• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 
37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39 
40 #include "src/mips/assembler-mips.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 
45 
46 namespace v8 {
47 namespace internal {
48 
49 
SupportsCrankshaft()50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51 
52 
53 // -----------------------------------------------------------------------------
54 // Operand and MemOperand.
55 
Operand(int32_t immediate,RelocInfo::Mode rmode)56 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
57   rm_ = no_reg;
58   imm32_ = immediate;
59   rmode_ = rmode;
60 }
61 
62 
Operand(const ExternalReference & f)63 Operand::Operand(const ExternalReference& f)  {
64   rm_ = no_reg;
65   imm32_ = reinterpret_cast<int32_t>(f.address());
66   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
67 }
68 
69 
Operand(Smi * value)70 Operand::Operand(Smi* value) {
71   rm_ = no_reg;
72   imm32_ =  reinterpret_cast<intptr_t>(value);
73   rmode_ = RelocInfo::NONE32;
74 }
75 
76 
Operand(Register rm)77 Operand::Operand(Register rm) {
78   rm_ = rm;
79 }
80 
81 
is_reg()82 bool Operand::is_reg() const {
83   return rm_.is_valid();
84 }
85 
86 
87 // -----------------------------------------------------------------------------
88 // RelocInfo.
89 
apply(intptr_t delta)90 void RelocInfo::apply(intptr_t delta) {
91   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
92     // Absolute code pointer inside code object moves with the code object.
93     byte* p = reinterpret_cast<byte*>(pc_);
94     int count = Assembler::RelocateInternalReference(rmode_, p, delta);
95     Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
96   }
97 }
98 
99 
target_address()100 Address RelocInfo::target_address() {
101   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
102   return Assembler::target_address_at(pc_, host_);
103 }
104 
target_address_address()105 Address RelocInfo::target_address_address() {
106   DCHECK(IsCodeTarget(rmode_) ||
107          IsRuntimeEntry(rmode_) ||
108          rmode_ == EMBEDDED_OBJECT ||
109          rmode_ == EXTERNAL_REFERENCE);
110   // Read the address of the word containing the target_address in an
111   // instruction stream.
112   // The only architecture-independent user of this function is the serializer.
113   // The serializer uses it to find out how many raw bytes of instruction to
114   // output before the next target.
115   // For an instruction like LUI/ORI where the target bits are mixed into the
116   // instruction bits, the size of the target will be zero, indicating that the
117   // serializer should not step forward in memory after a target is resolved
118   // and written. In this case the target_address_address function should
119   // return the end of the instructions to be patched, allowing the
120   // deserializer to deserialize the instructions as raw bytes and put them in
121   // place, ready to be patched with the target. After jump optimization,
122   // that is the address of the instruction that follows J/JAL/JR/JALR
123   // instruction.
124   return reinterpret_cast<Address>(
125     pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
126 }
127 
128 
constant_pool_entry_address()129 Address RelocInfo::constant_pool_entry_address() {
130   UNREACHABLE();
131   return NULL;
132 }
133 
134 
target_address_size()135 int RelocInfo::target_address_size() {
136   return Assembler::kSpecialTargetSize;
137 }
138 
139 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)140 void RelocInfo::set_target_address(Address target,
141                                    WriteBarrierMode write_barrier_mode,
142                                    ICacheFlushMode icache_flush_mode) {
143   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
144   Assembler::set_target_address_at(isolate_, pc_, host_, target,
145                                    icache_flush_mode);
146   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
147       host() != NULL && IsCodeTarget(rmode_)) {
148     Object* target_code = Code::GetCodeFromTargetAddress(target);
149     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
150         host(), this, HeapObject::cast(target_code));
151   }
152 }
153 
target_address_from_return_address(Address pc)154 Address Assembler::target_address_from_return_address(Address pc) {
155   return pc - kCallTargetAddressOffset;
156 }
157 
158 
set_target_internal_reference_encoded_at(Address pc,Address target)159 void Assembler::set_target_internal_reference_encoded_at(Address pc,
160                                                          Address target) {
161   Instr instr1 = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
162   Instr instr2 = Assembler::instr_at(pc + 1 * Assembler::kInstrSize);
163   DCHECK(Assembler::IsLui(instr1));
164   DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
165   instr1 &= ~kImm16Mask;
166   instr2 &= ~kImm16Mask;
167   int32_t imm = reinterpret_cast<int32_t>(target);
168   DCHECK((imm & 3) == 0);
169   if (Assembler::IsJicOrJialc(instr2)) {
170     // Encoded internal references are lui/jic load of 32-bit absolute address.
171     uint32_t lui_offset_u, jic_offset_u;
172     Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
173 
174     Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
175                             instr1 | lui_offset_u);
176     Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
177                             instr2 | jic_offset_u);
178   } else {
179     // Encoded internal references are lui/ori load of 32-bit absolute address.
180     Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
181                             instr1 | ((imm >> kLuiShift) & kImm16Mask));
182     Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
183                             instr2 | (imm & kImm16Mask));
184   }
185 
186   // Currently used only by deserializer, and all code will be flushed
187   // after complete deserialization, no need to flush on each reference.
