• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/mips64/codegen-mips64.h"
6 
7 #if V8_TARGET_ARCH_MIPS64
8 
9 #include "src/codegen.h"
10 #include "src/macro-assembler.h"
11 #include "src/mips64/simulator-mips64.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 
17 #define __ masm.
18 
19 
20 #if defined(V8_HOST_ARCH_MIPS)
CreateMemCopyUint8Function(Isolate * isolate,MemCopyUint8Function stub)21 MemCopyUint8Function CreateMemCopyUint8Function(Isolate* isolate,
22                                                 MemCopyUint8Function stub) {
23 #if defined(USE_SIMULATOR)
24   return stub;
25 #else
26 
27   size_t actual_size;
28   byte* buffer =
29       static_cast<byte*>(base::OS::Allocate(3 * KB, &actual_size, true));
30   if (buffer == nullptr) return stub;
31 
32   // This code assumes that cache lines are 32 bytes and if the cache line is
33   // larger it will not work correctly.
34   MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
35                       CodeObjectRequired::kNo);
36 
37   {
38     Label lastb, unaligned, aligned, chkw,
39           loop16w, chk1w, wordCopy_loop, skip_pref, lastbloop,
40           leave, ua_chk16w, ua_loop16w, ua_skip_pref, ua_chkw,
41           ua_chk1w, ua_wordCopy_loop, ua_smallCopy, ua_smallCopy_loop;
42 
43     // The size of each prefetch.
44     uint32_t pref_chunk = 32;
45     // The maximum size of a prefetch, it must not be less then pref_chunk.
46     // If the real size of a prefetch is greater then max_pref_size and
47     // the kPrefHintPrepareForStore hint is used, the code will not work
48     // correctly.
49     uint32_t max_pref_size = 128;
50     DCHECK(pref_chunk < max_pref_size);
51 
52     // pref_limit is set based on the fact that we never use an offset
53     // greater then 5 on a store pref and that a single pref can
54     // never be larger then max_pref_size.
55     uint32_t pref_limit = (5 * pref_chunk) + max_pref_size;
56     int32_t pref_hint_load = kPrefHintLoadStreamed;
57     int32_t pref_hint_store = kPrefHintPrepareForStore;
58     uint32_t loadstore_chunk = 4;
59 
60     // The initial prefetches may fetch bytes that are before the buffer being
61     // copied. Start copies with an offset of 4 so avoid this situation when
62     // using kPrefHintPrepareForStore.
63     DCHECK(pref_hint_store != kPrefHintPrepareForStore ||
64            pref_chunk * 4 >= max_pref_size);
65     // If the size is less than 8, go to lastb. Regardless of size,
66     // copy dst pointer to v0 for the retuen value.
67     __ slti(a6, a2, 2 * loadstore_chunk);
68     __ bne(a6, zero_reg, &lastb);
69     __ mov(v0, a0);  // In delay slot.
70 
71     // If src and dst have different alignments, go to unaligned, if they
72     // have the same alignment (but are not actually aligned) do a partial
73     // load/store to make them aligned. If they are both already aligned
74     // we can start copying at aligned.
75     __ xor_(t8, a1, a0);
76     __ andi(t8, t8, loadstore_chunk - 1);  // t8 is a0/a1 word-displacement.
77     __ bne(t8, zero_reg, &unaligned);
78     __ subu(a3, zero_reg, a0);  // In delay slot.
79 
80     __ andi(a3, a3, loadstore_chunk - 1);  // Copy a3 bytes to align a0/a1.
81     __ beq(a3, zero_reg, &aligned);  // Already aligned.
82     __ subu(a2, a2, a3);  // In delay slot. a2 is the remining bytes count.
83 
84     if (kArchEndian == kLittle) {
85       __ lwr(t8, MemOperand(a1));
86       __ addu(a1, a1, a3);
87       __ swr(t8, MemOperand(a0));
88       __ addu(a0, a0, a3);
89     } else {
90       __ lwl(t8, MemOperand(a1));
91       __ addu(a1, a1, a3);
92       __ swl(t8, MemOperand(a0));
93       __ addu(a0, a0, a3);
94     }
95 
96     // Now dst/src are both aligned to (word) aligned addresses. Set a2 to
97     // count how many bytes we have to copy after all the 64 byte chunks are
98     // copied and a3 to the dst pointer after all the 64 byte chunks have been
99     // copied. We will loop, incrementing a0 and a1 until a0 equals a3.
