1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_MIPS
6
7 #include "src/ic/handler-compiler.h"
8
9 #include "src/api-arguments.h"
10 #include "src/field-type.h"
11 #include "src/ic/call-optimization.h"
12 #include "src/ic/ic.h"
13 #include "src/isolate-inl.h"
14
15 namespace v8 {
16 namespace internal {
17
18 #define __ ACCESS_MASM(masm)
19
20
GenerateLoadViaGetter(MacroAssembler * masm,Handle<Map> map,Register receiver,Register holder,int accessor_index,int expected_arguments,Register scratch)21 void NamedLoadHandlerCompiler::GenerateLoadViaGetter(
22 MacroAssembler* masm, Handle<Map> map, Register receiver, Register holder,
23 int accessor_index, int expected_arguments, Register scratch) {
24 // ----------- S t a t e -------------
25 // -- a0 : receiver
26 // -- a2 : name
27 // -- ra : return address
28 // -----------------------------------
29 {
30 FrameScope scope(masm, StackFrame::INTERNAL);
31
32 // Save context register
33 __ push(cp);
34
35 if (accessor_index >= 0) {
36 DCHECK(!holder.is(scratch));
37 DCHECK(!receiver.is(scratch));
38 // Call the JavaScript getter with the receiver on the stack.
39 if (map->IsJSGlobalObjectMap()) {
40 // Swap in the global receiver.
41 __ lw(scratch,
42 FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
43 receiver = scratch;
44 }
45 __ push(receiver);
46 __ LoadAccessor(a1, holder, accessor_index, ACCESSOR_GETTER);
47 __ li(a0, Operand(0));
48 __ Call(masm->isolate()->builtins()->CallFunction(
49 ConvertReceiverMode::kNotNullOrUndefined),
50 RelocInfo::CODE_TARGET);
51 } else {
52 // If we generate a global code snippet for deoptimization only, remember
53 // the place to continue after deoptimization.
54 masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
55 }
56
57 // Restore context register.
58 __ pop(cp);
59 }
60 __ Ret();
61 }
62
63
GenerateStoreViaSetter(MacroAssembler * masm,Handle<Map> map,Register receiver,Register holder,int accessor_index,int expected_arguments,Register scratch)64 void NamedStoreHandlerCompiler::GenerateStoreViaSetter(
65 MacroAssembler* masm, Handle<Map> map, Register receiver, Register holder,
66 int accessor_index, int expected_arguments, Register scratch) {
67 // ----------- S t a t e -------------
68 // -- ra : return address
69 // -----------------------------------
70 {
71 FrameScope scope(masm, StackFrame::INTERNAL);
72
73 // Save context and value registers, so we can restore them later.
74 __ Push(cp, value());
75
76 if (accessor_index >= 0) {
77 DCHECK(!holder.is(scratch));
78 DCHECK(!receiver.is(scratch));
79 DCHECK(!value().is(scratch));
80 // Call the JavaScript setter with receiver and value on the stack.
81 if (map->IsJSGlobalObjectMap()) {
82 // Swap in the global receiver.
83 __ lw(scratch,
84 FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
85 receiver = scratch;
86 }
87 __ Push(receiver, value());
88 __ LoadAccessor(a1, holder, accessor_index, ACCESSOR_SETTER);
89 __ li(a0, Operand(1));
90 __ Call(masm->isolate()->builtins()->CallFunction(
91 ConvertReceiverMode::kNotNullOrUndefined),
92 RelocInfo::CODE_TARGET);
93 } else {
94 // If we generate a global code snippet for deoptimization only, remember
95 // the place to continue after deoptimization.
96 masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
97 }
98
99 // We have to return the passed value, not the return value of the setter.
100 // Restore context register.
