• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2011 the V8 project authors. All rights reserved.
34 
35 // A light-weight IA32 Assembler.
36 
37 #ifndef V8_IA32_ASSEMBLER_IA32_H_
38 #define V8_IA32_ASSEMBLER_IA32_H_
39 
40 #include <deque>
41 
42 #include "src/assembler.h"
43 #include "src/isolate.h"
44 #include "src/utils.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 #define GENERAL_REGISTERS(V) \
50   V(eax)                     \
51   V(ecx)                     \
52   V(edx)                     \
53   V(ebx)                     \
54   V(esp)                     \
55   V(ebp)                     \
56   V(esi)                     \
57   V(edi)
58 
59 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
60   V(eax)                                 \
61   V(ecx)                                 \
62   V(edx)                                 \
63   V(ebx)                                 \
64   V(esi)                                 \
65   V(edi)
66 
67 #define DOUBLE_REGISTERS(V) \
68   V(xmm0)                   \
69   V(xmm1)                   \
70   V(xmm2)                   \
71   V(xmm3)                   \
72   V(xmm4)                   \
73   V(xmm5)                   \
74   V(xmm6)                   \
75   V(xmm7)
76 
77 #define FLOAT_REGISTERS DOUBLE_REGISTERS
78 #define SIMD_REGISTERS DOUBLE_REGISTERS
79 
80 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \
81   V(xmm1)                               \
82   V(xmm2)                               \
83   V(xmm3)                               \
84   V(xmm4)                               \
85   V(xmm5)                               \
86   V(xmm6)                               \
87   V(xmm7)
88 
89 // CPU Registers.
90 //
91 // 1) We would prefer to use an enum, but enum values are assignment-
92 // compatible with int, which has caused code-generation bugs.
93 //
94 // 2) We would prefer to use a class instead of a struct but we don't like
95 // the register initialization to depend on the particular initialization
96 // order (which appears to be different on OS X, Linux, and Windows for the
97 // installed versions of C++ we tried). Using a struct permits C-style
98 // "initialization". Also, the Register objects cannot be const as this
99 // forces initialization stubs in MSVC, making us dependent on initialization
100 // order.
101 //
102 // 3) By not using an enum, we are possibly preventing the compiler from
103 // doing certain constant folds, which may significantly reduce the
104 // code generated for some assembly instructions (because they boil down
105 // to a few constants). If this is a problem, we could change the code
106 // such that we use an enum in optimized mode, and the struct in debug
107 // mode. This way we get the compile-time error checking in debug mode
108 // and best performance in optimized code.
109 //
110 struct Register {
111   enum Code {
112 #define REGISTER_CODE(R) kCode_##R,
113     GENERAL_REGISTERS(REGISTER_CODE)
114 #undef REGISTER_CODE
115         kAfterLast,
116     kCode_no_reg = -1
117   };
118 
119   static const int kNumRegisters = Code::kAfterLast;
120 
from_codeRegister121   static Register from_code(int code) {
122     DCHECK(code >= 0);
123     DCHECK(code < kNumRegisters);
124     Register r = {code};
125     return r;
126   }
is_validRegister127   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister128   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister129   int code() const {
130     DCHECK(is_valid());
131     return reg_code;
132   }
bitRegister133   int bit() const {
134     DCHECK(is_valid());
135     return 1 << reg_code;
136   }
137 
is_byte_registerRegister138   bool is_byte_register() const { return reg_code <= 3; }
139 
140   // Unfortunately we can't make this private in a struct.
141   int reg_code;
142 };
143 
144 
145 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
146 GENERAL_REGISTERS(DECLARE_REGISTER)
147 #undef DECLARE_REGISTER
148 const Register no_reg = {Register::kCode_no_reg};
149 
150 static const bool kSimpleFPAliasing = true;
151 
152 struct XMMRegister {
153   enum Code {
154 #define REGISTER_CODE(R) kCode_##R,
155     DOUBLE_REGISTERS(REGISTER_CODE)
156 #undef REGISTER_CODE
157         kAfterLast,
158     kCode_no_reg = -1
159   };
160 
161   static const int kMaxNumRegisters = Code::kAfterLast;
162 
from_codeXMMRegister163   static XMMRegister from_code(int code) {
164     XMMRegister result = {code};
165     return result;
166   }
167 
is_validXMMRegister168   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
169 
codeXMMRegister170   int code() const {
171     DCHECK(is_valid());
172     return reg_code;
173   }
174 
isXMMRegister175   bool is(XMMRegister reg) const { return reg_code == reg.reg_code; }
176 
177   int reg_code;
178 };
179 
180 typedef XMMRegister FloatRegister;
181 
182 typedef XMMRegister DoubleRegister;
183 
184 typedef XMMRegister Simd128Register;
185 
186 #define DECLARE_REGISTER(R) \
187   const DoubleRegister R = {DoubleRegister::kCode_##R};
188 DOUBLE_REGISTERS(DECLARE_REGISTER)
189 #undef DECLARE_REGISTER
190 const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
191 
192 enum Condition {
193   // any value < 0 is considered no_condition
194   no_condition  = -1,
195 
196   overflow      =  0,
197   no_overflow   =  1,
198   below         =  2,
199   above_equal   =  3,
200   equal         =  4,
201   not_equal     =  5,
202   below_equal   =  6,
203   above         =  7,
204   negative      =  8,
205   positive      =  9,
206   parity_even   = 10,
207   parity_odd    = 11,
208   less          = 12,
209   greater_equal = 13,
210   less_equal    = 14,
211   greater       = 15,
212 
213   // aliases
214   carry         = below,
215   not_carry     = above_equal,
216   zero          = equal,
217   not_zero      = not_equal,
218   sign          = negative,
219   not_sign      = positive
220 };
221 
222 
223 // Returns the equivalent of !cc.