100     __ bind(&aligned);
101     __ andi(t8, a2, 0x3f);
102     __ beq(a2, t8, &chkw);  // Less than 64?
103     __ subu(a3, a2, t8);  // In delay slot.
104     __ addu(a3, a0, a3);  // Now a3 is the final dst after loop.
105 
106     // When in the loop we prefetch with kPrefHintPrepareForStore hint,
107     // in this case the a0+x should be past the "a4-32" address. This means:
108     // for x=128 the last "safe" a0 address is "a4-160". Alternatively, for
109     // x=64 the last "safe" a0 address is "a4-96". In the current version we
110     // will use "pref hint, 128(a0)", so "a4-160" is the limit.
111     if (pref_hint_store == kPrefHintPrepareForStore) {
112       __ addu(a4, a0, a2);  // a4 is the "past the end" address.
113       __ Subu(t9, a4, pref_limit);  // t9 is the "last safe pref" address.
114     }
115 
116     __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
117     __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
118     __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
119     __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
120 
121     if (pref_hint_store != kPrefHintPrepareForStore) {
122       __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
123       __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
124       __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
125     }
126     __ bind(&loop16w);
127     __ lw(a4, MemOperand(a1));
128 
129     if (pref_hint_store == kPrefHintPrepareForStore) {
130       __ sltu(v1, t9, a0);  // If a0 > t9, don't use next prefetch.
131       __ Branch(USE_DELAY_SLOT, &skip_pref, gt, v1, Operand(zero_reg));
132     }
133     __ lw(a5, MemOperand(a1, 1, loadstore_chunk));  // Maybe in delay slot.
134 
135     __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
136     __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
137 
138     __ bind(&skip_pref);
139     __ lw(a6, MemOperand(a1, 2, loadstore_chunk));
140     __ lw(a7, MemOperand(a1, 3, loadstore_chunk));
141     __ lw(t0, MemOperand(a1, 4, loadstore_chunk));
142     __ lw(t1, MemOperand(a1, 5, loadstore_chunk));
143     __ lw(t2, MemOperand(a1, 6, loadstore_chunk));
144     __ lw(t3, MemOperand(a1, 7, loadstore_chunk));
145     __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
146 
147     __ sw(a4, MemOperand(a0));
148     __ sw(a5, MemOperand(a0, 1, loadstore_chunk));
149     __ sw(a6, MemOperand(a0, 2, loadstore_chunk));
150     __ sw(a7, MemOperand(a0, 3, loadstore_chunk));
151     __ sw(t0, MemOperand(a0, 4, loadstore_chunk));
152     __ sw(t1, MemOperand(a0, 5, loadstore_chunk));
153     __ sw(t2, MemOperand(a0, 6, loadstore_chunk));
154     __ sw(t3, MemOperand(a0, 7, loadstore_chunk));
155 
156     __ lw(a4, MemOperand(a1, 8, loadstore_chunk));
157     __ lw(a5, MemOperand(a1, 9, loadstore_chunk));
158     __ lw(a6, MemOperand(a1, 10, loadstore_chunk));
159     __ lw(a7, MemOperand(a1, 11, loadstore_chunk));
160     __ lw(t0, MemOperand(a1, 12, loadstore_chunk));
161     __ lw(t1, MemOperand(a1, 13, loadstore_chunk));
162     __ lw(t2, MemOperand(a1, 14, loadstore_chunk));
163     __ lw(t3, MemOperand(a1, 15, loadstore_chunk));
164     __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
165 
166     __ sw(a4, MemOperand(a0, 8, loadstore_chunk));
167     __ sw(a5, MemOperand(a0, 9, loadstore_chunk));
168     __ sw(a6, MemOperand(a0, 10, loadstore_chunk));
169     __ sw(a7, MemOperand(a0, 11, loadstore_chunk));
170     __ sw(t0, MemOperand(a0, 12, loadstore_chunk));
171     __ sw(t1, MemOperand(a0, 13, loadstore_chunk));
172     __ sw(t2, MemOperand(a0, 14, loadstore_chunk));
173     __ sw(t3, MemOperand(a0, 15, loadstore_chunk));
174     __ addiu(a0, a0, 16 * loadstore_chunk);
175     __ bne(a0, a3, &loop16w);
176     __ addiu(a1, a1, 16 * loadstore_chunk);  // In delay slot.