101 __ Pop(cp, v0);
102 }
103 __ Ret();
104 }
105
106
PushVectorAndSlot(Register vector,Register slot)107 void PropertyHandlerCompiler::PushVectorAndSlot(Register vector,
108 Register slot) {
109 MacroAssembler* masm = this->masm();
110 __ Push(vector, slot);
111 }
112
113
PopVectorAndSlot(Register vector,Register slot)114 void PropertyHandlerCompiler::PopVectorAndSlot(Register vector, Register slot) {
115 MacroAssembler* masm = this->masm();
116 __ Pop(vector, slot);
117 }
118
119
DiscardVectorAndSlot()120 void PropertyHandlerCompiler::DiscardVectorAndSlot() {
121 MacroAssembler* masm = this->masm();
122 // Remove vector and slot.
123 __ Addu(sp, sp, Operand(2 * kPointerSize));
124 }
125
126
GenerateDictionaryNegativeLookup(MacroAssembler * masm,Label * miss_label,Register receiver,Handle<Name> name,Register scratch0,Register scratch1)127 void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup(
128 MacroAssembler* masm, Label* miss_label, Register receiver,
129 Handle<Name> name, Register scratch0, Register scratch1) {
130 DCHECK(name->IsUniqueName());
131 DCHECK(!receiver.is(scratch0));
132 Counters* counters = masm->isolate()->counters();
133 __ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1);
134 __ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
135
136 Label done;
137
138 const int kInterceptorOrAccessCheckNeededMask =
139 (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
140
141 // Bail out if the receiver has a named interceptor or requires access checks.
142 Register map = scratch1;
143 __ lw(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
144 __ lbu(scratch0, FieldMemOperand(map, Map::kBitFieldOffset));
145 __ And(scratch0, scratch0, Operand(kInterceptorOrAccessCheckNeededMask));
146 __ Branch(miss_label, ne, scratch0, Operand(zero_reg));
147
148 // Check that receiver is a JSObject.
149 __ lbu(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset));
150 __ Branch(miss_label, lt, scratch0, Operand(FIRST_JS_RECEIVER_TYPE));
151
152 // Load properties array.
153 Register properties = scratch0;
154 __ lw(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
155 // Check that the properties array is a dictionary.
156 __ lw(map, FieldMemOperand(properties, HeapObject::kMapOffset));
157 Register tmp = properties;
158 __ LoadRoot(tmp, Heap::kHashTableMapRootIndex);
159 __ Branch(miss_label, ne, map, Operand(tmp));
160
161 // Restore the temporarily used register.
162 __ lw(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
163
164
165 NameDictionaryLookupStub::GenerateNegativeLookup(
166 masm, miss_label, &done, receiver, properties, name, scratch1);
167 __ bind(&done);
168 __ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
169 }
170
171
GenerateDirectLoadGlobalFunctionPrototype(MacroAssembler * masm,int index,Register result,Label * miss)172 void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype(
173 MacroAssembler* masm, int index, Register result, Label* miss) {
174 __ LoadNativeContextSlot(index, result);
175 // Load its initial map. The global functions all have initial maps.
176 __ lw(result,
177 FieldMemOperand(result, JSFunction::kPrototypeOrInitialMapOffset));
178 // Load the prototype from the initial map.
179 __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
180 }
181
182
GenerateLoadFunctionPrototype(MacroAssembler * masm,Register receiver,Register scratch1,Register scratch2,Label * miss_label)183 void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(
184 MacroAssembler* masm, Register receiver, Register scratch1,
185 Register scratch2, Label* miss_label) {
186 __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
187 __ Ret(USE_DELAY_SLOT);
188 __ mov(v0, scratch1);
189 }
190
191
192 // Generate code to check that a global property cell is empty. Create
193 // the property cell at compilation time if no cell exists for the
194 // property.