188 }
189 
190 
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)191 void Assembler::deserialization_set_target_internal_reference_at(
192     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
193   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
194     DCHECK(IsLui(instr_at(pc)));
195     set_target_internal_reference_encoded_at(pc, target);
196   } else {
197     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
198     Memory::Address_at(pc) = target;
199   }
200 }
201 
202 
target_object()203 Object* RelocInfo::target_object() {
204   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
205   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
206 }
207 
208 
target_object_handle(Assembler * origin)209 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
210   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
211   return Handle<Object>(reinterpret_cast<Object**>(
212       Assembler::target_address_at(pc_, host_)));
213 }
214 
215 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)216 void RelocInfo::set_target_object(Object* target,
217                                   WriteBarrierMode write_barrier_mode,
218                                   ICacheFlushMode icache_flush_mode) {
219   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
220   Assembler::set_target_address_at(isolate_, pc_, host_,
221                                    reinterpret_cast<Address>(target),
222                                    icache_flush_mode);
223   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
224       host() != NULL &&
225       target->IsHeapObject()) {
226     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
227         host(), this, HeapObject::cast(target));
228   }
229 }
230 
231 
target_external_reference()232 Address RelocInfo::target_external_reference() {
233   DCHECK(rmode_ == EXTERNAL_REFERENCE);
234   return Assembler::target_address_at(pc_, host_);
235 }
236 
237 
target_internal_reference()238 Address RelocInfo::target_internal_reference() {
239   if (rmode_ == INTERNAL_REFERENCE) {
240     return Memory::Address_at(pc_);
241   } else {
242     // Encoded internal references are lui/ori or lui/jic load of 32-bit
243     // absolute address.
244     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
245     Instr instr1 = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
246     Instr instr2 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
247     DCHECK(Assembler::IsLui(instr1));
248     DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
249     if (Assembler::IsJicOrJialc(instr2)) {
250       return reinterpret_cast<Address>(
251           Assembler::CreateTargetAddress(instr1, instr2));
252     }
253     int32_t imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
254     imm |= (instr2 & static_cast<int32_t>(kImm16Mask));
255     return reinterpret_cast<Address>(imm);
256   }
257 }
258 
259 
target_internal_reference_address()260 Address RelocInfo::target_internal_reference_address() {
261   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
262   return reinterpret_cast<Address>(pc_);
263 }
264 
265 
target_runtime_entry(Assembler * origin)266 Address RelocInfo::target_runtime_entry(Assembler* origin) {
267   DCHECK(IsRuntimeEntry(rmode_));
268   return target_address();
269 }
270 
271 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)272 void RelocInfo::set_target_runtime_entry(Address target,
273                                          WriteBarrierMode write_barrier_mode,
274                                          ICacheFlushMode icache_flush_mode) {
275   DCHECK(IsRuntimeEntry(rmode_));
276   if (target_address() != target)
277     set_target_address(target, write_barrier_mode, icache_flush_mode);
278 }
279 
280 
target_cell_handle()281 Handle<Cell> RelocInfo::target_cell_handle() {
282   DCHECK(rmode_ == RelocInfo::CELL);
283   Address address = Memory::Address_at(pc_);
284   return Handle<Cell>(reinterpret_cast<Cell**>(address));
285 }
286 
287 
target_cell()288 Cell* RelocInfo::target_cell() {
289   DCHECK(rmode_ == RelocInfo::CELL);
290   return Cell::FromValueAddress(Memory::Address_at(pc_));
291 }
292 
293 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)294 void RelocInfo::set_target_cell(Cell* cell,
295                                 WriteBarrierMode write_barrier_mode,
296                                 ICacheFlushMode icache_flush_mode) {
297   DCHECK(rmode_ == RelocInfo::CELL);
298   Address address = cell->address() + Cell::kValueOffset;
299   Memory::Address_at(pc_) = address;
300   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
301     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
302                                                                   cell);
303   }
304 }
305 
306 
307 static const int kNoCodeAgeSequenceLength = 7 * Assembler::kInstrSize;
308 
309 
code_age_stub_handle(Assembler * origin)310 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
311   UNREACHABLE();  // This should never be reached on Arm.
312   return Handle<Object>();
313 }
314 
315 
code_age_stub()316 Code* RelocInfo::code_age_stub() {
317   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
318   return Code::GetCodeFromTargetAddress(
319       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
320 }
321 
322 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)323 void RelocInfo::set_code_age_stub(Code* stub,
324                                   ICacheFlushMode icache_flush_mode) {
325   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
326   Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
327                                    stub->instruction_start());
328 }
329 
330 
debug_call_address()331 Address RelocInfo::debug_call_address() {
332   // The pc_ offset of 0 assumes patched debug break slot or return
333   // sequence.
334   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
335   return Assembler::target_address_at(pc_, host_);
336 }
337 
338 
set_debug_call_address(Address target)339 void RelocInfo::set_debug_call_address(Address target) {
340   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
341   // The pc_ offset of 0 assumes patched debug break slot or return
342   // sequence.