177     __ mov(a2, t8);
178 
179     // Here we have src and dest word-aligned but less than 64-bytes to go.
180     // Check for a 32 bytes chunk and copy if there is one. Otherwise jump
181     // down to chk1w to handle the tail end of the copy.
182     __ bind(&chkw);
183     __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
184     __ andi(t8, a2, 0x1f);
185     __ beq(a2, t8, &chk1w);  // Less than 32?
186     __ nop();  // In delay slot.
187     __ lw(a4, MemOperand(a1));
188     __ lw(a5, MemOperand(a1, 1, loadstore_chunk));
189     __ lw(a6, MemOperand(a1, 2, loadstore_chunk));
190     __ lw(a7, MemOperand(a1, 3, loadstore_chunk));
191     __ lw(t0, MemOperand(a1, 4, loadstore_chunk));
192     __ lw(t1, MemOperand(a1, 5, loadstore_chunk));
193     __ lw(t2, MemOperand(a1, 6, loadstore_chunk));
194     __ lw(t3, MemOperand(a1, 7, loadstore_chunk));
195     __ addiu(a1, a1, 8 * loadstore_chunk);
196     __ sw(a4, MemOperand(a0));
197     __ sw(a5, MemOperand(a0, 1, loadstore_chunk));
198     __ sw(a6, MemOperand(a0, 2, loadstore_chunk));
199     __ sw(a7, MemOperand(a0, 3, loadstore_chunk));
200     __ sw(t0, MemOperand(a0, 4, loadstore_chunk));
201     __ sw(t1, MemOperand(a0, 5, loadstore_chunk));
202     __ sw(t2, MemOperand(a0, 6, loadstore_chunk));
203     __ sw(t3, MemOperand(a0, 7, loadstore_chunk));
204     __ addiu(a0, a0, 8 * loadstore_chunk);
205 
206     // Here we have less than 32 bytes to copy. Set up for a loop to copy
207     // one word at a time. Set a2 to count how many bytes we have to copy
208     // after all the word chunks are copied and a3 to the dst pointer after
209     // all the word chunks have been copied. We will loop, incrementing a0
210     // and a1 untill a0 equals a3.
211     __ bind(&chk1w);
212     __ andi(a2, t8, loadstore_chunk - 1);
213     __ beq(a2, t8, &lastb);
214     __ subu(a3, t8, a2);  // In delay slot.
215     __ addu(a3, a0, a3);
216 
217     __ bind(&wordCopy_loop);
218     __ lw(a7, MemOperand(a1));
219     __ addiu(a0, a0, loadstore_chunk);
220     __ addiu(a1, a1, loadstore_chunk);
221     __ bne(a0, a3, &wordCopy_loop);
222     __ sw(a7, MemOperand(a0, -1, loadstore_chunk));  // In delay slot.
223 
224     __ bind(&lastb);
225     __ Branch(&leave, le, a2, Operand(zero_reg));
226     __ addu(a3, a0, a2);
227 
228     __ bind(&lastbloop);
229     __ lb(v1, MemOperand(a1));
230     __ addiu(a0, a0, 1);
231     __ addiu(a1, a1, 1);
232     __ bne(a0, a3, &lastbloop);
233     __ sb(v1, MemOperand(a0, -1));  // In delay slot.
234 
235     __ bind(&leave);
236     __ jr(ra);
237     __ nop();
238 
239     // Unaligned case. Only the dst gets aligned so we need to do partial
240     // loads of the source followed by normal stores to the dst (once we
241     // have aligned the destination).
242     __ bind(&unaligned);
243     __ andi(a3, a3, loadstore_chunk - 1);  // Copy a3 bytes to align a0/a1.
244     __ beq(a3, zero_reg, &ua_chk16w);
245     __ subu(a2, a2, a3);  // In delay slot.