224 // Negation of the default no_condition (-1) results in a non-default
225 // no_condition value (-2). As long as tests for no_condition check
226 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)227 inline Condition NegateCondition(Condition cc) {
228   return static_cast<Condition>(cc ^ 1);
229 }
230 
231 
232 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)233 inline Condition CommuteCondition(Condition cc) {
234   switch (cc) {
235     case below:
236       return above;
237     case above:
238       return below;
239     case above_equal:
240       return below_equal;
241     case below_equal:
242       return above_equal;
243     case less:
244       return greater;
245     case greater:
246       return less;
247     case greater_equal:
248       return less_equal;
249     case less_equal:
250       return greater_equal;
251     default:
252       return cc;
253   }
254 }
255 
256 
257 enum RoundingMode {
258   kRoundToNearest = 0x0,
259   kRoundDown = 0x1,
260   kRoundUp = 0x2,
261   kRoundToZero = 0x3
262 };
263 
264 
265 // -----------------------------------------------------------------------------
266 // Machine instruction Immediates
267 
268 class Immediate BASE_EMBEDDED {
269  public:
270   inline explicit Immediate(int x);
271   inline explicit Immediate(const ExternalReference& ext);
272   inline explicit Immediate(Handle<Object> handle);
273   inline explicit Immediate(Smi* value);
274   inline explicit Immediate(Address addr);
275   inline explicit Immediate(Address x, RelocInfo::Mode rmode);
276 
CodeRelativeOffset(Label * label)277   static Immediate CodeRelativeOffset(Label* label) {
278     return Immediate(label);
279   }
280 
is_zero()281   bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
is_int8()282   bool is_int8() const {
283     return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
284   }
is_uint8()285   bool is_uint8() const {
286     return v8::internal::is_uint8(x_) && RelocInfo::IsNone(rmode_);
287   }
is_int16()288   bool is_int16() const {
289     return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
290   }
is_uint16()291   bool is_uint16() const {
292     return v8::internal::is_uint16(x_) && RelocInfo::IsNone(rmode_);
293   }
294 
295  private:
296   inline explicit Immediate(Label* value);
297 
298   int x_;
299   RelocInfo::Mode rmode_;
300 
301   friend class Operand;
302   friend class Assembler;
303   friend class MacroAssembler;
304 };
305 
306 
307 // -----------------------------------------------------------------------------
308 // Machine instruction Operands
309 
310 enum ScaleFactor {
311   times_1 = 0,
312   times_2 = 1,
313   times_4 = 2,
314   times_8 = 3,
315   times_int_size = times_4,
316   times_half_pointer_size = times_2,
317   times_pointer_size = times_4,
318   times_twice_pointer_size = times_8
319 };
320 
321 
322 class Operand BASE_EMBEDDED {
323  public:
324   // reg
325   INLINE(explicit Operand(Register reg));
326 
327   // XMM reg
328   INLINE(explicit Operand(XMMRegister xmm_reg));
329 
330   // [disp/r]
331   INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
332 
333   // [disp/r]
334   INLINE(explicit Operand(Immediate imm));
335 
336   // [base + disp/r]
337   explicit Operand(Register base, int32_t disp,
338                    RelocInfo::Mode rmode = RelocInfo::NONE32);
339 
340   // [base + index*scale + disp/r]
341   explicit Operand(Register base,
342                    Register index,
343                    ScaleFactor scale,
344                    int32_t disp,
345                    RelocInfo::Mode rmode = RelocInfo::NONE32);
346 
347   // [index*scale + disp/r]
348   explicit Operand(Register index,
349                    ScaleFactor scale,
350                    int32_t disp,
351                    RelocInfo::Mode rmode = RelocInfo::NONE32);
352 
JumpTable(Register index,ScaleFactor scale,Label * table)353   static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
354     return Operand(index, scale, reinterpret_cast<int32_t>(table),
355                    RelocInfo::INTERNAL_REFERENCE);
356   }
357 
StaticVariable(const ExternalReference & ext)358   static Operand StaticVariable(const ExternalReference& ext) {
359     return Operand(reinterpret_cast<int32_t>(ext.address()),
360                    RelocInfo::EXTERNAL_REFERENCE);
361   }
362 
StaticArray(Register index,ScaleFactor scale,const ExternalReference & arr)363   static Operand StaticArray(Register index,
364                              ScaleFactor scale,
365                              const ExternalReference& arr) {
366     return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
367                    RelocInfo::EXTERNAL_REFERENCE);
368   }
369 
ForCell(Handle<Cell> cell)370   static Operand ForCell(Handle<Cell> cell) {
371     AllowDeferredHandleDereference embedding_raw_address;
372     return Operand(reinterpret_cast<int32_t>(cell.location()),
373                    RelocInfo::CELL);
374   }
375 
ForRegisterPlusImmediate(Register base,Immediate imm)376   static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
377     return Operand(base, imm.x_, imm.rmode_);
378   }
379 
380   // Returns true if this Operand is a wrapper for the specified register.
381   bool is_reg(Register reg) const;
382 
383   // Returns true if this Operand is a wrapper for one register.
384   bool is_reg_only() const;
385 
386   // Asserts that this Operand is a wrapper for one register and returns the
387   // register.
388   Register reg() const;
389 
390  private:
391   // Set the ModRM byte without an encoded 'reg' register. The
392   // register is encoded later as part of the emit_operand operation.
393   inline void set_modrm(int mod, Register rm);
394 
395   inline void set_sib(ScaleFactor scale, Register index, Register base);
396   inline void set_disp8(int8_t disp);
397   inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
398 
399   byte buf_[6];
400   // The number of bytes in buf_.
401   unsigned int len_;
402   // Only valid if len_ > 4.
403   RelocInfo::Mode rmode_;
404 
405   friend class Assembler;
406   friend class MacroAssembler;
407 };
408 
409 
410 // -----------------------------------------------------------------------------
411 // A Displacement describes the 32bit immediate field of an instruction which
412 // may be used together with a Label in order to refer to a yet unknown code
413 // position. Displacements stored in the instruction stream are used to describe
414 // the instruction and to chain a list of instructions using the same Label.
415 // A Displacement contains 2 different fields:
416 //
417 // next field: position of next displacement in the chain (0 = end of list)
418 // type field: instruction type
419 //
420 // A next value of null (0) indicates the end of a chain (note that there can
421 // be no displacement at position zero, because there is always at least one
422 // instruction byte before the displacement).
423 //
424 // Displacement _data field layout
425 //
426 // |31.....2|1......0|
427 // [  next  |  type  |
428 
429 class Displacement BASE_EMBEDDED {
430  public:
431   enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };
432 
data()433   int data() const { return data_; }
type()434   Type type() const { return TypeField::decode(data_); }
next(Label * L)435   void next(Label* L) const {
436     int n = NextField::decode(data_);
437     n > 0 ? L->link_to(n) : L->Unuse();
438   }
link_to(Label * L)439   void link_to(Label* L) { init(L, type()); }
440 
Displacement(int data)441   explicit Displacement(int data) { data_ = data; }
442 
Displacement(Label * L,Type type)443   Displacement(Label* L, Type type) { init(L, type); }
444 
print()445   void print() {
446     PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
447                        NextField::decode(data_));
448   }
449 
450  private:
451   int data_;
452 
453   class TypeField: public BitField<Type, 0, 2> {};
454   class NextField: public BitField<int,  2, 32-2> {};
455 
456   void init(Label* L, Type type);
457 };
458 
459 
460 class Assembler : public AssemblerBase {
461  private:
462   // We check before assembling an instruction that there is sufficient
463   // space to write an instruction and its relocation information.
464   // The relocation writer's position must be kGap bytes above the end of
465   // the generated instructions. This leaves enough space for the
466   // longest possible ia32 instruction, 15 bytes, and the longest possible
467   // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
468   // (There is a 15 byte limit on ia32 instruction length that rules out some
469   // otherwise valid instructions.)
470   // This allows for a single, fast space check per instruction.
471   static const int kGap = 32;
472 
473  public:
474   // Create an assembler. Instructions and relocation information are emitted
475   // into a buffer, with the instructions starting from the beginning and the
476   // relocation information starting from the end of the buffer. See CodeDesc
477   // for a detailed comment on the layout (globals.h).
478   //
479   // If the provided buffer is NULL, the assembler allocates and grows its own
480   // buffer, and buffer_size determines the initial buffer size. The buffer is
481   // owned by the assembler and deallocated upon destruction of the assembler.
482   //
483   // If the provided buffer is not NULL, the assembler uses the provided buffer
484   // for code generation and assumes its size to be buffer_size. If the buffer
485   // is too small, a fatal error occurs. No deallocation of the buffer is done
486   // upon destruction of the assembler.
487   // TODO(vitalyr): the assembler does not need an isolate.
488   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()489   virtual ~Assembler() { }
490 
491   // GetCode emits any pending (non-emitted) code and fills the descriptor
492   // desc. GetCode() is idempotent; it returns the same result if no other
493   // Assembler functions are invoked in between GetCode() calls.
494   void GetCode(CodeDesc* desc);
495 
496   // Read/Modify the code target in the branch/call instruction at pc.
497   inline static Address target_address_at(Address pc, Address constant_pool);
498   inline static void set_target_address_at(
499       Isolate* isolate, Address pc, Address constant_pool, Address target,
500       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
target_address_at(Address pc,Code * code)501   static inline Address target_address_at(Address pc, Code* code) {
502     Address constant_pool = code ? code->constant_pool() : NULL;
503     return target_address_at(pc, constant_pool);
504   }
505   static inline void set_target_address_at(
506       Isolate* isolate, Address pc, Code* code, Address target,
507       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
508     Address constant_pool = code ? code->constant_pool() : NULL;
509     set_target_address_at(isolate, pc, constant_pool, target);
510   }
511 
512   // Return the code target address at a call site from the return address
513   // of that call in the instruction stream.
