• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36 
37 #include "src/ia32/assembler-ia32.h"
38 
39 #include <cstring>
40 
41 #if V8_TARGET_ARCH_IA32
42 
43 #if V8_LIBC_MSVCRT
44 #include <intrin.h>  // _xgetbv()
45 #endif
46 #if V8_OS_MACOSX
47 #include <sys/sysctl.h>
48 #endif
49 
50 #include "src/base/bits.h"
51 #include "src/base/cpu.h"
52 #include "src/disassembler.h"
53 #include "src/macro-assembler.h"
54 #include "src/v8.h"
55 
56 namespace v8 {
57 namespace internal {
58 
59 // -----------------------------------------------------------------------------
60 // Implementation of CpuFeatures
61 
62 namespace {
63 
64 #if !V8_LIBC_MSVCRT
65 
_xgetbv(unsigned int xcr)66 V8_INLINE uint64_t _xgetbv(unsigned int xcr) {
67   unsigned eax, edx;
68   // Check xgetbv; this uses a .byte sequence instead of the instruction
69   // directly because older assemblers do not include support for xgetbv and
70   // there is no easy way to conditionally compile based on the assembler
71   // used.
72   __asm__ volatile(".byte 0x0f, 0x01, 0xd0" : "=a"(eax), "=d"(edx) : "c"(xcr));
73   return static_cast<uint64_t>(eax) | (static_cast<uint64_t>(edx) << 32);
74 }
75 
76 #define _XCR_XFEATURE_ENABLED_MASK 0
77 
78 #endif  // !V8_LIBC_MSVCRT
79 
80 
OSHasAVXSupport()81 bool OSHasAVXSupport() {
82 #if V8_OS_MACOSX
83   // Mac OS X up to 10.9 has a bug where AVX transitions were indeed being
84   // caused by ISRs, so we detect that here and disable AVX in that case.
85   char buffer[128];
86   size_t buffer_size = arraysize(buffer);
87   int ctl_name[] = {CTL_KERN, KERN_OSRELEASE};
88   if (sysctl(ctl_name, 2, buffer, &buffer_size, nullptr, 0) != 0) {
89     V8_Fatal(__FILE__, __LINE__, "V8 failed to get kernel version");
90   }
91   // The buffer now contains a string of the form XX.YY.ZZ, where
92   // XX is the major kernel version component.
93   char* period_pos = strchr(buffer, '.');
94   DCHECK_NOT_NULL(period_pos);
95   *period_pos = '\0';
96   long kernel_version_major = strtol(buffer, nullptr, 10);  // NOLINT
97   if (kernel_version_major <= 13) return false;
98 #endif  // V8_OS_MACOSX
99   // Check whether OS claims to support AVX.
100   uint64_t feature_mask = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
101   return (feature_mask & 0x6) == 0x6;
102 }
103 
104 }  // namespace
105 
106 
ProbeImpl(bool cross_compile)107 void CpuFeatures::ProbeImpl(bool cross_compile) {
108   base::CPU cpu;
109   CHECK(cpu.has_sse2());  // SSE2 support is mandatory.
110   CHECK(cpu.has_cmov());  // CMOV support is mandatory.
111 
112   // Only use statically determined features for cross compile (snapshot).
113   if (cross_compile) return;
114 
115   if (cpu.has_sse41() && FLAG_enable_sse4_1) supported_ |= 1u << SSE4_1;
116   if (cpu.has_sse3() && FLAG_enable_sse3) supported_ |= 1u << SSE3;
117   if (cpu.has_avx() && FLAG_enable_avx && cpu.has_osxsave() &&
118       OSHasAVXSupport()) {
119     supported_ |= 1u << AVX;
120   }
121   if (cpu.has_fma3() && FLAG_enable_fma3 && cpu.has_osxsave() &&
122       OSHasAVXSupport()) {
123     supported_ |= 1u << FMA3;
124   }
125   if (cpu.has_bmi1() && FLAG_enable_bmi1) supported_ |= 1u << BMI1;
126   if (cpu.has_bmi2() && FLAG_enable_bmi2) supported_ |= 1u << BMI2;
127   if (cpu.has_lzcnt() && FLAG_enable_lzcnt) supported_ |= 1u << LZCNT;
128   if (cpu.has_popcnt() && FLAG_enable_popcnt) supported_ |= 1u << POPCNT;
129   if (strcmp(FLAG_mcpu, "auto") == 0) {
130     if (cpu.is_atom()) supported_ |= 1u << ATOM;
131   } else if (strcmp(FLAG_mcpu, "atom") == 0) {
132     supported_ |= 1u << ATOM;
133   }
134 }
135 
136 
PrintTarget()137 void CpuFeatures::PrintTarget() { }
PrintFeatures()138 void CpuFeatures::PrintFeatures() {
139   printf(
140       "SSE3=%d SSE4_1=%d AVX=%d FMA3=%d BMI1=%d BMI2=%d LZCNT=%d POPCNT=%d "
141       "ATOM=%d\n",
142       CpuFeatures::IsSupported(SSE3), CpuFeatures::IsSupported(SSE4_1),
143       CpuFeatures::IsSupported(AVX), CpuFeatures::IsSupported(FMA3),
144       CpuFeatures::IsSupported(BMI1), CpuFeatures::IsSupported(BMI2),
145       CpuFeatures::IsSupported(LZCNT), CpuFeatures::IsSupported(POPCNT),
146       CpuFeatures::IsSupported(ATOM));
147 }
148 
149 
150 // -----------------------------------------------------------------------------
151 // Implementation of Displacement
152 
init(Label * L,Type type)153 void Displacement::init(Label* L, Type type) {
154   DCHECK(!L->is_bound());
155   int next = 0;
156   if (L->is_linked()) {
157     next = L->pos();
158     DCHECK(next > 0);  // Displacements must be at positions > 0
159   }
160   // Ensure that we _never_ overflow the next field.
161   DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
162   data_ = NextField::encode(next) | TypeField::encode(type);
163 }
164 
165 
166 // -----------------------------------------------------------------------------
167 // Implementation of RelocInfo
168 
169 
170 const int RelocInfo::kApplyMask =
171     RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
172     1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
173     RelocInfo::kDebugBreakSlotMask;
174 
175 
IsCodedSpecially()176 bool RelocInfo::IsCodedSpecially() {
177   // The deserializer needs to know whether a pointer is specially coded.  Being
178   // specially coded on IA32 means that it is a relative address, as used by
179   // branch instructions.  These are also the ones that need changing when a
180   // code object moves.
181   return (1 << rmode_) & kApplyMask;
182 }
183 
184 
IsInConstantPool()185 bool RelocInfo::IsInConstantPool() {
186   return false;
187 }
188 
wasm_memory_reference()189 Address RelocInfo::wasm_memory_reference() {
190   DCHECK(IsWasmMemoryReference(rmode_));
191   return Memory::Address_at(pc_);
192 }
193 
wasm_global_reference()194 Address RelocInfo::wasm_global_reference() {
195   DCHECK(IsWasmGlobalReference(rmode_));
196   return Memory::Address_at(pc_);
197 }
198 
wasm_memory_size_reference()199 uint32_t RelocInfo::wasm_memory_size_reference() {
200   DCHECK(IsWasmMemorySizeReference(rmode_));
201   return Memory::uint32_at(pc_);
202 }
203 
unchecked_update_wasm_memory_reference(Address address,ICacheFlushMode flush_mode)204 void RelocInfo::unchecked_update_wasm_memory_reference(
205     Address address, ICacheFlushMode flush_mode) {
206   Memory::Address_at(pc_) = address;
207 }
208 
unchecked_update_wasm_memory_size(uint32_t size,ICacheFlushMode flush_mode)209 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
210                                                   ICacheFlushMode flush_mode) {
211   Memory::uint32_at(pc_) = size;
212 }
213 
214 // -----------------------------------------------------------------------------
215 // Implementation of Operand
216 
Operand(Register base,int32_t disp,RelocInfo::Mode rmode)217 Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
218   // [base + disp/r]
219   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
220     // [base]
221     set_modrm(0, base);
222     if (base.is(esp)) set_sib(times_1, esp, base);
223   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
224     // [base + disp8]
225     set_modrm(1, base);
226     if (base.is(esp)) set_sib(times_1, esp, base);
227     set_disp8(disp);
228   } else {
229     // [base + disp/r]
230     set_modrm(2, base);
231     if (base.is(esp)) set_sib(times_1, esp, base);
232     set_dispr(disp, rmode);
233   }
234 }
235 
236 
Operand(Register base,Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)237 Operand::Operand(Register base,
238                  Register index,
239                  ScaleFactor scale,
240                  int32_t disp,
241                  RelocInfo::Mode rmode) {
242   DCHECK(!index.is(esp));  // illegal addressing mode
243   // [base + index*scale + disp/r]
244   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
245     // [base + index*scale]
246     set_modrm(0, esp);
247     set_sib(scale, index, base);
248   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
249     // [base + index*scale + disp8]
250     set_modrm(1, esp);
251     set_sib(scale, index, base);
252     set_disp8(disp);
253   } else {
254     // [base + index*scale + disp/r]
255     set_modrm(2, esp);
256     set_sib(scale, index, base);
257     set_dispr(disp, rmode);
258   }
259 }
260 
261 
Operand(Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)262 Operand::Operand(Register index,
263                  ScaleFactor scale,
264                  int32_t disp,
265                  RelocInfo::Mode rmode) {
266   DCHECK(!index.is(esp));  // illegal addressing mode
267   // [index*scale + disp/r]
268   set_modrm(0, esp);
269   set_sib(scale, index, ebp);
270   set_dispr(disp, rmode);
271 }
272 
273 
is_reg(Register reg) const274 bool Operand::is_reg(Register reg) const {
275   return ((buf_[0] & 0xF8) == 0xC0)  // addressing mode is register only.
276       && ((buf_[0] & 0x07) == reg.code());  // register codes match.
277 }
278 
279 
is_reg_only() const280 bool Operand::is_reg_only() const {
281   return (buf_[0] & 0xF8) == 0xC0;  // Addressing mode is register only.
282 }
283 
284 
reg() const285 Register Operand::reg() const {
286   DCHECK(is_reg_only());
287   return Register::from_code(buf_[0] & 0x07);
288 }
289 
290 
291 // -----------------------------------------------------------------------------
292 // Implementation of Assembler.
293 
294 // Emit a single byte. Must always be inlined.
295 #define EMIT(x)                                 \
296   *pc_++ = (x)
297 
298 
299 #ifdef GENERATED_CODE_COVERAGE
300 static void InitCoverageLog();
301 #endif
302 
Assembler(Isolate * isolate,void * buffer,int buffer_size)303 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
304     : AssemblerBase(isolate, buffer, buffer_size),
305       positions_recorder_(this) {
306   // Clear the buffer in debug mode unless it was provided by the
307   // caller in which case we can't be sure it's okay to overwrite
308   // existing code in it; see CodePatcher::CodePatcher(...).
309 #ifdef DEBUG
310   if (own_buffer_) {
311     memset(buffer_, 0xCC, buffer_size_);  // int3
312   }
313 #endif
314 
315   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
316 
317 #ifdef GENERATED_CODE_COVERAGE
318   InitCoverageLog();
319 #endif
320 }
321 
322 
GetCode(CodeDesc * desc)323 void Assembler::GetCode(CodeDesc* desc) {
324   // Finalize code (at this point overflow() may be true, but the gap ensures
325   // that we are still not overlapping instructions and relocation info).
326   reloc_info_writer.Finish();
327   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
328   // Set up code descriptor.
329   desc->buffer = buffer_;
330   desc->buffer_size = buffer_size_;
331   desc->instr_size = pc_offset();
332   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
333   desc->origin = this;
334   desc->constant_pool_size = 0;
335   desc->unwinding_info_size = 0;
336   desc->unwinding_info = nullptr;
337 }
338 
339 
Align(int m)340 void Assembler::Align(int m) {
341   DCHECK(base::bits::IsPowerOfTwo32(m));
342   int mask = m - 1;
343   int addr = pc_offset();
344   Nop((m - (addr & mask)) & mask);
345 }
346 
347 
IsNop(Address addr)348 bool Assembler::IsNop(Address addr) {
349   Address a = addr;
350   while (*a == 0x66) a++;
351   if (*a == 0x90) return true;
352   if (a[0] == 0xf && a[1] == 0x1f) return true;
353   return false;
354 }
355 
356 
Nop(int bytes)357 void Assembler::Nop(int bytes) {
358   EnsureSpace ensure_space(this);
359 
360   // Multi byte nops from http://support.amd.com/us/Processor_TechDocs/40546.pdf
361   while (bytes > 0) {
362     switch (bytes) {
363       case 2:
364         EMIT(0x66);
365       case 1:
366         EMIT(0x90);
367         return;
368       case 3:
369         EMIT(0xf);
370         EMIT(0x1f);
371         EMIT(0);
372         return;
373       case 4:
374         EMIT(0xf);
375         EMIT(0x1f);
376         EMIT(0x40);
377         EMIT(0);
378         return;
379       case 6:
380         EMIT(0x66);
381       case 5:
382         EMIT(0xf);
383         EMIT(0x1f);
384         EMIT(0x44);
385         EMIT(0);
386         EMIT(0);
387         return;
388       case 7:
389         EMIT(0xf);
390         EMIT(0x1f);
391         EMIT(0x80);
392         EMIT(0);
393         EMIT(0);
394         EMIT(0);
395         EMIT(0);
396         return;
397       default:
398       case 11:
399         EMIT(0x66);
400         bytes--;
401       case 10:
402         EMIT(0x66);
403         bytes--;
404       case 9:
405         EMIT(0x66);
406         bytes--;
407       case 8:
408         EMIT(0xf);
409         EMIT(0x1f);
410         EMIT(0x84);
411         EMIT(0);
412         EMIT(0);
413         EMIT(0);
414         EMIT(0);
415         EMIT(0);
416         bytes -= 8;
