & op,Immediate imm16)1346 void Assembler::test_w(const Operand& op, Immediate imm16) {
1347 DCHECK(imm16.is_int16() || imm16.is_uint16());
1348 if (op.is_reg_only()) {
1349 test_w(op.reg(), imm16);
1350 return;
1351 }
1352 EnsureSpace ensure_space(this);
1353 EMIT(0x66);
1354 EMIT(0xF7);
1355 emit_operand(eax, op);
1356 emit_w(imm16);
1357 }
1358
xor_(Register dst,int32_t imm32)1359 void Assembler::xor_(Register dst, int32_t imm32) {
1360 EnsureSpace ensure_space(this);
1361 emit_arith(6, Operand(dst), Immediate(imm32));
1362 }
1363
1364
xor_(Register dst,const Operand & src)1365 void Assembler::xor_(Register dst, const Operand& src) {
1366 EnsureSpace ensure_space(this);
1367 EMIT(0x33);
1368 emit_operand(dst, src);
1369 }
1370
1371
xor_(const Operand & dst,Register src)1372 void Assembler::xor_(const Operand& dst, Register src) {
1373 EnsureSpace ensure_space(this);
1374 EMIT(0x31);
1375 emit_operand(src, dst);
1376 }
1377
1378
xor_(const Operand & dst,const Immediate & x)1379 void Assembler::xor_(const Operand& dst, const Immediate& x) {
1380 EnsureSpace ensure_space(this);
1381 emit_arith(6, dst, x);
1382 }
1383
1384
bt(const Operand & dst,Register src)1385 void Assembler::bt(const Operand& dst, Register src) {
1386 EnsureSpace ensure_space(this);
1387 EMIT(0x0F);
1388 EMIT(0xA3);
1389 emit_operand(src, dst);
1390 }
1391
1392
bts(const Operand & dst,Register src)1393 void Assembler::bts(const Operand& dst, Register src) {
1394 EnsureSpace ensure_space(this);
1395 EMIT(0x0F);
1396 EMIT(0xAB);
1397 emit_operand(src, dst);
1398 }
1399
1400
bsr(Register dst,const Operand & src)1401 void Assembler::bsr(Register dst, const Operand& src) {
1402 EnsureSpace ensure_space(this);
1403 EMIT(0x0F);
1404 EMIT(0xBD);
1405 emit_operand(dst, src);
1406 }
1407
1408
bsf(Register dst,const Operand & src)1409 void Assembler::bsf(Register dst, const Operand& src) {
1410 EnsureSpace ensure_space(this);
1411 EMIT(0x0F);
1412 EMIT(0xBC);
1413 emit_operand(dst, src);
1414 }
1415
1416
hlt()1417 void Assembler::hlt() {
1418 EnsureSpace ensure_space(this);
1419 EMIT(0xF4);
1420 }
1421
1422
int3()1423 void Assembler::int3() {
1424 EnsureSpace ensure_space(this);
1425 EMIT(0xCC);
1426 }
1427
1428
nop()1429 void Assembler::nop() {
1430 EnsureSpace ensure_space(this);
1431 EMIT(0x90);
1432 }
1433
1434
ret(int imm16)1435 void Assembler::ret(int imm16) {
1436 EnsureSpace ensure_space(this);
1437 DCHECK(is_uint16(imm16));
1438 if (imm16 == 0) {
1439 EMIT(0xC3);
1440 } else {
1441 EMIT(0xC2);
1442 EMIT(imm16 & 0xFF);
1443 EMIT((imm16 >> 8) & 0xFF);
1444 }
1445 }
1446
1447
ud2()1448 void Assembler::ud2() {
1449 EnsureSpace ensure_space(this);
1450 EMIT(0x0F);
1451 EMIT(0x0B);
1452 }
1453
1454
1455 // Labels refer to positions in the (to be) generated code.
1456 // There are bound, linked, and unused labels.
1457 //
1458 // Bound labels refer to known positions in the already
1459 // generated code. pos() is the position the label refers to.
1460 //
1461 // Linked labels refer to unknown positions in the code
1462 // to be generated; pos() is the position of the 32bit
1463 // Displacement of the last instruction using the label.
1464
1465
print(Label * L)1466 void Assembler::print(Label* L) {
1467 if (L->is_unused()) {
1468 PrintF("unused label\n");
1469 } else if (L->is_bound()) {
1470 PrintF("bound label to %d\n", L->pos());
1471 } else if (L->is_linked()) {
1472 Label l = *L;
1473 PrintF("unbound label");
1474 while (l.is_linked()) {
1475 Displacement disp = disp_at(&l);
1476 PrintF("@ %d ", l.pos());
1477 disp.print();
1478 PrintF("\n");
1479 disp.next(&l);
1480 }
1481 } else {
1482 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1483 }
1484 }
1485
1486
bind_to(Label * L,int pos)1487 void Assembler::bind_to(Label* L, int pos) {
1488 EnsureSpace ensure_space(this);
1489 DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
1490 while (L->is_linked()) {
1491 Displacement disp = disp_at(L);
1492 int fixup_pos = L->pos();
1493 if (disp.type() == Displacement::CODE_ABSOLUTE) {
1494 long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
1495 internal_reference_positions_.push_back(fixup_pos);
1496 } else if (disp.type() == Displacement::CODE_RELATIVE) {
1497 // Relative to Code* heap object pointer.
1498 long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
1499 } else {
1500 if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
1501 DCHECK(byte_at(fixup_pos - 1) == 0xE9); // jmp expected
1502 }
1503 // Relative address, relative to point after address.
1504 int imm32 = pos - (fixup_pos + sizeof(int32_t));
1505 long_at_put(fixup_pos, imm32);
1506 }
1507 disp.next(L);
1508 }
1509 while (L->is_near_linked()) {
1510 int fixup_pos = L->near_link_pos();
1511 int offset_to_next =
1512 static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
1513 DCHECK(offset_to_next <= 0);
1514 // Relative address, relative to point after address.
1515 int disp = pos - fixup_pos - sizeof(int8_t);
1516 CHECK(0 <= disp && disp <= 127);
1517 set_byte_at(fixup_pos, disp);
1518 if (offset_to_next < 0) {
1519 L->link_to(fixup_pos + offset_to_next, Label::kNear);
1520 } else {
1521 L->UnuseNear();
1522 }
1523 }
1524 L->bind_to(pos);
1525 }
1526
1527
bind(Label * L)1528 void Assembler::bind(Label* L) {
1529 EnsureSpace ensure_space(this);
1530 DCHECK(!L->is_bound()); // label can only be bound once
1531 bind_to(L, pc_offset());
1532 }
1533
1534
call(Label * L)1535 void Assembler::call(Label* L) {
1536 EnsureSpace ensure_space(this);
1537 if (L->is_bound()) {
1538 const int long_size = 5;
1539 int offs = L->pos() - pc_offset();
1540 DCHECK(offs <= 0);
1541 // 1110 1000 #32-bit disp.
1542 EMIT(0xE8);
1543 emit(offs - long_size);
1544 } else {
1545 // 1110 1000 #32-bit disp.
1546 EMIT(0xE8);
1547 emit_disp(L, Displacement::OTHER);
1548 }
1549 }
1550
1551
call(byte * entry,RelocInfo::Mode rmode)1552 void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
1553 EnsureSpace ensure_space(this);
1554 DCHECK(!RelocInfo::IsCodeTarget(rmode));
1555 EMIT(0xE8);
1556 if (RelocInfo::IsRuntimeEntry(rmode)) {
1557 emit(reinterpret_cast<uint32_t>(entry), rmode);
1558 } else {
1559 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1560 }
1561 }
1562
1563
CallSize(const Operand & adr)1564 int Assembler::CallSize(const Operand& adr) {
1565 // Call size is 1 (opcode) + adr.len_ (operand).