514   inline static Address target_address_from_return_address(Address pc);
515 
516   // This sets the branch destination (which is in the instruction on x86).
517   // This is for calls and branches within generated code.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)518   inline static void deserialization_set_special_target_at(
519       Isolate* isolate, Address instruction_payload, Code* code,
520       Address target) {
521     set_target_address_at(isolate, instruction_payload, code, target);
522   }
523 
524   // This sets the internal reference at the pc.
525   inline static void deserialization_set_target_internal_reference_at(
526       Isolate* isolate, Address pc, Address target,
527       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
528 
529   static const int kSpecialTargetSize = kPointerSize;
530 
531   // Distance between the address of the code target in the call instruction
532   // and the return address
533   static const int kCallTargetAddressOffset = kPointerSize;
534 
535   static const int kCallInstructionLength = 5;
536 
537   // The debug break slot must be able to contain a call instruction.
538   static const int kDebugBreakSlotLength = kCallInstructionLength;
539 
540   // Distance between start of patched debug break slot and the emitted address
541   // to jump to.
542   static const int kPatchDebugBreakSlotAddressOffset = 1;  // JMP imm32.
543 
544   // One byte opcode for test al, 0xXX.
545   static const byte kTestAlByte = 0xA8;
546   // One byte opcode for nop.
547   static const byte kNopByte = 0x90;
548 
549   // One byte opcode for a short unconditional jump.
550   static const byte kJmpShortOpcode = 0xEB;
551   // One byte prefix for a short conditional jump.
552   static const byte kJccShortPrefix = 0x70;
553   static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
554   static const byte kJcShortOpcode = kJccShortPrefix | carry;
555   static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
556   static const byte kJzShortOpcode = kJccShortPrefix | zero;
557 
558 
559   // ---------------------------------------------------------------------------
560   // Code generation
561   //
562   // - function names correspond one-to-one to ia32 instruction mnemonics
563   // - unless specified otherwise, instructions operate on 32bit operands
564   // - instructions on 8bit (byte) operands/registers have a trailing '_b'
565   // - instructions on 16bit (word) operands/registers have a trailing '_w'
566   // - naming conflicts with C++ keywords are resolved via a trailing '_'
567 
568   // NOTE ON INTERFACE: Currently, the interface is not very consistent
569   // in the sense that some operations (e.g. mov()) can be called in more
570   // the one way to generate the same instruction: The Register argument
571   // can in some cases be replaced with an Operand(Register) argument.
572   // This should be cleaned up and made more orthogonal. The questions
573   // is: should we always use Operands instead of Registers where an
574   // Operand is possible, or should we have a Register (overloaded) form
575   // instead? We must be careful to make sure that the selected instruction
576   // is obvious from the parameters to avoid hard-to-find code generation
577   // bugs.
578 
579   // Insert the smallest number of nop instructions
580   // possible to align the pc offset to a multiple
581   // of m. m must be a power of 2.
582   void Align(int m);
583   // Insert the smallest number of zero bytes possible to align the pc offset
584   // to a mulitple of m. m must be a power of 2 (>= 2).
585   void DataAlign(int m);
586   void Nop(int bytes = 1);
587   // Aligns code to something that's optimal for a jump target for the platform.
588   void CodeTargetAlign();
589 
590   // Stack
591   void pushad();
592   void popad();
593 
594   void pushfd();
595   void popfd();
596 
597   void push(const Immediate& x);
598   void push_imm32(int32_t imm32);
599   void push(Register src);
600   void push(const Operand& src);
601 
602   void pop(Register dst);
603   void pop(const Operand& dst);
604 
605   void enter(const Immediate& size);
606   void leave();
607 
608   // Moves
mov_b(Register dst,Register src)609   void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
610   void mov_b(Register dst, const Operand& src);
mov_b(Register dst,int8_t imm8)611   void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
mov_b(const Operand & dst,int8_t src)612   void mov_b(const Operand& dst, int8_t src) { mov_b(dst, Immediate(src)); }
613   void mov_b(const Operand& dst, const Immediate& src);
614   void mov_b(const Operand& dst, Register src);
615 
616   void mov_w(Register dst, const Operand& src);
mov_w(const Operand & dst,int16_t src)617   void mov_w(const Operand& dst, int16_t src) { mov_w(dst, Immediate(src)); }
618   void mov_w(const Operand& dst, const Immediate& src);
619   void mov_w(const Operand& dst, Register src);
620 
621   void mov(Register dst, int32_t imm32);
622   void mov(Register dst, const Immediate& x);
623   void mov(Register dst, Handle<Object> handle);
624   void mov(Register dst, const Operand& src);
625   void mov(Register dst, Register src);
626   void mov(const Operand& dst, const Immediate& x);
627   void mov(const Operand& dst, Handle<Object> handle);
628   void mov(const Operand& dst, Register src);
629 
movsx_b(Register dst,Register src)630   void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
631   void movsx_b(Register dst, const Operand& src);
632 
movsx_w(Register dst,Register src)633   void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
634   void movsx_w(Register dst, const Operand& src);
635 
movzx_b(Register dst,Register src)636   void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
637   void movzx_b(Register dst, const Operand& src);
638 
movzx_w(Register dst,Register src)639   void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
640   void movzx_w(Register dst, const Operand& src);
641 
642   // Conditional moves
cmov(Condition cc,Register dst,Register src)643   void cmov(Condition cc, Register dst, Register src) {
644     cmov(cc, dst, Operand(src));
645   }
646   void cmov(Condition cc, Register dst, const Operand& src);
647 
648   // Flag management.
649   void cld();
650 
651   // Repetitive string instructions.
652   void rep_movs();
653   void rep_stos();
654   void stos();
655 
656   // Exchange
657   void xchg(Register dst, Register src);
658   void xchg(Register dst, const Operand& src);
659   void xchg_b(Register reg, const Operand& op);
660   void xchg_w(Register reg, const Operand& op);
661 
662   // Lock prefix
663   void lock();
664 
665   // CompareExchange
666   void cmpxchg(const Operand& dst, Register src);
667   void cmpxchg_b(const Operand& dst, Register src);
668   void cmpxchg_w(const Operand& dst, Register src);
669 
670   // Arithmetics
671   void adc(Register dst, int32_t imm32);
672   void adc(Register dst, const Operand& src);
673 
add(Register dst,Register src)674   void add(Register dst, Register src) { add(dst, Operand(src)); }
675   void add(Register dst, const Operand& src);
676   void add(const Operand& dst, Register src);
add(Register dst,const Immediate & imm)677   void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
678   void add(const Operand& dst, const Immediate& x);
679 
680   void and_(Register dst, int32_t imm32);
681   void and_(Register dst, const Immediate& x);
and_(Register dst,Register src)682   void and_(Register dst, Register src) { and_(dst, Operand(src)); }
683   void and_(Register dst, const Operand& src);
684   void and_(const Operand& dst, Register src);
685   void and_(const Operand& dst, const Immediate& x);
686 
cmpb(Register reg,Immediate imm8)687   void cmpb(Register reg, Immediate imm8) { cmpb(Operand(reg), imm8); }
688   void cmpb(const Operand& op, Immediate imm8);
689   void cmpb(Register reg, const Operand& op);
690   void cmpb(const Operand& op, Register reg);
cmpb(Register dst,Register src)691   void cmpb(Register dst, Register src) { cmpb(Operand(dst), src); }
692   void cmpb_al(const Operand& op);
693   void cmpw_ax(const Operand& op);
694   void cmpw(const Operand& dst, Immediate src);
cmpw(Register dst,Immediate src)695   void cmpw(Register dst, Immediate src) { cmpw(Operand(dst), src); }
696   void cmpw(Register dst, const Operand& src);
cmpw(Register dst,Register src)697   void cmpw(Register dst, Register src) { cmpw(Operand(dst), src); }
698   void cmpw(const Operand& dst, Register src);
699   void cmp(Register reg, int32_t imm32);
700   void cmp(Register reg, Handle<Object> handle);
cmp(Register reg0,Register reg1)701   void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
702   void cmp(Register reg, const Operand& op);
cmp(Register reg,const Immediate & imm)703   void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
704   void cmp(const Operand& op, Register reg);
705   void cmp(const Operand& op, const Immediate& imm);
706   void cmp(const Operand& op, Handle<Object> handle);
707 
708   void dec_b(Register dst);
709   void dec_b(const Operand& dst);
710 
711   void dec(Register dst);
712   void dec(const Operand& dst);
713 
714   void cdq();
715 
idiv(Register src)716   void idiv(Register src) { idiv(Operand(src)); }
717   void idiv(const Operand& src);
div(Register src)718   void div(Register src) { div(Operand(src)); }
719   void div(const Operand& src);
720 
721   // Signed multiply instructions.