417     }
418   }
419 }
420 
421 
CodeTargetAlign()422 void Assembler::CodeTargetAlign() {
423   Align(16);  // Preferred alignment of jump targets on ia32.
424 }
425 
426 
cpuid()427 void Assembler::cpuid() {
428   EnsureSpace ensure_space(this);
429   EMIT(0x0F);
430   EMIT(0xA2);
431 }
432 
433 
pushad()434 void Assembler::pushad() {
435   EnsureSpace ensure_space(this);
436   EMIT(0x60);
437 }
438 
439 
popad()440 void Assembler::popad() {
441   EnsureSpace ensure_space(this);
442   EMIT(0x61);
443 }
444 
445 
pushfd()446 void Assembler::pushfd() {
447   EnsureSpace ensure_space(this);
448   EMIT(0x9C);
449 }
450 
451 
popfd()452 void Assembler::popfd() {
453   EnsureSpace ensure_space(this);
454   EMIT(0x9D);
455 }
456 
457 
push(const Immediate & x)458 void Assembler::push(const Immediate& x) {
459   EnsureSpace ensure_space(this);
460   if (x.is_int8()) {
461     EMIT(0x6a);
462     EMIT(x.x_);
463   } else {
464     EMIT(0x68);
465     emit(x);
466   }
467 }
468 
469 
push_imm32(int32_t imm32)470 void Assembler::push_imm32(int32_t imm32) {
471   EnsureSpace ensure_space(this);
472   EMIT(0x68);
473   emit(imm32);
474 }
475 
476 
push(Register src)477 void Assembler::push(Register src) {
478   EnsureSpace ensure_space(this);
479   EMIT(0x50 | src.code());
480 }
481 
482 
push(const Operand & src)483 void Assembler::push(const Operand& src) {
484   EnsureSpace ensure_space(this);
485   EMIT(0xFF);
486   emit_operand(esi, src);
487 }
488 
489 
pop(Register dst)490 void Assembler::pop(Register dst) {
491   DCHECK(reloc_info_writer.last_pc() != NULL);
492   EnsureSpace ensure_space(this);
493   EMIT(0x58 | dst.code());
494 }
495 
496 
pop(const Operand & dst)497 void Assembler::pop(const Operand& dst) {
498   EnsureSpace ensure_space(this);
499   EMIT(0x8F);
500   emit_operand(eax, dst);
501 }
502 
503 
enter(const Immediate & size)504 void Assembler::enter(const Immediate& size) {
505   EnsureSpace ensure_space(this);
506   EMIT(0xC8);
507   emit_w(size);
508   EMIT(0);
509 }
510 
511 
leave()512 void Assembler::leave() {
513   EnsureSpace ensure_space(this);
514   EMIT(0xC9);
515 }
516 
517 
mov_b(Register dst,const Operand & src)518 void Assembler::mov_b(Register dst, const Operand& src) {
519   CHECK(dst.is_byte_register());
520   EnsureSpace ensure_space(this);
521   EMIT(0x8A);
522   emit_operand(dst, src);
523 }
524 
525 
mov_b(const Operand & dst,const Immediate & src)526 void Assembler::mov_b(const Operand& dst, const Immediate& src) {
527   EnsureSpace ensure_space(this);
528   EMIT(0xC6);
529   emit_operand(eax, dst);
530   EMIT(static_cast<int8_t>(src.x_));
531 }
532 
533 
mov_b(const Operand & dst,Register src)534 void Assembler::mov_b(const Operand& dst, Register src) {
535   CHECK(src.is_byte_register());
536   EnsureSpace ensure_space(this);
537   EMIT(0x88);
538   emit_operand(src, dst);
539 }
540 
541 
mov_w(Register dst,const Operand & src)542 void Assembler::mov_w(Register dst, const Operand& src) {
543   EnsureSpace ensure_space(this);
544   EMIT(0x66);
545   EMIT(0x8B);
546   emit_operand(dst, src);
547 }
548 
549 
mov_w(const Operand & dst,Register src)550 void Assembler::mov_w(const Operand& dst, Register src) {
551   EnsureSpace ensure_space(this);
552   EMIT(0x66);
553   EMIT(0x89);
554   emit_operand(src, dst);
555 }
556 
557 
mov_w(const Operand & dst,const Immediate & src)558 void Assembler::mov_w(const Operand& dst, const Immediate& src) {
559   EnsureSpace ensure_space(this);
560   EMIT(0x66);
561   EMIT(0xC7);
562   emit_operand(eax, dst);
563   EMIT(static_cast<int8_t>(src.x_ & 0xff));
564   EMIT(static_cast<int8_t>(src.x_ >> 8));
565 }
566 
567 
mov(Register dst,int32_t imm32)568 void Assembler::mov(Register dst, int32_t imm32) {
569   EnsureSpace ensure_space(this);
570   EMIT(0xB8 | dst.code());
571   emit(imm32);
572 }
573 
574 
mov(Register dst,const Immediate & x)575 void Assembler::mov(Register dst, const Immediate& x) {
576   EnsureSpace ensure_space(this);
577   EMIT(0xB8 | dst.code());
578   emit(x);
579 }
580 
581 
mov(Register dst,Handle<Object> handle)582 void Assembler::mov(Register dst, Handle<Object> handle) {
583   EnsureSpace ensure_space(this);
584   EMIT(0xB8 | dst.code());
585   emit(handle);
586 }
587 
588 
mov(Register dst,const Operand & src)589 void Assembler::mov(Register dst, const Operand& src) {
590   EnsureSpace ensure_space(this);
591   EMIT(0x8B);
592   emit_operand(dst, src);
593 }
594 
595 
mov(Register dst,Register src)596 void Assembler::mov(Register dst, Register src) {
597   EnsureSpace ensure_space(this);
598   EMIT(0x89);
599   EMIT(0xC0 | src.code() << 3 | dst.code());
600 }
601 
602 
mov(const Operand & dst,const Immediate & x)603 void Assembler::mov(const Operand& dst, const Immediate& x) {
604   EnsureSpace ensure_space(this);
605   EMIT(0xC7);
606   emit_operand(eax, dst);
607   emit(x);
608 }
609 
610 
mov(const Operand & dst,Handle<Object> handle)611 void Assembler::mov(const Operand& dst, Handle<Object> handle) {
612   EnsureSpace ensure_space(this);
613   EMIT(0xC7);
614   emit_operand(eax, dst);
615   emit(handle);
616 }
617 
618 
mov(const Operand & dst,Register src)619 void Assembler::mov(const Operand& dst, Register src) {
620   EnsureSpace ensure_space(this);
621   EMIT(0x89);
622   emit_operand(src, dst);
623 }
624 
625 
movsx_b(Register dst,const Operand & src)626 void Assembler::movsx_b(Register dst, const Operand& src) {
627   EnsureSpace ensure_space(this);
628   EMIT(0x0F);
629   EMIT(0xBE);
630   emit_operand(dst, src);
631 }
632 
633 
movsx_w(Register dst,const Operand & src)634 void Assembler::movsx_w(Register dst, const Operand& src) {
635   EnsureSpace ensure_space(this);
636   EMIT(0x0F);
637   EMIT(0xBF);
638   emit_operand(dst, src);
639 }
640 
641 
movzx_b(Register dst,const Operand & src)642 void Assembler::movzx_b(Register dst, const Operand& src) {
643   EnsureSpace ensure_space(this);
644   EMIT(0x0F);
645   EMIT(0xB6);
646   emit_operand(dst, src);
647 }
648 
649 
movzx_w(Register dst,const Operand & src)650 void Assembler::movzx_w(Register dst, const Operand& src) {
651   EnsureSpace ensure_space(this);
652   EMIT(0x0F);
653   EMIT(0xB7);
654   emit_operand(dst, src);
655 }
656 
657 
cmov(Condition cc,Register dst,const Operand & src)658 void Assembler::cmov(Condition cc, Register dst, const Operand& src) {
659   EnsureSpace ensure_space(this);
660   // Opcode: 0f 40 + cc /r.
661   EMIT(0x0F);
662   EMIT(0x40 + cc);
663   emit_operand(dst, src);
664 }
665 
666 
cld()667 void Assembler::cld() {
668   EnsureSpace ensure_space(this);
669   EMIT(0xFC);
670 }
671 
672 
rep_movs()673 void Assembler::rep_movs() {
674   EnsureSpace ensure_space(this);
675   EMIT(0xF3);
676   EMIT(0xA5);
677 }
678 
679 
rep_stos()680 void Assembler::rep_stos() {
681   EnsureSpace ensure_space(this);
682   EMIT(0xF3);
683   EMIT(0xAB);
684 }
685 
686 
stos()687 void Assembler::stos() {
688   EnsureSpace ensure_space(this);
689   EMIT(0xAB);
690 }
691 
692 
xchg(Register dst,Register src)693 void Assembler::xchg(Register dst, Register src) {
694   EnsureSpace ensure_space(this);
695   if (src.is(eax) || dst.is(eax)) {  // Single-byte encoding.
696     EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
697   } else {
698     EMIT(0x87);
699     EMIT(0xC0 | src.code() << 3 | dst.code());
700   }
701 }
702 
703 
xchg(Register dst,const Operand & src)704 void Assembler::xchg(Register dst, const Operand& src) {
705   EnsureSpace ensure_space(this);
706   EMIT(0x87);
707   emit_operand(dst, src);
708 }
709 
xchg_b(Register reg,const Operand & op)710 void Assembler::xchg_b(Register reg, const Operand& op) {
711   EnsureSpace ensure_space(this);
712   EMIT(0x86);
713   emit_operand(reg, op);
714 }
715 
xchg_w(Register reg,const Operand & op)716 void Assembler::xchg_w(Register reg, const Operand& op) {
717   EnsureSpace ensure_space(this);
718   EMIT(0x66);
719   EMIT(0x87);
720   emit_operand(reg, op);
721 }
722 
lock()723 void Assembler::lock() {
724   EnsureSpace ensure_space(this);
725   EMIT(0xF0);
726 }
727 
cmpxchg(const Operand & dst,Register src)728 void Assembler::cmpxchg(const Operand& dst, Register src) {
729   EnsureSpace ensure_space(this);
730   EMIT(0x0F);
731   EMIT(0xB1);
732   emit_operand(src, dst);
733 }
734 
cmpxchg_b(const Operand & dst,Register src)735 void Assembler::cmpxchg_b(const Operand& dst, Register src) {
736   EnsureSpace ensure_space(this);
737   EMIT(0x0F);
738   EMIT(0xB0);
739   emit_operand(src, dst);
740 }
741 
cmpxchg_w(const Operand & dst,Register src)742 void Assembler::cmpxchg_w(const Operand& dst, Register src) {
743   EnsureSpace ensure_space(this);
744   EMIT(0x66);
745   EMIT(0x0F);
746   EMIT(0xB1);
747   emit_operand(src, dst);
748 }
749 
adc(Register dst,int32_t imm32)750 void Assembler::adc(Register dst, int32_t imm32) {
751   EnsureSpace ensure_space(this);
752   emit_arith(2, Operand(dst), Immediate(imm32));
753 }
754 
755 
adc(Register dst,const Operand & src)756 void Assembler::adc(Register dst, const Operand& src) {
757   EnsureSpace ensure_space(this);
758   EMIT(0x13);
759   emit_operand(dst, src);
760 }
761 
762 
add(Register dst,const Operand & src)763 void Assembler::add(Register dst, const Operand& src) {
764   EnsureSpace ensure_space(this);
765   EMIT(0x03);
766   emit_operand(dst, src);
767 }
768 
769 
add(const Operand & dst,Register src)770 void Assembler::add(const Operand& dst, Register src) {
771   EnsureSpace ensure_space(this);
772   EMIT(0x01);
773   emit_operand(src, dst);
774 }
775 
776 
add(const Operand & dst,const Immediate & x)777 void Assembler::add(const Operand& dst, const Immediate& x) {
778   DCHECK(reloc_info_writer.last_pc() != NULL);
779   EnsureSpace ensure_space(this);
780   emit_arith(0, dst, x);
781 }
782 
783 
and_(Register dst,int32_t imm32)784 void Assembler::and_(Register dst, int32_t imm32) {
785   and_(dst, Immediate(imm32));
786 }
787 
788 
and_(Register dst,const Immediate & x)789 void Assembler::and_(Register dst, const Immediate& x) {
790   EnsureSpace ensure_space(this);
791   emit_arith(4, Operand(dst), x);
792 }
793 
794 
and_(Register dst,const Operand & src)795 void Assembler::and_(Register dst, const Operand& src) {
796   EnsureSpace ensure_space(this);
797   EMIT(0x23);
798   emit_operand(dst, src);
799 }
800 
801 
and_(const Operand & dst,const Immediate & x)802 void Assembler::and_(const Operand& dst, const Immediate& x) {
803   EnsureSpace ensure_space(this);
804   emit_arith(4, dst, x);
805 }
806 
807 
and_(const Operand & dst,Register src)808 void Assembler::and_(const Operand& dst, Register src) {
809   EnsureSpace ensure_space(this);
810   EMIT(0x21);
811   emit_operand(src, dst);
812 }
813 
cmpb(const Operand & op,Immediate imm8)814 void Assembler::cmpb(const Operand& op, Immediate imm8) {
815   DCHECK(imm8.is_int8() || imm8.is_uint8());
816   EnsureSpace ensure_space(this);
817   if (op.is_reg(eax)) {
818     EMIT(0x3C);
819   } else {
820     EMIT(0x80);
821     emit_operand(edi, op);  // edi == 7
822   }
823   emit_b(imm8);
824 }
825 
826 
cmpb(const Operand & op,Register reg)827 void Assembler::cmpb(const Operand& op, Register reg) {
828   CHECK(reg.is_byte_register());
829   EnsureSpace ensure_space(this);
830   EMIT(0x38);
831   emit_operand(reg, op);
832 }
833 
834 
cmpb(Register reg,const Operand & op)835 void Assembler::cmpb(Register reg, const Operand& op) {
836   CHECK(reg.is_byte_register());
837   EnsureSpace ensure_space(this);
838   EMIT(0x3A);
839   emit_operand(reg, op);
840 }
841 
842 
cmpw(const Operand & op,Immediate imm16)843 void Assembler::cmpw(const Operand& op, Immediate imm16) {
844   DCHECK(imm16.is_int16());
845   EnsureSpace ensure_space(this);
846   EMIT(0x66);
847   EMIT(0x81);
848   emit_operand(edi, op);
849   emit_w(imm16);
850 }
851 
cmpw(Register reg,const Operand & op)852 void Assembler::cmpw(Register reg, const Operand& op) {
853   EnsureSpace ensure_space(this);
854   EMIT(0x66);
855   EMIT(0x3B);
856   emit_operand(reg, op);
857 }
858 
cmpw(const Operand & op,Register reg)859 void Assembler::cmpw(const Operand& op, Register reg) {
860   EnsureSpace ensure_space(this);
861   EMIT(0x66);
862   EMIT(0x39);
863   emit_operand(reg, op);
864 }
865 
cmp(Register reg,int32_t imm32)866 void Assembler::cmp(Register reg, int32_t imm32) {
867   EnsureSpace ensure_space(this);
868   emit_arith(7, Operand(reg), Immediate(imm32));
869 }
870 
871 
cmp(Register reg,Handle<Object> handle)872 void Assembler::cmp(Register reg, Handle<Object> handle) {
873   EnsureSpace ensure_space(this);
874   emit_arith(7, Operand(reg), Immediate(handle));
875 }
876 
877 
cmp(Register reg,const Operand & op)878 void Assembler::cmp(Register reg, const Operand& op) {
879   EnsureSpace ensure_space(this);
880   EMIT(0x3B);
881   emit_operand(reg, op);
882 }
883 
cmp(const Operand & op,Register reg)884 void Assembler::cmp(const Operand& op, Register reg) {
885   EnsureSpace ensure_space(this);
886   EMIT(0x39);
887   emit_operand(reg, op);
888 }
889 
cmp(const Operand & op,const Immediate & imm)890 void Assembler::cmp(const Operand& op, const Immediate& imm) {
891   EnsureSpace ensure_space(this);
892   emit_arith(7, op, imm);
893 }
894 
895 
cmp(const Operand & op,Handle<Object> handle)896 void Assembler::cmp(const Operand& op, Handle<Object> handle) {
897   EnsureSpace ensure_space(this);
898   emit_arith(7, op, Immediate(handle));
899 }
900 
901 
cmpb_al(const Operand & op)902 void Assembler::cmpb_al(const Operand& op) {
903   EnsureSpace ensure_space(this);
904   EMIT(0x38);  // CMP r/m8, r8
905   emit_operand(eax, op);  // eax has same code as register al.
