• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_ARM
6 
7 #include "src/ic/handler-compiler.h"
8 
9 #include "src/api-arguments.h"
10 #include "src/field-type.h"
11 #include "src/ic/call-optimization.h"
12 #include "src/ic/ic.h"
13 #include "src/isolate-inl.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 #define __ ACCESS_MASM(masm)
19 
20 
GenerateLoadViaGetter(MacroAssembler * masm,Handle<Map> map,Register receiver,Register holder,int accessor_index,int expected_arguments,Register scratch)21 void NamedLoadHandlerCompiler::GenerateLoadViaGetter(
22     MacroAssembler* masm, Handle<Map> map, Register receiver, Register holder,
23     int accessor_index, int expected_arguments, Register scratch) {
24   // ----------- S t a t e -------------
25   //  -- r0    : receiver
26   //  -- r2    : name
27   //  -- lr    : return address
28   // -----------------------------------
29   {
30     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
31 
32     // Save context register
33     __ push(cp);
34 
35     if (accessor_index >= 0) {
36       DCHECK(!holder.is(scratch));
37       DCHECK(!receiver.is(scratch));
38       // Call the JavaScript getter with the receiver on the stack.
39       if (map->IsJSGlobalObjectMap()) {
40         // Swap in the global receiver.
41         __ ldr(scratch,
42                FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
43         receiver = scratch;
44       }
45       __ push(receiver);
46       __ LoadAccessor(r1, holder, accessor_index, ACCESSOR_GETTER);
47       __ mov(r0, Operand(0));
48       __ Call(masm->isolate()->builtins()->CallFunction(
49                   ConvertReceiverMode::kNotNullOrUndefined),
50               RelocInfo::CODE_TARGET);
51     } else {
52       // If we generate a global code snippet for deoptimization only, remember
53       // the place to continue after deoptimization.
54       masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
55     }
56 
57     // Restore context register.
58     __ pop(cp);
59   }
60   __ Ret();
61 }
62 
63 
GenerateStoreViaSetter(MacroAssembler * masm,Handle<Map> map,Register receiver,Register holder,int accessor_index,int expected_arguments,Register scratch)64 void NamedStoreHandlerCompiler::GenerateStoreViaSetter(
65     MacroAssembler* masm, Handle<Map> map, Register receiver, Register holder,
66     int accessor_index, int expected_arguments, Register scratch) {
67   // ----------- S t a t e -------------
68   //  -- lr    : return address
69   // -----------------------------------
70   {
71     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
72 
73     // Save context register
74     __ push(cp);
75     // Save value register, so we can restore it later.
76     __ push(value());
77 
78     if (accessor_index >= 0) {
79       DCHECK(!holder.is(scratch));
80       DCHECK(!receiver.is(scratch));
81       DCHECK(!value().is(scratch));
82       // Call the JavaScript setter with receiver and value on the stack.
83       if (map->IsJSGlobalObjectMap()) {
84         // Swap in the global receiver.
85         __ ldr(scratch,
86                FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
87         receiver = scratch;
88       }
89       __ Push(receiver, value());
90       __ LoadAccessor(r1, holder, accessor_index, ACCESSOR_SETTER);
91       __ mov(r0, Operand(1));
92       __ Call(masm->isolate()->builtins()->CallFunction(
93                   ConvertReceiverMode::kNotNullOrUndefined),
94               RelocInfo::CODE_TARGET);
95     } else {
96       // If we generate a global code snippet for deoptimization only, remember
97       // the place to continue after deoptimization.
98       masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
99     }
100 
101     // We have to return the passed value, not the return value of the setter.
102     __ pop(r0);
103 
104     // Restore context register.
105     __ pop(cp);
106   }
107   __ Ret();
108 }
109 
110 
PushVectorAndSlot(Register vector,Register slot)111 void PropertyHandlerCompiler::PushVectorAndSlot(Register vector,
112                                                 Register slot) {
113   MacroAssembler* masm = this->masm();
114   __ push(vector);
115   __ push(slot);
116 }
117 
118 
PopVectorAndSlot(Register vector,Register slot)119 void PropertyHandlerCompiler::PopVectorAndSlot(Register vector, Register slot) {
120   MacroAssembler* masm = this->masm();
121   __ pop(slot);
122   __ pop(vector);
123 }
124 
125 
DiscardVectorAndSlot()126 void PropertyHandlerCompiler::DiscardVectorAndSlot() {
127   MacroAssembler* masm = this->masm();
128   // Remove vector and slot.