722   void imul(Register src);                               // edx:eax = eax * src.
imul(Register dst,Register src)723   void imul(Register dst, Register src) { imul(dst, Operand(src)); }
724   void imul(Register dst, const Operand& src);           // dst = dst * src.
725   void imul(Register dst, Register src, int32_t imm32);  // dst = src * imm32.
726   void imul(Register dst, const Operand& src, int32_t imm32);
727 
728   void inc(Register dst);
729   void inc(const Operand& dst);
730 
731   void lea(Register dst, const Operand& src);
732 
733   // Unsigned multiply instruction.
734   void mul(Register src);                                // edx:eax = eax * reg.
735 
736   void neg(Register dst);
737   void neg(const Operand& dst);
738 
739   void not_(Register dst);
740   void not_(const Operand& dst);
741 
742   void or_(Register dst, int32_t imm32);
or_(Register dst,Register src)743   void or_(Register dst, Register src) { or_(dst, Operand(src)); }
744   void or_(Register dst, const Operand& src);
745   void or_(const Operand& dst, Register src);
or_(Register dst,const Immediate & imm)746   void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
747   void or_(const Operand& dst, const Immediate& x);
748 
749   void rcl(Register dst, uint8_t imm8);
750   void rcr(Register dst, uint8_t imm8);
751 
ror(Register dst,uint8_t imm8)752   void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
753   void ror(const Operand& dst, uint8_t imm8);
ror_cl(Register dst)754   void ror_cl(Register dst) { ror_cl(Operand(dst)); }
755   void ror_cl(const Operand& dst);
756 
sar(Register dst,uint8_t imm8)757   void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
758   void sar(const Operand& dst, uint8_t imm8);
sar_cl(Register dst)759   void sar_cl(Register dst) { sar_cl(Operand(dst)); }
760   void sar_cl(const Operand& dst);
761 
762   void sbb(Register dst, const Operand& src);
763 
shl(Register dst,uint8_t imm8)764   void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
765   void shl(const Operand& dst, uint8_t imm8);
shl_cl(Register dst)766   void shl_cl(Register dst) { shl_cl(Operand(dst)); }
767   void shl_cl(const Operand& dst);
768   void shld(Register dst, Register src, uint8_t shift);
769   void shld_cl(Register dst, Register src);
770 
shr(Register dst,uint8_t imm8)771   void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
772   void shr(const Operand& dst, uint8_t imm8);
shr_cl(Register dst)773   void shr_cl(Register dst) { shr_cl(Operand(dst)); }
774   void shr_cl(const Operand& dst);
775   void shrd(Register dst, Register src, uint8_t shift);
shrd_cl(Register dst,Register src)776   void shrd_cl(Register dst, Register src) { shrd_cl(Operand(dst), src); }
777   void shrd_cl(const Operand& dst, Register src);
778 
sub(Register dst,const Immediate & imm)779   void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
780   void sub(const Operand& dst, const Immediate& x);
sub(Register dst,Register src)781   void sub(Register dst, Register src) { sub(dst, Operand(src)); }
782   void sub(Register dst, const Operand& src);
783   void sub(const Operand& dst, Register src);
784 
785   void test(Register reg, const Immediate& imm);
test(Register reg0,Register reg1)786   void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
787   void test(Register reg, const Operand& op);
788   void test(const Operand& op, const Immediate& imm);
test(const Operand & op,Register reg)789   void test(const Operand& op, Register reg) { test(reg, op); }
790   void test_b(Register reg, const Operand& op);
791   void test_b(Register reg, Immediate imm8);
792   void test_b(const Operand& op, Immediate imm8);
test_b(const Operand & op,Register reg)793   void test_b(const Operand& op, Register reg) { test_b(reg, op); }
test_b(Register dst,Register src)794   void test_b(Register dst, Register src) { test_b(dst, Operand(src)); }
795   void test_w(Register reg, const Operand& op);
796   void test_w(Register reg, Immediate imm16);
797   void test_w(const Operand& op, Immediate imm16);
test_w(const Operand & op,Register reg)798   void test_w(const Operand& op, Register reg) { test_w(reg, op); }
test_w(Register dst,Register src)799   void test_w(Register dst, Register src) { test_w(dst, Operand(src)); }
800 
801   void xor_(Register dst, int32_t imm32);
xor_(Register dst,Register src)802   void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
803   void xor_(Register dst, const Operand& src);
804   void xor_(const Operand& dst, Register src);
xor_(Register dst,const Immediate & imm)805   void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
806   void xor_(const Operand& dst, const Immediate& x);
807 
808   // Bit operations.
809   void bt(const Operand& dst, Register src);
bts(Register dst,Register src)810   void bts(Register dst, Register src) { bts(Operand(dst), src); }
811   void bts(const Operand& dst, Register src);
bsr(Register dst,Register src)812   void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
813   void bsr(Register dst, const Operand& src);
bsf(Register dst,Register src)814   void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
815   void bsf(Register dst, const Operand& src);
816 
817   // Miscellaneous
818   void hlt();
819   void int3();
820   void nop();
821   void ret(int imm16);
822   void ud2();
823 
824   // Label operations & relative jumps (PPUM Appendix D)
825   //
826   // Takes a branch opcode (cc) and a label (L) and generates
827   // either a backward branch or a forward branch and links it
828   // to the label fixup chain. Usage:
829   //
830   // Label L;    // unbound label
831   // j(cc, &L);  // forward branch to unbound label
832   // bind(&L);   // bind label to the current pc
833   // j(cc, &L);  // backward branch to bound label
834   // bind(&L);   // illegal: a label may be bound only once
835   //
836   // Note: The same Label can be used for forward and backward branches
837   // but it may be bound only once.
838 
839   void bind(Label* L);  // binds an unbound label L to the current code position
840 
841   // Calls
842   void call(Label* L);
843   void call(byte* entry, RelocInfo::Mode rmode);
844   int CallSize(const Operand& adr);
call(Register reg)845   void call(Register reg) { call(Operand(reg)); }
846   void call(const Operand& adr);
847   int CallSize(Handle<Code> code, RelocInfo::Mode mode);
848   void call(Handle<Code> code,
849             RelocInfo::Mode rmode,
850             TypeFeedbackId id = TypeFeedbackId::None());
851 
852   // Jumps
853   // unconditional jump to L
854   void jmp(Label* L, Label::Distance distance = Label::kFar);
855   void jmp(byte* entry, RelocInfo::Mode rmode);
jmp(Register reg)856   void jmp(Register reg) { jmp(Operand(reg)); }
857   void jmp(const Operand& adr);
858   void jmp(Handle<Code> code, RelocInfo::Mode rmode);
859 
860   // Conditional jumps
861   void j(Condition cc,
862          Label* L,
863          Label::Distance distance = Label::kFar);
864   void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
865   void j(Condition cc, Handle<Code> code,
866          RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
867 
868   // Floating-point operations
869   void fld(int i);
870   void fstp(int i);
871 
872   void fld1();
873   void fldz();
874   void fldpi();
875   void fldln2();
876 
877   void fld_s(const Operand& adr);
878   void fld_d(const Operand& adr);
879 
880   void fstp_s(const Operand& adr);
881   void fst_s(const Operand& adr);
882   void fstp_d(const Operand& adr);
883   void fst_d(const Operand& adr);
884 
885   void fild_s(const Operand& adr);
886   void fild_d(const Operand& adr);
887 
888   void fist_s(const Operand& adr);
889 
890   void fistp_s(const Operand& adr);
891   void fistp_d(const Operand& adr);
892 
893   // The fisttp instructions require SSE3.