343   Assembler::set_target_address_at(isolate_, pc_, host_, target);
344   if (host() != NULL) {
345     Object* target_code = Code::GetCodeFromTargetAddress(target);
346     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
347         host(), this, HeapObject::cast(target_code));
348   }
349 }
350 
351 
WipeOut()352 void RelocInfo::WipeOut() {
353   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
354          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
355          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
356   if (IsInternalReference(rmode_)) {
357     Memory::Address_at(pc_) = NULL;
358   } else if (IsInternalReferenceEncoded(rmode_)) {
359     Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
360   } else {
361     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
362   }
363 }
364 
365 template <typename ObjectVisitor>
Visit(Isolate * isolate,ObjectVisitor * visitor)366 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
367   RelocInfo::Mode mode = rmode();
368   if (mode == RelocInfo::EMBEDDED_OBJECT) {
369     visitor->VisitEmbeddedPointer(this);
370   } else if (RelocInfo::IsCodeTarget(mode)) {
371     visitor->VisitCodeTarget(this);
372   } else if (mode == RelocInfo::CELL) {
373     visitor->VisitCell(this);
374   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
375     visitor->VisitExternalReference(this);
376   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
377              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
378     visitor->VisitInternalReference(this);
379   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
380     visitor->VisitCodeAgeSequence(this);
381   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
382              IsPatchedDebugBreakSlotSequence()) {
383     visitor->VisitDebugTarget(this);
384   } else if (RelocInfo::IsRuntimeEntry(mode)) {
385     visitor->VisitRuntimeEntry(this);
386   }
387 }
388 
389 
390 template<typename StaticVisitor>
Visit(Heap * heap)391 void RelocInfo::Visit(Heap* heap) {
392   RelocInfo::Mode mode = rmode();
393   if (mode == RelocInfo::EMBEDDED_OBJECT) {
394     StaticVisitor::VisitEmbeddedPointer(heap, this);
395   } else if (RelocInfo::IsCodeTarget(mode)) {
396     StaticVisitor::VisitCodeTarget(heap, this);
397   } else if (mode == RelocInfo::CELL) {
398     StaticVisitor::VisitCell(heap, this);
399   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
400     StaticVisitor::VisitExternalReference(this);
401   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
402              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
403     StaticVisitor::VisitInternalReference(this);
404   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
405     StaticVisitor::VisitCodeAgeSequence(heap, this);
406   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
407              IsPatchedDebugBreakSlotSequence()) {
408     StaticVisitor::VisitDebugTarget(heap, this);
409   } else if (RelocInfo::IsRuntimeEntry(mode)) {
410     StaticVisitor::VisitRuntimeEntry(this);
411   }
412 }
413 
414 
415 // -----------------------------------------------------------------------------
416 // Assembler.
417 
418 
CheckBuffer()419 void Assembler::CheckBuffer() {
420   if (buffer_space() <= kGap) {
421     GrowBuffer();
422   }
423 }
424 
425 
CheckTrampolinePoolQuick(int extra_instructions)426 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
427   if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
428     CheckTrampolinePool();
429   }
430 }
431 
432 
CheckForEmitInForbiddenSlot()433 void Assembler::CheckForEmitInForbiddenSlot() {
434   if (!is_buffer_growth_blocked()) {
435     CheckBuffer();
436   }
437   if (IsPrevInstrCompactBranch()) {
438     // Nop instruction to preceed a CTI in forbidden slot:
439     Instr nop = SPECIAL | SLL;
440     *reinterpret_cast<Instr*>(pc_) = nop;
441     pc_ += kInstrSize;
442 
443     ClearCompactBranchState();
444   }
445 }
446 
447 
EmitHelper(Instr x,CompactBranchType is_compact_branch)448 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
449   if (IsPrevInstrCompactBranch()) {
450     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
451       // Nop instruction to preceed a CTI in forbidden slot:
452       Instr nop = SPECIAL | SLL;
453       *reinterpret_cast<Instr*>(pc_) = nop;
454       pc_ += kInstrSize;
455     }
456     ClearCompactBranchState();
457   }
458   *reinterpret_cast<Instr*>(pc_) = x;
459   pc_ += kInstrSize;
460   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
461     EmittedCompactBranchInstruction();
462   }
463   CheckTrampolinePoolQuick();
464 }
465 
466 template <>
467 inline void Assembler::EmitHelper(uint8_t x);
468 
469 template <typename T>
EmitHelper(T x)470 void Assembler::EmitHelper(T x) {
471   *reinterpret_cast<T*>(pc_) = x;
472   pc_ += sizeof(x);
473   CheckTrampolinePoolQuick();
474 }
475 
476 template <>
EmitHelper(uint8_t x)477 void Assembler::EmitHelper(uint8_t x) {
478   *reinterpret_cast<uint8_t*>(pc_) = x;
479   pc_ += sizeof(x);
480   if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
481     CheckTrampolinePoolQuick();
482   }
483 }
484 
emit(Instr x,CompactBranchType is_compact_branch)485 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
486   if (!is_buffer_growth_blocked()) {
487     CheckBuffer();
488   }
489   EmitHelper(x, is_compact_branch);
490 }
491 
492 
493 }  // namespace internal
494 }  // namespace v8
495 
496 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
497