906 }
907 
908 
cmpw_ax(const Operand & op)909 void Assembler::cmpw_ax(const Operand& op) {
910   EnsureSpace ensure_space(this);
911   EMIT(0x66);
912   EMIT(0x39);  // CMP r/m16, r16
913   emit_operand(eax, op);  // eax has same code as register ax.
914 }
915 
916 
dec_b(Register dst)917 void Assembler::dec_b(Register dst) {
918   CHECK(dst.is_byte_register());
919   EnsureSpace ensure_space(this);
920   EMIT(0xFE);
921   EMIT(0xC8 | dst.code());
922 }
923 
924 
dec_b(const Operand & dst)925 void Assembler::dec_b(const Operand& dst) {
926   EnsureSpace ensure_space(this);
927   EMIT(0xFE);
928   emit_operand(ecx, dst);
929 }
930 
931 
dec(Register dst)932 void Assembler::dec(Register dst) {
933   EnsureSpace ensure_space(this);
934   EMIT(0x48 | dst.code());
935 }
936 
937 
dec(const Operand & dst)938 void Assembler::dec(const Operand& dst) {
939   EnsureSpace ensure_space(this);
940   EMIT(0xFF);
941   emit_operand(ecx, dst);
942 }
943 
944 
cdq()945 void Assembler::cdq() {
946   EnsureSpace ensure_space(this);
947   EMIT(0x99);
948 }
949 
950 
idiv(const Operand & src)951 void Assembler::idiv(const Operand& src) {
952   EnsureSpace ensure_space(this);
953   EMIT(0xF7);
954   emit_operand(edi, src);
955 }
956 
957 
div(const Operand & src)958 void Assembler::div(const Operand& src) {
959   EnsureSpace ensure_space(this);
960   EMIT(0xF7);
961   emit_operand(esi, src);
962 }
963 
964 
imul(Register reg)965 void Assembler::imul(Register reg) {
966   EnsureSpace ensure_space(this);
967   EMIT(0xF7);
968   EMIT(0xE8 | reg.code());
969 }
970 
971 
imul(Register dst,const Operand & src)972 void Assembler::imul(Register dst, const Operand& src) {
973   EnsureSpace ensure_space(this);
974   EMIT(0x0F);
975   EMIT(0xAF);
976   emit_operand(dst, src);
977 }
978 
979 
imul(Register dst,Register src,int32_t imm32)980 void Assembler::imul(Register dst, Register src, int32_t imm32) {
981   imul(dst, Operand(src), imm32);
982 }
983 
984 
imul(Register dst,const Operand & src,int32_t imm32)985 void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
986   EnsureSpace ensure_space(this);
987   if (is_int8(imm32)) {
988     EMIT(0x6B);
989     emit_operand(dst, src);
990     EMIT(imm32);
991   } else {
992     EMIT(0x69);
993     emit_operand(dst, src);
994     emit(imm32);
995   }
996 }
997 
998 
inc(Register dst)999 void Assembler::inc(Register dst) {
1000   EnsureSpace ensure_space(this);
1001   EMIT(0x40 | dst.code());
1002 }
1003 
1004 
inc(const Operand & dst)1005 void Assembler::inc(const Operand& dst) {
1006   EnsureSpace ensure_space(this);
1007   EMIT(0xFF);
1008   emit_operand(eax, dst);
1009 }
1010 
1011 
lea(Register dst,const Operand & src)1012 void Assembler::lea(Register dst, const Operand& src) {
1013   EnsureSpace ensure_space(this);
1014   EMIT(0x8D);
1015   emit_operand(dst, src);
1016 }
1017 
1018 
mul(Register src)1019 void Assembler::mul(Register src) {
1020   EnsureSpace ensure_space(this);
1021   EMIT(0xF7);
1022   EMIT(0xE0 | src.code());
1023 }
1024 
1025 
neg(Register dst)1026 void Assembler::neg(Register dst) {
1027   EnsureSpace ensure_space(this);
1028   EMIT(0xF7);
1029   EMIT(0xD8 | dst.code());
1030 }
1031 
1032 
neg(const Operand & dst)1033 void Assembler::neg(const Operand& dst) {
1034   EnsureSpace ensure_space(this);
1035   EMIT(0xF7);
1036   emit_operand(ebx, dst);
1037 }
1038 
1039 
not_(Register dst)1040 void Assembler::not_(Register dst) {
1041   EnsureSpace ensure_space(this);
1042   EMIT(0xF7);
1043   EMIT(0xD0 | dst.code());
1044 }
1045 
1046 
not_(const Operand & dst)1047 void Assembler::not_(const Operand& dst) {
1048   EnsureSpace ensure_space(this);
1049   EMIT(0xF7);
1050   emit_operand(edx, dst);
1051 }
1052 
1053 
or_(Register dst,int32_t imm32)1054 void Assembler::or_(Register dst, int32_t imm32) {
1055   EnsureSpace ensure_space(this);
1056   emit_arith(1, Operand(dst), Immediate(imm32));
1057 }
1058 
1059 
or_(Register dst,const Operand & src)1060 void Assembler::or_(Register dst, const Operand& src) {
1061   EnsureSpace ensure_space(this);
1062   EMIT(0x0B);
1063   emit_operand(dst, src);
1064 }
1065 
1066 
or_(const Operand & dst,const Immediate & x)1067 void Assembler::or_(const Operand& dst, const Immediate& x) {
1068   EnsureSpace ensure_space(this);
1069   emit_arith(1, dst, x);
1070 }
1071 
1072 
or_(const Operand & dst,Register src)1073 void Assembler::or_(const Operand& dst, Register src) {
1074   EnsureSpace ensure_space(this);
1075   EMIT(0x09);
1076   emit_operand(src, dst);
1077 }
1078 
1079 
rcl(Register dst,uint8_t imm8)1080 void Assembler::rcl(Register dst, uint8_t imm8) {
1081   EnsureSpace ensure_space(this);
1082   DCHECK(is_uint5(imm8));  // illegal shift count
1083   if (imm8 == 1) {
1084     EMIT(0xD1);
1085     EMIT(0xD0 | dst.code());
1086   } else {
1087     EMIT(0xC1);
1088     EMIT(0xD0 | dst.code());
1089     EMIT(imm8);
1090   }
1091 }
1092 
1093 
rcr(Register dst,uint8_t imm8)1094 void Assembler::rcr(Register dst, uint8_t imm8) {
1095   EnsureSpace ensure_space(this);
1096   DCHECK(is_uint5(imm8));  // illegal shift count
1097   if (imm8 == 1) {
1098     EMIT(0xD1);
1099     EMIT(0xD8 | dst.code());
1100   } else {
1101     EMIT(0xC1);
1102     EMIT(0xD8 | dst.code());
1103     EMIT(imm8);
1104   }
1105 }
1106 
1107 
ror(const Operand & dst,uint8_t imm8)1108 void Assembler::ror(const Operand& dst, uint8_t imm8) {
1109   EnsureSpace ensure_space(this);
1110   DCHECK(is_uint5(imm8));  // illegal shift count
1111   if (imm8 == 1) {
1112     EMIT(0xD1);
1113     emit_operand(ecx, dst);
1114   } else {
1115     EMIT(0xC1);
1116     emit_operand(ecx, dst);
1117     EMIT(imm8);
1118   }
1119 }
1120 
1121 
ror_cl(const Operand & dst)1122 void Assembler::ror_cl(const Operand& dst) {
1123   EnsureSpace ensure_space(this);
1124   EMIT(0xD3);
1125   emit_operand(ecx, dst);
1126 }
1127 
1128 
sar(const Operand & dst,uint8_t imm8)1129 void Assembler::sar(const Operand& dst, uint8_t imm8) {
1130   EnsureSpace ensure_space(this);
1131   DCHECK(is_uint5(imm8));  // illegal shift count
1132   if (imm8 == 1) {
1133     EMIT(0xD1);
1134     emit_operand(edi, dst);
1135   } else {
1136     EMIT(0xC1);
1137     emit_operand(edi, dst);
1138     EMIT(imm8);
1139   }
1140 }
1141 
1142 
sar_cl(const Operand & dst)1143 void Assembler::sar_cl(const Operand& dst) {
1144   EnsureSpace ensure_space(this);
1145   EMIT(0xD3);
1146   emit_operand(edi, dst);
1147 }
1148 
sbb(Register dst,const Operand & src)1149 void Assembler::sbb(Register dst, const Operand& src) {
1150   EnsureSpace ensure_space(this);
1151   EMIT(0x1B);
1152   emit_operand(dst, src);
1153 }
1154 
shld(Register dst,Register src,uint8_t shift)1155 void Assembler::shld(Register dst, Register src, uint8_t shift) {
1156   DCHECK(is_uint5(shift));
1157   EnsureSpace ensure_space(this);
1158   EMIT(0x0F);
1159   EMIT(0xA4);
1160   emit_operand(src, Operand(dst));
1161   EMIT(shift);
1162 }
1163 
shld_cl(Register dst,Register src)1164 void Assembler::shld_cl(Register dst, Register src) {
1165   EnsureSpace ensure_space(this);
1166   EMIT(0x0F);
1167   EMIT(0xA5);
1168   emit_operand(src, Operand(dst));
1169 }
1170 
1171 
shl(const Operand & dst,uint8_t imm8)1172 void Assembler::shl(const Operand& dst, uint8_t imm8) {
1173   EnsureSpace ensure_space(this);
1174   DCHECK(is_uint5(imm8));  // illegal shift count
1175   if (imm8 == 1) {
1176     EMIT(0xD1);
1177     emit_operand(esp, dst);
1178   } else {
1179     EMIT(0xC1);
1180     emit_operand(esp, dst);
1181     EMIT(imm8);
1182   }
1183 }
1184 
1185 
shl_cl(const Operand & dst)1186 void Assembler::shl_cl(const Operand& dst) {
1187   EnsureSpace ensure_space(this);
1188   EMIT(0xD3);
1189   emit_operand(esp, dst);
1190 }
1191 
shr(const Operand & dst,uint8_t imm8)1192 void Assembler::shr(const Operand& dst, uint8_t imm8) {
1193   EnsureSpace ensure_space(this);
1194   DCHECK(is_uint5(imm8));  // illegal shift count
1195   if (imm8 == 1) {
1196     EMIT(0xD1);
1197     emit_operand(ebp, dst);
1198   } else {
1199     EMIT(0xC1);
1200     emit_operand(ebp, dst);
1201     EMIT(imm8);
1202   }
1203 }
1204 
1205 
shr_cl(const Operand & dst)1206 void Assembler::shr_cl(const Operand& dst) {
1207   EnsureSpace ensure_space(this);
1208   EMIT(0xD3);
1209   emit_operand(ebp, dst);
1210 }
1211 
shrd(Register dst,Register src,uint8_t shift)1212 void Assembler::shrd(Register dst, Register src, uint8_t shift) {
1213   DCHECK(is_uint5(shift));
1214   EnsureSpace ensure_space(this);
1215   EMIT(0x0F);
1216   EMIT(0xAC);
1217   emit_operand(dst, Operand(src));
1218   EMIT(shift);
1219 }
1220 
shrd_cl(const Operand & dst,Register src)1221 void Assembler::shrd_cl(const Operand& dst, Register src) {
1222   EnsureSpace ensure_space(this);
1223   EMIT(0x0F);
1224   EMIT(0xAD);
1225   emit_operand(src, dst);
1226 }
1227 
sub(const Operand & dst,const Immediate & x)1228 void Assembler::sub(const Operand& dst, const Immediate& x) {
1229   EnsureSpace ensure_space(this);
1230   emit_arith(5, dst, x);
1231 }
1232 
1233 
sub(Register dst,const Operand & src)1234 void Assembler::sub(Register dst, const Operand& src) {
1235   EnsureSpace ensure_space(this);
1236   EMIT(0x2B);
1237   emit_operand(dst, src);
1238 }
1239 
1240 
sub(const Operand & dst,Register src)1241 void Assembler::sub(const Operand& dst, Register src) {
1242   EnsureSpace ensure_space(this);
1243   EMIT(0x29);
1244   emit_operand(src, dst);
1245 }
1246 
1247 
test(Register reg,const Immediate & imm)1248 void Assembler::test(Register reg, const Immediate& imm) {
1249   if (imm.is_uint8()) {
1250     test_b(reg, imm);
1251     return;
1252   }
1253 
1254   EnsureSpace ensure_space(this);
1255   // This is not using emit_arith because test doesn't support
1256   // sign-extension of 8-bit operands.