894   void fisttp_s(const Operand& adr);
895   void fisttp_d(const Operand& adr);
896 
897   void fabs();
898   void fchs();
899   void fcos();
900   void fsin();
901   void fptan();
902   void fyl2x();
903   void f2xm1();
904   void fscale();
905   void fninit();
906 
907   void fadd(int i);
908   void fadd_i(int i);
909   void fsub(int i);
910   void fsub_i(int i);
911   void fmul(int i);
912   void fmul_i(int i);
913   void fdiv(int i);
914   void fdiv_i(int i);
915 
916   void fisub_s(const Operand& adr);
917 
918   void faddp(int i = 1);
919   void fsubp(int i = 1);
920   void fsubrp(int i = 1);
921   void fmulp(int i = 1);
922   void fdivp(int i = 1);
923   void fprem();
924   void fprem1();
925 
926   void fxch(int i = 1);
927   void fincstp();
928   void ffree(int i = 0);
929 
930   void ftst();
931   void fucomp(int i);
932   void fucompp();
933   void fucomi(int i);
934   void fucomip();
935   void fcompp();
936   void fnstsw_ax();
937   void fwait();
938   void fnclex();
939 
940   void frndint();
941 
942   void sahf();
943   void setcc(Condition cc, Register reg);
944 
945   void cpuid();
946 
947   // SSE instructions
addss(XMMRegister dst,XMMRegister src)948   void addss(XMMRegister dst, XMMRegister src) { addss(dst, Operand(src)); }
949   void addss(XMMRegister dst, const Operand& src);
subss(XMMRegister dst,XMMRegister src)950   void subss(XMMRegister dst, XMMRegister src) { subss(dst, Operand(src)); }
951   void subss(XMMRegister dst, const Operand& src);
mulss(XMMRegister dst,XMMRegister src)952   void mulss(XMMRegister dst, XMMRegister src) { mulss(dst, Operand(src)); }
953   void mulss(XMMRegister dst, const Operand& src);
divss(XMMRegister dst,XMMRegister src)954   void divss(XMMRegister dst, XMMRegister src) { divss(dst, Operand(src)); }
955   void divss(XMMRegister dst, const Operand& src);
sqrtss(XMMRegister dst,XMMRegister src)956   void sqrtss(XMMRegister dst, XMMRegister src) { sqrtss(dst, Operand(src)); }
957   void sqrtss(XMMRegister dst, const Operand& src);
958 
ucomiss(XMMRegister dst,XMMRegister src)959   void ucomiss(XMMRegister dst, XMMRegister src) { ucomiss(dst, Operand(src)); }
960   void ucomiss(XMMRegister dst, const Operand& src);
961   void movaps(XMMRegister dst, XMMRegister src);
962   void shufps(XMMRegister dst, XMMRegister src, byte imm8);
963 
maxss(XMMRegister dst,XMMRegister src)964   void maxss(XMMRegister dst, XMMRegister src) { maxss(dst, Operand(src)); }
965   void maxss(XMMRegister dst, const Operand& src);
minss(XMMRegister dst,XMMRegister src)966   void minss(XMMRegister dst, XMMRegister src) { minss(dst, Operand(src)); }
967   void minss(XMMRegister dst, const Operand& src);
968 
969   void andps(XMMRegister dst, const Operand& src);
andps(XMMRegister dst,XMMRegister src)970   void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
971   void xorps(XMMRegister dst, const Operand& src);
xorps(XMMRegister dst,XMMRegister src)972   void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
973   void orps(XMMRegister dst, const Operand& src);
orps(XMMRegister dst,XMMRegister src)974   void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }
975 
976   void addps(XMMRegister dst, const Operand& src);
addps(XMMRegister dst,XMMRegister src)977   void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
978   void subps(XMMRegister dst, const Operand& src);
subps(XMMRegister dst,XMMRegister src)979   void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
980   void mulps(XMMRegister dst, const Operand& src);
mulps(XMMRegister dst,XMMRegister src)981   void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
982   void divps(XMMRegister dst, const Operand& src);
divps(XMMRegister dst,XMMRegister src)983   void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }
984 
985   // SSE2 instructions
986   void cvttss2si(Register dst, const Operand& src);
cvttss2si(Register dst,XMMRegister src)987   void cvttss2si(Register dst, XMMRegister src) {
988     cvttss2si(dst, Operand(src));
989   }
990   void cvttsd2si(Register dst, const Operand& src);
cvttsd2si(Register dst,XMMRegister src)991   void cvttsd2si(Register dst, XMMRegister src) {
992     cvttsd2si(dst, Operand(src));
993   }
994   void cvtsd2si(Register dst, XMMRegister src);
995 
cvtsi2ss(XMMRegister dst,Register src)996   void cvtsi2ss(XMMRegister dst, Register src) { cvtsi2ss(dst, Operand(src)); }
997   void cvtsi2ss(XMMRegister dst, const Operand& src);
cvtsi2sd(XMMRegister dst,Register src)998   void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
999   void cvtsi2sd(XMMRegister dst, const Operand& src);
1000   void cvtss2sd(XMMRegister dst, const Operand& src);
cvtss2sd(XMMRegister dst,XMMRegister src)1001   void cvtss2sd(XMMRegister dst, XMMRegister src) {
1002     cvtss2sd(dst, Operand(src));
1003   }
1004   void cvtsd2ss(XMMRegister dst, const Operand& src);
cvtsd2ss(XMMRegister dst,XMMRegister src)1005   void cvtsd2ss(XMMRegister dst, XMMRegister src) {
1006     cvtsd2ss(dst, Operand(src));
1007   }
addsd(XMMRegister dst,XMMRegister src)1008   void addsd(XMMRegister dst, XMMRegister src) { addsd(dst, Operand(src)); }
1009   void addsd(XMMRegister dst, const Operand& src);
subsd(XMMRegister dst,XMMRegister src)1010   void subsd(XMMRegister dst, XMMRegister src) { subsd(dst, Operand(src)); }
1011   void subsd(XMMRegister dst, const Operand& src);
mulsd(XMMRegister dst,XMMRegister src)1012   void mulsd(XMMRegister dst, XMMRegister src) { mulsd(dst, Operand(src)); }
1013   void mulsd(XMMRegister dst, const Operand& src);
divsd(XMMRegister dst,XMMRegister src)1014   void divsd(XMMRegister dst, XMMRegister src) { divsd(dst, Operand(src)); }
1015   void divsd(XMMRegister dst, const Operand& src);
1016   void xorpd(XMMRegister dst, XMMRegister src);
sqrtsd(XMMRegister dst,XMMRegister src)1017   void sqrtsd(XMMRegister dst, XMMRegister src) { sqrtsd(dst, Operand(src)); }
1018   void sqrtsd(XMMRegister dst, const Operand& src);
1019 
1020   void andpd(XMMRegister dst, XMMRegister src);
1021   void orpd(XMMRegister dst, XMMRegister src);
1022 
ucomisd(XMMRegister dst,XMMRegister src)1023   void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
1024   void ucomisd(XMMRegister dst, const Operand& src);
1025 
1026   void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
1027   void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
1028 
1029   void movmskpd(Register dst, XMMRegister src);
1030   void movmskps(Register dst, XMMRegister src);
1031 
1032   void cmpltsd(XMMRegister dst, XMMRegister src);
1033   void pcmpeqd(XMMRegister dst, XMMRegister src);
1034 
1035   void punpckldq(XMMRegister dst, XMMRegister src);
1036   void punpckhdq(XMMRegister dst, XMMRegister src);
1037 
maxsd(XMMRegister dst,XMMRegister src)1038   void maxsd(XMMRegister dst, XMMRegister src) { maxsd(dst, Operand(src)); }
1039   void maxsd(XMMRegister dst, const Operand& src);
minsd(XMMRegister dst,XMMRegister src)1040   void minsd(XMMRegister dst, XMMRegister src) { minsd(dst, Operand(src)); }
1041   void minsd(XMMRegister dst, const Operand& src);
1042 
1043   void movdqa(XMMRegister dst, const Operand& src);
1044   void movdqa(const Operand& dst, XMMRegister src);
1045   void movdqu(XMMRegister dst, const Operand& src);
1046   void movdqu(const Operand& dst, XMMRegister src);
movdq(bool aligned,XMMRegister dst,const Operand & src)1047   void movdq(bool aligned, XMMRegister dst, const Operand& src) {
1048     if (aligned) {
1049       movdqa(dst, src);
1050     } else {
1051       movdqu(dst, src);
1052     }
1053   }
1054 
movd(XMMRegister dst,Register src)1055   void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
1056   void movd(XMMRegister dst, const Operand& src);
movd(Register dst,XMMRegister src)1057   void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
1058   void movd(const Operand& dst, XMMRegister src);
movsd(XMMRegister dst,XMMRegister src)1059   void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
1060   void movsd(XMMRegister dst, const Operand& src);
1061   void movsd(const Operand& dst, XMMRegister src);
1062 
1063 
1064   void movss(XMMRegister dst, const Operand& src);
1065   void movss(const Operand& dst, XMMRegister src);
movss(XMMRegister dst,XMMRegister src)1066   void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
1067   void extractps(Register dst, XMMRegister src, byte imm8);
1068 
1069   void pand(XMMRegister dst, XMMRegister src);
1070   void pxor(XMMRegister dst, XMMRegister src);
1071   void por(XMMRegister dst, XMMRegister src);
1072   void ptest(XMMRegister dst, XMMRegister src);
1073 
1074   void pslld(XMMRegister reg, int8_t shift);
1075   void psrld(XMMRegister reg, int8_t shift);
1076   void psllq(XMMRegister reg, int8_t shift);
1077   void psllq(XMMRegister dst, XMMRegister src);
1078   void psrlq(XMMRegister reg, int8_t shift);
1079   void psrlq(XMMRegister dst, XMMRegister src);
1080   void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
pextrd(Register dst,XMMRegister src,int8_t offset)1081   void pextrd(Register dst, XMMRegister src, int8_t offset) {
1082     pextrd(Operand(dst), src, offset);
1083   }
1084   void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
pinsrd(XMMRegister dst,Register src,int8_t offset)1085   void pinsrd(XMMRegister dst, Register src, int8_t offset) {
1086     pinsrd(dst, Operand(src), offset);
1087   }