129   __ add(sp, sp, Operand(2 * kPointerSize));
130 }
131 
132 
GenerateDictionaryNegativeLookup(MacroAssembler * masm,Label * miss_label,Register receiver,Handle<Name> name,Register scratch0,Register scratch1)133 void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup(
134     MacroAssembler* masm, Label* miss_label, Register receiver,
135     Handle<Name> name, Register scratch0, Register scratch1) {
136   DCHECK(name->IsUniqueName());
137   DCHECK(!receiver.is(scratch0));
138   Counters* counters = masm->isolate()->counters();
139   __ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1);
140   __ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
141 
142   Label done;
143 
144   const int kInterceptorOrAccessCheckNeededMask =
145       (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
146 
147   // Bail out if the receiver has a named interceptor or requires access checks.
148   Register map = scratch1;
149   __ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
150   __ ldrb(scratch0, FieldMemOperand(map, Map::kBitFieldOffset));
151   __ tst(scratch0, Operand(kInterceptorOrAccessCheckNeededMask));
152   __ b(ne, miss_label);
153 
154   // Check that receiver is a JSObject.
155   __ ldrb(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset));
156   __ cmp(scratch0, Operand(FIRST_JS_RECEIVER_TYPE));
157   __ b(lt, miss_label);
158 
159   // Load properties array.
160   Register properties = scratch0;
161   __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
162   // Check that the properties array is a dictionary.
163   __ ldr(map, FieldMemOperand(properties, HeapObject::kMapOffset));
164   Register tmp = properties;
165   __ LoadRoot(tmp, Heap::kHashTableMapRootIndex);
166   __ cmp(map, tmp);
167   __ b(ne, miss_label);
168 
169   // Restore the temporarily used register.
170   __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
171 
172 
173   NameDictionaryLookupStub::GenerateNegativeLookup(
174       masm, miss_label, &done, receiver, properties, name, scratch1);
175   __ bind(&done);
176   __ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
177 }
178 
179 
GenerateDirectLoadGlobalFunctionPrototype(MacroAssembler * masm,int index,Register result,Label * miss)180 void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype(
181     MacroAssembler* masm, int index, Register result, Label* miss) {
182   __ LoadNativeContextSlot(index, result);
183   // Load its initial map. The global functions all have initial maps.
184   __ ldr(result,
185          FieldMemOperand(result, JSFunction::kPrototypeOrInitialMapOffset));
186   // Load the prototype from the initial map.
187   __ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
188 }
189 
190 
GenerateLoadFunctionPrototype(MacroAssembler * masm,Register receiver,Register scratch1,Register scratch2,Label * miss_label)191 void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(
192     MacroAssembler* masm, Register receiver, Register scratch1,
193     Register scratch2, Label* miss_label) {
194   __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
195   __ mov(r0, scratch1);
196   __ Ret();
197 }
198 
199 
200 // Generate code to check that a global property cell is empty. Create
201 // the property cell at compilation time if no cell exists for the
202 // property.