1566 return 1 + adr.len_;
1567 }
1568
1569
call(const Operand & adr)1570 void Assembler::call(const Operand& adr) {
1571 EnsureSpace ensure_space(this);
1572 EMIT(0xFF);
1573 emit_operand(edx, adr);
1574 }
1575
1576
CallSize(Handle<Code> code,RelocInfo::Mode rmode)1577 int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
1578 return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
1579 }
1580
1581
call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)1582 void Assembler::call(Handle<Code> code,
1583 RelocInfo::Mode rmode,
1584 TypeFeedbackId ast_id) {
1585 EnsureSpace ensure_space(this);
1586 DCHECK(RelocInfo::IsCodeTarget(rmode)
1587 || rmode == RelocInfo::CODE_AGE_SEQUENCE);
1588 EMIT(0xE8);
1589 emit(code, rmode, ast_id);
1590 }
1591
1592
jmp(Label * L,Label::Distance distance)1593 void Assembler::jmp(Label* L, Label::Distance distance) {
1594 EnsureSpace ensure_space(this);
1595 if (L->is_bound()) {
1596 const int short_size = 2;
1597 const int long_size = 5;
1598 int offs = L->pos() - pc_offset();
1599 DCHECK(offs <= 0);
1600 if (is_int8(offs - short_size)) {
1601 // 1110 1011 #8-bit disp.
1602 EMIT(0xEB);
1603 EMIT((offs - short_size) & 0xFF);
1604 } else {
1605 // 1110 1001 #32-bit disp.
1606 EMIT(0xE9);
1607 emit(offs - long_size);
1608 }
1609 } else if (distance == Label::kNear) {
1610 EMIT(0xEB);
1611 emit_near_disp(L);
1612 } else {
1613 // 1110 1001 #32-bit disp.
1614 EMIT(0xE9);
1615 emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
1616 }
1617 }
1618
1619
jmp(byte * entry,RelocInfo::Mode rmode)1620 void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
1621 EnsureSpace ensure_space(this);
1622 DCHECK(!RelocInfo::IsCodeTarget(rmode));
1623 EMIT(0xE9);
1624 if (RelocInfo::IsRuntimeEntry(rmode)) {
1625 emit(reinterpret_cast<uint32_t>(entry), rmode);
1626 } else {
1627 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1628 }
1629 }
1630
1631
jmp(const Operand & adr)1632 void Assembler::jmp(const Operand& adr) {
1633 EnsureSpace ensure_space(this);
1634 EMIT(0xFF);
1635 emit_operand(esp, adr);
1636 }
1637
1638
jmp(Handle<Code> code,RelocInfo::Mode rmode)1639 void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
1640 EnsureSpace ensure_space(this);
1641 DCHECK(RelocInfo::IsCodeTarget(rmode));
1642 EMIT(0xE9);
1643 emit(code, rmode);
1644 }
1645
1646
j(Condition cc,Label * L,Label::Distance distance)1647 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
1648 EnsureSpace ensure_space(this);
1649 DCHECK(0 <= cc && static_cast<int>(cc) < 16);
1650 if (L->is_bound()) {
1651 const int short_size = 2;
1652 const int long_size = 6;
1653 int offs = L->pos() - pc_offset();
1654 DCHECK(offs <= 0);
1655 if (is_int8(offs - short_size)) {
1656 // 0111 tttn #8-bit disp
1657 EMIT(0x70 | cc);
1658 EMIT((offs - short_size) & 0xFF);
1659 } else {
1660 // 0000 1111 1000 tttn #32-bit disp
1661 EMIT(0x0F);
1662 EMIT(0x80 | cc);
1663 emit(offs - long_size);
1664 }
1665 } else if (distance == Label::kNear) {
1666 EMIT(0x70 | cc);
1667 emit_near_disp(L);
1668 } else {
1669 // 0000 1111 1000 tttn #32-bit disp
1670 // Note: could eliminate cond. jumps to this jump if condition
1671 // is the same however, seems to be rather unlikely case.
1672 EMIT(0x0F);
1673 EMIT(0x80 | cc);
1674 emit_disp(L, Displacement::OTHER);
1675 }
1676 }
1677
1678
j(Condition cc,byte * entry,RelocInfo::Mode rmode)1679 void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
1680 EnsureSpace ensure_space(this);
1681 DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
1682 // 0000 1111 1000 tttn #32-bit disp.
1683 EMIT(0x0F);
1684 EMIT(0x80 | cc);
1685 if (RelocInfo::IsRuntimeEntry(rmode)) {
1686 emit(reinterpret_cast<uint32_t>(entry), rmode);
1687 } else {
1688 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1689 }
1690 }
1691
1692
j(Condition cc,Handle<Code> code,RelocInfo::Mode rmode)1693 void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
1694 EnsureSpace ensure_space(this);
1695 // 0000 1111 1000 tttn #32-bit disp
1696 EMIT(0x0F);
1697 EMIT(0x80 | cc);
1698 emit(code, rmode);
1699 }
1700
1701
1702 // FPU instructions.
1703
fld(int i)1704 void Assembler::fld(int i) {
1705 EnsureSpace ensure_space(this);
1706 emit_farith(0xD9, 0xC0, i);
1707 }
1708
1709
fstp(int i)1710 void Assembler::fstp(int i) {
1711 EnsureSpace ensure_space(this);
1712 emit_farith(0xDD, 0xD8, i);
1713 }
1714
1715
fld1()1716 void Assembler::fld1() {
1717 EnsureSpace ensure_space(this);
1718 EMIT(0xD9);
1719 EMIT(0xE8);
1720 }
1721
1722
fldpi()1723 void Assembler::fldpi() {
1724 EnsureSpace ensure_space(this);
1725 EMIT(0xD9);
1726 EMIT(0xEB);
1727 }
1728
1729
fldz()1730 void Assembler::fldz() {
1731 EnsureSpace ensure_space(this);
1732 EMIT(0xD9);
1733 EMIT(0xEE);
1734 }
1735
1736
fldln2()1737 void Assembler::fldln2() {
1738 EnsureSpace ensure_space(this);
1739 EMIT(0xD9);
1740 EMIT(0xED);
1741 }
1742
1743
fld_s(const Operand & adr)1744 void Assembler::fld_s(const Operand& adr) {
1745 EnsureSpace ensure_space(this);
1746 EMIT(0xD9);
1747 emit_operand(eax, adr);
1748 }
1749
1750
fld_d(const Operand & adr)1751 void Assembler::fld_d(const Operand& adr) {
1752 EnsureSpace ensure_space(this);
1753 EMIT(0xDD);
1754 emit_operand(eax, adr);
1755 }
1756
1757
fstp_s(const Operand & adr)1758 void Assembler::fstp_s(const Operand& adr) {
1759 EnsureSpace ensure_space(this);
1760 EMIT(0xD9);
1761 emit_operand(ebx, adr);
1762 }
1763
1764
fst_s(const Operand & adr)1765 void Assembler::fst_s(const Operand& adr) {
1766 EnsureSpace ensure_space(this);
1767 EMIT(0xD9);
1768 emit_operand(edx, adr);
1769 }
1770
1771
fstp_d(const Operand & adr)1772 void Assembler::fstp_d(const Operand& adr) {
1773 EnsureSpace ensure_space(this);
1774 EMIT(0xDD);
1775 emit_operand(ebx, adr);
1776 }
1777
1778
fst_d(const Operand & adr)1779 void Assembler::fst_d(const Operand& adr) {
1780 EnsureSpace ensure_space(this);
1781 EMIT(0xDD);
1782 emit_operand(edx, adr);
1783 }
1784
1785
fild_s(const Operand & adr)1786 void Assembler::fild_s(const Operand& adr) {
1787 EnsureSpace ensure_space(this);
1788 EMIT(0xDB);
1789 emit_operand(eax, adr);
1790 }
1791
1792
fild_d(const Operand & adr)1793 void Assembler::fild_d(const Operand& adr) {
