• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
38 
39 #include <stdio.h>
40 
41 #include <set>
42 
43 #include "src/assembler.h"
44 #include "src/mips/constants-mips.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 // clang-format off
50 #define GENERAL_REGISTERS(V)                              \
51   V(zero_reg)  V(at)  V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3)  \
52   V(t0)  V(t1)  V(t2)  V(t3)  V(t4)  V(t5)  V(t6)  V(t7)  \
53   V(s0)  V(s1)  V(s2)  V(s3)  V(s4)  V(s5)  V(s6)  V(s7)  V(t8)  V(t9) \
54   V(k0)  V(k1)  V(gp)  V(sp)  V(fp)  V(ra)
55 
56 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
57   V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3) \
58   V(t0)  V(t1)  V(t2)  V(t3)  V(t4)  V(t5)  V(t6) V(s7)
59 
60 #define DOUBLE_REGISTERS(V)                               \
61   V(f0)  V(f1)  V(f2)  V(f3)  V(f4)  V(f5)  V(f6)  V(f7)  \
62   V(f8)  V(f9)  V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
63   V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
64   V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
65 
66 #define FLOAT_REGISTERS DOUBLE_REGISTERS
67 
68 #define ALLOCATABLE_DOUBLE_REGISTERS(V)                   \
69   V(f0)  V(f2)  V(f4)  V(f6)  V(f8)  V(f10) V(f12) V(f14) \
70   V(f16) V(f18) V(f20) V(f22) V(f24) V(f26)
71 // clang-format on
72 
73 // CPU Registers.
74 //
75 // 1) We would prefer to use an enum, but enum values are assignment-
76 // compatible with int, which has caused code-generation bugs.
77 //
78 // 2) We would prefer to use a class instead of a struct but we don't like
79 // the register initialization to depend on the particular initialization
80 // order (which appears to be different on OS X, Linux, and Windows for the
81 // installed versions of C++ we tried). Using a struct permits C-style
82 // "initialization". Also, the Register objects cannot be const as this
83 // forces initialization stubs in MSVC, making us dependent on initialization
84 // order.
85 //
86 // 3) By not using an enum, we are possibly preventing the compiler from
87 // doing certain constant folds, which may significantly reduce the
88 // code generated for some assembly instructions (because they boil down
89 // to a few constants). If this is a problem, we could change the code
90 // such that we use an enum in optimized mode, and the struct in debug
91 // mode. This way we get the compile-time error checking in debug mode
92 // and best performance in optimized code.
93 
94 
95 // -----------------------------------------------------------------------------
96 // Implementation of Register and FPURegister.
97 
98 struct Register {
99   static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
100 
101   enum Code {
102 #define REGISTER_CODE(R) kCode_##R,
103     GENERAL_REGISTERS(REGISTER_CODE)
104 #undef REGISTER_CODE
105         kAfterLast,
106     kCode_no_reg = -1
107   };
108 
109   static const int kNumRegisters = Code::kAfterLast;
110 
111 #if defined(V8_TARGET_LITTLE_ENDIAN)
112   static const int kMantissaOffset = 0;
113   static const int kExponentOffset = 4;
114 #elif defined(V8_TARGET_BIG_ENDIAN)
115   static const int kMantissaOffset = 4;
116   static const int kExponentOffset = 0;
117 #else
118 #error Unknown endianness
119 #endif
120 
121 
from_codeRegister122   static Register from_code(int code) {
123     DCHECK(code >= 0);
124     DCHECK(code < kNumRegisters);
125     Register r = {code};
126     return r;
127   }
is_validRegister128   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister129   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister130   int code() const {
131     DCHECK(is_valid());
132     return reg_code;
133   }
bitRegister134   int bit() const {
135     DCHECK(is_valid());
136     return 1 << reg_code;
137   }
138 
139   // Unfortunately we can't make this private in a struct.
140   int reg_code;
141 };
142 
143 // s7: context register
144 // s3: lithium scratch
145 // s4: lithium scratch2
146 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
147 GENERAL_REGISTERS(DECLARE_REGISTER)
148 #undef DECLARE_REGISTER
149 const Register no_reg = {Register::kCode_no_reg};
150 
151 
152 int ToNumber(Register reg);
153 
154 Register ToRegister(int num);
155 
156 static const bool kSimpleFPAliasing = true;
157 
158 // Coprocessor register.
159 struct FPURegister {
160   enum Code {
161 #define REGISTER_CODE(R) kCode_##R,
162     DOUBLE_REGISTERS(REGISTER_CODE)
163 #undef REGISTER_CODE
164         kAfterLast,
165     kCode_no_reg = -1
166   };
167 
168   static const int kMaxNumRegisters = Code::kAfterLast;
169 
170   inline static int NumRegisters();
171 
172   // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
173   // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
174   // number of Double regs (64-bit regs, or FPU-reg-pairs).
175 
is_validFPURegister176   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
isFPURegister177   bool is(FPURegister reg) const { return reg_code == reg.reg_code; }
lowFPURegister178   FPURegister low() const {
179     // Find low reg of a Double-reg pair, which is the reg itself.
180     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
181     FPURegister reg;
182     reg.reg_code = reg_code;
183     DCHECK(reg.is_valid());
184     return reg;
185   }
highFPURegister186   FPURegister high() const {
187     // Find high reg of a Doubel-reg pair, which is reg + 1.
188     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
189     FPURegister reg;
190     reg.reg_code = reg_code + 1;
191     DCHECK(reg.is_valid());
192     return reg;
193   }
194 
codeFPURegister195   int code() const {
196     DCHECK(is_valid());
197     return reg_code;
198   }
bitFPURegister199   int bit() const {
200     DCHECK(is_valid());
201     return 1 << reg_code;
202   }
203 
from_codeFPURegister204   static FPURegister from_code(int code) {
205     FPURegister r = {code};
206     return r;
207   }
setcodeFPURegister208   void setcode(int f) {
209     reg_code = f;
210     DCHECK(is_valid());
211   }
212   // Unfortunately we can't make this private in a struct.
213   int reg_code;
214 };
215 
216 // A few double registers are reserved: one as a scratch register and one to
217 // hold 0.0.
218 //  f28: 0.0
219 //  f30: scratch register.
220 
221 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
222 // 32-bit registers, f0 through f31. When used as 'double' they are used
223 // in pairs, starting with the even numbered register. So a double operation
224 // on f0 really uses f0 and f1.
225 // (Modern mips hardware also supports 32 64-bit registers, via setting
226 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
227 // but it is not in common use. Someday we will want to support this in v8.)
228 
229 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
230 typedef FPURegister FloatRegister;
231 
232 typedef FPURegister DoubleRegister;
233 
234 // TODO(mips) Define SIMD registers.
235 typedef FPURegister Simd128Register;
236 
237 const DoubleRegister no_freg = {-1};
238 
239 const DoubleRegister f0 = {0};  // Return value in hard float mode.