GenerateCheckPropertyCell(MacroAssembler * masm,Handle<JSGlobalObject> global,Handle<Name> name,Register scratch,Label * miss)195 void PropertyHandlerCompiler::GenerateCheckPropertyCell(
196 MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name,
197 Register scratch, Label* miss) {
198 Handle<PropertyCell> cell = JSGlobalObject::EnsurePropertyCell(global, name);
199 Isolate* isolate = masm->isolate();
200 DCHECK(cell->value()->IsTheHole(isolate));
201 Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(cell);
202 __ LoadWeakValue(scratch, weak_cell, miss);
203 __ lw(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
204 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
205 __ Branch(miss, ne, scratch, Operand(at));
206 }
207
208
PushInterceptorArguments(MacroAssembler * masm,Register receiver,Register holder,Register name,Handle<JSObject> holder_obj)209 static void PushInterceptorArguments(MacroAssembler* masm, Register receiver,
210 Register holder, Register name,
211 Handle<JSObject> holder_obj) {
212 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0);
213 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 1);
214 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 2);
215 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 3);
216 __ Push(name, receiver, holder);
217 }
218
219
CompileCallLoadPropertyWithInterceptor(MacroAssembler * masm,Register receiver,Register holder,Register name,Handle<JSObject> holder_obj,Runtime::FunctionId id)220 static void CompileCallLoadPropertyWithInterceptor(
221 MacroAssembler* masm, Register receiver, Register holder, Register name,
222 Handle<JSObject> holder_obj, Runtime::FunctionId id) {
223 DCHECK(NamedLoadHandlerCompiler::kInterceptorArgsLength ==
224 Runtime::FunctionForId(id)->nargs);
225 PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
226 __ CallRuntime(id);
227 }
228
229
230 // Generate call to api function.
GenerateApiAccessorCall(MacroAssembler * masm,const CallOptimization & optimization,Handle<Map> receiver_map,Register receiver,Register scratch_in,bool is_store,Register store_parameter,Register accessor_holder,int accessor_index)231 void PropertyHandlerCompiler::GenerateApiAccessorCall(
232 MacroAssembler* masm, const CallOptimization& optimization,
233 Handle<Map> receiver_map, Register receiver, Register scratch_in,
234 bool is_store, Register store_parameter, Register accessor_holder,
235 int accessor_index) {
236 DCHECK(!accessor_holder.is(scratch_in));
237 DCHECK(!receiver.is(scratch_in));
238 __ push(receiver);
239 // Write the arguments to stack frame.
240 if (is_store) {
241 DCHECK(!receiver.is(store_parameter));
242 DCHECK(!scratch_in.is(store_parameter));
243 __ push(store_parameter);
244 }
245 DCHECK(optimization.is_simple_api_call());
246
247 // Abi for CallApiCallbackStub.
248 Register callee = a0;
249 Register data = t0;
250 Register holder = a2;
251 Register api_function_address = a1;
252
253 // Put callee in place.
254 __ LoadAccessor(callee, accessor_holder, accessor_index,
255 is_store ? ACCESSOR_SETTER : ACCESSOR_GETTER);
256
257 // Put holder in place.
258 CallOptimization::HolderLookup holder_lookup;
259 int holder_depth = 0;
260 optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup,
261 &holder_depth);
262 switch (holder_lookup) {
263 case CallOptimization::kHolderIsReceiver:
264 __ Move(holder, receiver);
265 break;
266 case CallOptimization::kHolderFound:
267 __ lw(holder, FieldMemOperand(receiver, HeapObject::kMapOffset));
268 __ lw(holder, FieldMemOperand(holder, Map::kPrototypeOffset));
269 for (int i = 1; i < holder_depth; i++) {
270 __ lw(holder, FieldMemOperand(holder, HeapObject::kMapOffset));
271 __ lw(holder, FieldMemOperand(holder, Map::kPrototypeOffset));
272 }
273 break;
274 case CallOptimization::kHolderNotFound:
275 UNREACHABLE();
276 break;
277 }
278
279 Isolate* isolate = masm->isolate();
280 Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
281 bool call_data_undefined = false;
282 // Put call data in place.
283 if (api_call_info->data()->IsUndefined(isolate)) {
284 call_data_undefined = true;
285 __ LoadRoot(data, Heap::kUndefinedValueRootIndex);
286 } else {
287 if (optimization.is_constant_call()) {
288 __ lw(data,
289 FieldMemOperand(callee, JSFunction::kSharedFunctionInfoOffset));
290 __ lw(data,
291 FieldMemOperand(data, SharedFunctionInfo::kFunctionDataOffset));
292 __ lw(data, FieldMemOperand(data, FunctionTemplateInfo::kCallCodeOffset));
293 } else {
294 __ lw(data,
295 FieldMemOperand(callee, FunctionTemplateInfo::kCallCodeOffset));
296 }
297 __ lw(data, FieldMemOperand(data, CallHandlerInfo::kDataOffset));
298 }
299
300 if (api_call_info->fast_handler()->IsCode()) {
301 // Just tail call into the fast handler if present.