1257   if (reg.is(eax)) {
1258     EMIT(0xA9);
1259   } else {
1260     EMIT(0xF7);
1261     EMIT(0xC0 | reg.code());
1262   }
1263   emit(imm);
1264 }
1265 
1266 
test(Register reg,const Operand & op)1267 void Assembler::test(Register reg, const Operand& op) {
1268   EnsureSpace ensure_space(this);
1269   EMIT(0x85);
1270   emit_operand(reg, op);
1271 }
1272 
1273 
test_b(Register reg,const Operand & op)1274 void Assembler::test_b(Register reg, const Operand& op) {
1275   CHECK(reg.is_byte_register());
1276   EnsureSpace ensure_space(this);
1277   EMIT(0x84);
1278   emit_operand(reg, op);
1279 }
1280 
1281 
test(const Operand & op,const Immediate & imm)1282 void Assembler::test(const Operand& op, const Immediate& imm) {
1283   if (op.is_reg_only()) {
1284     test(op.reg(), imm);
1285     return;
1286   }
1287   if (imm.is_uint8()) {
1288     return test_b(op, imm);
1289   }
1290   EnsureSpace ensure_space(this);
1291   EMIT(0xF7);
1292   emit_operand(eax, op);
1293   emit(imm);
1294 }
1295 
test_b(Register reg,Immediate imm8)1296 void Assembler::test_b(Register reg, Immediate imm8) {
1297   DCHECK(imm8.is_uint8());
1298   EnsureSpace ensure_space(this);
1299   // Only use test against byte for registers that have a byte
1300   // variant: eax, ebx, ecx, and edx.
1301   if (reg.is(eax)) {
1302     EMIT(0xA8);
1303     emit_b(imm8);
1304   } else if (reg.is_byte_register()) {
1305     emit_arith_b(0xF6, 0xC0, reg, static_cast<uint8_t>(imm8.x_));
1306   } else {
1307     EMIT(0x66);
1308     EMIT(0xF7);
1309     EMIT(0xC0 | reg.code());
1310     emit_w(imm8);
1311   }
1312 }
1313 
test_b(const Operand & op,Immediate imm8)1314 void Assembler::test_b(const Operand& op, Immediate imm8) {
1315   if (op.is_reg_only()) {
1316     test_b(op.reg(), imm8);
1317     return;
1318   }
1319   EnsureSpace ensure_space(this);
1320   EMIT(0xF6);
1321   emit_operand(eax, op);
1322   emit_b(imm8);
1323 }
1324 
test_w(Register reg,Immediate imm16)1325 void Assembler::test_w(Register reg, Immediate imm16) {
1326   DCHECK(imm16.is_int16() || imm16.is_uint16());
1327   EnsureSpace ensure_space(this);
1328   if (reg.is(eax)) {
1329     EMIT(0xA9);
1330     emit_w(imm16);
1331   } else {
1332     EMIT(0x66);
1333     EMIT(0xF7);
1334     EMIT(0xc0 | reg.code());
1335     emit_w(imm16);
1336   }
1337 }
1338 
test_w(Register reg,const Operand & op)1339 void Assembler::test_w(Register reg, const Operand& op) {
1340   EnsureSpace ensure_space(this);
1341   EMIT(0x66);
1342   EMIT(0x85);
1343   emit_operand(reg, op);
1344 }
1345 
test_w(const Operand & op,Immediate imm16)1346 void Assembler::test_w(const Operand& op, Immediate imm16) {
1347   DCHECK(imm16.is_int16() || imm16.is_uint16());
1348   if (op.is_reg_only()) {
1349     test_w(op.reg(), imm16);
1350     return;
1351   }
1352   EnsureSpace ensure_space(this);
1353   EMIT(0x66);
1354   EMIT(0xF7);
1355   emit_operand(eax, op);
1356   emit_w(imm16);
1357 }
1358 
xor_(Register dst,int32_t imm32)1359 void Assembler::xor_(Register dst, int32_t imm32) {
1360   EnsureSpace ensure_space(this);
1361   emit_arith(6, Operand(dst), Immediate(imm32));
1362 }
1363 
1364 
xor_(Register dst,const Operand & src)1365 void Assembler::xor_(Register dst, const Operand& src) {
1366   EnsureSpace ensure_space(this);
1367   EMIT(0x33);
1368   emit_operand(dst, src);
1369 }
1370 
1371 
xor_(const Operand & dst,Register src)1372 void Assembler::xor_(const Operand& dst, Register src) {
1373   EnsureSpace ensure_space(this);
1374   EMIT(0x31);
1375   emit_operand(src, dst);
1376 }
1377 
1378 
xor_(const Operand & dst,const Immediate & x)1379 void Assembler::xor_(const Operand& dst, const Immediate& x) {
1380   EnsureSpace ensure_space(this);
1381   emit_arith(6, dst, x);
1382 }
1383 
1384 
bt(const Operand & dst,Register src)1385 void Assembler::bt(const Operand& dst, Register src) {
1386   EnsureSpace ensure_space(this);
1387   EMIT(0x0F);
1388   EMIT(0xA3);
1389   emit_operand(src, dst);
1390 }
1391 
1392 
bts(const Operand & dst,Register src)1393 void Assembler::bts(const Operand& dst, Register src) {
1394   EnsureSpace ensure_space(this);
1395   EMIT(0x0F);
1396   EMIT(0xAB);
1397   emit_operand(src, dst);
1398 }
1399 
1400 
bsr(Register dst,const Operand & src)1401 void Assembler::bsr(Register dst, const Operand& src) {
1402   EnsureSpace ensure_space(this);
1403   EMIT(0x0F);
1404   EMIT(0xBD);
1405   emit_operand(dst, src);
1406 }
1407 
1408 
bsf(Register dst,const Operand & src)1409 void Assembler::bsf(Register dst, const Operand& src) {
1410   EnsureSpace ensure_space(this);
1411   EMIT(0x0F);
1412   EMIT(0xBC);
1413   emit_operand(dst, src);
1414 }
1415 
1416 
hlt()1417 void Assembler::hlt() {
1418   EnsureSpace ensure_space(this);
1419   EMIT(0xF4);
1420 }
1421 
1422 
int3()1423 void Assembler::int3() {
1424   EnsureSpace ensure_space(this);
1425   EMIT(0xCC);
1426 }
1427 
1428 
nop()1429 void Assembler::nop() {
1430   EnsureSpace ensure_space(this);
1431   EMIT(0x90);
1432 }
1433 
1434 
ret(int imm16)1435 void Assembler::ret(int imm16) {
1436   EnsureSpace ensure_space(this);
1437   DCHECK(is_uint16(imm16));
1438   if (imm16 == 0) {
1439     EMIT(0xC3);
1440   } else {
1441     EMIT(0xC2);
1442     EMIT(imm16 & 0xFF);
1443     EMIT((imm16 >> 8) & 0xFF);
1444   }
1445 }
1446 
1447 
ud2()1448 void Assembler::ud2() {
1449   EnsureSpace ensure_space(this);
1450   EMIT(0x0F);
1451   EMIT(0x0B);
1452 }
1453 
1454 
1455 // Labels refer to positions in the (to be) generated code.
1456 // There are bound, linked, and unused labels.
1457 //
1458 // Bound labels refer to known positions in the already
1459 // generated code. pos() is the position the label refers to.
1460 //
1461 // Linked labels refer to unknown positions in the code
1462 // to be generated; pos() is the position of the 32bit
1463 // Displacement of the last instruction using the label.
1464 
1465 
print(Label * L)1466 void Assembler::print(Label* L) {
1467   if (L->is_unused()) {
1468     PrintF("unused label\n");
1469   } else if (L->is_bound()) {
1470     PrintF("bound label to %d\n", L->pos());
1471   } else if (L->is_linked()) {
1472     Label l = *L;
1473     PrintF("unbound label");
1474     while (l.is_linked()) {
1475       Displacement disp = disp_at(&l);
1476       PrintF("@ %d ", l.pos());
1477       disp.print();
1478       PrintF("\n");
1479       disp.next(&l);
1480     }
1481   } else {
1482     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1483   }
1484 }
1485 
1486 
bind_to(Label * L,int pos)1487 void Assembler::bind_to(Label* L, int pos) {
1488   EnsureSpace ensure_space(this);
1489   DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
1490   while (L->is_linked()) {
1491     Displacement disp = disp_at(L);
1492     int fixup_pos = L->pos();
1493     if (disp.type() == Displacement::CODE_ABSOLUTE) {
1494       long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
1495       internal_reference_positions_.push_back(fixup_pos);
1496     } else if (disp.type() == Displacement::CODE_RELATIVE) {
1497       // Relative to Code* heap object pointer.
1498       long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
1499     } else {
1500       if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
1501         DCHECK(byte_at(fixup_pos - 1) == 0xE9);  // jmp expected
1502       }
1503       // Relative address, relative to point after address.
1504       int imm32 = pos - (fixup_pos + sizeof(int32_t));
1505       long_at_put(fixup_pos, imm32);
1506     }
1507     disp.next(L);
1508   }
1509   while (L->is_near_linked()) {
1510     int fixup_pos = L->near_link_pos();
1511     int offset_to_next =
1512         static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
1513     DCHECK(offset_to_next <= 0);
1514     // Relative address, relative to point after address.
1515     int disp = pos - fixup_pos - sizeof(int8_t);
1516     CHECK(0 <= disp && disp <= 127);
1517     set_byte_at(fixup_pos, disp);
1518     if (offset_to_next < 0) {
1519       L->link_to(fixup_pos + offset_to_next, Label::kNear);
1520     } else {
1521       L->UnuseNear();
1522     }
1523   }
1524   L->bind_to(pos);
1525 }
1526 
1527 
bind(Label * L)1528 void Assembler::bind(Label* L) {
1529   EnsureSpace ensure_space(this);
1530   DCHECK(!L->is_bound());  // label can only be bound once
1531   bind_to(L, pc_offset());
1532 }
1533 
1534 
call(Label * L)1535 void Assembler::call(Label* L) {
1536   EnsureSpace ensure_space(this);
1537   if (L->is_bound()) {
1538     const int long_size = 5;
1539     int offs = L->pos() - pc_offset();
1540     DCHECK(offs <= 0);
1541     // 1110 1000 #32-bit disp.
1542     EMIT(0xE8);
1543     emit(offs - long_size);
1544   } else {
1545     // 1110 1000 #32-bit disp.
1546     EMIT(0xE8);
1547     emit_disp(L, Displacement::OTHER);
1548   }
1549 }
1550 
1551 
call(byte * entry,RelocInfo::Mode rmode)1552 void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
1553   EnsureSpace ensure_space(this);
1554   DCHECK(!RelocInfo::IsCodeTarget(rmode));
1555   EMIT(0xE8);
1556   if (RelocInfo::IsRuntimeEntry(rmode)) {
1557     emit(reinterpret_cast<uint32_t>(entry), rmode);
1558   } else {
1559     emit(entry - (pc_ + sizeof(int32_t)), rmode);
1560   }
1561 }
1562 
1563 
CallSize(const Operand & adr)1564 int Assembler::CallSize(const Operand& adr) {
1565   // Call size is 1 (opcode) + adr.len_ (operand).
1566   return 1 + adr.len_;
1567 }
1568 
1569 
call(const Operand & adr)1570 void Assembler::call(const Operand& adr) {
1571   EnsureSpace ensure_space(this);
1572   EMIT(0xFF);
1573   emit_operand(edx, adr);
1574 }
1575 
1576 
CallSize(Handle<Code> code,RelocInfo::Mode rmode)1577 int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
1578   return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
1579 }
1580 
1581 
call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)1582 void Assembler::call(Handle<Code> code,
1583                      RelocInfo::Mode rmode,
1584                      TypeFeedbackId ast_id) {
1585   EnsureSpace ensure_space(this);
1586   DCHECK(RelocInfo::IsCodeTarget(rmode)
1587       || rmode == RelocInfo::CODE_AGE_SEQUENCE);
1588   EMIT(0xE8);
1589   emit(code, rmode, ast_id);
1590 }
1591 
1592 
jmp(Label * L,Label::Distance distance)1593 void Assembler::jmp(Label* L, Label::Distance distance) {
1594   EnsureSpace ensure_space(this);
1595   if (L->is_bound()) {
1596     const int short_size = 2;
1597     const int long_size  = 5;
1598     int offs = L->pos() - pc_offset();
1599     DCHECK(offs <= 0);
1600     if (is_int8(offs - short_size)) {
1601       // 1110 1011 #8-bit disp.