240 const DoubleRegister f1 = {1};
241 const DoubleRegister f2 = {2};
242 const DoubleRegister f3 = {3};
243 const DoubleRegister f4 = {4};
244 const DoubleRegister f5 = {5};
245 const DoubleRegister f6 = {6};
246 const DoubleRegister f7 = {7};
247 const DoubleRegister f8 = {8};
248 const DoubleRegister f9 = {9};
249 const DoubleRegister f10 = {10};
250 const DoubleRegister f11 = {11};
251 const DoubleRegister f12 = {12};  // Arg 0 in hard float mode.
252 const DoubleRegister f13 = {13};
253 const DoubleRegister f14 = {14};  // Arg 1 in hard float mode.
254 const DoubleRegister f15 = {15};
255 const DoubleRegister f16 = {16};
256 const DoubleRegister f17 = {17};
257 const DoubleRegister f18 = {18};
258 const DoubleRegister f19 = {19};
259 const DoubleRegister f20 = {20};
260 const DoubleRegister f21 = {21};
261 const DoubleRegister f22 = {22};
262 const DoubleRegister f23 = {23};
263 const DoubleRegister f24 = {24};
264 const DoubleRegister f25 = {25};
265 const DoubleRegister f26 = {26};
266 const DoubleRegister f27 = {27};
267 const DoubleRegister f28 = {28};
268 const DoubleRegister f29 = {29};
269 const DoubleRegister f30 = {30};
270 const DoubleRegister f31 = {31};
271 
272 // Register aliases.
273 // cp is assumed to be a callee saved register.
274 // Defined using #define instead of "static const Register&" because Clang
275 // complains otherwise when a compilation unit that includes this header
276 // doesn't use the variables.
277 #define kRootRegister s6
278 #define cp s7
279 #define kLithiumScratchReg s3
280 #define kLithiumScratchReg2 s4
281 #define kLithiumScratchDouble f30
282 #define kDoubleRegZero f28
283 // Used on mips32r6 for compare operations.
284 // We use the last non-callee saved odd register for O32 ABI
285 #define kDoubleCompareReg f19
286 
287 // FPU (coprocessor 1) control registers.
288 // Currently only FCSR (#31) is implemented.
289 struct FPUControlRegister {
is_validFPUControlRegister290   bool is_valid() const { return reg_code == kFCSRRegister; }
isFPUControlRegister291   bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
codeFPUControlRegister292   int code() const {
293     DCHECK(is_valid());
294     return reg_code;
295   }
bitFPUControlRegister296   int bit() const {
297     DCHECK(is_valid());
298     return 1 << reg_code;
299   }
setcodeFPUControlRegister300   void setcode(int f) {
301     reg_code = f;
302     DCHECK(is_valid());
303   }
304   // Unfortunately we can't make this private in a struct.
305   int reg_code;
306 };
307 
308 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
309 const FPUControlRegister FCSR = { kFCSRRegister };
310 
311 // -----------------------------------------------------------------------------
312 // Machine instruction Operands.
313 
314 // Class Operand represents a shifter operand in data processing instructions.
315 class Operand BASE_EMBEDDED {
316  public:
317   // Immediate.
318   INLINE(explicit Operand(int32_t immediate,
319          RelocInfo::Mode rmode = RelocInfo::NONE32));
320   INLINE(explicit Operand(const ExternalReference& f));
321   INLINE(explicit Operand(const char* s));
322   INLINE(explicit Operand(Object** opp));
323   INLINE(explicit Operand(Context** cpp));
324   explicit Operand(Handle<Object> handle);
325   INLINE(explicit Operand(Smi* value));
326 
327   // Register.
328   INLINE(explicit Operand(Register rm));
329 
330   // Return true if this is a register operand.
331   INLINE(bool is_reg() const);
332 
immediate()333   inline int32_t immediate() const {
334     DCHECK(!is_reg());
335     return imm32_;
336   }
337 
rm()338   Register rm() const { return rm_; }
339 
340  private:
341   Register rm_;
342   int32_t imm32_;  // Valid if rm_ == no_reg.
343   RelocInfo::Mode rmode_;
344 
345   friend class Assembler;
346   friend class MacroAssembler;
347 };
348 
349 
350 // On MIPS we have only one adressing mode with base_reg + offset.
351 // Class MemOperand represents a memory operand in load and store instructions.
352 class MemOperand : public Operand {
353  public:
354   // Immediate value attached to offset.
355   enum OffsetAddend {
356     offset_minus_one = -1,
357     offset_zero = 0
358   };
359 
360   explicit MemOperand(Register rn, int32_t offset = 0);
361   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
362                       OffsetAddend offset_addend = offset_zero);
offset()363   int32_t offset() const { return offset_; }
364 
OffsetIsInt16Encodable()365   bool OffsetIsInt16Encodable() const {
366     return is_int16(offset_);
367   }
368 
369  private:
370   int32_t offset_;
371 
372   friend class Assembler;
373 };
374 
375 
376 class Assembler : public AssemblerBase {
377  public:
378   // Create an assembler. Instructions and relocation information are emitted
379   // into a buffer, with the instructions starting from the beginning and the
380   // relocation information starting from the end of the buffer. See CodeDesc
381   // for a detailed comment on the layout (globals.h).
382   //
383   // If the provided buffer is NULL, the assembler allocates and grows its own
384   // buffer, and buffer_size determines the initial buffer size. The buffer is
385   // owned by the assembler and deallocated upon destruction of the assembler.
386   //
387   // If the provided buffer is not NULL, the assembler uses the provided buffer
388   // for code generation and assumes its size to be buffer_size. If the buffer
389   // is too small, a fatal error occurs. No deallocation of the buffer is done
390   // upon destruction of the assembler.
391   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()392   virtual ~Assembler() { }
393 
394   // GetCode emits any pending (non-emitted) code and fills the descriptor
395   // desc. GetCode() is idempotent; it returns the same result if no other
396   // Assembler functions are invoked in between GetCode() calls.
397   void GetCode(CodeDesc* desc);
398 
399   // Label operations & relative jumps (PPUM Appendix D).
400   //
401   // Takes a branch opcode (cc) and a label (L) and generates
402   // either a backward branch or a forward branch and links it
403   // to the label fixup chain. Usage:
404   //
405   // Label L;    // unbound label
406   // j(cc, &L);  // forward branch to unbound label
407   // bind(&L);   // bind label to the current pc
408   // j(cc, &L);  // backward branch to bound label
409   // bind(&L);   // illegal: a label may be bound only once
410   //
411   // Note: The same Label can be used for forward and backward branches
412   // but it may be bound only once.
413   void bind(Label* L);  // Binds an unbound label L to current code position.
414 
415   enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
416 
417   // Determines if Label is bound and near enough so that branch instruction
418   // can be used to reach it, instead of jump instruction.
419   bool is_near(Label* L);
420   bool is_near(Label* L, OffsetSize bits);
421   bool is_near_branch(Label* L);
is_near_pre_r6(Label * L)422   inline bool is_near_pre_r6(Label* L) {
423     DCHECK(!IsMipsArchVariant(kMips32r6));
424     return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
425   }
is_near_r6(Label * L)426   inline bool is_near_r6(Label* L) {
427     DCHECK(IsMipsArchVariant(kMips32r6));
428     return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
429   }
430 
431   int BranchOffset(Instr instr);
432 
433   // Returns the branch offset to the given label from the current code
434   // position. Links the label to the current position if it is still unbound.