1794 EnsureSpace ensure_space(this);
1795 EMIT(0xDF);
1796 emit_operand(ebp, adr);
1797 }
1798
1799
fistp_s(const Operand & adr)1800 void Assembler::fistp_s(const Operand& adr) {
1801 EnsureSpace ensure_space(this);
1802 EMIT(0xDB);
1803 emit_operand(ebx, adr);
1804 }
1805
1806
fisttp_s(const Operand & adr)1807 void Assembler::fisttp_s(const Operand& adr) {
1808 DCHECK(IsEnabled(SSE3));
1809 EnsureSpace ensure_space(this);
1810 EMIT(0xDB);
1811 emit_operand(ecx, adr);
1812 }
1813
1814
fisttp_d(const Operand & adr)1815 void Assembler::fisttp_d(const Operand& adr) {
1816 DCHECK(IsEnabled(SSE3));
1817 EnsureSpace ensure_space(this);
1818 EMIT(0xDD);
1819 emit_operand(ecx, adr);
1820 }
1821
1822
fist_s(const Operand & adr)1823 void Assembler::fist_s(const Operand& adr) {
1824 EnsureSpace ensure_space(this);
1825 EMIT(0xDB);
1826 emit_operand(edx, adr);
1827 }
1828
1829
fistp_d(const Operand & adr)1830 void Assembler::fistp_d(const Operand& adr) {
1831 EnsureSpace ensure_space(this);
1832 EMIT(0xDF);
1833 emit_operand(edi, adr);
1834 }
1835
1836
fabs()1837 void Assembler::fabs() {
1838 EnsureSpace ensure_space(this);
1839 EMIT(0xD9);
1840 EMIT(0xE1);
1841 }
1842
1843
fchs()1844 void Assembler::fchs() {
1845 EnsureSpace ensure_space(this);
1846 EMIT(0xD9);
1847 EMIT(0xE0);
1848 }
1849
1850
fcos()1851 void Assembler::fcos() {
1852 EnsureSpace ensure_space(this);
1853 EMIT(0xD9);
1854 EMIT(0xFF);
1855 }
1856
1857
fsin()1858 void Assembler::fsin() {
1859 EnsureSpace ensure_space(this);
1860 EMIT(0xD9);
1861 EMIT(0xFE);
1862 }
1863
1864
fptan()1865 void Assembler::fptan() {
1866 EnsureSpace ensure_space(this);
1867 EMIT(0xD9);
1868 EMIT(0xF2);
1869 }
1870
1871
fyl2x()1872 void Assembler::fyl2x() {
1873 EnsureSpace ensure_space(this);
1874 EMIT(0xD9);
1875 EMIT(0xF1);
1876 }
1877
1878
f2xm1()1879 void Assembler::f2xm1() {
1880 EnsureSpace ensure_space(this);
1881 EMIT(0xD9);
1882 EMIT(0xF0);
1883 }
1884
1885
fscale()1886 void Assembler::fscale() {
1887 EnsureSpace ensure_space(this);
1888 EMIT(0xD9);
1889 EMIT(0xFD);
1890 }
1891
1892
fninit()1893 void Assembler::fninit() {
1894 EnsureSpace ensure_space(this);
1895 EMIT(0xDB);
1896 EMIT(0xE3);
1897 }
1898
1899
fadd(int i)1900 void Assembler::fadd(int i) {
1901 EnsureSpace ensure_space(this);
1902 emit_farith(0xDC, 0xC0, i);
1903 }
1904
1905
fadd_i(int i)1906 void Assembler::fadd_i(int i) {
1907 EnsureSpace ensure_space(this);
1908 emit_farith(0xD8, 0xC0, i);
1909 }
1910
1911
fsub(int i)1912 void Assembler::fsub(int i) {
1913 EnsureSpace ensure_space(this);
1914 emit_farith(0xDC, 0xE8, i);
1915 }
1916
1917
fsub_i(int i)1918 void Assembler::fsub_i(int i) {
1919 EnsureSpace ensure_space(this);
1920 emit_farith(0xD8, 0xE0, i);
1921 }
1922
1923
fisub_s(const Operand & adr)1924 void Assembler::fisub_s(const Operand& adr) {
1925 EnsureSpace ensure_space(this);
1926 EMIT(0xDA);
1927 emit_operand(esp, adr);
1928 }
1929
1930
fmul_i(int i)1931 void Assembler::fmul_i(int i) {
1932 EnsureSpace ensure_space(this);
1933 emit_farith(0xD8, 0xC8, i);
1934 }
1935
1936
fmul(int i)1937 void Assembler::fmul(int i) {
1938 EnsureSpace ensure_space(this);
1939 emit_farith(0xDC, 0xC8, i);
1940 }
1941
1942
fdiv(int i)1943 void Assembler::fdiv(int i) {
1944 EnsureSpace ensure_space(this);
1945 emit_farith(0xDC, 0xF8, i);
1946 }
1947
1948
fdiv_i(int i)1949 void Assembler::fdiv_i(int i) {
1950 EnsureSpace ensure_space(this);
1951 emit_farith(0xD8, 0xF0, i);
1952 }
1953
1954
faddp(int i)1955 void Assembler::faddp(int i) {
1956 EnsureSpace ensure_space(this);
1957 emit_farith(0xDE, 0xC0, i);
1958 }
1959
1960
fsubp(int i)1961 void Assembler::fsubp(int i) {
1962 EnsureSpace ensure_space(this);
1963 emit_farith(0xDE, 0xE8, i);
1964 }
1965
1966
fsubrp(int i)1967 void Assembler::fsubrp(int i) {
1968 EnsureSpace ensure_space(this);
1969 emit_farith(0xDE, 0xE0, i);
1970 }
1971
1972
fmulp(int i)1973 void Assembler::fmulp(int i) {
1974 EnsureSpace ensure_space(this);
1975 emit_farith(0xDE, 0xC8, i);
1976 }
1977
1978
fdivp(int i)1979 void Assembler::fdivp(int i) {
1980 EnsureSpace ensure_space(this);
1981 emit_farith(0xDE, 0xF8, i);
1982 }
1983
1984
fprem()1985 void Assembler::fprem() {
1986 EnsureSpace ensure_space(this);
1987 EMIT(0xD9);
1988 EMIT(0xF8);
1989 }
1990
1991
fprem1()1992 void Assembler::fprem1() {
1993 EnsureSpace ensure_space(this);
1994 EMIT(0xD9);
1995 EMIT(0xF5);
1996 }
1997
1998
fxch(int i)1999 void Assembler::fxch(int i) {
2000 EnsureSpace ensure_space(this);
2001 emit_farith(0xD9, 0xC8, i);
2002 }
2003
2004
fincstp()2005 void Assembler::fincstp() {
2006 EnsureSpace ensure_space(this);
2007 EMIT(0xD9);
2008 EMIT(0xF7);
2009 }
2010
2011
ffree(int i)2012 void Assembler::ffree(int i) {
2013 EnsureSpace ensure_space(this);
2014 emit_farith(0xDD, 0xC0, i);
2015 }
2016
2017
ftst()2018 void Assembler::ftst() {
2019 EnsureSpace ensure_space(this);
2020 EMIT(0xD9);
2021 EMIT(0xE4);
2022 }
2023
2024
fucomp(int i)2025 void Assembler::fucomp(int i) {
2026 EnsureSpace ensure_space(this);
2027 emit_farith(0xDD, 0xE8, i);
2028 }
2029
2030
fucompp()2031 void Assembler::fucompp() {
2032 EnsureSpace ensure_space(this);
2033 EMIT(0xDA);
2034 EMIT(0xE9);
2035 }
2036
2037
fucomi(int i)2038 void Assembler::fucomi(int i) {
2039 EnsureSpace ensure_space(this);
2040 EMIT(0xDB);
2041 EMIT(0xE8 + i);
2042 }
2043
2044
fucomip()2045 void Assembler::fucomip() {
2046 EnsureSpace ensure_space(this);
2047 EMIT(0xDF);
2048 EMIT(0xE9);
2049 }
2050
2051
fcompp()2052 void Assembler::fcompp() {
2053 EnsureSpace ensure_space(this);
2054 EMIT(0xDE);
2055 EMIT(0xD9);
2056 }
2057
2058
fnstsw_ax()2059 void Assembler::fnstsw_ax() {
2060 EnsureSpace ensure_space(this);
2061 EMIT(0xDF);
2062 EMIT(0xE0);
2063 }
2064
2065
fwait()2066 void Assembler::fwait() {
2067 EnsureSpace ensure_space(this);
2068 EMIT(0x9B);
2069 }
2070
2071
frndint()2072 void Assembler::frndint() {
2073 EnsureSpace ensure_space(this);
2074 EMIT(0xD9);
2075 EMIT(0xFC);
2076 }
2077
2078
fnclex()2079 void Assembler::fnclex() {
2080 EnsureSpace ensure_space(this);
2081 EMIT(0xDB);
2082 EMIT(0xE2);
2083 }
2084
2085
sahf()2086 void Assembler::sahf() {
2087 EnsureSpace ensure_space(this);