1088   void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);
1089 
1090   // AVX instructions
vfmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1091   void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1092     vfmadd132sd(dst, src1, Operand(src2));
1093   }
vfmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1094   void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1095     vfmadd213sd(dst, src1, Operand(src2));
1096   }
vfmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1097   void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1098     vfmadd231sd(dst, src1, Operand(src2));
1099   }
vfmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1100   void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1101     vfmasd(0x99, dst, src1, src2);
1102   }
vfmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1103   void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1104     vfmasd(0xa9, dst, src1, src2);
1105   }
vfmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1106   void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1107     vfmasd(0xb9, dst, src1, src2);
1108   }
vfmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1109   void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1110     vfmsub132sd(dst, src1, Operand(src2));
1111   }
vfmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1112   void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1113     vfmsub213sd(dst, src1, Operand(src2));
1114   }
vfmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1115   void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1116     vfmsub231sd(dst, src1, Operand(src2));
1117   }
vfmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1118   void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1119     vfmasd(0x9b, dst, src1, src2);
1120   }
vfmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1121   void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1122     vfmasd(0xab, dst, src1, src2);
1123   }
vfmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1124   void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1125     vfmasd(0xbb, dst, src1, src2);
1126   }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1127   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1128     vfnmadd132sd(dst, src1, Operand(src2));
1129   }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1130   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1131     vfnmadd213sd(dst, src1, Operand(src2));
1132   }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1133   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1134     vfnmadd231sd(dst, src1, Operand(src2));
1135   }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1136   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1137     vfmasd(0x9d, dst, src1, src2);
1138   }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1139   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1140     vfmasd(0xad, dst, src1, src2);
1141   }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1142   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1143     vfmasd(0xbd, dst, src1, src2);
1144   }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1145   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1146     vfnmsub132sd(dst, src1, Operand(src2));
1147   }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1148   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1149     vfnmsub213sd(dst, src1, Operand(src2));
1150   }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1151   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1152     vfnmsub231sd(dst, src1, Operand(src2));
1153   }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1154   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1155     vfmasd(0x9f, dst, src1, src2);
1156   }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1157   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1158     vfmasd(0xaf, dst, src1, src2);
1159   }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1160   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1161     vfmasd(0xbf, dst, src1, src2);
1162   }
1163   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1164 
vfmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1165   void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1166     vfmadd132ss(dst, src1, Operand(src2));
1167   }
vfmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1168   void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1169     vfmadd213ss(dst, src1, Operand(src2));
1170   }
vfmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1171   void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1172     vfmadd231ss(dst, src1, Operand(src2));
1173   }
vfmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1174   void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1175     vfmass(0x99, dst, src1, src2);
1176   }
vfmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1177   void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1178     vfmass(0xa9, dst, src1, src2);
1179   }
vfmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1180   void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1181     vfmass(0xb9, dst, src1, src2);
1182   }
vfmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1183   void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1184     vfmsub132ss(dst, src1, Operand(src2));
1185   }
vfmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1186   void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1187     vfmsub213ss(dst, src1, Operand(src2));
1188   }
vfmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1189   void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1190     vfmsub231ss(dst, src1, Operand(src2));
1191   }
vfmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1192   void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1193     vfmass(0x9b, dst, src1, src2);
1194   }
vfmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1195   void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1196     vfmass(0xab, dst, src1, src2);
1197   }
vfmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1198   void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1199     vfmass(0xbb, dst, src1, src2);
1200   }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1201   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1202     vfnmadd132ss(dst, src1, Operand(src2));
1203   }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1204   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1205     vfnmadd213ss(dst, src1, Operand(src2));
1206   }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1207   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1208     vfnmadd231ss(dst, src1, Operand(src2));
1209   }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1210   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1211     vfmass(0x9d, dst, src1, src2);
1212   }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1213   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1214     vfmass(0xad, dst, src1, src2);
1215   }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1216   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1217     vfmass(0xbd, dst, src1, src2);
1218   }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1219   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1220     vfnmsub132ss(dst, src1, Operand(src2));
1221   }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1222   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1223     vfnmsub213ss(dst, src1, Operand(src2));
1224   }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1225   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1226     vfnmsub231ss(dst, src1, Operand(src2));
1227   }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1228   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1229     vfmass(0x9f, dst, src1, src2);
1230   }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1231   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1232     vfmass(0xaf, dst, src1, src2);
1233   }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1234   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1235     vfmass(0xbf, dst, src1, src2);
1236   }
1237   void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1238 
vaddsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1239   void vaddsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1240     vaddsd(dst, src1, Operand(src2));
1241   }
vaddsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1242   void vaddsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1243     vsd(0x58, dst, src1, src2);
1244   }
vsubsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1245   void vsubsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1246     vsubsd(dst, src1, Operand(src2));
1247   }
vsubsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1248   void vsubsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1249     vsd(0x5c, dst, src1, src2);
1250   }
vmulsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1251   void vmulsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1252     vmulsd(dst, src1, Operand(src2));
1253   }
vmulsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1254   void vmulsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1255     vsd(0x59, dst, src1, src2);