435   // Manages the jump elimination optimization if the second parameter is true.
436   int32_t branch_offset_helper(Label* L, OffsetSize bits);
branch_offset(Label * L)437   inline int32_t branch_offset(Label* L) {
438     return branch_offset_helper(L, OffsetSize::kOffset16);
439   }
branch_offset21(Label * L)440   inline int32_t branch_offset21(Label* L) {
441     return branch_offset_helper(L, OffsetSize::kOffset21);
442   }
branch_offset26(Label * L)443   inline int32_t branch_offset26(Label* L) {
444     return branch_offset_helper(L, OffsetSize::kOffset26);
445   }
shifted_branch_offset(Label * L)446   inline int32_t shifted_branch_offset(Label* L) {
447     return branch_offset(L) >> 2;
448   }
shifted_branch_offset21(Label * L)449   inline int32_t shifted_branch_offset21(Label* L) {
450     return branch_offset21(L) >> 2;
451   }
shifted_branch_offset26(Label * L)452   inline int32_t shifted_branch_offset26(Label* L) {
453     return branch_offset26(L) >> 2;
454   }
455   uint32_t jump_address(Label* L);
456 
457   // Puts a labels target address at the given position.
458   // The high 8 bits are set to zero.
459   void label_at_put(Label* L, int at_offset);
460 
461   // Read/Modify the code target address in the branch/call instruction at pc.
462   static Address target_address_at(Address pc);
463   static void set_target_address_at(
464       Isolate* isolate, Address pc, Address target,
465       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
466   // On MIPS there is no Constant Pool so we skip that parameter.
INLINE(static Address target_address_at (Address pc,Address constant_pool))467   INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
468     return target_address_at(pc);
469   }
INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))470   INLINE(static void set_target_address_at(
471       Isolate* isolate, Address pc, Address constant_pool, Address target,
472       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
473     set_target_address_at(isolate, pc, target, icache_flush_mode);
474   }
INLINE(static Address target_address_at (Address pc,Code * code))475   INLINE(static Address target_address_at(Address pc, Code* code)) {
476     Address constant_pool = code ? code->constant_pool() : NULL;
477     return target_address_at(pc, constant_pool);
478   }
INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))479   INLINE(static void set_target_address_at(
480       Isolate* isolate, Address pc, Code* code, Address target,
481       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
482     Address constant_pool = code ? code->constant_pool() : NULL;
483     set_target_address_at(isolate, pc, constant_pool, target,
484                           icache_flush_mode);
485   }
486 
487   // Return the code target address at a call site from the return address
488   // of that call in the instruction stream.
489   inline static Address target_address_from_return_address(Address pc);
490 
491   static void QuietNaN(HeapObject* nan);
492 
493   // This sets the branch destination (which gets loaded at the call address).
494   // This is for calls and branches within generated code.  The serializer
495   // has already deserialized the lui/ori instructions etc.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)496   inline static void deserialization_set_special_target_at(
497       Isolate* isolate, Address instruction_payload, Code* code,
498       Address target) {
499     set_target_address_at(
500         isolate,
501         instruction_payload - kInstructionsFor32BitConstant * kInstrSize, code,
502         target);
503   }
504 
505   // This sets the internal reference at the pc.
506   inline static void deserialization_set_target_internal_reference_at(
507       Isolate* isolate, Address pc, Address target,
508       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
509 
510   // Size of an instruction.
511   static const int kInstrSize = sizeof(Instr);
512 
513   // Difference between address of current opcode and target address offset.
514   static const int kBranchPCOffset = 4;
515 
516   // Here we are patching the address in the LUI/ORI instruction pair.
517   // These values are used in the serialization process and must be zero for
518   // MIPS platform, as Code, Embedded Object or External-reference pointers
519   // are split across two consecutive instructions and don't exist separately
520   // in the code, so the serializer should not step forwards in memory after
521   // a target is resolved and written.
522   static const int kSpecialTargetSize = 0;
523 
524   // Number of consecutive instructions used to store 32bit constant. This
525   // constant is used in RelocInfo::target_address_address() function to tell
526   // serializer address of the instruction that follows LUI/ORI instruction
527   // pair.
528   static const int kInstructionsFor32BitConstant = 2;
529 
530   // Distance between the instruction referring to the address of the call
531   // target and the return address.
532 #ifdef _MIPS_ARCH_MIPS32R6
533   static const int kCallTargetAddressOffset = 3 * kInstrSize;
534 #else
535   static const int kCallTargetAddressOffset = 4 * kInstrSize;
536 #endif
537 
538   // Distance between start of patched debug break slot and the emitted address
539   // to jump to.
540   static const int kPatchDebugBreakSlotAddressOffset = 4 * kInstrSize;
541 
542   // Difference between address of current opcode and value read from pc
543   // register.
544   static const int kPcLoadDelta = 4;
545 
546 #ifdef _MIPS_ARCH_MIPS32R6
547   static const int kDebugBreakSlotInstructions = 3;
548 #else
549   static const int kDebugBreakSlotInstructions = 4;
550 #endif
551   static const int kDebugBreakSlotLength =
552       kDebugBreakSlotInstructions * kInstrSize;
553 
554 
555   // ---------------------------------------------------------------------------
556   // Code generation.
557 
558   // Insert the smallest number of nop instructions
559   // possible to align the pc offset to a multiple
560   // of m. m must be a power of 2 (>= 4).
561   void Align(int m);
562   // Insert the smallest number of zero bytes possible to align the pc offset
563   // to a mulitple of m. m must be a power of 2 (>= 2).
564   void DataAlign(int m);
565   // Aligns code to something that's optimal for a jump target for the platform.
566   void CodeTargetAlign();
567 
568   // Different nop operations are used by the code generator to detect certain
569   // states of the generated code.
570   enum NopMarkerTypes {
571     NON_MARKING_NOP = 0,
572     DEBUG_BREAK_NOP,
573     // IC markers.
574     PROPERTY_ACCESS_INLINED,
575     PROPERTY_ACCESS_INLINED_CONTEXT,
576     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
577     // Helper values.
578     LAST_CODE_MARKER,
579     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
580     // Code aging
581     CODE_AGE_MARKER_NOP = 6,
582     CODE_AGE_SEQUENCE_NOP
583   };
584 
585   // Type == 0 is the default non-marking nop. For mips this is a
586   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
587   // marking, to avoid conflict with ssnop and ehb instructions.
588   void nop(unsigned int type = 0) {
589     DCHECK(type < 32);
590     Register nop_rt_reg = (type == 0) ? zero_reg : at;
591     sll(zero_reg, nop_rt_reg, type, true);
592   }
593 
594 
595   // --------Branch-and-jump-instructions----------
596   // We don't use likely variant of instructions.