246 
247     if (kArchEndian == kLittle) {
248       __ lwr(v1, MemOperand(a1));
249       __ lwl(v1,
250              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
251       __ addu(a1, a1, a3);
252       __ swr(v1, MemOperand(a0));
253       __ addu(a0, a0, a3);
254     } else {
255       __ lwl(v1, MemOperand(a1));
256       __ lwr(v1,
257              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
258       __ addu(a1, a1, a3);
259       __ swl(v1, MemOperand(a0));
260       __ addu(a0, a0, a3);
261     }
262 
263     // Now the dst (but not the source) is aligned. Set a2 to count how many
264     // bytes we have to copy after all the 64 byte chunks are copied and a3 to
265     // the dst pointer after all the 64 byte chunks have been copied. We will
266     // loop, incrementing a0 and a1 until a0 equals a3.
267     __ bind(&ua_chk16w);
268     __ andi(t8, a2, 0x3f);
269     __ beq(a2, t8, &ua_chkw);
270     __ subu(a3, a2, t8);  // In delay slot.
271     __ addu(a3, a0, a3);
272 
273     if (pref_hint_store == kPrefHintPrepareForStore) {
274       __ addu(a4, a0, a2);
275       __ Subu(t9, a4, pref_limit);
276     }
277 
278     __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
279     __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
280     __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
281 
282     if (pref_hint_store != kPrefHintPrepareForStore) {
283       __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
284       __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
285       __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
286     }
287 
288     __ bind(&ua_loop16w);
289     if (kArchEndian == kLittle) {
290       __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
291       __ lwr(a4, MemOperand(a1));
292       __ lwr(a5, MemOperand(a1, 1, loadstore_chunk));
293       __ lwr(a6, MemOperand(a1, 2, loadstore_chunk));
294 
295       if (pref_hint_store == kPrefHintPrepareForStore) {
296         __ sltu(v1, t9, a0);
297         __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg));
298       }
299       __ lwr(a7, MemOperand(a1, 3, loadstore_chunk));  // Maybe in delay slot.
300 
301       __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
302       __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
303 
304       __ bind(&ua_skip_pref);
305       __ lwr(t0, MemOperand(a1, 4, loadstore_chunk));
306       __ lwr(t1, MemOperand(a1, 5, loadstore_chunk));
307       __ lwr(t2, MemOperand(a1, 6, loadstore_chunk));
308       __ lwr(t3, MemOperand(a1, 7, loadstore_chunk));
309       __ lwl(a4,
310              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
311       __ lwl(a5,
312              MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
313       __ lwl(a6,
314              MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
315       __ lwl(a7,
316              MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
317       __ lwl(t0,
318              MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
319       __ lwl(t1,
320              MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
321       __ lwl(t2,
322              MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
323       __ lwl(t3,
324              MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
325     } else {
326       __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
327       __ lwl(a4, MemOperand(a1));
328       __ lwl(a5, MemOperand(a1, 1, loadstore_chunk));
329       __ lwl(a6, MemOperand(a1, 2, loadstore_chunk));
330 
331       if (pref_hint_store == kPrefHintPrepareForStore) {
332         __ sltu(v1, t9, a0);
333         __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg));
334       }
335       __ lwl(a7, MemOperand(a1, 3, loadstore_chunk));  // Maybe in delay slot.
336 
337       __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
338       __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
339 
340       __ bind(&ua_skip_pref);
341       __ lwl(t0, MemOperand(a1, 4, loadstore_chunk));
342       __ lwl(t1, MemOperand(a1, 5, loadstore_chunk));
343       __ lwl(t2, MemOperand(a1, 6, loadstore_chunk));
344       __ lwl(t3, MemOperand(a1, 7, loadstore_chunk));
345       __ lwr(a4,
346              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
347       __ lwr(a5,
348              MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
349       __ lwr(a6,
350              MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
351       __ lwr(a7,