1256   }
vdivsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1257   void vdivsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1258     vdivsd(dst, src1, Operand(src2));
1259   }
vdivsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1260   void vdivsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1261     vsd(0x5e, dst, src1, src2);
1262   }
vmaxsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1263   void vmaxsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1264     vmaxsd(dst, src1, Operand(src2));
1265   }
vmaxsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1266   void vmaxsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1267     vsd(0x5f, dst, src1, src2);
1268   }
vminsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1269   void vminsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1270     vminsd(dst, src1, Operand(src2));
1271   }
vminsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1272   void vminsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1273     vsd(0x5d, dst, src1, src2);
1274   }
1275   void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1276 
vaddss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1277   void vaddss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1278     vaddss(dst, src1, Operand(src2));
1279   }
vaddss(XMMRegister dst,XMMRegister src1,const Operand & src2)1280   void vaddss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1281     vss(0x58, dst, src1, src2);
1282   }
vsubss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1283   void vsubss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1284     vsubss(dst, src1, Operand(src2));
1285   }
vsubss(XMMRegister dst,XMMRegister src1,const Operand & src2)1286   void vsubss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1287     vss(0x5c, dst, src1, src2);
1288   }
vmulss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1289   void vmulss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1290     vmulss(dst, src1, Operand(src2));
1291   }
vmulss(XMMRegister dst,XMMRegister src1,const Operand & src2)1292   void vmulss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1293     vss(0x59, dst, src1, src2);
1294   }
vdivss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1295   void vdivss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1296     vdivss(dst, src1, Operand(src2));
1297   }
vdivss(XMMRegister dst,XMMRegister src1,const Operand & src2)1298   void vdivss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1299     vss(0x5e, dst, src1, src2);
1300   }
vmaxss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1301   void vmaxss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1302     vmaxss(dst, src1, Operand(src2));
1303   }
vmaxss(XMMRegister dst,XMMRegister src1,const Operand & src2)1304   void vmaxss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1305     vss(0x5f, dst, src1, src2);
1306   }
vminss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1307   void vminss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1308     vminss(dst, src1, Operand(src2));
1309   }
vminss(XMMRegister dst,XMMRegister src1,const Operand & src2)1310   void vminss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1311     vss(0x5d, dst, src1, src2);
1312   }
1313   void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1314 
1315   // BMI instruction
andn(Register dst,Register src1,Register src2)1316   void andn(Register dst, Register src1, Register src2) {
1317     andn(dst, src1, Operand(src2));
1318   }
andn(Register dst,Register src1,const Operand & src2)1319   void andn(Register dst, Register src1, const Operand& src2) {
1320     bmi1(0xf2, dst, src1, src2);
1321   }
bextr(Register dst,Register src1,Register src2)1322   void bextr(Register dst, Register src1, Register src2) {
1323     bextr(dst, Operand(src1), src2);
1324   }
bextr(Register dst,const Operand & src1,Register src2)1325   void bextr(Register dst, const Operand& src1, Register src2) {
1326     bmi1(0xf7, dst, src2, src1);
1327   }
blsi(Register dst,Register src)1328   void blsi(Register dst, Register src) { blsi(dst, Operand(src)); }
blsi(Register dst,const Operand & src)1329   void blsi(Register dst, const Operand& src) {
1330     Register ireg = {3};
1331     bmi1(0xf3, ireg, dst, src);
1332   }
blsmsk(Register dst,Register src)1333   void blsmsk(Register dst, Register src) { blsmsk(dst, Operand(src)); }
blsmsk(Register dst,const Operand & src)1334   void blsmsk(Register dst, const Operand& src) {
1335     Register ireg = {2};
1336     bmi1(0xf3, ireg, dst, src);
1337   }
blsr(Register dst,Register src)1338   void blsr(Register dst, Register src) { blsr(dst, Operand(src)); }
blsr(Register dst,const Operand & src)1339   void blsr(Register dst, const Operand& src) {
1340     Register ireg = {1};
1341     bmi1(0xf3, ireg, dst, src);
1342   }
tzcnt(Register dst,Register src)1343   void tzcnt(Register dst, Register src) { tzcnt(dst, Operand(src)); }
1344   void tzcnt(Register dst, const Operand& src);
1345 
lzcnt(Register dst,Register src)1346   void lzcnt(Register dst, Register src) { lzcnt(dst, Operand(src)); }
1347   void lzcnt(Register dst, const Operand& src);
1348 
popcnt(Register dst,Register src)1349   void popcnt(Register dst, Register src) { popcnt(dst, Operand(src)); }
1350   void popcnt(Register dst, const Operand& src);
1351 
bzhi(Register dst,Register src1,Register src2)1352   void bzhi(Register dst, Register src1, Register src2) {
1353     bzhi(dst, Operand(src1), src2);
1354   }
bzhi(Register dst,const Operand & src1,Register src2)1355   void bzhi(Register dst, const Operand& src1, Register src2) {
1356     bmi2(kNone, 0xf5, dst, src2, src1);
1357   }
mulx(Register dst1,Register dst2,Register src)1358   void mulx(Register dst1, Register dst2, Register src) {
1359     mulx(dst1, dst2, Operand(src));
1360   }
mulx(Register dst1,Register dst2,const Operand & src)1361   void mulx(Register dst1, Register dst2, const Operand& src) {
1362     bmi2(kF2, 0xf6, dst1, dst2, src);
1363   }
pdep(Register dst,Register src1,Register src2)1364   void pdep(Register dst, Register src1, Register src2) {
1365     pdep(dst, src1, Operand(src2));
1366   }
pdep(Register dst,Register src1,const Operand & src2)1367   void pdep(Register dst, Register src1, const Operand& src2) {
1368     bmi2(kF2, 0xf5, dst, src1, src2);
1369   }
pext(Register dst,Register src1,Register src2)1370   void pext(Register dst, Register src1, Register src2) {
1371     pext(dst, src1, Operand(src2));
1372   }
pext(Register dst,Register src1,const Operand & src2)1373   void pext(Register dst, Register src1, const Operand& src2) {
1374     bmi2(kF3, 0xf5, dst, src1, src2);
1375   }
sarx(Register dst,Register src1,Register src2)1376   void sarx(Register dst, Register src1, Register src2) {
1377     sarx(dst, Operand(src1), src2);
1378   }
sarx(Register dst,const Operand & src1,Register src2)1379   void sarx(Register dst, const Operand& src1, Register src2) {
1380     bmi2(kF3, 0xf7, dst, src2, src1);
1381   }
shlx(Register dst,Register src1,Register src2)1382   void shlx(Register dst, Register src1, Register src2) {
1383     shlx(dst, Operand(src1), src2);
1384   }
shlx(Register dst,const Operand & src1,Register src2)1385   void shlx(Register dst, const Operand& src1, Register src2) {
1386     bmi2(k66, 0xf7, dst, src2, src1);
1387   }
shrx(Register dst,Register src1,Register src2)1388   void shrx(Register dst, Register src1, Register src2) {
1389     shrx(dst, Operand(src1), src2);
1390   }
shrx(Register dst,const Operand & src1,Register src2)1391   void shrx(Register dst, const Operand& src1, Register src2) {
1392     bmi2(kF2, 0xf7, dst, src2, src1);
1393   }
rorx(Register dst,Register src,byte imm8)1394   void rorx(Register dst, Register src, byte imm8) {
1395     rorx(dst, Operand(src), imm8);
1396   }
1397   void rorx(Register dst, const Operand& src, byte imm8);
1398 
1399 #define PACKED_OP_LIST(V) \
1400   V(and, 0x54)            \
1401   V(xor, 0x57)
1402 
1403 #define AVX_PACKED_OP_DECLARE(name, opcode)                                  \
1404   void v##name##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1405     vps(opcode, dst, src1, Operand(src2));                                   \
1406   }                                                                          \
1407   void v##name##ps(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1408     vps(opcode, dst, src1, src2);                                            \
1409   }                                                                          \
1410   void v##name##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1411     vpd(opcode, dst, src1, Operand(src2));                                   \
1412   }                                                                          \
1413   void v##name##pd(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1414     vpd(opcode, dst, src1, src2);                                            \
1415   }
1416 
1417   PACKED_OP_LIST(AVX_PACKED_OP_DECLARE);
1418   void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1419   void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1420   void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1421   void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1422 
1423   // Prefetch src position into cache level.