597   void b(int16_t offset);
b(Label * L)598   inline void b(Label* L) { b(shifted_branch_offset(L)); }
599   void bal(int16_t offset);
bal(Label * L)600   inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
601   void bc(int32_t offset);
bc(Label * L)602   inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
603   void balc(int32_t offset);
balc(Label * L)604   inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
605 
606   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs,Register rt,Label * L)607   inline void beq(Register rs, Register rt, Label* L) {
608     beq(rs, rt, shifted_branch_offset(L));
609   }
610   void bgez(Register rs, int16_t offset);
611   void bgezc(Register rt, int16_t offset);
bgezc(Register rt,Label * L)612   inline void bgezc(Register rt, Label* L) {
613     bgezc(rt, shifted_branch_offset(L));
614   }
615   void bgeuc(Register rs, Register rt, int16_t offset);
bgeuc(Register rs,Register rt,Label * L)616   inline void bgeuc(Register rs, Register rt, Label* L) {
617     bgeuc(rs, rt, shifted_branch_offset(L));
618   }
619   void bgec(Register rs, Register rt, int16_t offset);
bgec(Register rs,Register rt,Label * L)620   inline void bgec(Register rs, Register rt, Label* L) {
621     bgec(rs, rt, shifted_branch_offset(L));
622   }
623   void bgezal(Register rs, int16_t offset);
624   void bgezalc(Register rt, int16_t offset);
bgezalc(Register rt,Label * L)625   inline void bgezalc(Register rt, Label* L) {
626     bgezalc(rt, shifted_branch_offset(L));
627   }
628   void bgezall(Register rs, int16_t offset);
bgezall(Register rs,Label * L)629   inline void bgezall(Register rs, Label* L) {
630     bgezall(rs, branch_offset(L) >> 2);
631   }
632   void bgtz(Register rs, int16_t offset);
633   void bgtzc(Register rt, int16_t offset);
bgtzc(Register rt,Label * L)634   inline void bgtzc(Register rt, Label* L) {
635     bgtzc(rt, shifted_branch_offset(L));
636   }
637   void blez(Register rs, int16_t offset);
638   void blezc(Register rt, int16_t offset);
blezc(Register rt,Label * L)639   inline void blezc(Register rt, Label* L) {
640     blezc(rt, shifted_branch_offset(L));
641   }
642   void bltz(Register rs, int16_t offset);
643   void bltzc(Register rt, int16_t offset);
bltzc(Register rt,Label * L)644   inline void bltzc(Register rt, Label* L) {
645     bltzc(rt, shifted_branch_offset(L));
646   }
647   void bltuc(Register rs, Register rt, int16_t offset);
bltuc(Register rs,Register rt,Label * L)648   inline void bltuc(Register rs, Register rt, Label* L) {
649     bltuc(rs, rt, shifted_branch_offset(L));
650   }
651   void bltc(Register rs, Register rt, int16_t offset);
bltc(Register rs,Register rt,Label * L)652   inline void bltc(Register rs, Register rt, Label* L) {
653     bltc(rs, rt, shifted_branch_offset(L));
654   }
655   void bltzal(Register rs, int16_t offset);
656   void blezalc(Register rt, int16_t offset);
blezalc(Register rt,Label * L)657   inline void blezalc(Register rt, Label* L) {
658     blezalc(rt, shifted_branch_offset(L));
659   }
660   void bltzalc(Register rt, int16_t offset);
bltzalc(Register rt,Label * L)661   inline void bltzalc(Register rt, Label* L) {
662     bltzalc(rt, shifted_branch_offset(L));
663   }
664   void bgtzalc(Register rt, int16_t offset);
bgtzalc(Register rt,Label * L)665   inline void bgtzalc(Register rt, Label* L) {
666     bgtzalc(rt, shifted_branch_offset(L));
667   }
668   void beqzalc(Register rt, int16_t offset);
beqzalc(Register rt,Label * L)669   inline void beqzalc(Register rt, Label* L) {
670     beqzalc(rt, shifted_branch_offset(L));
671   }
672   void beqc(Register rs, Register rt, int16_t offset);
beqc(Register rs,Register rt,Label * L)673   inline void beqc(Register rs, Register rt, Label* L) {
674     beqc(rs, rt, shifted_branch_offset(L));
675   }
676   void beqzc(Register rs, int32_t offset);
beqzc(Register rs,Label * L)677   inline void beqzc(Register rs, Label* L) {
678     beqzc(rs, shifted_branch_offset21(L));
679   }
680   void bnezalc(Register rt, int16_t offset);
bnezalc(Register rt,Label * L)681   inline void bnezalc(Register rt, Label* L) {
682     bnezalc(rt, shifted_branch_offset(L));
683   }
684   void bnec(Register rs, Register rt, int16_t offset);
bnec(Register rs,Register rt,Label * L)685   inline void bnec(Register rs, Register rt, Label* L) {
686     bnec(rs, rt, shifted_branch_offset(L));
687   }
688   void bnezc(Register rt, int32_t offset);
bnezc(Register rt,Label * L)689   inline void bnezc(Register rt, Label* L) {
690     bnezc(rt, shifted_branch_offset21(L));
691   }
692   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs,Register rt,Label * L)693   inline void bne(Register rs, Register rt, Label* L) {
694     bne(rs, rt, shifted_branch_offset(L));
695   }
696   void bovc(Register rs, Register rt, int16_t offset);
bovc(Register rs,Register rt,Label * L)697   inline void bovc(Register rs, Register rt, Label* L) {
698     bovc(rs, rt, shifted_branch_offset(L));
699   }
700   void bnvc(Register rs, Register rt, int16_t offset);
bnvc(Register rs,Register rt,Label * L)701   inline void bnvc(Register rs, Register rt, Label* L) {
702     bnvc(rs, rt, shifted_branch_offset(L));
703   }
704 
705   // Never use the int16_t b(l)cond version with a branch offset
706   // instead of using the Label* version.
707 
708   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
709   void j(int32_t target);
710   void jal(int32_t target);
711   void jalr(Register rs, Register rd = ra);
712   void jr(Register target);
713   void jic(Register rt, int16_t offset);
714   void jialc(Register rt, int16_t offset);
715 
716 
717   // -------Data-processing-instructions---------
718 
719   // Arithmetic.
720   void addu(Register rd, Register rs, Register rt);
721   void subu(Register rd, Register rs, Register rt);
722   void mult(Register rs, Register rt);
723   void multu(Register rs, Register rt);
724   void div(Register rs, Register rt);
725   void divu(Register rs, Register rt);
726   void div(Register rd, Register rs, Register rt);
727   void divu(Register rd, Register rs, Register rt);
728   void mod(Register rd, Register rs, Register rt);
729   void modu(Register rd, Register rs, Register rt);
730   void mul(Register rd, Register rs, Register rt);
731   void muh(Register rd, Register rs, Register rt);
732   void mulu(Register rd, Register rs, Register rt);
733   void muhu(Register rd, Register rs, Register rt);
734 
735   void addiu(Register rd, Register rs, int32_t j);
736 
737   // Logical.
738   void and_(Register rd, Register rs, Register rt);
739   void or_(Register rd, Register rs, Register rt);
740   void xor_(Register rd, Register rs, Register rt);
741   void nor(Register rd, Register rs, Register rt);
742 
743   void andi(Register rd, Register rs, int32_t j);
744   void ori(Register rd, Register rs, int32_t j);
745   void xori(Register rd, Register rs, int32_t j);
746   void lui(Register rd, int32_t j);
747   void aui(Register rs, Register rt, int32_t j);
748 
749   // Shifts.