GenerateCheckPropertyCell(MacroAssembler * masm,Handle<JSGlobalObject> global,Handle<Name> name,Register scratch,Label * miss)203 void PropertyHandlerCompiler::GenerateCheckPropertyCell(
204     MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name,
205     Register scratch, Label* miss) {
206   Handle<PropertyCell> cell = JSGlobalObject::EnsurePropertyCell(global, name);
207   Isolate* isolate = masm->isolate();
208   DCHECK(cell->value()->IsTheHole(isolate));
209   Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(cell);
210   __ LoadWeakValue(scratch, weak_cell, miss);
211   __ ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
212   __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
213   __ cmp(scratch, ip);
214   __ b(ne, miss);
215 }
216 
217 
PushInterceptorArguments(MacroAssembler * masm,Register receiver,Register holder,Register name,Handle<JSObject> holder_obj)218 static void PushInterceptorArguments(MacroAssembler* masm, Register receiver,
219                                      Register holder, Register name,
220                                      Handle<JSObject> holder_obj) {
221   STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0);
222   STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 1);
223   STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 2);
224   STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 3);
225   __ push(name);
226   __ push(receiver);
227   __ push(holder);
228 }
229 
230 
CompileCallLoadPropertyWithInterceptor(MacroAssembler * masm,Register receiver,Register holder,Register name,Handle<JSObject> holder_obj,Runtime::FunctionId id)231 static void CompileCallLoadPropertyWithInterceptor(
232     MacroAssembler* masm, Register receiver, Register holder, Register name,
233     Handle<JSObject> holder_obj, Runtime::FunctionId id) {
234   DCHECK(NamedLoadHandlerCompiler::kInterceptorArgsLength ==
235          Runtime::FunctionForId(id)->nargs);
236   PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
237   __ CallRuntime(id);
238 }
239 
240 
241 // Generate call to api function.
GenerateApiAccessorCall(MacroAssembler * masm,const CallOptimization & optimization,Handle<Map> receiver_map,Register receiver,Register scratch_in,bool is_store,Register store_parameter,Register accessor_holder,int accessor_index)242 void PropertyHandlerCompiler::GenerateApiAccessorCall(
243     MacroAssembler* masm, const CallOptimization& optimization,
244     Handle<Map> receiver_map, Register receiver, Register scratch_in,
245     bool is_store, Register store_parameter, Register accessor_holder,
246     int accessor_index) {
247   DCHECK(!accessor_holder.is(scratch_in));
248   DCHECK(!receiver.is(scratch_in));
249   __ push(receiver);
250   // Write the arguments to stack frame.
251   if (is_store) {
252     DCHECK(!receiver.is(store_parameter));
253     DCHECK(!scratch_in.is(store_parameter));
254     __ push(store_parameter);
255   }
256   DCHECK(optimization.is_simple_api_call());
257 
258   // Abi for CallApiCallbackStub.
259   Register callee = r0;
260   Register data = r4;
261   Register holder = r2;
262   Register api_function_address = r1;
263 
264   // Put callee in place.
265   __ LoadAccessor(callee, accessor_holder, accessor_index,
266                   is_store ? ACCESSOR_SETTER : ACCESSOR_GETTER);
267 
268   // Put holder in place.
269   CallOptimization::HolderLookup holder_lookup;
270   int holder_depth = 0;
271   optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup,
272                                           &holder_depth);
273   switch (holder_lookup) {
274     case CallOptimization::kHolderIsReceiver:
275       __ Move(holder, receiver);
276       break;
277     case CallOptimization::kHolderFound:
278       __ ldr(holder, FieldMemOperand(receiver, HeapObject::kMapOffset));
279       __ ldr(holder, FieldMemOperand(holder, Map::kPrototypeOffset));
280       for (int i = 1; i < holder_depth; i++) {
281         __ ldr(holder, FieldMemOperand(holder, HeapObject::kMapOffset));
282         __ ldr(holder, FieldMemOperand(holder, Map::kPrototypeOffset));
283       }
284       break;
285     case CallOptimization::kHolderNotFound:
286       UNREACHABLE();
287       break;
288   }
289 
290   Isolate* isolate = masm->isolate();
291   Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
292   bool call_data_undefined = false;
293   // Put call data in place.
294   if (api_call_info->data()->IsUndefined(isolate)) {
295     call_data_undefined = true;
296     __ LoadRoot(data, Heap::kUndefinedValueRootIndex);
297   } else {
298     if (optimization.is_constant_call()) {
299       __ ldr(data,
300              FieldMemOperand(callee, JSFunction::kSharedFunctionInfoOffset));
301       __ ldr(data,
302              FieldMemOperand(data, SharedFunctionInfo::kFunctionDataOffset));
303       __ ldr(data,
304              FieldMemOperand(data, FunctionTemplateInfo::kCallCodeOffset));
305     } else {
306       __ ldr(data,
307              FieldMemOperand(callee, FunctionTemplateInfo::kCallCodeOffset));
308     }
309     __ ldr(data, FieldMemOperand(data, CallHandlerInfo::kDataOffset));
310   }
311 
312   if (api_call_info->fast_handler()->IsCode()) {
313     // Just tail call into the fast handler if present.