2088 EMIT(0x9E);
2089 }
2090
2091
setcc(Condition cc,Register reg)2092 void Assembler::setcc(Condition cc, Register reg) {
2093 DCHECK(reg.is_byte_register());
2094 EnsureSpace ensure_space(this);
2095 EMIT(0x0F);
2096 EMIT(0x90 | cc);
2097 EMIT(0xC0 | reg.code());
2098 }
2099
2100
cvttss2si(Register dst,const Operand & src)2101 void Assembler::cvttss2si(Register dst, const Operand& src) {
2102 EnsureSpace ensure_space(this);
2103 EMIT(0xF3);
2104 EMIT(0x0F);
2105 EMIT(0x2C);
2106 emit_operand(dst, src);
2107 }
2108
2109
cvttsd2si(Register dst,const Operand & src)2110 void Assembler::cvttsd2si(Register dst, const Operand& src) {
2111 EnsureSpace ensure_space(this);
2112 EMIT(0xF2);
2113 EMIT(0x0F);
2114 EMIT(0x2C);
2115 emit_operand(dst, src);
2116 }
2117
2118
cvtsd2si(Register dst,XMMRegister src)2119 void Assembler::cvtsd2si(Register dst, XMMRegister src) {
2120 EnsureSpace ensure_space(this);
2121 EMIT(0xF2);
2122 EMIT(0x0F);
2123 EMIT(0x2D);
2124 emit_sse_operand(dst, src);
2125 }
2126
2127
cvtsi2ss(XMMRegister dst,const Operand & src)2128 void Assembler::cvtsi2ss(XMMRegister dst, const Operand& src) {
2129 EnsureSpace ensure_space(this);
2130 EMIT(0xF3);
2131 EMIT(0x0F);
2132 EMIT(0x2A);
2133 emit_sse_operand(dst, src);
2134 }
2135
2136
cvtsi2sd(XMMRegister dst,const Operand & src)2137 void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) {
2138 EnsureSpace ensure_space(this);
2139 EMIT(0xF2);
2140 EMIT(0x0F);
2141 EMIT(0x2A);
2142 emit_sse_operand(dst, src);
2143 }
2144
2145
cvtss2sd(XMMRegister dst,const Operand & src)2146 void Assembler::cvtss2sd(XMMRegister dst, const Operand& src) {
2147 EnsureSpace ensure_space(this);
2148 EMIT(0xF3);
2149 EMIT(0x0F);
2150 EMIT(0x5A);
2151 emit_sse_operand(dst, src);
2152 }
2153
2154
cvtsd2ss(XMMRegister dst,const Operand & src)2155 void Assembler::cvtsd2ss(XMMRegister dst, const Operand& src) {
2156 EnsureSpace ensure_space(this);
2157 EMIT(0xF2);
2158 EMIT(0x0F);
2159 EMIT(0x5A);
2160 emit_sse_operand(dst, src);
2161 }
2162
2163
addsd(XMMRegister dst,const Operand & src)2164 void Assembler::addsd(XMMRegister dst, const Operand& src) {
2165 EnsureSpace ensure_space(this);
2166 EMIT(0xF2);
2167 EMIT(0x0F);
2168 EMIT(0x58);
2169 emit_sse_operand(dst, src);
2170 }
2171
2172
mulsd(XMMRegister dst,const Operand & src)2173 void Assembler::mulsd(XMMRegister dst, const Operand& src) {
2174 EnsureSpace ensure_space(this);
2175 EMIT(0xF2);
2176 EMIT(0x0F);
2177 EMIT(0x59);
2178 emit_sse_operand(dst, src);
2179 }
2180
2181
subsd(XMMRegister dst,const Operand & src)2182 void Assembler::subsd(XMMRegister dst, const Operand& src) {
2183 EnsureSpace ensure_space(this);
2184 EMIT(0xF2);
2185 EMIT(0x0F);
2186 EMIT(0x5C);
2187 emit_sse_operand(dst, src);
2188 }
2189
2190
divsd(XMMRegister dst,const Operand & src)2191 void Assembler::divsd(XMMRegister dst, const Operand& src) {
2192 EnsureSpace ensure_space(this);
2193 EMIT(0xF2);
2194 EMIT(0x0F);
2195 EMIT(0x5E);
2196 emit_sse_operand(dst, src);
2197 }
2198
2199
xorpd(XMMRegister dst,XMMRegister src)2200 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2201 EnsureSpace ensure_space(this);
2202 EMIT(0x66);
2203 EMIT(0x0F);
2204 EMIT(0x57);
2205 emit_sse_operand(dst, src);
2206 }
2207
2208
andps(XMMRegister dst,const Operand & src)2209 void Assembler::andps(XMMRegister dst, const Operand& src) {
2210 EnsureSpace ensure_space(this);
2211 EMIT(0x0F);
2212 EMIT(0x54);
2213 emit_sse_operand(dst, src);
2214 }
2215
2216
orps(XMMRegister dst,const Operand & src)2217 void Assembler::orps(XMMRegister dst, const Operand& src) {
2218 EnsureSpace ensure_space(this);
2219 EMIT(0x0F);
2220 EMIT(0x56);
2221 emit_sse_operand(dst, src);
2222 }
2223
2224
xorps(XMMRegister dst,const Operand & src)2225 void Assembler::xorps(XMMRegister dst, const Operand& src) {
2226 EnsureSpace ensure_space(this);
2227 EMIT(0x0F);
2228 EMIT(0x57);
2229 emit_sse_operand(dst, src);
2230 }
2231
2232
addps(XMMRegister dst,const Operand & src)2233 void Assembler::addps(XMMRegister dst, const Operand& src) {
2234 EnsureSpace ensure_space(this);
2235 EMIT(0x0F);
2236 EMIT(0x58);
2237 emit_sse_operand(dst, src);
2238 }
2239
2240
subps(XMMRegister dst,const Operand & src)2241 void Assembler::subps(XMMRegister dst, const Operand& src) {
2242 EnsureSpace ensure_space(this);
2243 EMIT(0x0F);
2244 EMIT(0x5C);
2245 emit_sse_operand(dst, src);
2246 }
2247
2248
mulps(XMMRegister dst,const Operand & src)2249 void Assembler::mulps(XMMRegister dst, const Operand& src) {
2250 EnsureSpace ensure_space(this);
2251 EMIT(0x0F);
2252 EMIT(0x59);
2253 emit_sse_operand(dst, src);
2254 }
2255
2256
divps(XMMRegister dst,const Operand & src)2257 void Assembler::divps(XMMRegister dst, const Operand& src) {
2258 EnsureSpace ensure_space(this);
2259 EMIT(0x0F);
2260 EMIT(0x5E);
2261 emit_sse_operand(dst, src);
2262 }
2263
2264
sqrtsd(XMMRegister dst,const Operand & src)2265 void Assembler::sqrtsd(XMMRegister dst, const Operand& src) {
2266 EnsureSpace ensure_space(this);
2267 EMIT(0xF2);
2268 EMIT(0x0F);
2269 EMIT(0x51);
2270 emit_sse_operand(dst, src);
2271 }
2272
2273
andpd(XMMRegister dst,XMMRegister src)2274 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
2275 EnsureSpace ensure_space(this);
2276 EMIT(0x66);
2277 EMIT(0x0F);
2278 EMIT(0x54);
2279 emit_sse_operand(dst, src);
2280 }
2281
2282
orpd(XMMRegister dst,XMMRegister src)2283 void Assembler::orpd(XMMRegister dst, XMMRegister src) {
2284 EnsureSpace ensure_space(this);
2285 EMIT(0x66);
2286 EMIT(0x0F);
2287 EMIT(0x56);
2288 emit_sse_operand(dst, src);
2289 }
2290
2291
ucomisd(XMMRegister dst,const Operand & src)2292 void Assembler::ucomisd(XMMRegister dst, const Operand& src) {
2293 EnsureSpace ensure_space(this);
2294 EMIT(0x66);
2295 EMIT(0x0F);
2296 EMIT(0x2E);
2297 emit_sse_operand(dst, src);
2298 }
2299
2300
roundss(XMMRegister dst,XMMRegister src,RoundingMode mode)2301 void Assembler::roundss(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2302 DCHECK(IsEnabled(SSE4_1));
2303 EnsureSpace ensure_space(this);
2304 EMIT(0x66);
2305 EMIT(0x0F);
2306 EMIT(0x3A);
2307 EMIT(0x0A);
2308 emit_sse_operand(dst, src);
2309 // Mask precision exeption.