302 __ Jump(handle(Code::cast(api_call_info->fast_handler())),
303 RelocInfo::CODE_TARGET);
304 return;
305 }
306 // Put api_function_address in place.
307 Address function_address = v8::ToCData<Address>(api_call_info->callback());
308 ApiFunction fun(function_address);
309 ExternalReference::Type type = ExternalReference::DIRECT_API_CALL;
310 ExternalReference ref = ExternalReference(&fun, type, masm->isolate());
311 __ li(api_function_address, Operand(ref));
312
313 // Jump to stub.
314 CallApiCallbackStub stub(isolate, is_store, call_data_undefined,
315 !optimization.is_constant_call());
316 __ TailCallStub(&stub);
317 }
318
319
StoreIC_PushArgs(MacroAssembler * masm)320 static void StoreIC_PushArgs(MacroAssembler* masm) {
321 __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
322 StoreDescriptor::ValueRegister(),
323 VectorStoreICDescriptor::SlotRegister(),
324 VectorStoreICDescriptor::VectorRegister());
325 }
326
327
GenerateSlow(MacroAssembler * masm)328 void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) {
329 StoreIC_PushArgs(masm);
330
331 // The slow case calls into the runtime to complete the store without causing
332 // an IC miss that would otherwise cause a transition to the generic stub.
333 __ TailCallRuntime(Runtime::kStoreIC_Slow);
334 }
335
336
GenerateStoreSlow(MacroAssembler * masm)337 void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) {
338 StoreIC_PushArgs(masm);
339
340 // The slow case calls into the runtime to complete the store without causing
341 // an IC miss that would otherwise cause a transition to the generic stub.
342 __ TailCallRuntime(Runtime::kKeyedStoreIC_Slow);
343 }
344
345
346 #undef __
347 #define __ ACCESS_MASM(masm())
348
349
GenerateRestoreName(Label * label,Handle<Name> name)350 void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label,
351 Handle<Name> name) {
352 if (!label->is_unused()) {
353 __ bind(label);
354 __ li(this->name(), Operand(name));
355 }
356 }
357
358
GenerateRestoreName(Handle<Name> name)359 void NamedStoreHandlerCompiler::GenerateRestoreName(Handle<Name> name) {
360 __ li(this->name(), Operand(name));
361 }
362
363
RearrangeVectorAndSlot(Register current_map,Register destination_map)364 void NamedStoreHandlerCompiler::RearrangeVectorAndSlot(
365 Register current_map, Register destination_map) {
366 DCHECK(false); // Not implemented.
367 }
368
369
GenerateRestoreMap(Handle<Map> transition,Register map_reg,Register scratch,Label * miss)370 void NamedStoreHandlerCompiler::GenerateRestoreMap(Handle<Map> transition,
371 Register map_reg,
372 Register scratch,
373 Label* miss) {
374 Handle<WeakCell> cell = Map::WeakCellForMap(transition);
375 DCHECK(!map_reg.is(scratch));
376 __ LoadWeakValue(map_reg, cell, miss);
377 if (transition->CanBeDeprecated()) {
378 __ lw(scratch, FieldMemOperand(map_reg, Map::kBitField3Offset));
379 __ And(at, scratch, Operand(Map::Deprecated::kMask));
380 __ Branch(miss, ne, at, Operand(zero_reg));
381 }
382 }
383
384
GenerateConstantCheck(Register map_reg,int descriptor,Register value_reg,Register scratch,Label * miss_label)385 void NamedStoreHandlerCompiler::GenerateConstantCheck(Register map_reg,
386 int descriptor,
387 Register value_reg,
388 Register scratch,
389 Label* miss_label) {
390 DCHECK(!map_reg.is(scratch));
391 DCHECK(!map_reg.is(value_reg));
392 DCHECK(!value_reg.is(scratch));
393 __ LoadInstanceDescriptors(map_reg, scratch);
394 __ lw(scratch,
395 FieldMemOperand(scratch, DescriptorArray::GetValueOffset(descriptor)));
396 __ Branch(miss_label, ne, value_reg, Operand(scratch));
397 }
398
GenerateFieldTypeChecks(FieldType * field_type,Register value_reg,Label * miss_label)399 void NamedStoreHandlerCompiler::GenerateFieldTypeChecks(FieldType* field_type,
400 Register value_reg,
401 Label* miss_label) {
402 Register map_reg = scratch1();
403 Register scratch = scratch2();
404 DCHECK(!value_reg.is(map_reg));
405 DCHECK(!value_reg.is(scratch));
406 __ JumpIfSmi(value_reg, miss_label);
407 if (field_type->IsClass()) {
408 __ lw(map_reg, FieldMemOperand(value_reg, HeapObject::kMapOffset));
409 // Compare map directly within the Branch() functions.