314     __ Jump(handle(Code::cast(api_call_info->fast_handler())),
315             RelocInfo::CODE_TARGET);
316     return;
317   }
318 
319   // Put api_function_address in place.
320   Address function_address = v8::ToCData<Address>(api_call_info->callback());
321   ApiFunction fun(function_address);
322   ExternalReference::Type type = ExternalReference::DIRECT_API_CALL;
323   ExternalReference ref = ExternalReference(&fun, type, masm->isolate());
324   __ mov(api_function_address, Operand(ref));
325 
326   // Jump to stub.
327   CallApiCallbackStub stub(isolate, is_store, call_data_undefined,
328                            !optimization.is_constant_call());
329   __ TailCallStub(&stub);
330 }
331 
332 
StoreIC_PushArgs(MacroAssembler * masm)333 static void StoreIC_PushArgs(MacroAssembler* masm) {
334   __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
335           StoreDescriptor::ValueRegister(),
336           VectorStoreICDescriptor::SlotRegister(),
337           VectorStoreICDescriptor::VectorRegister());
338 }
339 
340 
GenerateSlow(MacroAssembler * masm)341 void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) {
342   StoreIC_PushArgs(masm);
343 
344   // The slow case calls into the runtime to complete the store without causing
345   // an IC miss that would otherwise cause a transition to the generic stub.
346   __ TailCallRuntime(Runtime::kStoreIC_Slow);
347 }
348 
349 
GenerateStoreSlow(MacroAssembler * masm)350 void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) {
351   StoreIC_PushArgs(masm);
352 
353   // The slow case calls into the runtime to complete the store without causing
354   // an IC miss that would otherwise cause a transition to the generic stub.
355   __ TailCallRuntime(Runtime::kKeyedStoreIC_Slow);
356 }
357 
358 
359 #undef __
360 #define __ ACCESS_MASM(masm())
361 
362 
GenerateRestoreName(Label * label,Handle<Name> name)363 void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label,
364                                                     Handle<Name> name) {
365   if (!label->is_unused()) {
366     __ bind(label);
367     __ mov(this->name(), Operand(name));
368   }
369 }
370 
371 
GenerateRestoreName(Handle<Name> name)372 void NamedStoreHandlerCompiler::GenerateRestoreName(Handle<Name> name) {
373   __ mov(this->name(), Operand(name));
374 }
375 
376 
RearrangeVectorAndSlot(Register current_map,Register destination_map)377 void NamedStoreHandlerCompiler::RearrangeVectorAndSlot(
378     Register current_map, Register destination_map) {
379   DCHECK(false);  // Not implemented.
380 }
381 
382 
GenerateRestoreMap(Handle<Map> transition,Register map_reg,Register scratch,Label * miss)383 void NamedStoreHandlerCompiler::GenerateRestoreMap(Handle<Map> transition,
384                                                    Register map_reg,
385                                                    Register scratch,
386                                                    Label* miss) {
387   Handle<WeakCell> cell = Map::WeakCellForMap(transition);
388   DCHECK(!map_reg.is(scratch));
389   __ LoadWeakValue(map_reg, cell, miss);
390   if (transition->CanBeDeprecated()) {
391     __ ldr(scratch, FieldMemOperand(map_reg, Map::kBitField3Offset));
392     __ tst(scratch, Operand(Map::Deprecated::kMask));
393     __ b(ne, miss);
394   }
395 }
396 
397 
GenerateConstantCheck(Register map_reg,int descriptor,Register value_reg,Register scratch,Label * miss_label)398 void NamedStoreHandlerCompiler::GenerateConstantCheck(Register map_reg,
399                                                       int descriptor,
400                                                       Register value_reg,
401                                                       Register scratch,
402                                                       Label* miss_label) {
403   DCHECK(!map_reg.is(scratch));
404   DCHECK(!map_reg.is(value_reg));
405   DCHECK(!value_reg.is(scratch));