2310 EMIT(static_cast<byte>(mode) | 0x8);
2311 }
2312
2313
roundsd(XMMRegister dst,XMMRegister src,RoundingMode mode)2314 void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2315 DCHECK(IsEnabled(SSE4_1));
2316 EnsureSpace ensure_space(this);
2317 EMIT(0x66);
2318 EMIT(0x0F);
2319 EMIT(0x3A);
2320 EMIT(0x0B);
2321 emit_sse_operand(dst, src);
2322 // Mask precision exeption.
2323 EMIT(static_cast<byte>(mode) | 0x8);
2324 }
2325
2326
movmskpd(Register dst,XMMRegister src)2327 void Assembler::movmskpd(Register dst, XMMRegister src) {
2328 EnsureSpace ensure_space(this);
2329 EMIT(0x66);
2330 EMIT(0x0F);
2331 EMIT(0x50);
2332 emit_sse_operand(dst, src);
2333 }
2334
2335
movmskps(Register dst,XMMRegister src)2336 void Assembler::movmskps(Register dst, XMMRegister src) {
2337 EnsureSpace ensure_space(this);
2338 EMIT(0x0F);
2339 EMIT(0x50);
2340 emit_sse_operand(dst, src);
2341 }
2342
2343
pcmpeqd(XMMRegister dst,XMMRegister src)2344 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
2345 EnsureSpace ensure_space(this);
2346 EMIT(0x66);
2347 EMIT(0x0F);
2348 EMIT(0x76);
2349 emit_sse_operand(dst, src);
2350 }
2351
2352
punpckldq(XMMRegister dst,XMMRegister src)2353 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2354 EnsureSpace ensure_space(this);
2355 EMIT(0x66);
2356 EMIT(0x0F);
2357 EMIT(0x62);
2358 emit_sse_operand(dst, src);
2359 }
2360
2361
punpckhdq(XMMRegister dst,XMMRegister src)2362 void Assembler::punpckhdq(XMMRegister dst, XMMRegister src) {
2363 EnsureSpace ensure_space(this);
2364 EMIT(0x66);
2365 EMIT(0x0F);
2366 EMIT(0x6A);
2367 emit_sse_operand(dst, src);
2368 }
2369
2370
maxsd(XMMRegister dst,const Operand & src)2371 void Assembler::maxsd(XMMRegister dst, const Operand& src) {
2372 EnsureSpace ensure_space(this);
2373 EMIT(0xF2);
2374 EMIT(0x0F);
2375 EMIT(0x5F);
2376 emit_sse_operand(dst, src);
2377 }
2378
2379
minsd(XMMRegister dst,const Operand & src)2380 void Assembler::minsd(XMMRegister dst, const Operand& src) {
2381 EnsureSpace ensure_space(this);
2382 EMIT(0xF2);
2383 EMIT(0x0F);
2384 EMIT(0x5D);
2385 emit_sse_operand(dst, src);
2386 }
2387
2388
cmpltsd(XMMRegister dst,XMMRegister src)2389 void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) {
2390 EnsureSpace ensure_space(this);
2391 EMIT(0xF2);
2392 EMIT(0x0F);
2393 EMIT(0xC2);
2394 emit_sse_operand(dst, src);
2395 EMIT(1); // LT == 1
2396 }
2397
2398
movaps(XMMRegister dst,XMMRegister src)2399 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2400 EnsureSpace ensure_space(this);
2401 EMIT(0x0F);
2402 EMIT(0x28);
2403 emit_sse_operand(dst, src);
2404 }
2405
2406
shufps(XMMRegister dst,XMMRegister src,byte imm8)2407 void Assembler::shufps(XMMRegister dst, XMMRegister src, byte imm8) {
2408 DCHECK(is_uint8(imm8));
2409 EnsureSpace ensure_space(this);
2410 EMIT(0x0F);
2411 EMIT(0xC6);
2412 emit_sse_operand(dst, src);
2413 EMIT(imm8);
2414 }
2415
2416
movdqa(const Operand & dst,XMMRegister src)2417 void Assembler::movdqa(const Operand& dst, XMMRegister src) {
2418 EnsureSpace ensure_space(this);
2419 EMIT(0x66);
2420 EMIT(0x0F);
2421 EMIT(0x7F);
2422 emit_sse_operand(src, dst);
2423 }
2424
2425
movdqa(XMMRegister dst,const Operand & src)2426 void Assembler::movdqa(XMMRegister dst, const Operand& src) {
2427 EnsureSpace ensure_space(this);
2428 EMIT(0x66);
2429 EMIT(0x0F);
2430 EMIT(0x6F);
2431 emit_sse_operand(dst, src);
2432 }
2433
2434
movdqu(const Operand & dst,XMMRegister src)2435 void Assembler::movdqu(const Operand& dst, XMMRegister src ) {
2436 EnsureSpace ensure_space(this);
2437 EMIT(0xF3);
2438 EMIT(0x0F);
2439 EMIT(0x7F);
2440 emit_sse_operand(src, dst);
2441 }
2442
2443
movdqu(XMMRegister dst,const Operand & src)2444 void Assembler::movdqu(XMMRegister dst, const Operand& src) {
2445 EnsureSpace ensure_space(this);
2446 EMIT(0xF3);
2447 EMIT(0x0F);
2448 EMIT(0x6F);
2449 emit_sse_operand(dst, src);
2450 }
2451
2452
prefetch(const Operand & src,int level)2453 void Assembler::prefetch(const Operand& src, int level) {
2454 DCHECK(is_uint2(level));
2455 EnsureSpace ensure_space(this);
2456 EMIT(0x0F);
2457 EMIT(0x18);
2458 // Emit hint number in Reg position of RegR/M.