1602       EMIT(0xEB);
1603       EMIT((offs - short_size) & 0xFF);
1604     } else {
1605       // 1110 1001 #32-bit disp.
1606       EMIT(0xE9);
1607       emit(offs - long_size);
1608     }
1609   } else if (distance == Label::kNear) {
1610     EMIT(0xEB);
1611     emit_near_disp(L);
1612   } else {
1613     // 1110 1001 #32-bit disp.
1614     EMIT(0xE9);
1615     emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
1616   }
1617 }
1618 
1619 
jmp(byte * entry,RelocInfo::Mode rmode)1620 void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
1621   EnsureSpace ensure_space(this);
1622   DCHECK(!RelocInfo::IsCodeTarget(rmode));
1623   EMIT(0xE9);
1624   if (RelocInfo::IsRuntimeEntry(rmode)) {
1625     emit(reinterpret_cast<uint32_t>(entry), rmode);
1626   } else {
1627     emit(entry - (pc_ + sizeof(int32_t)), rmode);
1628   }
1629 }
1630 
1631 
jmp(const Operand & adr)1632 void Assembler::jmp(const Operand& adr) {
1633   EnsureSpace ensure_space(this);
1634   EMIT(0xFF);
1635   emit_operand(esp, adr);
1636 }
1637 
1638 
jmp(Handle<Code> code,RelocInfo::Mode rmode)1639 void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
1640   EnsureSpace ensure_space(this);
1641   DCHECK(RelocInfo::IsCodeTarget(rmode));
1642   EMIT(0xE9);
1643   emit(code, rmode);
1644 }
1645 
1646 
j(Condition cc,Label * L,Label::Distance distance)1647 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
1648   EnsureSpace ensure_space(this);
1649   DCHECK(0 <= cc && static_cast<int>(cc) < 16);
1650   if (L->is_bound()) {
1651     const int short_size = 2;
1652     const int long_size  = 6;
1653     int offs = L->pos() - pc_offset();
1654     DCHECK(offs <= 0);
1655     if (is_int8(offs - short_size)) {
1656       // 0111 tttn #8-bit disp
1657       EMIT(0x70 | cc);
1658       EMIT((offs - short_size) & 0xFF);
1659     } else {
1660       // 0000 1111 1000 tttn #32-bit disp
1661       EMIT(0x0F);
1662       EMIT(0x80 | cc);
1663       emit(offs - long_size);
1664     }
1665   } else if (distance == Label::kNear) {
1666     EMIT(0x70 | cc);
1667     emit_near_disp(L);
1668   } else {
1669     // 0000 1111 1000 tttn #32-bit disp
1670     // Note: could eliminate cond. jumps to this jump if condition
1671     //       is the same however, seems to be rather unlikely case.
1672     EMIT(0x0F);
1673     EMIT(0x80 | cc);
1674     emit_disp(L, Displacement::OTHER);
1675   }
1676 }
1677 
1678 
j(Condition cc,byte * entry,RelocInfo::Mode rmode)1679 void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
1680   EnsureSpace ensure_space(this);
1681   DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
1682   // 0000 1111 1000 tttn #32-bit disp.
1683   EMIT(0x0F);
1684   EMIT(0x80 | cc);
1685   if (RelocInfo::IsRuntimeEntry(rmode)) {
1686     emit(reinterpret_cast<uint32_t>(entry), rmode);
1687   } else {
1688     emit(entry - (pc_ + sizeof(int32_t)), rmode);
1689   }
1690 }
1691 
1692 
j(Condition cc,Handle<Code> code,RelocInfo::Mode rmode)1693 void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
1694   EnsureSpace ensure_space(this);
1695   // 0000 1111 1000 tttn #32-bit disp
1696   EMIT(0x0F);
1697   EMIT(0x80 | cc);
1698   emit(code, rmode);
1699 }
1700 
1701 
1702 // FPU instructions.
1703 
fld(int i)1704 void Assembler::fld(int i) {
1705   EnsureSpace ensure_space(this);
1706   emit_farith(0xD9, 0xC0, i);
1707 }
1708 
1709 
fstp(int i)1710 void Assembler::fstp(int i) {
1711   EnsureSpace ensure_space(this);
1712   emit_farith(0xDD, 0xD8, i);
1713 }
1714 
1715 
fld1()1716 void Assembler::fld1() {
1717   EnsureSpace ensure_space(this);
1718   EMIT(0xD9);
1719   EMIT(0xE8);
1720 }
1721 
1722 
fldpi()1723 void Assembler::fldpi() {
1724   EnsureSpace ensure_space(this);
1725   EMIT(0xD9);
1726   EMIT(0xEB);
1727 }
1728 
1729 
fldz()1730 void Assembler::fldz() {
1731   EnsureSpace ensure_space(this);
1732   EMIT(0xD9);
1733   EMIT(0xEE);
1734 }
1735 
1736 
fldln2()1737 void Assembler::fldln2() {
1738   EnsureSpace ensure_space(this);
1739   EMIT(0xD9);
1740   EMIT(0xED);
1741 }
1742 
1743 
fld_s(const Operand & adr)1744 void Assembler::fld_s(const Operand& adr) {
1745   EnsureSpace ensure_space(this);
1746   EMIT(0xD9);
1747   emit_operand(eax, adr);
1748 }
1749 
1750 
fld_d(const Operand & adr)1751 void Assembler::fld_d(const Operand& adr) {
1752   EnsureSpace ensure_space(this);
1753   EMIT(0xDD);
1754   emit_operand(eax, adr);
1755 }
1756 
1757 
fstp_s(const Operand & adr)1758 void Assembler::fstp_s(const Operand& adr) {
1759   EnsureSpace ensure_space(this);
1760   EMIT(0xD9);
1761   emit_operand(ebx, adr);
1762 }
1763 
1764 
fst_s(const Operand & adr)1765 void Assembler::fst_s(const Operand& adr) {
1766   EnsureSpace ensure_space(this);
1767   EMIT(0xD9);
1768   emit_operand(edx, adr);
1769 }
1770 
1771 
fstp_d(const Operand & adr)1772 void Assembler::fstp_d(const Operand& adr) {
1773   EnsureSpace ensure_space(this);
1774   EMIT(0xDD);
1775   emit_operand(ebx, adr);
1776 }
1777 
1778 
fst_d(const Operand & adr)1779 void Assembler::fst_d(const Operand& adr) {
1780   EnsureSpace ensure_space(this);
1781   EMIT(0xDD);
1782   emit_operand(edx, adr);
1783 }
1784 
1785 
fild_s(const Operand & adr)1786 void Assembler::fild_s(const Operand& adr) {
1787   EnsureSpace ensure_space(this);
1788   EMIT(0xDB);
1789   emit_operand(eax, adr);
1790 }
1791 
1792 
fild_d(const Operand & adr)1793 void Assembler::fild_d(const Operand& adr) {
1794   EnsureSpace ensure_space(this);
1795   EMIT(0xDF);
1796   emit_operand(ebp, adr);
1797 }
1798 
1799 
fistp_s(const Operand & adr)1800 void Assembler::fistp_s(const Operand& adr) {
1801   EnsureSpace ensure_space(this);
1802   EMIT(0xDB);
1803   emit_operand(ebx, adr);
1804 }
1805 
1806 
fisttp_s(const Operand & adr)1807 void Assembler::fisttp_s(const Operand& adr) {
1808   DCHECK(IsEnabled(SSE3));
1809   EnsureSpace ensure_space(this);
1810   EMIT(0xDB);
1811   emit_operand(ecx, adr);
1812 }
1813 
1814 
fisttp_d(const Operand & adr)1815 void Assembler::fisttp_d(const Operand& adr) {
1816   DCHECK(IsEnabled(SSE3));
1817   EnsureSpace ensure_space(this);
1818   EMIT(0xDD);
1819   emit_operand(ecx, adr);
1820 }
1821 
1822 
fist_s(const Operand & adr)1823 void Assembler::fist_s(const Operand& adr) {
1824   EnsureSpace ensure_space(this);
1825   EMIT(0xDB);
1826   emit_operand(edx, adr);
1827 }
1828 
1829 
fistp_d(const Operand & adr)1830 void Assembler::fistp_d(const Operand& adr) {
1831   EnsureSpace ensure_space(this);
1832   EMIT(0xDF);
1833   emit_operand(edi, adr);
1834 }
1835 
1836 
fabs()1837 void Assembler::fabs() {
1838   EnsureSpace ensure_space(this);
1839   EMIT(0xD9);
1840   EMIT(0xE1);
1841 }
1842 
1843 
fchs()1844 void Assembler::fchs() {
1845   EnsureSpace ensure_space(this);
1846   EMIT(0xD9);
1847   EMIT(0xE0);
1848 }
1849 
1850 
fcos()1851 void Assembler::fcos() {
1852   EnsureSpace ensure_space(this);
1853   EMIT(0xD9);
1854   EMIT(0xFF);
1855 }
1856 
1857 
fsin()1858 void Assembler::fsin() {
1859   EnsureSpace ensure_space(this);
1860   EMIT(0xD9);
1861   EMIT(0xFE);
1862 }
1863 
1864 
fptan()1865 void Assembler::fptan() {
1866   EnsureSpace ensure_space(this);
1867   EMIT(0xD9);
1868   EMIT(0xF2);
1869 }
1870 
1871 
fyl2x()1872 void Assembler::fyl2x() {
1873   EnsureSpace ensure_space(this);
1874   EMIT(0xD9);
1875   EMIT(0xF1);
1876 }
1877 
1878 
f2xm1()1879 void Assembler::f2xm1() {
1880   EnsureSpace ensure_space(this);
1881   EMIT(0xD9);
1882   EMIT(0xF0);
1883 }
1884 
1885 
fscale()1886 void Assembler::fscale() {
1887   EnsureSpace ensure_space(this);
1888   EMIT(0xD9);
1889   EMIT(0xFD);
1890 }
1891 
1892 
fninit()1893 void Assembler::fninit() {
1894   EnsureSpace ensure_space(this);
1895   EMIT(0xDB);
1896   EMIT(0xE3);
1897 }
1898 
1899 
fadd(int i)1900 void Assembler::fadd(int i) {
1901   EnsureSpace ensure_space(this);
1902   emit_farith(0xDC, 0xC0, i);
1903 }
1904 
1905 
fadd_i(int i)1906 void Assembler::fadd_i(int i) {
1907   EnsureSpace ensure_space(this);
1908   emit_farith(0xD8, 0xC0, i);
1909 }
1910 
1911 
fsub(int i)1912 void Assembler::fsub(int i) {
1913   EnsureSpace ensure_space(this);
1914   emit_farith(0xDC, 0xE8, i);
1915 }
1916 
1917 
fsub_i(int i)1918 void Assembler::fsub_i(int i) {
1919   EnsureSpace ensure_space(this);
1920   emit_farith(0xD8, 0xE0, i);
1921 }
1922 
1923 
fisub_s(const Operand & adr)1924 void Assembler::fisub_s(const Operand& adr) {
1925   EnsureSpace ensure_space(this);
1926   EMIT(0xDA);
1927   emit_operand(esp, adr);
1928 }
1929 
1930 
fmul_i(int i)1931 void Assembler::fmul_i(int i) {
1932   EnsureSpace ensure_space(this);
1933   emit_farith(0xD8, 0xC8, i);
1934 }
1935 
1936 
fmul(int i)1937 void Assembler::fmul(int i) {
1938   EnsureSpace ensure_space(this);
1939   emit_farith(0xDC, 0xC8, i);
1940 }
1941 
1942 
fdiv(int i)1943 void Assembler::fdiv(int i) {
1944   EnsureSpace ensure_space(this);
1945   emit_farith(0xDC, 0xF8, i);
1946 }
1947 
1948 
fdiv_i(int i)1949 void Assembler::fdiv_i(int i) {
1950   EnsureSpace ensure_space(this);
1951   emit_farith(0xD8, 0xF0, i);
1952 }
1953 
1954 
faddp(int i)1955 void Assembler::faddp(int i) {
1956   EnsureSpace ensure_space(this);
1957   emit_farith(0xDE, 0xC0, i);
1958 }
1959 
1960 
fsubp(int i)1961 void Assembler::fsubp(int i) {
1962   EnsureSpace ensure_space(this);
1963   emit_farith(0xDE, 0xE8, i);
1964 }
1965 
1966 
fsubrp(int i)1967 void Assembler::fsubrp(int i) {