1424   // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
1425   // non-temporal
1426   void prefetch(const Operand& src, int level);
1427   // TODO(lrn): Need SFENCE for movnt?
1428 
1429   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1430   int SizeOfCodeGeneratedSince(Label* label) {
1431     return pc_offset() - label->pos();
1432   }
1433 
1434   // Mark generator continuation.
1435   void RecordGeneratorContinuation();
1436 
1437   // Mark address of a debug break slot.
1438   void RecordDebugBreakSlot(RelocInfo::Mode mode);
1439 
1440   // Record a comment relocation entry that can be used by a disassembler.
1441   // Use --code-comments to enable.
1442   void RecordComment(const char* msg);
1443 
1444   // Record a deoptimization reason that can be used by a log or cpu profiler.
1445   // Use --trace-deopt to enable.
1446   void RecordDeoptReason(const int reason, int raw_position, int id);
1447 
1448   // Writes a single byte or word of data in the code stream.  Used for
1449   // inline tables, e.g., jump-tables.
1450   void db(uint8_t data);
1451   void dd(uint32_t data);
1452   void dq(uint64_t data);
dp(uintptr_t data)1453   void dp(uintptr_t data) { dd(data); }
1454   void dd(Label* label);
1455 
1456   // Check if there is less than kGap bytes available in the buffer.
1457   // If this is the case, we need to grow the buffer before emitting
1458   // an instruction or relocation information.
buffer_overflow()1459   inline bool buffer_overflow() const {
1460     return pc_ >= reloc_info_writer.pos() - kGap;
1461   }
1462 
1463   // Get the number of bytes available in the buffer.
available_space()1464   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1465 
1466   static bool IsNop(Address addr);
1467 
positions_recorder()1468   AssemblerPositionsRecorder* positions_recorder() {
1469     return &positions_recorder_;
1470   }
1471 
relocation_writer_size()1472   int relocation_writer_size() {
1473     return (buffer_ + buffer_size_) - reloc_info_writer.pos();
1474   }
1475 
1476   // Avoid overflows for displacements etc.
1477   static const int kMaximalBufferSize = 512*MB;
1478 
byte_at(int pos)1479   byte byte_at(int pos) { return buffer_[pos]; }
set_byte_at(int pos,byte value)1480   void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1481 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1482   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1483                                           ConstantPoolEntry::Access access,
1484                                           ConstantPoolEntry::Type type) {
1485     // No embedded constant pool support.
1486     UNREACHABLE();
1487   }
1488 
1489  protected:
1490   void emit_sse_operand(XMMRegister reg, const Operand& adr);
1491   void emit_sse_operand(XMMRegister dst, XMMRegister src);
1492   void emit_sse_operand(Register dst, XMMRegister src);
1493   void emit_sse_operand(XMMRegister dst, Register src);
1494 
addr_at(int pos)1495   byte* addr_at(int pos) { return buffer_ + pos; }
1496 
1497 
1498  private:
long_at(int pos)1499   uint32_t long_at(int pos)  {
1500     return *reinterpret_cast<uint32_t*>(addr_at(pos));
1501   }
long_at_put(int pos,uint32_t x)1502   void long_at_put(int pos, uint32_t x)  {
1503     *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1504   }
1505 
1506   // code emission
1507   void GrowBuffer();
1508   inline void emit(uint32_t x);
1509   inline void emit(Handle<Object> handle);
1510   inline void emit(uint32_t x,
1511                    RelocInfo::Mode rmode,
1512                    TypeFeedbackId id = TypeFeedbackId::None());
1513   inline void emit(Handle<Code> code,
1514                    RelocInfo::Mode rmode,
1515                    TypeFeedbackId id = TypeFeedbackId::None());
1516   inline void emit(const Immediate& x);
1517   inline void emit_b(Immediate x);
1518   inline void emit_w(const Immediate& x);
1519   inline void emit_q(uint64_t x);
1520 
1521   // Emit the code-object-relative offset of the label's position
1522   inline void emit_code_relative_offset(Label* label);
1523 
1524   // instruction generation
1525   void emit_arith_b(int op1, int op2, Register dst, int imm8);
1526 
1527   // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
1528   // with a given destination expression and an immediate operand.  It attempts
1529   // to use the shortest encoding possible.
1530   // sel specifies the /n in the modrm byte (see the Intel PRM).
1531   void emit_arith(int sel, Operand dst, const Immediate& x);
1532 
1533   void emit_operand(Register reg, const Operand& adr);
1534 
1535   void emit_label(Label* label);
1536 
1537   void emit_farith(int b1, int b2, int i);
1538 
1539   // Emit vex prefix
1540   enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
1541   enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
1542   enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
1543   enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
1544   inline void emit_vex_prefix(XMMRegister v, VectorLength l, SIMDPrefix pp,
1545                               LeadingOpcode m, VexW w);
1546   inline void emit_vex_prefix(Register v, VectorLength l, SIMDPrefix pp,
1547                               LeadingOpcode m, VexW w);
1548 
1549   // labels
1550   void print(Label* L);
1551   void bind_to(Label* L, int pos);
1552 
1553   // displacements
1554   inline Displacement disp_at(Label* L);
1555   inline void disp_at_put(Label* L, Displacement disp);
1556   inline void emit_disp(Label* L, Displacement::Type type);
1557   inline void emit_near_disp(Label* L);
1558 
1559   // Most BMI instructions are similiar.
1560   void bmi1(byte op, Register reg, Register vreg, const Operand& rm);
1561   void bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
1562             const Operand& rm);
1563 
1564   // record reloc info for current pc_
1565   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1566 
1567   friend class CodePatcher;
1568   friend class EnsureSpace;
1569 
1570   // Internal reference positions, required for (potential) patching in
1571   // GrowBuffer(); contains only those internal references whose labels
1572   // are already bound.
1573   std::deque<int> internal_reference_positions_;
1574 
1575   // code generation
1576   RelocInfoWriter reloc_info_writer;
1577 
1578   AssemblerPositionsRecorder positions_recorder_;
1579   friend class AssemblerPositionsRecorder;
1580 };
1581 
1582 
1583 // Helper class that ensures that there is enough space for generating
1584 // instructions and relocation information.  The constructor makes
1585 // sure that there is enough space and (in debug mode) the destructor
1586 // checks that we did not generate too much.
1587 class EnsureSpace BASE_EMBEDDED {
1588  public:
EnsureSpace(Assembler * assembler)1589   explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1590     if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1591 #ifdef DEBUG
1592     space_before_ = assembler_->available_space();
1593 #endif
1594   }
1595 
1596 #ifdef DEBUG
~EnsureSpace()1597   ~EnsureSpace() {
1598     int bytes_generated = space_before_ - assembler_->available_space();
1599     DCHECK(bytes_generated < assembler_->kGap);
1600   }
1601 #endif
1602 
1603  private:
1604   Assembler* assembler_;
1605 #ifdef DEBUG
1606   int space_before_;
1607 #endif
1608 };
1609 
1610 }  // namespace internal
1611 }  // namespace v8
1612 
1613 #endif  // V8_IA32_ASSEMBLER_IA32_H_
1614