2459 XMMRegister code = XMMRegister::from_code(level);
2460 emit_sse_operand(code, src);
2461 }
2462
2463
movsd(const Operand & dst,XMMRegister src)2464 void Assembler::movsd(const Operand& dst, XMMRegister src ) {
2465 EnsureSpace ensure_space(this);
2466 EMIT(0xF2); // double
2467 EMIT(0x0F);
2468 EMIT(0x11); // store
2469 emit_sse_operand(src, dst);
2470 }
2471
2472
movsd(XMMRegister dst,const Operand & src)2473 void Assembler::movsd(XMMRegister dst, const Operand& src) {
2474 EnsureSpace ensure_space(this);
2475 EMIT(0xF2); // double
2476 EMIT(0x0F);
2477 EMIT(0x10); // load
2478 emit_sse_operand(dst, src);
2479 }
2480
2481
movss(const Operand & dst,XMMRegister src)2482 void Assembler::movss(const Operand& dst, XMMRegister src ) {
2483 EnsureSpace ensure_space(this);
2484 EMIT(0xF3); // float
2485 EMIT(0x0F);
2486 EMIT(0x11); // store
2487 emit_sse_operand(src, dst);
2488 }
2489
2490
movss(XMMRegister dst,const Operand & src)2491 void Assembler::movss(XMMRegister dst, const Operand& src) {
2492 EnsureSpace ensure_space(this);
2493 EMIT(0xF3); // float
2494 EMIT(0x0F);
2495 EMIT(0x10); // load
2496 emit_sse_operand(dst, src);
2497 }
2498
2499
movd(XMMRegister dst,const Operand & src)2500 void Assembler::movd(XMMRegister dst, const Operand& src) {
2501 EnsureSpace ensure_space(this);
2502 EMIT(0x66);
2503 EMIT(0x0F);
2504 EMIT(0x6E);
2505 emit_sse_operand(dst, src);
2506 }
2507
2508
movd(const Operand & dst,XMMRegister src)2509 void Assembler::movd(const Operand& dst, XMMRegister src) {
2510 EnsureSpace ensure_space(this);
2511 EMIT(0x66);
2512 EMIT(0x0F);
2513 EMIT(0x7E);
2514 emit_sse_operand(src, dst);
2515 }
2516
2517
extractps(Register dst,XMMRegister src,byte imm8)2518 void Assembler::extractps(Register dst, XMMRegister src, byte imm8) {
2519 DCHECK(IsEnabled(SSE4_1));
2520 DCHECK(is_uint8(imm8));
2521 EnsureSpace ensure_space(this);
2522 EMIT(0x66);
2523 EMIT(0x0F);
2524 EMIT(0x3A);
2525 EMIT(0x17);
2526 emit_sse_operand(src, dst);
2527 EMIT(imm8);
2528 }
2529
2530
pand(XMMRegister dst,XMMRegister src)2531 void Assembler::pand(XMMRegister dst, XMMRegister src) {
2532 EnsureSpace ensure_space(this);
2533 EMIT(0x66);
2534 EMIT(0x0F);
2535 EMIT(0xDB);
2536 emit_sse_operand(dst, src);
2537 }
2538
2539
pxor(XMMRegister dst,XMMRegister src)2540 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
2541 EnsureSpace ensure_space(this);
2542 EMIT(0x66);
2543 EMIT(0x0F);
2544 EMIT(0xEF);
2545 emit_sse_operand(dst, src);
2546 }
2547
2548
por(XMMRegister dst,XMMRegister src)2549 void Assembler::por(XMMRegister dst, XMMRegister src) {
2550 EnsureSpace ensure_space(this);
2551 EMIT(0x66);
2552 EMIT(0x0F);
2553 EMIT(0xEB);
2554 emit_sse_operand(dst, src);
2555 }
2556
2557
ptest(XMMRegister dst,XMMRegister src)2558 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2559 DCHECK(IsEnabled(SSE4_1));
2560 EnsureSpace ensure_space(this);
2561 EMIT(0x66);
2562 EMIT(0x0F);
2563 EMIT(0x38);
2564 EMIT(0x17);
2565 emit_sse_operand(dst, src);
2566 }
2567
2568
pslld(XMMRegister reg,int8_t shift)2569 void Assembler::pslld(XMMRegister reg, int8_t shift) {
2570 EnsureSpace ensure_space(this);
2571 EMIT(0x66);
2572 EMIT(0x0F);
2573 EMIT(0x72);
2574 emit_sse_operand(esi, reg); // esi == 6
2575 EMIT(shift);
2576 }
2577
2578
psrld(XMMRegister reg,int8_t shift)2579 void Assembler::psrld(XMMRegister reg, int8_t shift) {
2580 EnsureSpace ensure_space(this);
2581 EMIT(0x66);
2582 EMIT(0x0F);
2583 EMIT(0x72);
2584 emit_sse_operand(edx, reg); // edx == 2
2585 EMIT(shift);
2586 }
2587
2588
psllq(XMMRegister reg,int8_t shift)2589 void Assembler::psllq(XMMRegister reg, int8_t shift) {
2590 EnsureSpace ensure_space(this);
2591 EMIT(0x66);
2592 EMIT(0x0F);
2593 EMIT(0x73);
2594 emit_sse_operand(esi, reg); // esi == 6
2595 EMIT(shift);
2596 }
2597
2598
psllq(XMMRegister dst,XMMRegister src)2599 void Assembler::psllq(XMMRegister dst, XMMRegister src) {
2600 EnsureSpace ensure_space(this);
2601 EMIT(0x66);
2602 EMIT(0x0F);
2603 EMIT(0xF3);
2604 emit_sse_operand(dst, src);
2605 }
2606
2607
psrlq(XMMRegister reg,int8_t shift)2608 void Assembler::psrlq(XMMRegister reg, int8_t shift) {
2609 EnsureSpace ensure_space(this);
2610 EMIT(0x66);
2611 EMIT(0x0F);
2612 EMIT(0x73);
2613 emit_sse_operand(edx, reg); // edx == 2
2614 EMIT(shift);
2615 }
2616
2617
psrlq(XMMRegister dst,XMMRegister src)2618 void Assembler::psrlq(XMMRegister dst, XMMRegister src) {
2619 EnsureSpace ensure_space(this);
2620 EMIT(0x66);
2621 EMIT(0x0F);
2622 EMIT(0xD3);
2623 emit_sse_operand(dst, src);
2624 }
2625
2626
pshufd(XMMRegister dst,XMMRegister src,uint8_t shuffle)2627 void Assembler::pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
2628 EnsureSpace ensure_space(this);
2629 EMIT(0x66);
2630 EMIT(0x0F);
2631 EMIT(0x70);
2632 emit_sse_operand(dst, src);
2633 EMIT(shuffle);
2634 }
2635
2636
pextrd(const Operand & dst,XMMRegister src,int8_t offset)2637 void Assembler::pextrd(const Operand& dst, XMMRegister src, int8_t offset) {
2638 DCHECK(IsEnabled(SSE4_1));
2639 EnsureSpace ensure_space(this);
2640 EMIT(0x66);
2641 EMIT(0x0F);
2642 EMIT(0x3A);
2643 EMIT(0x16);
2644 emit_sse_operand(src, dst);
2645 EMIT(offset);
2646 }
2647
2648
pinsrd(XMMRegister dst,const Operand & src,int8_t offset)2649 void Assembler::pinsrd(XMMRegister dst, const Operand& src, int8_t offset) {
2650 DCHECK(IsEnabled(SSE4_1));
2651 EnsureSpace ensure_space(this);
2652 EMIT(0x66);
2653 EMIT(0x0F);
2654 EMIT(0x3A);
2655 EMIT(0x22);
2656 emit_sse_operand(dst, src);
2657 EMIT(offset);
2658 }
2659
2660
addss(XMMRegister dst,const Operand & src)2661 void Assembler::addss(XMMRegister dst, const Operand& src) {
2662 EnsureSpace ensure_space(this);
2663 EMIT(0xF3);
2664 EMIT(0x0F);
2665 EMIT(0x58);
2666 emit_sse_operand(dst, src);
2667 }
2668
2669
subss(XMMRegister dst,const Operand & src)2670 void Assembler::subss(XMMRegister dst, const Operand& src) {
2671 EnsureSpace ensure_space(this);
2672 EMIT(0xF3);
2673 EMIT(0x0F);
2674 EMIT(0x5C);
2675 emit_sse_operand(dst, src);
2676 }
2677
2678
mulss(XMMRegister dst,const Operand & src)2679 void Assembler::mulss(XMMRegister dst, const Operand& src) {
2680 EnsureSpace ensure_space(this);
2681 EMIT(0xF3);
2682 EMIT(0x0F);
2683 EMIT(0x59);
2684 emit_sse_operand(dst, src);