1968   EnsureSpace ensure_space(this);
1969   emit_farith(0xDE, 0xE0, i);
1970 }
1971 
1972 
fmulp(int i)1973 void Assembler::fmulp(int i) {
1974   EnsureSpace ensure_space(this);
1975   emit_farith(0xDE, 0xC8, i);
1976 }
1977 
1978 
fdivp(int i)1979 void Assembler::fdivp(int i) {
1980   EnsureSpace ensure_space(this);
1981   emit_farith(0xDE, 0xF8, i);
1982 }
1983 
1984 
fprem()1985 void Assembler::fprem() {
1986   EnsureSpace ensure_space(this);
1987   EMIT(0xD9);
1988   EMIT(0xF8);
1989 }
1990 
1991 
fprem1()1992 void Assembler::fprem1() {
1993   EnsureSpace ensure_space(this);
1994   EMIT(0xD9);
1995   EMIT(0xF5);
1996 }
1997 
1998 
fxch(int i)1999 void Assembler::fxch(int i) {
2000   EnsureSpace ensure_space(this);
2001   emit_farith(0xD9, 0xC8, i);
2002 }
2003 
2004 
fincstp()2005 void Assembler::fincstp() {
2006   EnsureSpace ensure_space(this);
2007   EMIT(0xD9);
2008   EMIT(0xF7);
2009 }
2010 
2011 
ffree(int i)2012 void Assembler::ffree(int i) {
2013   EnsureSpace ensure_space(this);
2014   emit_farith(0xDD, 0xC0, i);
2015 }
2016 
2017 
ftst()2018 void Assembler::ftst() {
2019   EnsureSpace ensure_space(this);
2020   EMIT(0xD9);
2021   EMIT(0xE4);
2022 }
2023 
2024 
fucomp(int i)2025 void Assembler::fucomp(int i) {
2026   EnsureSpace ensure_space(this);
2027   emit_farith(0xDD, 0xE8, i);
2028 }
2029 
2030 
fucompp()2031 void Assembler::fucompp() {
2032   EnsureSpace ensure_space(this);
2033   EMIT(0xDA);
2034   EMIT(0xE9);
2035 }
2036 
2037 
fucomi(int i)2038 void Assembler::fucomi(int i) {
2039   EnsureSpace ensure_space(this);
2040   EMIT(0xDB);
2041   EMIT(0xE8 + i);
2042 }
2043 
2044 
fucomip()2045 void Assembler::fucomip() {
2046   EnsureSpace ensure_space(this);
2047   EMIT(0xDF);
2048   EMIT(0xE9);
2049 }
2050 
2051 
fcompp()2052 void Assembler::fcompp() {
2053   EnsureSpace ensure_space(this);
2054   EMIT(0xDE);
2055   EMIT(0xD9);
2056 }
2057 
2058 
fnstsw_ax()2059 void Assembler::fnstsw_ax() {
2060   EnsureSpace ensure_space(this);
2061   EMIT(0xDF);
2062   EMIT(0xE0);
2063 }
2064 
2065 
fwait()2066 void Assembler::fwait() {
2067   EnsureSpace ensure_space(this);
2068   EMIT(0x9B);
2069 }
2070 
2071 
frndint()2072 void Assembler::frndint() {
2073   EnsureSpace ensure_space(this);
2074   EMIT(0xD9);
2075   EMIT(0xFC);
2076 }
2077 
2078 
fnclex()2079 void Assembler::fnclex() {
2080   EnsureSpace ensure_space(this);
2081   EMIT(0xDB);
2082   EMIT(0xE2);
2083 }
2084 
2085 
sahf()2086 void Assembler::sahf() {
2087   EnsureSpace ensure_space(this);
2088   EMIT(0x9E);
2089 }
2090 
2091 
setcc(Condition cc,Register reg)2092 void Assembler::setcc(Condition cc, Register reg) {
2093   DCHECK(reg.is_byte_register());
2094   EnsureSpace ensure_space(this);
2095   EMIT(0x0F);
2096   EMIT(0x90 | cc);
2097   EMIT(0xC0 | reg.code());
2098 }
2099 
2100 
cvttss2si(Register dst,const Operand & src)2101 void Assembler::cvttss2si(Register dst, const Operand& src) {
2102   EnsureSpace ensure_space(this);
2103   EMIT(0xF3);
2104   EMIT(0x0F);
2105   EMIT(0x2C);
2106   emit_operand(dst, src);
2107 }
2108 
2109 
cvttsd2si(Register dst,const Operand & src)2110 void Assembler::cvttsd2si(Register dst, const Operand& src) {
2111   EnsureSpace ensure_space(this);
2112   EMIT(0xF2);
2113   EMIT(0x0F);
2114   EMIT(0x2C);
2115   emit_operand(dst, src);
2116 }
2117 
2118 
cvtsd2si(Register dst,XMMRegister src)2119 void Assembler::cvtsd2si(Register dst, XMMRegister src) {
2120   EnsureSpace ensure_space(this);
2121   EMIT(0xF2);
2122   EMIT(0x0F);
2123   EMIT(0x2D);
2124   emit_sse_operand(dst, src);
2125 }
2126 
2127 
cvtsi2ss(XMMRegister dst,const Operand & src)2128 void Assembler::cvtsi2ss(XMMRegister dst, const Operand& src) {
2129   EnsureSpace ensure_space(this);
2130   EMIT(0xF3);
2131   EMIT(0x0F);
2132   EMIT(0x2A);
2133   emit_sse_operand(dst, src);
2134 }
2135 
2136 
cvtsi2sd(XMMRegister dst,const Operand & src)2137 void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) {
2138   EnsureSpace ensure_space(this);
2139   EMIT(0xF2);
2140   EMIT(0x0F);
2141   EMIT(0x2A);
2142   emit_sse_operand(dst, src);
2143 }
2144 
2145 
cvtss2sd(XMMRegister dst,const Operand & src)2146 void Assembler::cvtss2sd(XMMRegister dst, const Operand& src) {
2147   EnsureSpace ensure_space(this);
2148   EMIT(0xF3);
2149   EMIT(0x0F);
2150   EMIT(0x5A);
2151   emit_sse_operand(dst, src);
2152 }
2153 
2154 
cvtsd2ss(XMMRegister dst,const Operand & src)2155 void Assembler::cvtsd2ss(XMMRegister dst, const Operand& src) {
2156   EnsureSpace ensure_space(this);
2157   EMIT(0xF2);
2158   EMIT(0x0F);
2159   EMIT(0x5A);
2160   emit_sse_operand(dst, src);
2161 }
2162 
2163 
addsd(XMMRegister dst,const Operand & src)2164 void Assembler::addsd(XMMRegister dst, const Operand& src) {
2165   EnsureSpace ensure_space(this);
2166   EMIT(0xF2);
2167   EMIT(0x0F);
2168   EMIT(0x58);
2169   emit_sse_operand(dst, src);
2170 }
2171 
2172 
mulsd(XMMRegister dst,const Operand & src)2173 void Assembler::mulsd(XMMRegister dst, const Operand& src) {
2174   EnsureSpace ensure_space(this);
2175   EMIT(0xF2);
2176   EMIT(0x0F);
2177   EMIT(0x59);
2178   emit_sse_operand(dst, src);
2179 }
2180 
2181 
subsd(XMMRegister dst,const Operand & src)2182 void Assembler::subsd(XMMRegister dst, const Operand& src) {
2183   EnsureSpace ensure_space(this);
2184   EMIT(0xF2);
2185   EMIT(0x0F);
2186   EMIT(0x5C);
2187   emit_sse_operand(dst, src);
2188 }
2189 
2190 
divsd(XMMRegister dst,const Operand & src)2191 void Assembler::divsd(XMMRegister dst, const Operand& src) {
2192   EnsureSpace ensure_space(this);
2193   EMIT(0xF2);
2194   EMIT(0x0F);
2195   EMIT(0x5E);
2196   emit_sse_operand(dst, src);
2197 }
2198 
2199 
xorpd(XMMRegister dst,XMMRegister src)2200 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2201   EnsureSpace ensure_space(this);
2202   EMIT(0x66);
2203   EMIT(0x0F);
2204   EMIT(0x57);
2205   emit_sse_operand(dst, src);
2206 }
2207 
2208 
andps(XMMRegister dst,const Operand & src)2209 void Assembler::andps(XMMRegister dst, const Operand& src) {
2210   EnsureSpace ensure_space(this);
2211   EMIT(0x0F);
2212   EMIT(0x54);
2213   emit_sse_operand(dst, src);
2214 }
2215 
2216 
orps(XMMRegister dst,const Operand & src)2217 void Assembler::orps(XMMRegister dst, const Operand& src) {
2218   EnsureSpace ensure_space(this);
2219   EMIT(0x0F);
2220   EMIT(0x56);
2221   emit_sse_operand(dst, src);
2222 }
2223 
2224 
xorps(XMMRegister dst,const Operand & src)2225 void Assembler::xorps(XMMRegister dst, const Operand& src) {
2226   EnsureSpace ensure_space(this);
2227   EMIT(0x0F);
2228   EMIT(0x57);
2229   emit_sse_operand(dst, src);
2230 }
2231 
2232 
addps(XMMRegister dst,const Operand & src)2233 void Assembler::addps(XMMRegister dst, const Operand& src) {
2234   EnsureSpace ensure_space(this);
2235   EMIT(0x0F);
2236   EMIT(0x58);
2237   emit_sse_operand(dst, src);
2238 }
2239 
2240 
subps(XMMRegister dst,const Operand & src)2241 void Assembler::subps(XMMRegister dst, const Operand& src) {
2242   EnsureSpace ensure_space(this);
2243   EMIT(0x0F);
2244   EMIT(0x5C);
2245   emit_sse_operand(dst, src);
2246 }
2247 
2248 
mulps(XMMRegister dst,const Operand & src)2249 void Assembler::mulps(XMMRegister dst, const Operand& src) {
2250   EnsureSpace ensure_space(this);
2251   EMIT(0x0F);
2252   EMIT(0x59);
2253   emit_sse_operand(dst, src);
2254 }
2255 
2256 
divps(XMMRegister dst,const Operand & src)2257 void Assembler::divps(XMMRegister dst, const Operand& src) {
2258   EnsureSpace ensure_space(this);
2259   EMIT(0x0F);
2260   EMIT(0x5E);
2261   emit_sse_operand(dst, src);
2262 }
2263 
2264 
sqrtsd(XMMRegister dst,const Operand & src)2265 void Assembler::sqrtsd(XMMRegister dst, const Operand& src) {
2266   EnsureSpace ensure_space(this);
2267   EMIT(0xF2);
2268   EMIT(0x0F);
2269   EMIT(0x51);
2270   emit_sse_operand(dst, src);
2271 }
2272 
2273 
andpd(XMMRegister dst,XMMRegister src)2274 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
2275   EnsureSpace ensure_space(this);
2276   EMIT(0x66);
2277   EMIT(0x0F);
2278   EMIT(0x54);
2279   emit_sse_operand(dst, src);
2280 }
2281 
2282 
orpd(XMMRegister dst,XMMRegister src)2283 void Assembler::orpd(XMMRegister dst, XMMRegister src) {
2284   EnsureSpace ensure_space(this);
2285   EMIT(0x66);
2286   EMIT(0x0F);
2287   EMIT(0x56);
2288   emit_sse_operand(dst, src);
2289 }
2290 
2291 
ucomisd(XMMRegister dst,const Operand & src)2292 void Assembler::ucomisd(XMMRegister dst, const Operand& src) {
2293   EnsureSpace ensure_space(this);
2294   EMIT(0x66);
2295   EMIT(0x0F);
2296   EMIT(0x2E);
2297   emit_sse_operand(dst, src);
2298 }
2299 
2300 
roundss(XMMRegister dst,XMMRegister src,RoundingMode mode)2301 void Assembler::roundss(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2302   DCHECK(IsEnabled(SSE4_1));
2303   EnsureSpace ensure_space(this);
2304   EMIT(0x66);
2305   EMIT(0x0F);
2306   EMIT(0x3A);
2307   EMIT(0x0A);
2308   emit_sse_operand(dst, src);
2309   // Mask precision exeption.
2310   EMIT(static_cast<byte>(mode) | 0x8);
2311 }
2312 
2313 
roundsd(XMMRegister dst,XMMRegister src,RoundingMode mode)2314 void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2315   DCHECK(IsEnabled(SSE4_1));
2316   EnsureSpace ensure_space(this);
2317   EMIT(0x66);
2318   EMIT(0x0F);
2319   EMIT(0x3A);
2320   EMIT(0x0B);
2321   emit_sse_operand(dst, src);
2322   // Mask precision exeption.