750   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
751   // and may cause problems in normal code. coming_from_nop makes sure this
752   // doesn't happen.
753   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
754   void sllv(Register rd, Register rt, Register rs);
755   void srl(Register rd, Register rt, uint16_t sa);
756   void srlv(Register rd, Register rt, Register rs);
757   void sra(Register rt, Register rd, uint16_t sa);
758   void srav(Register rt, Register rd, Register rs);
759   void rotr(Register rd, Register rt, uint16_t sa);
760   void rotrv(Register rd, Register rt, Register rs);
761 
762   // ------------Memory-instructions-------------
763 
764   void lb(Register rd, const MemOperand& rs);
765   void lbu(Register rd, const MemOperand& rs);
766   void lh(Register rd, const MemOperand& rs);
767   void lhu(Register rd, const MemOperand& rs);
768   void lw(Register rd, const MemOperand& rs);
769   void lwl(Register rd, const MemOperand& rs);
770   void lwr(Register rd, const MemOperand& rs);
771   void sb(Register rd, const MemOperand& rs);
772   void sh(Register rd, const MemOperand& rs);
773   void sw(Register rd, const MemOperand& rs);
774   void swl(Register rd, const MemOperand& rs);
775   void swr(Register rd, const MemOperand& rs);
776 
777 
778   // ---------PC-Relative-instructions-----------
779 
780   void addiupc(Register rs, int32_t imm19);
781   void lwpc(Register rs, int32_t offset19);
782   void auipc(Register rs, int16_t imm16);
783   void aluipc(Register rs, int16_t imm16);
784 
785 
786   // ----------------Prefetch--------------------
787 
788   void pref(int32_t hint, const MemOperand& rs);
789 
790 
791   // -------------Misc-instructions--------------
792 
793   // Break / Trap instructions.
794   void break_(uint32_t code, bool break_as_stop = false);
795   void stop(const char* msg, uint32_t code = kMaxStopCode);
796   void tge(Register rs, Register rt, uint16_t code);
797   void tgeu(Register rs, Register rt, uint16_t code);
798   void tlt(Register rs, Register rt, uint16_t code);
799   void tltu(Register rs, Register rt, uint16_t code);
800   void teq(Register rs, Register rt, uint16_t code);
801   void tne(Register rs, Register rt, uint16_t code);
802 
803   // Memory barrier instruction.
804   void sync();
805 
806   // Move from HI/LO register.
807   void mfhi(Register rd);
808   void mflo(Register rd);
809 
810   // Set on less than.
811   void slt(Register rd, Register rs, Register rt);
812   void sltu(Register rd, Register rs, Register rt);
813   void slti(Register rd, Register rs, int32_t j);
814   void sltiu(Register rd, Register rs, int32_t j);
815 
816   // Conditional move.
817   void movz(Register rd, Register rs, Register rt);
818   void movn(Register rd, Register rs, Register rt);
819   void movt(Register rd, Register rs, uint16_t cc = 0);
820   void movf(Register rd, Register rs, uint16_t cc = 0);
821 
822   void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
823   void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
824   void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
825   void seleqz(Register rd, Register rs, Register rt);
826   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
827               FPURegister ft);
828   void selnez(Register rd, Register rs, Register rt);
829   void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
830               FPURegister ft);
831   void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
832   void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
833   void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
834   void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
835 
836   void movz_s(FPURegister fd, FPURegister fs, Register rt);
837   void movz_d(FPURegister fd, FPURegister fs, Register rt);
838   void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
839   void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
840   void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
841   void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
842   void movn_s(FPURegister fd, FPURegister fs, Register rt);
843   void movn_d(FPURegister fd, FPURegister fs, Register rt);
844   // Bit twiddling.
845   void clz(Register rd, Register rs);
846   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
847   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
848   void bitswap(Register rd, Register rt);
849   void align(Register rd, Register rs, Register rt, uint8_t bp);
850 
851   void wsbh(Register rd, Register rt);
852   void seh(Register rd, Register rt);
853   void seb(Register rd, Register rt);
854 
855   // --------Coprocessor-instructions----------------
856 
857   // Load, store, and move.
858   void lwc1(FPURegister fd, const MemOperand& src);
859   void ldc1(FPURegister fd, const MemOperand& src);
860 
861   void swc1(FPURegister fs, const MemOperand& dst);
862   void sdc1(FPURegister fs, const MemOperand& dst);
863 
864   void mtc1(Register rt, FPURegister fs);
865   void mthc1(Register rt, FPURegister fs);
866 
867   void mfc1(Register rt, FPURegister fs);
868   void mfhc1(Register rt, FPURegister fs);
869 
870   void ctc1(Register rt, FPUControlRegister fs);
871   void cfc1(Register rt, FPUControlRegister fs);
872 
873   // Arithmetic.
874   void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
875   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
876   void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
877   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
878   void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
879   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
880   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
881   void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
882   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
883   void abs_s(FPURegister fd, FPURegister fs);
884   void abs_d(FPURegister fd, FPURegister fs);
885   void mov_d(FPURegister fd, FPURegister fs);
886   void mov_s(FPURegister fd, FPURegister fs);
887   void neg_s(FPURegister fd, FPURegister fs);
888   void neg_d(FPURegister fd, FPURegister fs);
889   void sqrt_s(FPURegister fd, FPURegister fs);
890   void sqrt_d(FPURegister fd, FPURegister fs);
891   void rsqrt_s(FPURegister fd, FPURegister fs);
892   void rsqrt_d(FPURegister fd, FPURegister fs);
893   void recip_d(FPURegister fd, FPURegister fs);
894   void recip_s(FPURegister fd, FPURegister fs);
895 
896   // Conversion.
897   void cvt_w_s(FPURegister fd, FPURegister fs);
898   void cvt_w_d(FPURegister fd, FPURegister fs);
899   void trunc_w_s(FPURegister fd, FPURegister fs);
900   void trunc_w_d(FPURegister fd, FPURegister fs);
901   void round_w_s(FPURegister fd, FPURegister fs);
902   void round_w_d(FPURegister fd, FPURegister fs);
903   void floor_w_s(FPURegister fd, FPURegister fs);
904   void floor_w_d(FPURegister fd, FPURegister fs);
905   void ceil_w_s(FPURegister fd, FPURegister fs);
906   void ceil_w_d(FPURegister fd, FPURegister fs);
907   void rint_s(FPURegister fd, FPURegister fs);
908   void rint_d(FPURegister fd, FPURegister fs);
909   void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
910 
911   void cvt_l_s(FPURegister fd, FPURegister fs);
912   void cvt_l_d(FPURegister fd, FPURegister fs);
913   void trunc_l_s(FPURegister fd, FPURegister fs);
914   void trunc_l_d(FPURegister fd, FPURegister fs);
915   void round_l_s(FPURegister fd, FPURegister fs);
916   void round_l_d(FPURegister fd, FPURegister fs);
917   void floor_l_s(FPURegister fd, FPURegister fs);
918   void floor_l_d(FPURegister fd, FPURegister fs);
919   void ceil_l_s(FPURegister fd, FPURegister fs);
920   void ceil_l_d(FPURegister fd, FPURegister fs);
921 
922   void class_s(FPURegister fd, FPURegister fs);
923   void class_d(FPURegister fd, FPURegister fs);
924 
925   void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
926   void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
927   void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
928   void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
929   void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
930   void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
931   void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
932   void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
933   void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
934   void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
935   void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
936   void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
937 
938   void cvt_s_w(FPURegister fd, FPURegister fs);
939   void cvt_s_l(FPURegister fd, FPURegister fs);
940   void cvt_s_d(FPURegister fd, FPURegister fs);
941 
942   void cvt_d_w(FPURegister fd, FPURegister fs);
943   void cvt_d_l(FPURegister fd, FPURegister fs);
944   void cvt_d_s(FPURegister fd, FPURegister fs);
945 
946   // Conditions and branches for MIPSr6.