406   __ LoadInstanceDescriptors(map_reg, scratch);
407   __ ldr(scratch,
408          FieldMemOperand(scratch, DescriptorArray::GetValueOffset(descriptor)));
409   __ cmp(value_reg, scratch);
410   __ b(ne, miss_label);
411 }
412 
GenerateFieldTypeChecks(FieldType * field_type,Register value_reg,Label * miss_label)413 void NamedStoreHandlerCompiler::GenerateFieldTypeChecks(FieldType* field_type,
414                                                         Register value_reg,
415                                                         Label* miss_label) {
416   Register map_reg = scratch1();
417   Register scratch = scratch2();
418   DCHECK(!value_reg.is(map_reg));
419   DCHECK(!value_reg.is(scratch));
420   __ JumpIfSmi(value_reg, miss_label);
421   if (field_type->IsClass()) {
422     __ ldr(map_reg, FieldMemOperand(value_reg, HeapObject::kMapOffset));
423     __ CmpWeakValue(map_reg, Map::WeakCellForMap(field_type->AsClass()),
424                     scratch);
425     __ b(ne, miss_label);
426   }
427 }
428 
429 
CheckPrototypes(Register object_reg,Register holder_reg,Register scratch1,Register scratch2,Handle<Name> name,Label * miss,PrototypeCheckType check,ReturnHolder return_what)430 Register PropertyHandlerCompiler::CheckPrototypes(
431     Register object_reg, Register holder_reg, Register scratch1,
432     Register scratch2, Handle<Name> name, Label* miss, PrototypeCheckType check,
433     ReturnHolder return_what) {
434   Handle<Map> receiver_map = map();
435 
436   // Make sure there's no overlap between holder and object registers.
437   DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
438   DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) &&
439          !scratch2.is(scratch1));
440 
441   Handle<Cell> validity_cell =
442       Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate());
443   if (!validity_cell.is_null()) {
444     DCHECK_EQ(Smi::FromInt(Map::kPrototypeChainValid), validity_cell->value());
445     __ mov(scratch1, Operand(validity_cell));
446     __ ldr(scratch1, FieldMemOperand(scratch1, Cell::kValueOffset));
447     __ cmp(scratch1, Operand(Smi::FromInt(Map::kPrototypeChainValid)));
448     __ b(ne, miss);
449   }
450 
451   // The prototype chain of primitives (and their JSValue wrappers) depends
452   // on the native context, which can't be guarded by validity cells.
453   // |object_reg| holds the native context specific prototype in this case;
454   // we need to check its map.
455   if (check == CHECK_ALL_MAPS) {
456     __ ldr(scratch1, FieldMemOperand(object_reg, HeapObject::kMapOffset));
457     Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
458     __ CmpWeakValue(scratch1, cell, scratch2);
459     __ b(ne, miss);
460   }
461 
462   // Keep track of the current object in register reg.
463   Register reg = object_reg;
464   int depth = 0;
465 
466   Handle<JSObject> current = Handle<JSObject>::null();
467   if (receiver_map->IsJSGlobalObjectMap()) {
468     current = isolate()->global_object();
469   }
470 
471   // Check access rights to the global object.  This has to happen after
472   // the map check so that we know that the object is actually a global
473   // object.
474   // This allows us to install generated handlers for accesses to the
475   // global proxy (as opposed to using slow ICs). See corresponding code
476   // in LookupForRead().
477   if (receiver_map->IsJSGlobalProxyMap()) {
478     __ CheckAccessGlobalProxy(reg, scratch2, miss);
479   }
480 
481   Handle<JSObject> prototype = Handle<JSObject>::null();
482   Handle<Map> current_map = receiver_map;
483   Handle<Map> holder_map(holder()->map());
484   // Traverse the prototype chain and check the maps in the prototype chain for
485   // fast and global objects or do negative lookup for normal objects.
486   while (!current_map.is_identical_to(holder_map)) {
487     ++depth;
488 
489     // Only global objects and objects that do not require access
490     // checks are allowed in stubs.