2323   EMIT(static_cast<byte>(mode) | 0x8);
2324 }
2325 
2326 
movmskpd(Register dst,XMMRegister src)2327 void Assembler::movmskpd(Register dst, XMMRegister src) {
2328   EnsureSpace ensure_space(this);
2329   EMIT(0x66);
2330   EMIT(0x0F);
2331   EMIT(0x50);
2332   emit_sse_operand(dst, src);
2333 }
2334 
2335 
movmskps(Register dst,XMMRegister src)2336 void Assembler::movmskps(Register dst, XMMRegister src) {
2337   EnsureSpace ensure_space(this);
2338   EMIT(0x0F);
2339   EMIT(0x50);
2340   emit_sse_operand(dst, src);
2341 }
2342 
2343 
pcmpeqd(XMMRegister dst,XMMRegister src)2344 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
2345   EnsureSpace ensure_space(this);
2346   EMIT(0x66);
2347   EMIT(0x0F);
2348   EMIT(0x76);
2349   emit_sse_operand(dst, src);
2350 }
2351 
2352 
punpckldq(XMMRegister dst,XMMRegister src)2353 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2354   EnsureSpace ensure_space(this);
2355   EMIT(0x66);
2356   EMIT(0x0F);
2357   EMIT(0x62);
2358   emit_sse_operand(dst, src);
2359 }
2360 
2361 
punpckhdq(XMMRegister dst,XMMRegister src)2362 void Assembler::punpckhdq(XMMRegister dst, XMMRegister src) {
2363   EnsureSpace ensure_space(this);
2364   EMIT(0x66);
2365   EMIT(0x0F);
2366   EMIT(0x6A);
2367   emit_sse_operand(dst, src);
2368 }
2369 
2370 
maxsd(XMMRegister dst,const Operand & src)2371 void Assembler::maxsd(XMMRegister dst, const Operand& src) {
2372   EnsureSpace ensure_space(this);
2373   EMIT(0xF2);
2374   EMIT(0x0F);
2375   EMIT(0x5F);
2376   emit_sse_operand(dst, src);
2377 }
2378 
2379 
minsd(XMMRegister dst,const Operand & src)2380 void Assembler::minsd(XMMRegister dst, const Operand& src) {
2381   EnsureSpace ensure_space(this);
2382   EMIT(0xF2);
2383   EMIT(0x0F);
2384   EMIT(0x5D);
2385   emit_sse_operand(dst, src);
2386 }
2387 
2388 
cmpltsd(XMMRegister dst,XMMRegister src)2389 void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) {
2390   EnsureSpace ensure_space(this);
2391   EMIT(0xF2);
2392   EMIT(0x0F);
2393   EMIT(0xC2);
2394   emit_sse_operand(dst, src);
2395   EMIT(1);  // LT == 1
2396 }
2397 
2398 
movaps(XMMRegister dst,XMMRegister src)2399 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2400   EnsureSpace ensure_space(this);
2401   EMIT(0x0F);
2402   EMIT(0x28);
2403   emit_sse_operand(dst, src);
2404 }
2405 
2406 
shufps(XMMRegister dst,XMMRegister src,byte imm8)2407 void Assembler::shufps(XMMRegister dst, XMMRegister src, byte imm8) {
2408   DCHECK(is_uint8(imm8));
2409   EnsureSpace ensure_space(this);
2410   EMIT(0x0F);
2411   EMIT(0xC6);
2412   emit_sse_operand(dst, src);
2413   EMIT(imm8);
2414 }
2415 
2416 
movdqa(const Operand & dst,XMMRegister src)2417 void Assembler::movdqa(const Operand& dst, XMMRegister src) {
2418   EnsureSpace ensure_space(this);
2419   EMIT(0x66);
2420   EMIT(0x0F);
2421   EMIT(0x7F);
2422   emit_sse_operand(src, dst);
2423 }
2424 
2425 
movdqa(XMMRegister dst,const Operand & src)2426 void Assembler::movdqa(XMMRegister dst, const Operand& src) {
2427   EnsureSpace ensure_space(this);
2428   EMIT(0x66);
2429   EMIT(0x0F);
2430   EMIT(0x6F);
2431   emit_sse_operand(dst, src);
2432 }
2433 
2434 
movdqu(const Operand & dst,XMMRegister src)2435 void Assembler::movdqu(const Operand& dst, XMMRegister src ) {
2436   EnsureSpace ensure_space(this);
2437   EMIT(0xF3);
2438   EMIT(0x0F);
2439   EMIT(0x7F);
2440   emit_sse_operand(src, dst);
2441 }
2442 
2443 
movdqu(XMMRegister dst,const Operand & src)2444 void Assembler::movdqu(XMMRegister dst, const Operand& src) {
2445   EnsureSpace ensure_space(this);
2446   EMIT(0xF3);
2447   EMIT(0x0F);
2448   EMIT(0x6F);
2449   emit_sse_operand(dst, src);
2450 }
2451 
2452 
prefetch(const Operand & src,int level)2453 void Assembler::prefetch(const Operand& src, int level) {
2454   DCHECK(is_uint2(level));
2455   EnsureSpace ensure_space(this);
2456   EMIT(0x0F);
2457   EMIT(0x18);
2458   // Emit hint number in Reg position of RegR/M.
2459   XMMRegister code = XMMRegister::from_code(level);
2460   emit_sse_operand(code, src);
2461 }
2462 
2463 
movsd(const Operand & dst,XMMRegister src)2464 void Assembler::movsd(const Operand& dst, XMMRegister src ) {
2465   EnsureSpace ensure_space(this);
2466   EMIT(0xF2);  // double
2467   EMIT(0x0F);
2468   EMIT(0x11);  // store
2469   emit_sse_operand(src, dst);
2470 }
2471 
2472 
movsd(XMMRegister dst,const Operand & src)2473 void Assembler::movsd(XMMRegister dst, const Operand& src) {
2474   EnsureSpace ensure_space(this);
2475   EMIT(0xF2);  // double
2476   EMIT(0x0F);
2477   EMIT(0x10);  // load
2478   emit_sse_operand(dst, src);
2479 }
2480 
2481 
movss(const Operand & dst,XMMRegister src)2482 void Assembler::movss(const Operand& dst, XMMRegister src ) {
2483   EnsureSpace ensure_space(this);
2484   EMIT(0xF3);  // float
2485   EMIT(0x0F);
2486   EMIT(0x11);  // store
2487   emit_sse_operand(src, dst);
2488 }
2489 
2490 
movss(XMMRegister dst,const Operand & src)2491 void Assembler::movss(XMMRegister dst, const Operand& src) {
2492   EnsureSpace ensure_space(this);
2493   EMIT(0xF3);  // float
2494   EMIT(0x0F);
2495   EMIT(0x10);  // load
2496   emit_sse_operand(dst, src);
2497 }
2498 
2499 
movd(XMMRegister dst,const Operand & src)2500 void Assembler::movd(XMMRegister dst, const Operand& src) {
2501   EnsureSpace ensure_space(this);
2502   EMIT(0x66);
2503   EMIT(0x0F);
2504   EMIT(0x6E);
2505   emit_sse_operand(dst, src);
2506 }
2507 
2508 
movd(const Operand & dst,XMMRegister src)2509 void Assembler::movd(const Operand& dst, XMMRegister src) {
2510   EnsureSpace ensure_space(this);
2511   EMIT(0x66);
2512   EMIT(0x0F);
2513   EMIT(0x7E);
2514   emit_sse_operand(src, dst);
2515 }
2516 
2517 
extractps(Register dst,XMMRegister src,byte imm8)2518 void Assembler::extractps(Register dst, XMMRegister src, byte imm8) {
2519   DCHECK(IsEnabled(SSE4_1));
2520   DCHECK(is_uint8(imm8));
2521   EnsureSpace ensure_space(this);
2522   EMIT(0x66);
2523   EMIT(0x0F);
2524   EMIT(0x3A);
2525   EMIT(0x17);
2526   emit_sse_operand(src, dst);
2527   EMIT(imm8);
2528 }
2529 
2530 
pand(XMMRegister dst,XMMRegister src)2531 void Assembler::pand(XMMRegister dst, XMMRegister src) {
2532   EnsureSpace ensure_space(this);
2533   EMIT(0x66);
2534   EMIT(0x0F);
2535   EMIT(0xDB);
2536   emit_sse_operand(dst, src);
2537 }
2538 
2539 
pxor(XMMRegister dst,XMMRegister src)2540 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
2541   EnsureSpace ensure_space(this);
2542   EMIT(0x66);
2543   EMIT(0x0F);
2544   EMIT(0xEF);
2545   emit_sse_operand(dst, src);
2546 }
2547 
2548 
por(XMMRegister dst,XMMRegister src)2549 void Assembler::por(XMMRegister dst, XMMRegister src) {
2550   EnsureSpace ensure_space(this);
2551   EMIT(0x66);
2552   EMIT(0x0F);
2553   EMIT(0xEB);
2554   emit_sse_operand(dst, src);
2555 }
2556 
2557 
ptest(XMMRegister dst,XMMRegister src)2558 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2559   DCHECK(IsEnabled(SSE4_1));
2560   EnsureSpace ensure_space(this);
2561   EMIT(0x66);
2562   EMIT(0x0F);
2563   EMIT(0x38);
2564   EMIT(0x17);
2565   emit_sse_operand(dst, src);
2566 }
2567 
2568 
pslld(XMMRegister reg,int8_t shift)2569 void Assembler::pslld(XMMRegister reg, int8_t shift) {
2570   EnsureSpace ensure_space(this);
2571   EMIT(0x66);
2572   EMIT(0x0F);
2573   EMIT(0x72);
2574   emit_sse_operand(esi, reg);  // esi == 6
2575   EMIT(shift);
2576 }
2577 
2578 
psrld(XMMRegister reg,int8_t shift)2579 void Assembler::psrld(XMMRegister reg, int8_t shift) {
2580   EnsureSpace ensure_space(this);
2581   EMIT(0x66);
2582   EMIT(0x0F);
2583   EMIT(0x72);
2584   emit_sse_operand(edx, reg);  // edx == 2
2585   EMIT(shift);
2586 }
2587 
2588 
psllq(XMMRegister reg,int8_t shift)2589 void Assembler::psllq(XMMRegister reg, int8_t shift) {
2590   EnsureSpace ensure_space(this);
2591   EMIT(0x66);
2592   EMIT(0x0F);
2593   EMIT(0x73);
2594   emit_sse_operand(esi, reg);  // esi == 6
2595   EMIT(shift);
2596 }
2597 
2598 
psllq(XMMRegister dst,XMMRegister src)2599 void Assembler::psllq(XMMRegister dst, XMMRegister src) {
2600   EnsureSpace ensure_space(this);
2601   EMIT(0x66);
2602   EMIT(0x0F);
2603   EMIT(0xF3);
2604   emit_sse_operand(dst, src);
2605 }
2606 
2607 
psrlq(XMMRegister reg,int8_t shift)2608 void Assembler::psrlq(XMMRegister reg, int8_t shift) {
2609   EnsureSpace ensure_space(this);
2610   EMIT(0x66);
2611   EMIT(0x0F);
2612   EMIT(0x73);
2613   emit_sse_operand(edx, reg);  // edx == 2
2614   EMIT(shift);
2615 }
2616 
2617 
psrlq(XMMRegister dst,XMMRegister src)2618 void Assembler::psrlq(XMMRegister dst, XMMRegister src) {
2619   EnsureSpace ensure_space(this);
2620   EMIT(0x66);
2621   EMIT(0x0F);
2622   EMIT(0xD3);
2623   emit_sse_operand(dst, src);
2624 }
2625 
2626 
pshufd(XMMRegister dst,XMMRegister src,uint8_t shuffle)2627 void Assembler::pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
2628   EnsureSpace ensure_space(this);
2629   EMIT(0x66);
2630   EMIT(0x0F);
2631   EMIT(0x70);
2632   emit_sse_operand(dst, src);
2633   EMIT(shuffle);
2634 }
2635 
2636 
pextrd(const Operand & dst,XMMRegister src,int8_t offset)2637 void Assembler::pextrd(const Operand& dst, XMMRegister src, int8_t offset) {
2638   DCHECK(IsEnabled(SSE4_1));
2639   EnsureSpace ensure_space(this);
2640   EMIT(0x66);
2641   EMIT(0x0F);
2642   EMIT(0x3A);
2643   EMIT(0x16);
2644   emit_sse_operand(src, dst);
2645   EMIT(offset);
2646 }
2647 
2648 
pinsrd(XMMRegister dst,const Operand & src,int8_t offset)2649 void Assembler::pinsrd(XMMRegister dst, const Operand& src, int8_t offset) {
2650   DCHECK(IsEnabled(SSE4_1));
2651   EnsureSpace ensure_space(this);
2652   EMIT(0x66);
2653   EMIT(0x0F);
2654   EMIT(0x3A);
2655   EMIT(0x22);
2656   emit_sse_operand(dst, src);
2657   EMIT(offset);
2658 }
2659 
2660 
addss(XMMRegister dst,const Operand & src)2661 void Assembler::addss(XMMRegister dst, const Operand& src) {
2662   EnsureSpace ensure_space(this);
2663   EMIT(0xF3);
2664   EMIT(0x0F);
2665   EMIT(0x58);
2666   emit_sse_operand(dst, src);
2667 }
2668 
2669 
subss(XMMRegister dst,const Operand & src)2670 void Assembler::subss(XMMRegister dst, const Operand& src) {
2671   EnsureSpace ensure_space(this);
2672   EMIT(0xF3);
2673   EMIT(0x0F);
2674   EMIT(0x5C);
2675   emit_sse_operand(dst, src);
2676 }
2677 
2678 
mulss(XMMRegister dst,const Operand & src)2679 void Assembler::mulss(XMMRegister dst, const Operand& src) {
2680   EnsureSpace ensure_space(this);
2681   EMIT(0xF3);
2682   EMIT(0x0F);
2683   EMIT(0x59);
2684   emit_sse_operand(dst, src);
2685 }
2686 
2687 
divss(XMMRegister dst,const Operand & src)2688 void Assembler::divss(XMMRegister dst, const Operand& src) {
2689   EnsureSpace ensure_space(this);
2690   EMIT(0xF3);
2691   EMIT(0x0F);
2692   EMIT(0x5E);
2693   emit_sse_operand(dst, src);
2694 }
2695 
2696 
sqrtss(XMMRegister dst,const Operand & src)2697 void Assembler::sqrtss(XMMRegister dst, const Operand& src) {
2698   EnsureSpace ensure_space(this);
2699   EMIT(0xF3);
2700   EMIT(0x0F);
2701   EMIT(0x51);
2702   emit_sse_operand(dst, src);
2703 }
2704 
2705 
ucomiss(XMMRegister dst,const Operand & src)2706 void Assembler::ucomiss(XMMRegister dst, const Operand& src) {
2707   EnsureSpace ensure_space(this);
2708   EMIT(0x0f);
2709   EMIT(0x2e);
2710   emit_sse_operand(dst, src);
2711 }
2712 
2713 
maxss(XMMRegister dst,const Operand & src)2714 void Assembler::maxss(XMMRegister dst, const Operand& src) {
2715   EnsureSpace ensure_space(this);
2716   EMIT(0xF3);
2717   EMIT(0x0F);
2718   EMIT(0x5F);
2719   emit_sse_operand(dst, src);
2720 }
2721 
2722 
minss(XMMRegister dst,const Operand & src)2723 void Assembler::minss(XMMRegister dst, const Operand& src) {
2724   EnsureSpace ensure_space(this);
2725   EMIT(0xF3);
2726   EMIT(0x0F);
2727   EMIT(0x5D);
2728   emit_sse_operand(dst, src);
2729 }
2730 
2731 
2732 // AVX instructions
vfmasd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2733 void Assembler::vfmasd(byte op, XMMRegister dst, XMMRegister src1,
2734                        const Operand& src2) {
2735   DCHECK(IsEnabled(FMA3));