947   void cmp(FPUCondition cond, SecondaryField fmt,
948          FPURegister fd, FPURegister ft, FPURegister fs);
949   void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
950   void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
951 
952   void bc1eqz(int16_t offset, FPURegister ft);
bc1eqz(Label * L,FPURegister ft)953   inline void bc1eqz(Label* L, FPURegister ft) {
954     bc1eqz(shifted_branch_offset(L), ft);
955   }
956   void bc1nez(int16_t offset, FPURegister ft);
bc1nez(Label * L,FPURegister ft)957   inline void bc1nez(Label* L, FPURegister ft) {
958     bc1nez(shifted_branch_offset(L), ft);
959   }
960 
961   // Conditions and branches for non MIPSr6.
962   void c(FPUCondition cond, SecondaryField fmt,
963          FPURegister ft, FPURegister fs, uint16_t cc = 0);
964   void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
965   void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
966 
967   void bc1f(int16_t offset, uint16_t cc = 0);
968   inline void bc1f(Label* L, uint16_t cc = 0) {
969     bc1f(shifted_branch_offset(L), cc);
970   }
971   void bc1t(int16_t offset, uint16_t cc = 0);
972   inline void bc1t(Label* L, uint16_t cc = 0) {
973     bc1t(shifted_branch_offset(L), cc);
974   }
975   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
976 
977   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)978   int SizeOfCodeGeneratedSince(Label* label) {
979     return pc_offset() - label->pos();
980   }
981 
982   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label * label)983   int InstructionsGeneratedSince(Label* label) {
984     return SizeOfCodeGeneratedSince(label) / kInstrSize;
985   }
986 
987   // Class for scoping postponing the trampoline pool generation.
988   class BlockTrampolinePoolScope {
989    public:
BlockTrampolinePoolScope(Assembler * assem)990     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
991       assem_->StartBlockTrampolinePool();
992     }
~BlockTrampolinePoolScope()993     ~BlockTrampolinePoolScope() {
994       assem_->EndBlockTrampolinePool();
995     }
996 
997    private:
998     Assembler* assem_;
999 
1000     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1001   };
1002 
1003   // Class for postponing the assembly buffer growth. Typically used for
1004   // sequences of instructions that must be emitted as a unit, before
1005   // buffer growth (and relocation) can occur.
1006   // This blocking scope is not nestable.
1007   class BlockGrowBufferScope {
1008    public:
BlockGrowBufferScope(Assembler * assem)1009     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1010       assem_->StartBlockGrowBuffer();
1011     }
~BlockGrowBufferScope()1012     ~BlockGrowBufferScope() {
1013       assem_->EndBlockGrowBuffer();
1014     }
1015 
1016    private:
1017     Assembler* assem_;
1018 
1019     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1020   };
1021 
1022   // Debugging.
1023 
1024   // Mark generator continuation.
1025   void RecordGeneratorContinuation();
1026 
1027   // Mark address of a debug break slot.
1028   void RecordDebugBreakSlot(RelocInfo::Mode mode);
1029 
1030   // Record the AST id of the CallIC being compiled, so that it can be placed
1031   // in the relocation information.
SetRecordedAstId(TypeFeedbackId ast_id)1032   void SetRecordedAstId(TypeFeedbackId ast_id) {
1033     DCHECK(recorded_ast_id_.IsNone());
1034     recorded_ast_id_ = ast_id;
1035   }
1036 
RecordedAstId()1037   TypeFeedbackId RecordedAstId() {
1038     DCHECK(!recorded_ast_id_.IsNone());
1039     return recorded_ast_id_;
1040   }
1041 
ClearRecordedAstId()1042   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1043 
1044   // Record a comment relocation entry that can be used by a disassembler.
1045   // Use --code-comments to enable.
1046   void RecordComment(const char* msg);
1047 
1048   // Record a deoptimization reason that can be used by a log or cpu profiler.
1049   // Use --trace-deopt to enable.
1050   void RecordDeoptReason(const int reason, int raw_position, int id);
1051 
1052   static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1053                                        intptr_t pc_delta);
1054 
1055   // Writes a single byte or word of data in the code stream.  Used for
1056   // inline tables, e.g., jump-tables.
1057   void db(uint8_t data);
1058   void dd(uint32_t data);
1059   void dq(uint64_t data);
dp(uintptr_t data)1060   void dp(uintptr_t data) { dd(data); }
1061   void dd(Label* label);
1062 
positions_recorder()1063   AssemblerPositionsRecorder* positions_recorder() {
1064     return &positions_recorder_;
1065   }
1066 
1067   // Postpone the generation of the trampoline pool for the specified number of
1068   // instructions.
1069   void BlockTrampolinePoolFor(int instructions);
1070 
1071   // Check if there is less than kGap bytes available in the buffer.
1072   // If this is the case, we need to grow the buffer before emitting
1073   // an instruction or relocation information.
overflow()1074   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1075 
1076   // Get the number of bytes available in the buffer.
available_space()1077   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1078 
1079   // Read/patch instructions.
instr_at(byte * pc)1080   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(byte * pc,Instr instr)1081   static void instr_at_put(byte* pc, Instr instr) {
1082     *reinterpret_cast<Instr*>(pc) = instr;
1083   }
instr_at(int pos)1084   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
instr_at_put(int pos,Instr instr)1085   void instr_at_put(int pos, Instr instr) {
1086     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1087   }
1088 
1089   // Check if an instruction is a branch of some kind.