491     DCHECK(current_map->IsJSGlobalProxyMap() ||
492            !current_map->is_access_check_needed());
493 
494     prototype = handle(JSObject::cast(current_map->prototype()));
495     if (current_map->IsJSGlobalObjectMap()) {
496       GenerateCheckPropertyCell(masm(), Handle<JSGlobalObject>::cast(current),
497                                 name, scratch2, miss);
498     } else if (current_map->is_dictionary_map()) {
499       DCHECK(!current_map->IsJSGlobalProxyMap());  // Proxy maps are fast.
500       if (!name->IsUniqueName()) {
501         DCHECK(name->IsString());
502         name = factory()->InternalizeString(Handle<String>::cast(name));
503       }
504       DCHECK(current.is_null() ||
505              current->property_dictionary()->FindEntry(name) ==
506                  NameDictionary::kNotFound);
507 
508       if (depth > 1) {
509         // TODO(jkummerow): Cache and re-use weak cell.
510         __ LoadWeakValue(reg, isolate()->factory()->NewWeakCell(current), miss);
511       }
512       GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1,
513                                        scratch2);
514     }
515 
516     reg = holder_reg;  // From now on the object will be in holder_reg.
517     // Go to the next object in the prototype chain.
518     current = prototype;
519     current_map = handle(current->map());
520   }
521 
522   DCHECK(!current_map->IsJSGlobalProxyMap());
523 
524   // Log the check depth.
525   LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
526 
527   bool return_holder = return_what == RETURN_HOLDER;
528   if (return_holder && depth != 0) {
529     __ LoadWeakValue(reg, isolate()->factory()->NewWeakCell(current), miss);
530   }
531 
532   // Return the register containing the holder.
533   return return_holder ? reg : no_reg;
534 }
535 
536 
FrontendFooter(Handle<Name> name,Label * miss)537 void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
538   if (!miss->is_unused()) {
539     Label success;
540     __ b(&success);
541     __ bind(miss);
542     if (IC::ICUseVector(kind())) {
543       DCHECK(kind() == Code::LOAD_IC);
544       PopVectorAndSlot();
545     }
546     TailCallBuiltin(masm(), MissBuiltin(kind()));
547     __ bind(&success);
548   }
549 }
550 
551 
FrontendFooter(Handle<Name> name,Label * miss)552 void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
553   if (!miss->is_unused()) {
554     Label success;
555     __ b(&success);
556     GenerateRestoreName(miss, name);
557     if (IC::ICUseVector(kind())) PopVectorAndSlot();
558     TailCallBuiltin(masm(), MissBuiltin(kind()));
559     __ bind(&success);
560   }
561 }
562 
563 
GenerateLoadConstant(Handle<Object> value)564 void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) {
565   // Return the constant value.
566   __ Move(r0, value);
567   __ Ret();
568 }
569 
GenerateLoadInterceptorWithFollowup(LookupIterator * it,Register holder_reg)570 void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup(
571     LookupIterator* it, Register holder_reg) {
572   DCHECK(holder()->HasNamedInterceptor());
573   DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined(isolate()));
574 
575   // Compile the interceptor call, followed by inline code to load the
576   // property from further up the prototype chain if the call fails.
577   // Check that the maps haven't changed.
578   DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1()));
579 
580   // Preserve the receiver register explicitly whenever it is different from the
581   // holder and it is needed should the interceptor return without any result.
582   // The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD
583   // case might cause a miss during the prototype check.
584   bool must_perform_prototype_check =
585       !holder().is_identical_to(it->GetHolder<JSObject>());
586   bool must_preserve_receiver_reg =
587       !receiver().is(holder_reg) &&
588       (it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check);
589 
590   // Save necessary data before invoking an interceptor.
591   // Requires a frame to make GC aware of pushed pointers.
592   {
593     FrameAndConstantPoolScope frame_scope(masm(), StackFrame::INTERNAL);
594     if (must_preserve_receiver_reg) {
595       __ Push(receiver(), holder_reg, this->name());
596     } else {
597       __ Push(holder_reg, this->name());
598     }
599     InterceptorVectorSlotPush(holder_reg);
600     // Invoke an interceptor.  Note: map checks from receiver to
601     // interceptor's holder has been compiled before (see a caller
602     // of this method.)