2736   EnsureSpace ensure_space(this);
2737   emit_vex_prefix(src1, kLIG, k66, k0F38, kW1);
2738   EMIT(op);
2739   emit_sse_operand(dst, src2);
2740 }
2741 
2742 
vfmass(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2743 void Assembler::vfmass(byte op, XMMRegister dst, XMMRegister src1,
2744                        const Operand& src2) {
2745   DCHECK(IsEnabled(FMA3));
2746   EnsureSpace ensure_space(this);
2747   emit_vex_prefix(src1, kLIG, k66, k0F38, kW0);
2748   EMIT(op);
2749   emit_sse_operand(dst, src2);
2750 }
2751 
2752 
vsd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2753 void Assembler::vsd(byte op, XMMRegister dst, XMMRegister src1,
2754                     const Operand& src2) {
2755   DCHECK(IsEnabled(AVX));
2756   EnsureSpace ensure_space(this);
2757   emit_vex_prefix(src1, kLIG, kF2, k0F, kWIG);
2758   EMIT(op);
2759   emit_sse_operand(dst, src2);
2760 }
2761 
2762 
vss(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2763 void Assembler::vss(byte op, XMMRegister dst, XMMRegister src1,
2764                     const Operand& src2) {
2765   DCHECK(IsEnabled(AVX));
2766   EnsureSpace ensure_space(this);
2767   emit_vex_prefix(src1, kLIG, kF3, k0F, kWIG);
2768   EMIT(op);
2769   emit_sse_operand(dst, src2);
2770 }
2771 
2772 
vps(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2773 void Assembler::vps(byte op, XMMRegister dst, XMMRegister src1,
2774                     const Operand& src2) {
2775   DCHECK(IsEnabled(AVX));
2776   EnsureSpace ensure_space(this);
2777   emit_vex_prefix(src1, kL128, kNone, k0F, kWIG);
2778   EMIT(op);
2779   emit_sse_operand(dst, src2);
2780 }
2781 
2782 
vpd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2783 void Assembler::vpd(byte op, XMMRegister dst, XMMRegister src1,
2784                     const Operand& src2) {
2785   DCHECK(IsEnabled(AVX));
2786   EnsureSpace ensure_space(this);
2787   emit_vex_prefix(src1, kL128, k66, k0F, kWIG);
2788   EMIT(op);
2789   emit_sse_operand(dst, src2);
2790 }
2791 
2792 
bmi1(byte op,Register reg,Register vreg,const Operand & rm)2793 void Assembler::bmi1(byte op, Register reg, Register vreg, const Operand& rm) {
2794   DCHECK(IsEnabled(BMI1));
2795   EnsureSpace ensure_space(this);
2796   emit_vex_prefix(vreg, kLZ, kNone, k0F38, kW0);
2797   EMIT(op);
2798   emit_operand(reg, rm);
2799 }
2800 
2801 
tzcnt(Register dst,const Operand & src)2802 void Assembler::tzcnt(Register dst, const Operand& src) {
2803   DCHECK(IsEnabled(BMI1));
2804   EnsureSpace ensure_space(this);
2805   EMIT(0xF3);
2806   EMIT(0x0F);
2807   EMIT(0xBC);
2808   emit_operand(dst, src);
2809 }
2810 
2811 
lzcnt(Register dst,const Operand & src)2812 void Assembler::lzcnt(Register dst, const Operand& src) {
2813   DCHECK(IsEnabled(LZCNT));
2814   EnsureSpace ensure_space(this);
2815   EMIT(0xF3);
2816   EMIT(0x0F);
2817   EMIT(0xBD);
2818   emit_operand(dst, src);
2819 }
2820 
2821 
popcnt(Register dst,const Operand & src)2822 void Assembler::popcnt(Register dst, const Operand& src) {
2823   DCHECK(IsEnabled(POPCNT));
2824   EnsureSpace ensure_space(this);
2825   EMIT(0xF3);
2826   EMIT(0x0F);
2827   EMIT(0xB8);
2828   emit_operand(dst, src);
2829 }
2830 
2831 
bmi2(SIMDPrefix pp,byte op,Register reg,Register vreg,const Operand & rm)2832 void Assembler::bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
2833                      const Operand& rm) {
2834   DCHECK(IsEnabled(BMI2));
2835   EnsureSpace ensure_space(this);
2836   emit_vex_prefix(vreg, kLZ, pp, k0F38, kW0);
2837   EMIT(op);
2838   emit_operand(reg, rm);
2839 }
2840 
2841 
rorx(Register dst,const Operand & src,byte imm8)2842 void Assembler::rorx(Register dst, const Operand& src, byte imm8) {
2843   DCHECK(IsEnabled(BMI2));
2844   DCHECK(is_uint8(imm8));
2845   Register vreg = {0};  // VEX.vvvv unused
2846   EnsureSpace ensure_space(this);
2847   emit_vex_prefix(vreg, kLZ, kF2, k0F3A, kW0);
2848   EMIT(0xF0);
2849   emit_operand(dst, src);
2850   EMIT(imm8);
2851 }
2852 
2853 
emit_sse_operand(XMMRegister reg,const Operand & adr)2854 void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
2855   Register ireg = { reg.code() };
2856   emit_operand(ireg, adr);
2857 }
2858 
2859 
emit_sse_operand(XMMRegister dst,XMMRegister src)2860 void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
2861   EMIT(0xC0 | dst.code() << 3 | src.code());
2862 }
2863 
2864 
emit_sse_operand(Register dst,XMMRegister src)2865 void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
2866   EMIT(0xC0 | dst.code() << 3 | src.code());
2867 }
2868 
2869 
emit_sse_operand(XMMRegister dst,Register src)2870 void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
2871   EMIT(0xC0 | (dst.code() << 3) | src.code());
2872 }
2873 
2874 
emit_vex_prefix(XMMRegister vreg,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)2875 void Assembler::emit_vex_prefix(XMMRegister vreg, VectorLength l, SIMDPrefix pp,
2876                                 LeadingOpcode mm, VexW w) {
2877   if (mm != k0F || w != kW0) {
2878     EMIT(0xc4);
2879     // Change RXB from "110" to "111" to align with gdb disassembler.
2880     EMIT(0xe0 | mm);
2881     EMIT(w | ((~vreg.code() & 0xf) << 3) | l | pp);
2882   } else {
2883     EMIT(0xc5);
2884     EMIT(((~vreg.code()) << 3) | l | pp);
2885   }
2886 }
2887 
2888 
emit_vex_prefix(Register vreg,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)2889 void Assembler::emit_vex_prefix(Register vreg, VectorLength l, SIMDPrefix pp,
2890                                 LeadingOpcode mm, VexW w) {
2891   XMMRegister ivreg = {vreg.code()};
2892   emit_vex_prefix(ivreg, l, pp, mm, w);
2893 }
2894 
2895 
GrowBuffer()2896 void Assembler::GrowBuffer() {
2897   DCHECK(buffer_overflow());
2898   if (!own_buffer_) FATAL("external code buffer is too small");
2899 
2900   // Compute new buffer size.
2901   CodeDesc desc;  // the new buffer
2902   desc.buffer_size = 2 * buffer_size_;
2903 
2904   // Some internal data structures overflow for very large buffers,
2905   // they must ensure that kMaximalBufferSize is not too large.
2906   if ((desc.buffer_size > kMaximalBufferSize) ||
2907       (desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) {
2908     V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
2909   }
2910 
2911   // Set up new buffer.
2912   desc.buffer = NewArray<byte>(desc.buffer_size);
2913   desc.origin = this;
2914   desc.instr_size = pc_offset();
2915   desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
2916 
2917   // Clear the buffer in debug mode. Use 'int3' instructions to make
2918   // sure to get into problems if we ever run uninitialized code.
2919 #ifdef DEBUG
2920   memset(desc.buffer, 0xCC, desc.buffer_size);
2921 #endif
2922 
2923   // Copy the data.
2924   int pc_delta = desc.buffer - buffer_;
2925   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2926   MemMove(desc.buffer, buffer_, desc.instr_size);
2927   MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
2928           desc.reloc_size);
2929 
2930   // Switch buffers.
2931   DeleteArray(buffer_);
2932   buffer_ = desc.buffer;
2933   buffer_size_ = desc.buffer_size;
2934   pc_ += pc_delta;
2935   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2936                                reloc_info_writer.last_pc() + pc_delta);
2937 
2938   // Relocate internal references.
2939   for (auto pos : internal_reference_positions_) {
2940     int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
2941     *p += pc_delta;
2942   }
2943 
2944   DCHECK(!buffer_overflow());
2945 }
2946 
2947 
emit_arith_b(int op1,int op2,Register dst,int imm8)2948 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
2949   DCHECK(is_uint8(op1) && is_uint8(op2));  // wrong opcode
2950   DCHECK(is_uint8(imm8));
2951   DCHECK((op1 & 0x01) == 0);  // should be 8bit operation
2952   EMIT(op1);
2953   EMIT(op2 | dst.code());
2954   EMIT(imm8);
2955 }
2956 
2957 
emit_arith(int sel,Operand dst,const Immediate & x)2958 void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
2959   DCHECK((0 <= sel) && (sel <= 7));
2960   Register ireg = { sel };
2961   if (x.is_int8()) {
2962     EMIT(0x83);  // using a sign-extended 8-bit immediate.
2963     emit_operand(ireg, dst);
2964     EMIT(x.x_ & 0xFF);
2965   } else if (dst.is_reg(eax)) {
2966     EMIT((sel << 3) | 0x05);  // short form if the destination is eax.
2967     emit(x);
2968   } else {
2969     EMIT(0x81);  // using a literal 32-bit immediate.
2970     emit_operand(ireg, dst);
2971     emit(x);
2972   }
2973 }
2974 
2975 
emit_operand(Register reg,const Operand & adr)2976 void Assembler::emit_operand(Register reg, const Operand& adr) {
2977   const unsigned length = adr.len_;
2978   DCHECK(length > 0);
2979 
2980   // Emit updated ModRM byte containing the given register.
2981   pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
2982 
2983   // Emit the rest of the encoded operand.
2984   for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
2985   pc_ += length;
2986 
2987   // Emit relocation information if necessary.
2988   if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
2989     pc_ -= sizeof(int32_t);  // pc_ must be *at* disp32
2990     RecordRelocInfo(adr.rmode_);
2991     if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) {  // Fixup for labels
2992       emit_label(*reinterpret_cast<Label**>(pc_));
2993     } else {
2994       pc_ += sizeof(int32_t);
2995     }
2996   }
2997 }
2998 
2999 
emit_label(Label * label)3000 void Assembler::emit_label(Label* label) {
3001   if (label->is_bound()) {
3002     internal_reference_positions_.push_back(pc_offset());
3003     emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
3004   } else {
3005     emit_disp(label, Displacement::CODE_ABSOLUTE);
3006   }
3007 }
3008 
3009 
emit_farith(int b1,int b2,int i)3010 void Assembler::emit_farith(int b1, int b2, int i) {
3011   DCHECK(is_uint8(b1) && is_uint8(b2));  // wrong opcode
3012   DCHECK(0 <= i &&  i < 8);  // illegal stack offset
3013   EMIT(b1);
3014   EMIT(b2 + i);
3015 }
3016 
3017 
db(uint8_t data)3018 void Assembler::db(uint8_t data) {
3019   EnsureSpace ensure_space(this);
3020   EMIT(data);
3021 }
3022 
3023 
dd(uint32_t data)3024 void Assembler::dd(uint32_t data) {
3025   EnsureSpace ensure_space(this);
3026   emit(data);
3027 }
3028 
3029 
dq(uint64_t data)3030 void Assembler::dq(uint64_t data) {
3031   EnsureSpace ensure_space(this);
3032   emit_q(data);
3033 }
3034 
3035 
dd(Label * label)3036 void Assembler::dd(Label* label) {
3037   EnsureSpace ensure_space(this);
3038   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3039   emit_label(label);
3040 }
3041 
3042 
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3043 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3044   DCHECK(!RelocInfo::IsNone(rmode));
3045   // Don't record external references unless the heap will be serialized.
3046   if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
3047       !serializer_enabled() && !emit_debug_code()) {
3048     return;
3049   }
3050   RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
3051   reloc_info_writer.Write(&rinfo);
3052 }
3053 
3054 
3055 #ifdef GENERATED_CODE_COVERAGE
3056 static FILE* coverage_log = NULL;
3057 
3058 
InitCoverageLog()3059 static void InitCoverageLog() {
3060   char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
3061   if (file_name != NULL) {
3062     coverage_log = fopen(file_name, "aw+");
3063   }
3064 }
3065 
3066 
LogGeneratedCodeCoverage(const char * file_line)3067 void LogGeneratedCodeCoverage(const char* file_line) {
3068   const char* return_address = (&file_line)[-1];
3069   char* push_insn = const_cast<char*>(return_address - 12);
3070   push_insn[0] = 0xeb;  // Relative branch insn.
3071   push_insn[1] = 13;    // Skip over coverage insns.
3072   if (coverage_log != NULL) {
3073     fprintf(coverage_log, "%s\n", file_line);
3074     fflush(coverage_log);
3075   }
3076 }
3077 
3078 #endif
3079 
3080 }  // namespace internal
3081 }  // namespace v8
3082 
3083 #endif  // V8_TARGET_ARCH_IA32
3084