352              MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
353       __ lwr(t0,
354              MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
355       __ lwr(t1,
356              MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
357       __ lwr(t2,
358              MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
359       __ lwr(t3,
360              MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
361     }
362     __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
363     __ sw(a4, MemOperand(a0));
364     __ sw(a5, MemOperand(a0, 1, loadstore_chunk));
365     __ sw(a6, MemOperand(a0, 2, loadstore_chunk));
366     __ sw(a7, MemOperand(a0, 3, loadstore_chunk));
367     __ sw(t0, MemOperand(a0, 4, loadstore_chunk));
368     __ sw(t1, MemOperand(a0, 5, loadstore_chunk));
369     __ sw(t2, MemOperand(a0, 6, loadstore_chunk));
370     __ sw(t3, MemOperand(a0, 7, loadstore_chunk));
371     if (kArchEndian == kLittle) {
372       __ lwr(a4, MemOperand(a1, 8, loadstore_chunk));
373       __ lwr(a5, MemOperand(a1, 9, loadstore_chunk));
374       __ lwr(a6, MemOperand(a1, 10, loadstore_chunk));
375       __ lwr(a7, MemOperand(a1, 11, loadstore_chunk));
376       __ lwr(t0, MemOperand(a1, 12, loadstore_chunk));
377       __ lwr(t1, MemOperand(a1, 13, loadstore_chunk));
378       __ lwr(t2, MemOperand(a1, 14, loadstore_chunk));
379       __ lwr(t3, MemOperand(a1, 15, loadstore_chunk));
380       __ lwl(a4,
381              MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one));
382       __ lwl(a5,
383              MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one));
384       __ lwl(a6,
385              MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one));
386       __ lwl(a7,
387              MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one));
388       __ lwl(t0,
389              MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one));
390       __ lwl(t1,
391              MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one));
392       __ lwl(t2,
393              MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one));
394       __ lwl(t3,
395              MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one));
396     } else {
397       __ lwl(a4, MemOperand(a1, 8, loadstore_chunk));
398       __ lwl(a5, MemOperand(a1, 9, loadstore_chunk));
399       __ lwl(a6, MemOperand(a1, 10, loadstore_chunk));
400       __ lwl(a7, MemOperand(a1, 11, loadstore_chunk));
401       __ lwl(t0, MemOperand(a1, 12, loadstore_chunk));
402       __ lwl(t1, MemOperand(a1, 13, loadstore_chunk));
403       __ lwl(t2, MemOperand(a1, 14, loadstore_chunk));
404       __ lwl(t3, MemOperand(a1, 15, loadstore_chunk));
405       __ lwr(a4,
406              MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one));
407       __ lwr(a5,
408              MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one));
409       __ lwr(a6,
410              MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one));
411       __ lwr(a7,
412              MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one));
413       __ lwr(t0,
414              MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one));
415       __ lwr(t1,
416              MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one));
417       __ lwr(t2,
418              MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one));
419       __ lwr(t3,
420              MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one));
421     }
422     __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
423     __ sw(a4, MemOperand(a0, 8, loadstore_chunk));
424     __ sw(a5, MemOperand(a0, 9, loadstore_chunk));
425     __ sw(a6, MemOperand(a0, 10, loadstore_chunk));
426     __ sw(a7, MemOperand(a0, 11, loadstore_chunk));
427     __ sw(t0, MemOperand(a0, 12, loadstore_chunk));
428     __ sw(t1, MemOperand(a0, 13, loadstore_chunk));
429     __ sw(t2, MemOperand(a0, 14, loadstore_chunk));
430     __ sw(t3, MemOperand(a0, 15, loadstore_chunk));
431     __ addiu(a0, a0, 16 * loadstore_chunk);
432     __ bne(a0, a3, &ua_loop16w);
433     __ addiu(a1, a1, 16 * loadstore_chunk);  // In delay slot.
434     __ mov(a2, t8);
435 
436     // Here less than 64-bytes. Check for
437     // a 32 byte chunk and copy if there is one. Otherwise jump down to
438     // ua_chk1w to handle the tail end of the copy.
439     __ bind(&ua_chkw);
440     __ Pref(pref_hint_load, MemOperand(a1));
441     __ andi(t8, a2, 0x1f);
442 
443     __ beq(a2, t8, &ua_chk1w);
444     __ nop();  // In delay slot.