1090   static bool IsBranch(Instr instr);
1091   static bool IsBc(Instr instr);
1092   static bool IsBzc(Instr instr);
1093   static bool IsBeq(Instr instr);
1094   static bool IsBne(Instr instr);
1095   static bool IsBeqzc(Instr instr);
1096   static bool IsBnezc(Instr instr);
1097   static bool IsBeqc(Instr instr);
1098   static bool IsBnec(Instr instr);
1099   static bool IsJicOrJialc(Instr instr);
1100 
1101   static bool IsJump(Instr instr);
1102   static bool IsJ(Instr instr);
1103   static bool IsLui(Instr instr);
1104   static bool IsOri(Instr instr);
1105 
1106   static bool IsJal(Instr instr);
1107   static bool IsJr(Instr instr);
1108   static bool IsJalr(Instr instr);
1109 
1110   static bool IsNop(Instr instr, unsigned int type);
1111   static bool IsPop(Instr instr);
1112   static bool IsPush(Instr instr);
1113   static bool IsLwRegFpOffset(Instr instr);
1114   static bool IsSwRegFpOffset(Instr instr);
1115   static bool IsLwRegFpNegOffset(Instr instr);
1116   static bool IsSwRegFpNegOffset(Instr instr);
1117 
1118   static Register GetRtReg(Instr instr);
1119   static Register GetRsReg(Instr instr);
1120   static Register GetRdReg(Instr instr);
1121 
1122   static uint32_t GetRt(Instr instr);
1123   static uint32_t GetRtField(Instr instr);
1124   static uint32_t GetRs(Instr instr);
1125   static uint32_t GetRsField(Instr instr);
1126   static uint32_t GetRd(Instr instr);
1127   static uint32_t GetRdField(Instr instr);
1128   static uint32_t GetSa(Instr instr);
1129   static uint32_t GetSaField(Instr instr);
1130   static uint32_t GetOpcodeField(Instr instr);
1131   static uint32_t GetFunction(Instr instr);
1132   static uint32_t GetFunctionField(Instr instr);
1133   static uint32_t GetImmediate16(Instr instr);
1134   static uint32_t GetLabelConst(Instr instr);
1135 
1136   static int32_t GetBranchOffset(Instr instr);
1137   static bool IsLw(Instr instr);
1138   static int16_t GetLwOffset(Instr instr);
1139   static int16_t GetJicOrJialcOffset(Instr instr);
1140   static int16_t GetLuiOffset(Instr instr);
1141   static Instr SetLwOffset(Instr instr, int16_t offset);
1142 
1143   static bool IsSw(Instr instr);
1144   static Instr SetSwOffset(Instr instr, int16_t offset);
1145   static bool IsAddImmediate(Instr instr);
1146   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1147   static uint32_t CreateTargetAddress(Instr instr_lui, Instr instr_jic);
1148   static void UnpackTargetAddress(uint32_t address, int16_t& lui_offset,
1149                                   int16_t& jic_offset);
1150   static void UnpackTargetAddressUnsigned(uint32_t address,
1151                                           uint32_t& lui_offset,
1152                                           uint32_t& jic_offset);
1153 
1154   static bool IsAndImmediate(Instr instr);
1155   static bool IsEmittedConstant(Instr instr);
1156 
1157   void CheckTrampolinePool();
1158 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1159   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1160                                           ConstantPoolEntry::Access access,
1161                                           ConstantPoolEntry::Type type) {
1162     // No embedded constant pool support.
1163     UNREACHABLE();
1164   }
1165 
IsPrevInstrCompactBranch()1166   bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
1167 
UnboundLabelsCount()1168   inline int UnboundLabelsCount() { return unbound_labels_count_; }
1169 
1170  protected:
1171   // Load Scaled Address instruction.
1172   void lsa(Register rd, Register rt, Register rs, uint8_t sa);
1173 
1174   // Helpers.
1175   void LoadRegPlusOffsetToAt(const MemOperand& src);
1176 
1177   // Relocation for a type-recording IC has the AST id added to it.  This
1178   // member variable is a way to pass the information from the call site to
1179   // the relocation info.
1180   TypeFeedbackId recorded_ast_id_;
1181 
buffer_space()1182   int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1183 
1184   // Decode branch instruction at pos and return branch target pos.
1185   int target_at(int pos, bool is_internal);
1186 
1187   // Patch branch instruction at pos to branch to given branch target pos.
1188   void target_at_put(int pos, int target_pos, bool is_internal);
1189 
1190   // Say if we need to relocate with this mode.
1191   bool MustUseReg(RelocInfo::Mode rmode);
1192 
1193   // Record reloc info for current pc_.
1194   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1195 
1196   // Block the emission of the trampoline pool before pc_offset.
BlockTrampolinePoolBefore(int pc_offset)1197   void BlockTrampolinePoolBefore(int pc_offset) {
1198     if (no_trampoline_pool_before_ < pc_offset)
1199       no_trampoline_pool_before_ = pc_offset;
1200   }
1201 
StartBlockTrampolinePool()1202   void StartBlockTrampolinePool() {
1203     trampoline_pool_blocked_nesting_++;
1204   }
1205 
EndBlockTrampolinePool()1206   void EndBlockTrampolinePool() {
1207     trampoline_pool_blocked_nesting_--;
1208   }
1209 
is_trampoline_pool_blocked()1210   bool is_trampoline_pool_blocked() const {
1211     return trampoline_pool_blocked_nesting_ > 0;
1212   }
1213 
has_exception()1214   bool has_exception() const {
1215     return internal_trampoline_exception_;
1216   }
1217 
1218   void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1219 
is_trampoline_emitted()1220   bool is_trampoline_emitted() const {
1221     return trampoline_emitted_;
1222   }
1223 
1224   // Temporarily block automatic assembly buffer growth.
StartBlockGrowBuffer()1225   void StartBlockGrowBuffer() {
1226     DCHECK(!block_buffer_growth_);
1227     block_buffer_growth_ = true;
1228   }
1229 
EndBlockGrowBuffer()1230   void EndBlockGrowBuffer() {
1231     DCHECK(block_buffer_growth_);
1232     block_buffer_growth_ = false;
1233   }
1234 
is_buffer_growth_blocked()1235   bool is_buffer_growth_blocked() const {
1236     return block_buffer_growth_;
1237   }
1238 
EmitForbiddenSlotInstruction()1239   void EmitForbiddenSlotInstruction() {
1240     if (IsPrevInstrCompactBranch()) {
1241       nop();
1242     }
1243   }
1244 
1245   inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
1246 
1247   inline void CheckBuffer();
1248 
1249  private:
1250   inline static void set_target_internal_reference_encoded_at(Address pc,
1251                                                               Address target);
1252 
1253   // Buffer size and constant pool distance are checked together at regular
1254   // intervals of kBufferCheckInterval emitted bytes.
1255   static const int kBufferCheckInterval = 1*KB/2;
1256 
1257   // Code generation.
1258   // The relocation writer's position is at least kGap bytes below the end of
1259   // the generated instructions. This is so that multi-instruction sequences do
1260   // not have to check for overflow. The same is true for writes of large
1261   // relocation info entries.
1262   static const int kGap = 32;
1263 
1264 
1265   // Repeated checking whether the trampoline pool should be emitted is rather
1266   // expensive. By default we only check again once a number of instructions
1267   // has been generated.
1268   static const int kCheckConstIntervalInst = 32;
1269   static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1270 
1271   int next_buffer_check_;  // pc offset of next buffer check.
1272 
1273   // Emission of the trampoline pool may be blocked in some code sequences.
1274   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1275   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1276 
1277   // Keep track of the last emitted pool to guarantee a maximal distance.
1278   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1279 
1280   // Automatic growth of the assembly buffer may be blocked for some sequences.