2685 }
2686
2687
divss(XMMRegister dst,const Operand & src)2688 void Assembler::divss(XMMRegister dst, const Operand& src) {
2689 EnsureSpace ensure_space(this);
2690 EMIT(0xF3);
2691 EMIT(0x0F);
2692 EMIT(0x5E);
2693 emit_sse_operand(dst, src);
2694 }
2695
2696
sqrtss(XMMRegister dst,const Operand & src)2697 void Assembler::sqrtss(XMMRegister dst, const Operand& src) {
2698 EnsureSpace ensure_space(this);
2699 EMIT(0xF3);
2700 EMIT(0x0F);
2701 EMIT(0x51);
2702 emit_sse_operand(dst, src);
2703 }
2704
2705
ucomiss(XMMRegister dst,const Operand & src)2706 void Assembler::ucomiss(XMMRegister dst, const Operand& src) {
2707 EnsureSpace ensure_space(this);
2708 EMIT(0x0f);
2709 EMIT(0x2e);
2710 emit_sse_operand(dst, src);
2711 }
2712
2713
maxss(XMMRegister dst,const Operand & src)2714 void Assembler::maxss(XMMRegister dst, const Operand& src) {
2715 EnsureSpace ensure_space(this);
2716 EMIT(0xF3);
2717 EMIT(0x0F);
2718 EMIT(0x5F);
2719 emit_sse_operand(dst, src);
2720 }
2721
2722
minss(XMMRegister dst,const Operand & src)2723 void Assembler::minss(XMMRegister dst, const Operand& src) {
2724 EnsureSpace ensure_space(this);
2725 EMIT(0xF3);
2726 EMIT(0x0F);
2727 EMIT(0x5D);
2728 emit_sse_operand(dst, src);
2729 }
2730
2731
2732 // AVX instructions
vfmasd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2733 void Assembler::vfmasd(byte op, XMMRegister dst, XMMRegister src1,
2734 const Operand& src2) {
2735 DCHECK(IsEnabled(FMA3));
2736 EnsureSpace ensure_space(this);
2737 emit_vex_prefix(src1, kLIG, k66, k0F38, kW1);
2738 EMIT(op);
2739 emit_sse_operand(dst, src2);
2740 }
2741
2742
vfmass(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2743 void Assembler::vfmass(byte op, XMMRegister dst, XMMRegister src1,
2744 const Operand& src2) {
2745 DCHECK(IsEnabled(FMA3));
2746 EnsureSpace ensure_space(this);
2747 emit_vex_prefix(src1, kLIG, k66, k0F38, kW0);
2748 EMIT(op);
2749 emit_sse_operand(dst, src2);
2750 }
2751
2752
vsd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2753 void Assembler::vsd(byte op, XMMRegister dst, XMMRegister src1,
2754 const Operand& src2) {
2755 DCHECK(IsEnabled(AVX));
2756 EnsureSpace ensure_space(this);
2757 emit_vex_prefix(src1, kLIG, kF2, k0F, kWIG);
2758 EMIT(op);
2759 emit_sse_operand(dst, src2);
2760 }
2761
2762
vss(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2763 void Assembler::vss(byte op, XMMRegister dst, XMMRegister src1,
2764 const Operand& src2) {
2765 DCHECK(IsEnabled(AVX));
2766 EnsureSpace ensure_space(this);
2767 emit_vex_prefix(src1, kLIG, kF3, k0F, kWIG);
2768 EMIT(op);
2769 emit_sse_operand(dst, src2);
2770 }
2771
2772
vps(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2773 void Assembler::vps(byte op, XMMRegister dst, XMMRegister src1,
2774 const Operand& src2) {
2775 DCHECK(IsEnabled(AVX));
2776 EnsureSpace ensure_space(this);
2777 emit_vex_prefix(src1, kL128, kNone, k0F, kWIG);
2778 EMIT(op);
2779 emit_sse_operand(dst, src2);
2780 }
2781
2782
vpd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2783 void Assembler::vpd(byte op, XMMRegister dst, XMMRegister src1,
2784 const Operand& src2) {
2785 DCHECK(IsEnabled(AVX));
2786 EnsureSpace ensure_space(this);
2787 emit_vex_prefix(src1, kL128, k66, k0F, kWIG);
2788 EMIT(op);
2789 emit_sse_operand(dst, src2);
2790 }
2791
2792
bmi1(byte op,Register reg,Register vreg,const Operand & rm)2793 void Assembler::bmi1(byte op, Register reg, Register vreg, const Operand& rm) {
2794 DCHECK(IsEnabled(BMI1));
2795 EnsureSpace ensure_space(this);
2796 emit_vex_prefix(vreg, kLZ, kNone, k0F38, kW0);
2797 EMIT(op);
2798 emit_operand(reg, rm);
2799 }
2800
2801
tzcnt(Register dst,const Operand & src)2802 void Assembler::tzcnt(Register dst, const Operand& src) {
2803 DCHECK(IsEnabled(BMI1));
2804 EnsureSpace ensure_space(this);
2805 EMIT(0xF3);
2806 EMIT(0x0F);
2807 EMIT(0xBC);
2808 emit_operand(dst, src);
2809 }
2810
2811
lzcnt(Register dst,const Operand & src)2812 void Assembler::lzcnt(Register dst, const Operand& src) {
2813 DCHECK(IsEnabled(LZCNT));
2814 EnsureSpace ensure_space(this);
2815 EMIT(0xF3);
2816 EMIT(0x0F);
2817 EMIT(0xBD);
2818 emit_operand(dst, src);
2819 }
2820
2821
popcnt(Register dst,const Operand & src)2822 void Assembler::popcnt(Register dst, const Operand& src) {
2823 DCHECK(IsEnabled(POPCNT));
2824 EnsureSpace ensure_space(this);
2825 EMIT(0xF3);
2826 EMIT(0x0F);
2827 EMIT(0xB8);
2828 emit_operand(dst, src);
2829 }
2830
2831
bmi2(SIMDPrefix pp,byte op,Register reg,Register vreg,const Operand & rm)2832 void Assembler::bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
2833 const Operand& rm) {
2834 DCHECK(IsEnabled(BMI2));
2835 EnsureSpace ensure_space(this);
2836 emit_vex_prefix(vreg, kLZ, pp, k0F38, kW0);
2837 EMIT(op);
2838 emit_operand(reg, rm);
2839 }
2840
2841
rorx(Register dst,const Operand & src,byte imm8)2842 void Assembler::rorx(Register dst, const Operand& src, byte imm8) {
2843 DCHECK(IsEnabled(BMI2));
2844 DCHECK(is_uint8(imm8));
2845 Register vreg = {0}; // VEX.vvvv unused
2846 EnsureSpace ensure_space(this);
2847 emit_vex_prefix(vreg, kLZ, kF2, k0F3A, kW0);
2848 EMIT(0xF0);
2849 emit_operand(dst, src);
2850 EMIT(imm8);
2851 }
2852
2853
emit_sse_operand(XMMRegister reg,const Operand & adr)2854 void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
2855 Register ireg = { reg.code() };
2856 emit_operand(ireg, adr);
2857 }
2858
2859
emit_sse_operand(XMMRegister dst,XMMRegister src)2860 void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
2861 EMIT(0xC0 | dst.code() << 3 | src.code());
2862 }
2863
2864
emit_sse_operand(Register dst,XMMRegister src)2865 void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
2866 EMIT(0xC0 | dst.code() << 3 | src.code());
2867 }
2868
2869
emit_sse_operand(XMMRegister dst,Register src)2870 void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
2871 EMIT(0xC0 | (dst.code() << 3) | src.code());
2872 }
2873
2874
emit_vex_prefix(XMMRegister vreg,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)2875 void Assembler::emit_vex_prefix(XMMRegister vreg, VectorLength l, SIMDPrefix pp,
2876 LeadingOpcode mm, VexW w) {
2877 if (mm != k0F || w != kW0) {
2878 EMIT(0xc4);
2879 // Change RXB from "110" to "111" to align with gdb disassembler.