445     if (kArchEndian == kLittle) {
446       __ lwr(a4, MemOperand(a1));
447       __ lwr(a5, MemOperand(a1, 1, loadstore_chunk));
448       __ lwr(a6, MemOperand(a1, 2, loadstore_chunk));
449       __ lwr(a7, MemOperand(a1, 3, loadstore_chunk));
450       __ lwr(t0, MemOperand(a1, 4, loadstore_chunk));
451       __ lwr(t1, MemOperand(a1, 5, loadstore_chunk));
452       __ lwr(t2, MemOperand(a1, 6, loadstore_chunk));
453       __ lwr(t3, MemOperand(a1, 7, loadstore_chunk));
454       __ lwl(a4,
455              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
456       __ lwl(a5,
457              MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
458       __ lwl(a6,
459              MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
460       __ lwl(a7,
461              MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
462       __ lwl(t0,
463              MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
464       __ lwl(t1,
465              MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
466       __ lwl(t2,
467              MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
468       __ lwl(t3,
469              MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
470     } else {
471       __ lwl(a4, MemOperand(a1));
472       __ lwl(a5, MemOperand(a1, 1, loadstore_chunk));
473       __ lwl(a6, MemOperand(a1, 2, loadstore_chunk));
474       __ lwl(a7, MemOperand(a1, 3, loadstore_chunk));
475       __ lwl(t0, MemOperand(a1, 4, loadstore_chunk));
476       __ lwl(t1, MemOperand(a1, 5, loadstore_chunk));
477       __ lwl(t2, MemOperand(a1, 6, loadstore_chunk));
478       __ lwl(t3, MemOperand(a1, 7, loadstore_chunk));
479       __ lwr(a4,
480              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
481       __ lwr(a5,
482              MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
483       __ lwr(a6,
484              MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
485       __ lwr(a7,
486              MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
487       __ lwr(t0,
488              MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
489       __ lwr(t1,
490              MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
491       __ lwr(t2,
492              MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
493       __ lwr(t3,
494              MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
495     }
496     __ addiu(a1, a1, 8 * loadstore_chunk);
497     __ sw(a4, MemOperand(a0));
498     __ sw(a5, MemOperand(a0, 1, loadstore_chunk));
499     __ sw(a6, MemOperand(a0, 2, loadstore_chunk));
500     __ sw(a7, MemOperand(a0, 3, loadstore_chunk));
501     __ sw(t0, MemOperand(a0, 4, loadstore_chunk));
502     __ sw(t1, MemOperand(a0, 5, loadstore_chunk));
503     __ sw(t2, MemOperand(a0, 6, loadstore_chunk));
504     __ sw(t3, MemOperand(a0, 7, loadstore_chunk));
505     __ addiu(a0, a0, 8 * loadstore_chunk);
506 
507     // Less than 32 bytes to copy. Set up for a loop to
508     // copy one word at a time.
509     __ bind(&ua_chk1w);
510     __ andi(a2, t8, loadstore_chunk - 1);
511     __ beq(a2, t8, &ua_smallCopy);
512     __ subu(a3, t8, a2);  // In delay slot.
513     __ addu(a3, a0, a3);
514 
515     __ bind(&ua_wordCopy_loop);
516     if (kArchEndian == kLittle) {
517       __ lwr(v1, MemOperand(a1));
518       __ lwl(v1,
519              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
520     } else {
521       __ lwl(v1, MemOperand(a1));
522       __ lwr(v1,
523              MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
524     }
525     __ addiu(a0, a0, loadstore_chunk);
526     __ addiu(a1, a1, loadstore_chunk);
527     __ bne(a0, a3, &ua_wordCopy_loop);
528     __ sw(v1, MemOperand(a0, -1, loadstore_chunk));  // In delay slot.
529 
530     // Copy the last 8 bytes.
531     __ bind(&ua_smallCopy);
532     __ beq(a2, zero_reg, &leave);
533     __ addu(a3, a0, a2);  // In delay slot.
534 
535     __ bind(&ua_smallCopy_loop);
536     __ lb(v1, MemOperand(a1));
537     __ addiu(a0, a0, 1);
538     __ addiu(a1, a1, 1);
539     __ bne(a0, a3, &ua_smallCopy_loop);
540     __ sb(v1, MemOperand(a0, -1));  // In delay slot.
541 
542     __ jr(ra);
543     __ nop();
544   }
545   CodeDesc desc;
546   masm.GetCode(&desc);
547   DCHECK(!RelocInfo::RequiresRelocation(desc));
548 
549   Assembler::FlushICache(isolate, buffer, actual_size);
550   base::OS::ProtectCode(buffer, actual_size);
551   return FUNCTION_CAST<MemCopyUint8Function>(buffer);
552 #endif
553 }
554 #endif
555 
CreateSqrtFunction(Isolate * isolate)556 UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
557 #if defined(USE_SIMULATOR)
558   return nullptr;
559 #else
560   size_t actual_size;
561   byte* buffer =
562       static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
563   if (buffer == nullptr) return nullptr;
564 
565   MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
566                       CodeObjectRequired::kNo);
567 
568   __ MovFromFloatParameter(f12);
569   __ sqrt_d(f0, f12);
570   __ MovToFloatResult(f0);
571   __ Ret();
572 
573   CodeDesc desc;
574   masm.GetCode(&desc);
575   DCHECK(!RelocInfo::RequiresRelocation(desc));
576 
577   Assembler::FlushICache(isolate, buffer, actual_size);
578   base::OS::ProtectCode(buffer, actual_size);
579   return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
580 #endif
581 }
582 
583 #undef __
584 
585 
586 // -------------------------------------------------------------------------
587 // Platform-specific RuntimeCallHelper functions.