410 __ GetWeakValue(scratch, Map::WeakCellForMap(field_type->AsClass()));
411 __ Branch(miss_label, ne, map_reg, Operand(scratch));
412 }
413 }
414
415
CheckPrototypes(Register object_reg,Register holder_reg,Register scratch1,Register scratch2,Handle<Name> name,Label * miss,PrototypeCheckType check,ReturnHolder return_what)416 Register PropertyHandlerCompiler::CheckPrototypes(
417 Register object_reg, Register holder_reg, Register scratch1,
418 Register scratch2, Handle<Name> name, Label* miss, PrototypeCheckType check,
419 ReturnHolder return_what) {
420 Handle<Map> receiver_map = map();
421
422 // Make sure there's no overlap between holder and object registers.
423 DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
424 DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) &&
425 !scratch2.is(scratch1));
426
427 Handle<Cell> validity_cell =
428 Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate());
429 if (!validity_cell.is_null()) {
430 DCHECK_EQ(Smi::FromInt(Map::kPrototypeChainValid), validity_cell->value());
431 __ li(scratch1, Operand(validity_cell));
432 __ lw(scratch1, FieldMemOperand(scratch1, Cell::kValueOffset));
433 __ Branch(miss, ne, scratch1,
434 Operand(Smi::FromInt(Map::kPrototypeChainValid)));
435 }
436
437 // The prototype chain of primitives (and their JSValue wrappers) depends
438 // on the native context, which can't be guarded by validity cells.
439 // |object_reg| holds the native context specific prototype in this case;
440 // we need to check its map.
441 if (check == CHECK_ALL_MAPS) {
442 __ lw(scratch1, FieldMemOperand(object_reg, HeapObject::kMapOffset));
443 Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
444 __ GetWeakValue(scratch2, cell);
445 __ Branch(miss, ne, scratch1, Operand(scratch2));
446 }
447
448 // Keep track of the current object in register reg.
449 Register reg = object_reg;
450 int depth = 0;
451
452 Handle<JSObject> current = Handle<JSObject>::null();
453 if (receiver_map->IsJSGlobalObjectMap()) {
454 current = isolate()->global_object();
455 }
456
457 // Check access rights to the global object. This has to happen after
458 // the map check so that we know that the object is actually a global
459 // object.
460 // This allows us to install generated handlers for accesses to the
461 // global proxy (as opposed to using slow ICs). See corresponding code
462 // in LookupForRead().
463 if (receiver_map->IsJSGlobalProxyMap()) {
464 __ CheckAccessGlobalProxy(reg, scratch2, miss);
465 }
466
467 Handle<JSObject> prototype = Handle<JSObject>::null();
468 Handle<Map> current_map = receiver_map;
469 Handle<Map> holder_map(holder()->map());
470 // Traverse the prototype chain and check the maps in the prototype chain for
471 // fast and global objects or do negative lookup for normal objects.
472 while (!current_map.is_identical_to(holder_map)) {
473 ++depth;
474
475 // Only global objects and objects that do not require access
476 // checks are allowed in stubs.