603     CompileCallLoadPropertyWithInterceptor(
604         masm(), receiver(), holder_reg, this->name(), holder(),
605         Runtime::kLoadPropertyWithInterceptorOnly);
606 
607     // Check if interceptor provided a value for property.  If it's
608     // the case, return immediately.
609     Label interceptor_failed;
610     __ LoadRoot(scratch1(), Heap::kNoInterceptorResultSentinelRootIndex);
611     __ cmp(r0, scratch1());
612     __ b(eq, &interceptor_failed);
613     frame_scope.GenerateLeaveFrame();
614     __ Ret();
615 
616     __ bind(&interceptor_failed);
617     InterceptorVectorSlotPop(holder_reg);
618     __ pop(this->name());
619     __ pop(holder_reg);
620     if (must_preserve_receiver_reg) {
621       __ pop(receiver());
622     }
623     // Leave the internal frame.
624   }
625 
626   GenerateLoadPostInterceptor(it, holder_reg);
627 }
628 
629 
GenerateLoadInterceptor(Register holder_reg)630 void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) {
631   // Call the runtime system to load the interceptor.
632   DCHECK(holder()->HasNamedInterceptor());
633   DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined(isolate()));
634   PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(),
635                            holder());
636 
637   __ TailCallRuntime(Runtime::kLoadPropertyWithInterceptor);
638 }
639 
640 
CompileStoreCallback(Handle<JSObject> object,Handle<Name> name,Handle<AccessorInfo> callback,LanguageMode language_mode)641 Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
642     Handle<JSObject> object, Handle<Name> name, Handle<AccessorInfo> callback,
643     LanguageMode language_mode) {
644   Register holder_reg = Frontend(name);
645 
646   __ push(receiver());  // receiver
647   __ push(holder_reg);
648 
649   // If the callback cannot leak, then push the callback directly,
650   // otherwise wrap it in a weak cell.
651   if (callback->data()->IsUndefined(isolate()) || callback->data()->IsSmi()) {
652     __ mov(ip, Operand(callback));
653   } else {
654     Handle<WeakCell> cell = isolate()->factory()->NewWeakCell(callback);
655     __ mov(ip, Operand(cell));
656   }
657   __ push(ip);
658   __ mov(ip, Operand(name));
659   __ Push(ip, value());
660   __ Push(Smi::FromInt(language_mode));
661 
662   // Do tail-call to the runtime system.
663   __ TailCallRuntime(Runtime::kStoreCallbackProperty);
664 
665   // Return the generated code.
666   return GetCode(kind(), name);
667 }
668 
669 
value()670 Register NamedStoreHandlerCompiler::value() {
671   return StoreDescriptor::ValueRegister();
672 }
673 
674 
CompileLoadGlobal(Handle<PropertyCell> cell,Handle<Name> name,bool is_configurable)675 Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal(
676     Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) {
677   Label miss;
678   if (IC::ICUseVector(kind())) {
679     PushVectorAndSlot();
680   }
681   FrontendHeader(receiver(), name, &miss, DONT_RETURN_ANYTHING);
682 
683   // Get the value from the cell.
684   Register result = StoreDescriptor::ValueRegister();
685   Handle<WeakCell> weak_cell = factory()->NewWeakCell(cell);
686   __ LoadWeakValue(result, weak_cell, &miss);
687   __ ldr(result, FieldMemOperand(result, PropertyCell::kValueOffset));
688 
689   // Check for deleted property if property can actually be deleted.
690   if (is_configurable) {
691     __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
692     __ cmp(result, ip);
693     __ b(eq, &miss);
694   }
695 
696   Counters* counters = isolate()->counters();
697   __ IncrementCounter(counters->ic_named_load_global_stub(), 1, r1, r3);
698   if (IC::ICUseVector(kind())) {
699     DiscardVectorAndSlot();
700   }
701   __ Ret();
702 
703   FrontendFooter(name, &miss);
704 
705   // Return the generated code.
706   return GetCode(kind(), name);
707 }
708 
709 
710 #undef __
711 }  // namespace internal
712 }  // namespace v8
713 
714 #endif  // V8_TARGET_ARCH_ARM
715