1281   bool block_buffer_growth_;  // Block growth when true.
1282 
1283   // Relocation information generation.
1284   // Each relocation is encoded as a variable size value.
1285   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1286   RelocInfoWriter reloc_info_writer;
1287 
1288   // The bound position, before this we cannot do instruction elimination.
1289   int last_bound_pos_;
1290 
1291   // Readable constants for compact branch handling in emit()
1292   enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1293 
1294   // Code emission.
1295   void GrowBuffer();
1296   inline void emit(Instr x,
1297                    CompactBranchType is_compact_branch = CompactBranchType::NO);
1298   inline void emit(uint64_t x);
1299   inline void CheckForEmitInForbiddenSlot();
1300   template <typename T>
1301   inline void EmitHelper(T x);
1302   inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1303 
1304   // Instruction generation.
1305   // We have 3 different kind of encoding layout on MIPS.
1306   // However due to many different types of objects encoded in the same fields
1307   // we have quite a few aliases for each mode.
1308   // Using the same structure to refer to Register and FPURegister would spare a
1309   // few aliases, but mixing both does not look clean to me.
1310   // Anyway we could surely implement this differently.
1311 
1312   void GenInstrRegister(Opcode opcode,
1313                         Register rs,
1314                         Register rt,
1315                         Register rd,
1316                         uint16_t sa = 0,
1317                         SecondaryField func = NULLSF);
1318 
1319   void GenInstrRegister(Opcode opcode,
1320                         Register rs,
1321                         Register rt,
1322                         uint16_t msb,
1323                         uint16_t lsb,
1324                         SecondaryField func);
1325 
1326   void GenInstrRegister(Opcode opcode,
1327                         SecondaryField fmt,
1328                         FPURegister ft,
1329                         FPURegister fs,
1330                         FPURegister fd,
1331                         SecondaryField func = NULLSF);
1332 
1333   void GenInstrRegister(Opcode opcode,
1334                         FPURegister fr,
1335                         FPURegister ft,
1336                         FPURegister fs,
1337                         FPURegister fd,
1338                         SecondaryField func = NULLSF);
1339 
1340   void GenInstrRegister(Opcode opcode,
1341                         SecondaryField fmt,
1342                         Register rt,
1343                         FPURegister fs,
1344                         FPURegister fd,
1345                         SecondaryField func = NULLSF);
1346 
1347   void GenInstrRegister(Opcode opcode,
1348                         SecondaryField fmt,
1349                         Register rt,
1350                         FPUControlRegister fs,
1351                         SecondaryField func = NULLSF);
1352 
1353   void GenInstrImmediate(
1354       Opcode opcode, Register rs, Register rt, int32_t j,
1355       CompactBranchType is_compact_branch = CompactBranchType::NO);
1356   void GenInstrImmediate(
1357       Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1358       CompactBranchType is_compact_branch = CompactBranchType::NO);
1359   void GenInstrImmediate(
1360       Opcode opcode, Register r1, FPURegister r2, int32_t j,
1361       CompactBranchType is_compact_branch = CompactBranchType::NO);
1362   void GenInstrImmediate(
1363       Opcode opcode, Register rs, int32_t offset21,
1364       CompactBranchType is_compact_branch = CompactBranchType::NO);
1365   void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1366   void GenInstrImmediate(
1367       Opcode opcode, int32_t offset26,
1368       CompactBranchType is_compact_branch = CompactBranchType::NO);
1369 
1370 
1371   void GenInstrJump(Opcode opcode,
1372                      uint32_t address);
1373 
1374 
1375   // Labels.
1376   void print(Label* L);
1377   void bind_to(Label* L, int pos);
1378   void next(Label* L, bool is_internal);
1379 
1380   // One trampoline consists of:
1381   // - space for trampoline slots,
1382   // - space for labels.
1383   //
1384   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1385   // Space for trampoline slots preceeds space for labels. Each label is of one
1386   // instruction size, so total amount for labels is equal to
1387   // label_count *  kInstrSize.
1388   class Trampoline {
1389    public:
Trampoline()1390     Trampoline() {
1391       start_ = 0;
1392       next_slot_ = 0;
1393       free_slot_count_ = 0;
1394       end_ = 0;
1395     }
Trampoline(int start,int slot_count)1396     Trampoline(int start, int slot_count) {
1397       start_ = start;
1398       next_slot_ = start;
1399       free_slot_count_ = slot_count;
1400       end_ = start + slot_count * kTrampolineSlotsSize;
1401     }
start()1402     int start() {
1403       return start_;
1404     }
end()1405     int end() {
1406       return end_;
1407     }
take_slot()1408     int take_slot() {
1409       int trampoline_slot = kInvalidSlotPos;
1410       if (free_slot_count_ <= 0) {
1411         // We have run out of space on trampolines.
1412         // Make sure we fail in debug mode, so we become aware of each case
1413         // when this happens.
1414         DCHECK(0);
1415         // Internal exception will be caught.
1416       } else {
1417         trampoline_slot = next_slot_;
1418         free_slot_count_--;
1419         next_slot_ += kTrampolineSlotsSize;
1420       }
1421       return trampoline_slot;
1422     }
1423 
1424    private:
1425     int start_;
1426     int end_;
1427     int next_slot_;
1428     int free_slot_count_;
1429   };
1430 
1431   int32_t get_trampoline_entry(int32_t pos);
1432   int unbound_labels_count_;
1433   // If trampoline is emitted, generated code is becoming large. As this is
1434   // already a slow case which can possibly break our code generation for the
1435   // extreme case, we use this information to trigger different mode of
1436   // branch instruction generation, where we use jump instructions rather
1437   // than regular branch instructions.
1438   bool trampoline_emitted_;
1439 #ifdef _MIPS_ARCH_MIPS32R6
1440   static const int kTrampolineSlotsSize = 2 * kInstrSize;
1441 #else
1442   static const int kTrampolineSlotsSize = 4 * kInstrSize;
1443 #endif
1444   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1445   static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
1446   static const int kInvalidSlotPos = -1;
1447 
1448   // Internal reference positions, required for unbounded internal reference
1449   // labels.
1450   std::set<int> internal_reference_positions_;
1451 
EmittedCompactBranchInstruction()1452   void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
ClearCompactBranchState()1453   void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1454   bool prev_instr_compact_branch_ = false;
1455 
1456   Trampoline trampoline_;
1457   bool internal_trampoline_exception_;
1458 
1459   friend class RegExpMacroAssemblerMIPS;
1460   friend class RelocInfo;
1461   friend class CodePatcher;
1462   friend class BlockTrampolinePoolScope;
1463 
1464   AssemblerPositionsRecorder positions_recorder_;
1465   friend class AssemblerPositionsRecorder;
1466   friend class EnsureSpace;
1467 };
1468 
1469 
1470 class EnsureSpace BASE_EMBEDDED {
1471  public:
EnsureSpace(Assembler * assembler)1472   explicit EnsureSpace(Assembler* assembler) {
1473     assembler->CheckBuffer();
1474   }
1475 };
1476 
1477 }  // namespace internal
1478 }  // namespace v8
1479 
1480 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
1481