477 DCHECK(current_map->IsJSGlobalProxyMap() ||
478 !current_map->is_access_check_needed());
479
480 prototype = handle(JSObject::cast(current_map->prototype()));
481 if (current_map->IsJSGlobalObjectMap()) {
482 GenerateCheckPropertyCell(masm(), Handle<JSGlobalObject>::cast(current),
483 name, scratch2, miss);
484 } else if (current_map->is_dictionary_map()) {
485 DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast.
486 if (!name->IsUniqueName()) {
487 DCHECK(name->IsString());
488 name = factory()->InternalizeString(Handle<String>::cast(name));
489 }
490 DCHECK(current.is_null() ||
491 current->property_dictionary()->FindEntry(name) ==
492 NameDictionary::kNotFound);
493
494 if (depth > 1) {
495 // TODO(jkummerow): Cache and re-use weak cell.
496 __ LoadWeakValue(reg, isolate()->factory()->NewWeakCell(current), miss);
497 }
498 GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1,
499 scratch2);
500 }
501
502 reg = holder_reg; // From now on the object will be in holder_reg.
503 // Go to the next object in the prototype chain.
504 current = prototype;
505 current_map = handle(current->map());
506 }
507
508 DCHECK(!current_map->IsJSGlobalProxyMap());
509
510 // Log the check depth.
511 LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
512
513 bool return_holder = return_what == RETURN_HOLDER;
514 if (return_holder && depth != 0) {
515 __ LoadWeakValue(reg, isolate()->factory()->NewWeakCell(current), miss);
516 }
517
518 // Return the register containing the holder.
519 return return_holder ? reg : no_reg;
520 }
521
522
FrontendFooter(Handle<Name> name,Label * miss)523 void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
524 if (!miss->is_unused()) {
525 Label success;
526 __ Branch(&success);
527 __ bind(miss);
528 if (IC::ICUseVector(kind())) {
529 DCHECK(kind() == Code::LOAD_IC);
530 PopVectorAndSlot();
531 }
532 TailCallBuiltin(masm(), MissBuiltin(kind()));
533 __ bind(&success);
534 }
535 }
536
537
FrontendFooter(Handle<Name> name,Label * miss)538 void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
539 if (!miss->is_unused()) {
540 Label success;
541 __ Branch(&success);
542 GenerateRestoreName(miss, name);
543 if (IC::ICUseVector(kind())) PopVectorAndSlot();
544 TailCallBuiltin(masm(), MissBuiltin(kind()));
545 __ bind(&success);
546 }
547 }
548
549
GenerateLoadConstant(Handle<Object> value)550 void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) {
551 // Return the constant value.
552 __ li(v0, value);
553 __ Ret();
554 }
555
556
GenerateLoadInterceptorWithFollowup(LookupIterator * it,Register holder_reg)557 void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup(
558 LookupIterator* it, Register holder_reg) {
559 DCHECK(holder()->HasNamedInterceptor());
560 DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined(isolate()));
561
562 // Compile the interceptor call, followed by inline code to load the
563 // property from further up the prototype chain if the call fails.
564 // Check that the maps haven't changed.
565 DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1()));
566
567 // Preserve the receiver register explicitly whenever it is different from the
568 // holder and it is needed should the interceptor return without any result.
569 // The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD
570 // case might cause a miss during the prototype check.
571 bool must_perform_prototype_check =
572 !holder().is_identical_to(it->GetHolder<JSObject>());
573 bool must_preserve_receiver_reg =
574 !receiver().is(holder_reg) &&
575 (it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check);
576
577 // Save necessary data before invoking an interceptor.
578 // Requires a frame to make GC aware of pushed pointers.
579 {
580 FrameScope frame_scope(masm(), StackFrame::INTERNAL);
581 if (must_preserve_receiver_reg) {
582 __ Push(receiver(), holder_reg, this->name());
583 } else {
584 __ Push(holder_reg, this->name());
585 }
586 InterceptorVectorSlotPush(holder_reg);
587 // Invoke an interceptor. Note: map checks from receiver to
588 // interceptor's holder has been compiled before (see a caller
589 // of this method).