2880 EMIT(0xe0 | mm);
2881 EMIT(w | ((~vreg.code() & 0xf) << 3) | l | pp);
2882 } else {
2883 EMIT(0xc5);
2884 EMIT(((~vreg.code()) << 3) | l | pp);
2885 }
2886 }
2887
2888
emit_vex_prefix(Register vreg,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)2889 void Assembler::emit_vex_prefix(Register vreg, VectorLength l, SIMDPrefix pp,
2890 LeadingOpcode mm, VexW w) {
2891 XMMRegister ivreg = {vreg.code()};
2892 emit_vex_prefix(ivreg, l, pp, mm, w);
2893 }
2894
2895
GrowBuffer()2896 void Assembler::GrowBuffer() {
2897 DCHECK(buffer_overflow());
2898 if (!own_buffer_) FATAL("external code buffer is too small");
2899
2900 // Compute new buffer size.
2901 CodeDesc desc; // the new buffer
2902 desc.buffer_size = 2 * buffer_size_;
2903
2904 // Some internal data structures overflow for very large buffers,
2905 // they must ensure that kMaximalBufferSize is not too large.
2906 if ((desc.buffer_size > kMaximalBufferSize) ||
2907 (desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) {
2908 V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
2909 }
2910
2911 // Set up new buffer.
2912 desc.buffer = NewArray<byte>(desc.buffer_size);
2913 desc.origin = this;
2914 desc.instr_size = pc_offset();
2915 desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
2916
2917 // Clear the buffer in debug mode. Use 'int3' instructions to make
2918 // sure to get into problems if we ever run uninitialized code.
2919 #ifdef DEBUG
2920 memset(desc.buffer, 0xCC, desc.buffer_size);
2921 #endif
2922
2923 // Copy the data.
2924 int pc_delta = desc.buffer - buffer_;
2925 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2926 MemMove(desc.buffer, buffer_, desc.instr_size);
2927 MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
2928 desc.reloc_size);
2929
2930 // Switch buffers.
2931 DeleteArray(buffer_);
2932 buffer_ = desc.buffer;
2933 buffer_size_ = desc.buffer_size;
2934 pc_ += pc_delta;
2935 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2936 reloc_info_writer.last_pc() + pc_delta);
2937
2938 // Relocate internal references.
2939 for (auto pos : internal_reference_positions_) {
2940 int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
2941 *p += pc_delta;
2942 }
2943
2944 DCHECK(!buffer_overflow());
2945 }
2946
2947
emit_arith_b(int op1,int op2,Register dst,int imm8)2948 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
2949 DCHECK(is_uint8(op1) && is_uint8(op2)); // wrong opcode
2950 DCHECK(is_uint8(imm8));
2951 DCHECK((op1 & 0x01) == 0); // should be 8bit operation
2952 EMIT(op1);
2953 EMIT(op2 | dst.code());
2954 EMIT(imm8);
2955 }
2956
2957
emit_arith(int sel,Operand dst,const Immediate & x)2958 void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
2959 DCHECK((0 <= sel) && (sel <= 7));
2960 Register ireg = { sel };
2961 if (x.is_int8()) {
2962 EMIT(0x83); // using a sign-extended 8-bit immediate.
2963 emit_operand(ireg, dst);
2964 EMIT(x.x_ & 0xFF);
2965 } else if (dst.is_reg(eax)) {
2966 EMIT((sel << 3) | 0x05); // short form if the destination is eax.
2967 emit(x);
2968 } else {
2969 EMIT(0x81); // using a literal 32-bit immediate.
2970 emit_operand(ireg, dst);
2971 emit(x);
2972 }
2973 }
2974
2975
emit_operand(Register reg,const Operand & adr)2976 void Assembler::emit_operand(Register reg, const Operand& adr) {
2977 const unsigned length = adr.len_;
2978 DCHECK(length > 0);
2979
2980 // Emit updated ModRM byte containing the given register.
2981 pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
2982
2983 // Emit the rest of the encoded operand.
2984 for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
2985 pc_ += length;
2986
2987 // Emit relocation information if necessary.
2988 if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
2989 pc_ -= sizeof(int32_t); // pc_ must be *at* disp32
2990 RecordRelocInfo(adr.rmode_);
2991 if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) { // Fixup for labels
2992 emit_label(*reinterpret_cast<Label**>(pc_));
2993 } else {
2994 pc_ += sizeof(int32_t);
2995 }
2996 }
2997 }
2998
2999
emit_label(Label * label)3000 void Assembler::emit_label(Label* label) {
3001 if (label->is_bound()) {
3002 internal_reference_positions_.push_back(pc_offset());
3003 emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
3004 } else {
3005 emit_disp(label, Displacement::CODE_ABSOLUTE);
3006 }
3007 }
3008
3009
emit_farith(int b1,int b2,int i)3010 void Assembler::emit_farith(int b1, int b2, int i) {
3011 DCHECK(is_uint8(b1) && is_uint8(b2)); // wrong opcode
3012 DCHECK(0 <= i && i < 8); // illegal stack offset
3013 EMIT(b1);
3014 EMIT(b2 + i);
3015 }
3016
3017
db(uint8_t data)3018 void Assembler::db(uint8_t data) {
3019 EnsureSpace ensure_space(this);
3020 EMIT(data);
3021 }
3022
3023
dd(uint32_t data)3024 void Assembler::dd(uint32_t data) {
3025 EnsureSpace ensure_space(this);
3026 emit(data);
3027 }
3028
3029
dq(uint64_t data)3030 void Assembler::dq(uint64_t data) {
3031 EnsureSpace ensure_space(this);
3032 emit_q(data);
3033 }
3034
3035
dd(Label * label)3036 void Assembler::dd(Label* label) {
3037 EnsureSpace ensure_space(this);
3038 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3039 emit_label(label);
3040 }
3041
3042
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3043 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3044 DCHECK(!RelocInfo::IsNone(rmode));
3045 // Don't record external references unless the heap will be serialized.
3046 if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
3047 !serializer_enabled() && !emit_debug_code()) {
3048 return;
3049 }
3050 RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
3051 reloc_info_writer.Write(&rinfo);
3052 }
3053
3054
3055 #ifdef GENERATED_CODE_COVERAGE
3056 static FILE* coverage_log = NULL;
3057
3058
InitCoverageLog()3059 static void InitCoverageLog() {
3060 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
3061 if (file_name != NULL) {
3062 coverage_log = fopen(file_name, "aw+");
3063 }
3064 }
3065
3066
LogGeneratedCodeCoverage(const char * file_line)3067 void LogGeneratedCodeCoverage(const char* file_line) {
3068 const char* return_address = (&file_line)[-1];
3069 char* push_insn = const_cast<char*>(return_address - 12);
3070 push_insn[0] = 0xeb; // Relative branch insn.
3071 push_insn[1] = 13; // Skip over coverage insns.
3072 if (coverage_log != NULL) {
3073 fprintf(coverage_log, "%s\n", file_line);
3074 fflush(coverage_log);
3075 }
3076 }
3077
3078 #endif
3079
3080 } // namespace internal
3081 } // namespace v8
3082
3083 #endif // V8_TARGET_ARCH_IA32
3084