590 CompileCallLoadPropertyWithInterceptor(
591 masm(), receiver(), holder_reg, this->name(), holder(),
592 Runtime::kLoadPropertyWithInterceptorOnly);
593
594 // Check if interceptor provided a value for property. If it's
595 // the case, return immediately.
596 Label interceptor_failed;
597 __ LoadRoot(scratch1(), Heap::kNoInterceptorResultSentinelRootIndex);
598 __ Branch(&interceptor_failed, eq, v0, Operand(scratch1()));
599 frame_scope.GenerateLeaveFrame();
600 __ Ret();
601
602 __ bind(&interceptor_failed);
603 InterceptorVectorSlotPop(holder_reg);
604 if (must_preserve_receiver_reg) {
605 __ Pop(receiver(), holder_reg, this->name());
606 } else {
607 __ Pop(holder_reg, this->name());
608 }
609 // Leave the internal frame.
610 }
611
612 GenerateLoadPostInterceptor(it, holder_reg);
613 }
614
615
GenerateLoadInterceptor(Register holder_reg)616 void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) {
617 // Call the runtime system to load the interceptor.
618 DCHECK(holder()->HasNamedInterceptor());
619 DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined(isolate()));
620 PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(),
621 holder());
622
623 __ TailCallRuntime(Runtime::kLoadPropertyWithInterceptor);
624 }
625
626
CompileStoreCallback(Handle<JSObject> object,Handle<Name> name,Handle<AccessorInfo> callback,LanguageMode language_mode)627 Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
628 Handle<JSObject> object, Handle<Name> name, Handle<AccessorInfo> callback,
629 LanguageMode language_mode) {
630 Register holder_reg = Frontend(name);
631
632 __ Push(receiver(), holder_reg); // Receiver.
633 // If the callback cannot leak, then push the callback directly,
634 // otherwise wrap it in a weak cell.
635 if (callback->data()->IsUndefined(isolate()) || callback->data()->IsSmi()) {
636 __ li(at, Operand(callback));
637 } else {
638 Handle<WeakCell> cell = isolate()->factory()->NewWeakCell(callback);
639 __ li(at, Operand(cell));
640 }
641 __ push(at);
642 __ li(at, Operand(name));
643 __ Push(at, value());
644 __ Push(Smi::FromInt(language_mode));
645
646 // Do tail-call to the runtime system.
647 __ TailCallRuntime(Runtime::kStoreCallbackProperty);
648
649 // Return the generated code.
650 return GetCode(kind(), name);
651 }
652
653
value()654 Register NamedStoreHandlerCompiler::value() {
655 return StoreDescriptor::ValueRegister();
656 }
657
658
CompileLoadGlobal(Handle<PropertyCell> cell,Handle<Name> name,bool is_configurable)659 Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal(
660 Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) {
661 Label miss;
662 if (IC::ICUseVector(kind())) {
663 PushVectorAndSlot();
664 }
665
666 FrontendHeader(receiver(), name, &miss, DONT_RETURN_ANYTHING);
667
668 // Get the value from the cell.
669 Register result = StoreDescriptor::ValueRegister();
670 Handle<WeakCell> weak_cell = factory()->NewWeakCell(cell);
671 __ LoadWeakValue(result, weak_cell, &miss);
672 __ lw(result, FieldMemOperand(result, PropertyCell::kValueOffset));
673
674 // Check for deleted property if property can actually be deleted.
675 if (is_configurable) {
676 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
677 __ Branch(&miss, eq, result, Operand(at));
678 }
679
680 Counters* counters = isolate()->counters();
681 __ IncrementCounter(counters->ic_named_load_global_stub(), 1, a1, a3);
682 if (IC::ICUseVector(kind())) {
683 DiscardVectorAndSlot();
684 }
685 __ Ret(USE_DELAY_SLOT);
686 __ mov(v0, result);
687
688 FrontendFooter(name, &miss);
689
690 // Return the generated code.
691 return GetCode(kind(), name);
692 }
693
694
695 #undef __
696 } // namespace internal
697 } // namespace v8
698
699 #endif // V8_TARGET_ARCH_MIPS
700