588 
BeforeCall(MacroAssembler * masm) const589 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
590   masm->EnterFrame(StackFrame::INTERNAL);
591   DCHECK(!masm->has_frame());
592   masm->set_has_frame(true);
593 }
594 
595 
AfterCall(MacroAssembler * masm) const596 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
597   masm->LeaveFrame(StackFrame::INTERNAL);
598   DCHECK(masm->has_frame());
599   masm->set_has_frame(false);
600 }
601 
602 
603 // -------------------------------------------------------------------------
604 // Code generators
605 
606 #define __ ACCESS_MASM(masm)
607 
GenerateMapChangeElementsTransition(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * allocation_memento_found)608 void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
609     MacroAssembler* masm,
610     Register receiver,
611     Register key,
612     Register value,
613     Register target_map,
614     AllocationSiteMode mode,
615     Label* allocation_memento_found) {
616   Register scratch_elements = a4;
617   DCHECK(!AreAliased(receiver, key, value, target_map,
618                      scratch_elements));
619 
620   if (mode == TRACK_ALLOCATION_SITE) {
621     __ JumpIfJSArrayHasAllocationMemento(
622         receiver, scratch_elements, allocation_memento_found);
623   }
624 
625   // Set transitioned map.
626   __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
627   __ RecordWriteField(receiver,
628                       HeapObject::kMapOffset,
629                       target_map,
630                       t1,
631                       kRAHasNotBeenSaved,
632                       kDontSaveFPRegs,
633                       EMIT_REMEMBERED_SET,
634                       OMIT_SMI_CHECK);
635 }
636 
637 
GenerateSmiToDouble(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * fail)638 void ElementsTransitionGenerator::GenerateSmiToDouble(
639     MacroAssembler* masm,
640     Register receiver,
641     Register key,
642     Register value,
643     Register target_map,
644     AllocationSiteMode mode,
645     Label* fail) {
646   // Register ra contains the return address.
647   Label loop, entry, convert_hole, gc_required, only_change_map, done;
648   Register elements = a4;
649   Register length = a5;
650   Register array = a6;
651   Register array_end = array;
652 
653   // target_map parameter can be clobbered.
654   Register scratch1 = target_map;
655   Register scratch2 = t1;
656   Register scratch3 = a7;
657 
658   // Verify input registers don't conflict with locals.
659   DCHECK(!AreAliased(receiver, key, value, target_map,
660                      elements, length, array, scratch2));
661 
662   Register scratch = t2;
663   if (mode == TRACK_ALLOCATION_SITE) {
664     __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
665   }
666 
667   // Check for empty arrays, which only require a map transition and no changes
668   // to the backing store.
669   __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
670   __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
671   __ Branch(&only_change_map, eq, at, Operand(elements));
672 
673   __ push(ra);
674   __ ld(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
675   // elements: source FixedArray
676   // length: number of elements (smi-tagged)
677 
678   // Allocate new FixedDoubleArray.
679   __ SmiScale(scratch, length, kDoubleSizeLog2);
680   __ Daddu(scratch, scratch, FixedDoubleArray::kHeaderSize);
681   __ Allocate(scratch, array, t3, scratch2, &gc_required, DOUBLE_ALIGNMENT);
682   __ Dsubu(array, array, kHeapObjectTag);
683   // array: destination FixedDoubleArray, not tagged as heap object
684 
685   // Set destination FixedDoubleArray's length and map.
686   __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex);
687   __ sd(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
688   // Update receiver's map.
689   __ sd(scratch2, MemOperand(array, HeapObject::kMapOffset));
690 
691   __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
692   __ RecordWriteField(receiver,
693                       HeapObject::kMapOffset,
694                       target_map,
695                       scratch2,
696                       kRAHasBeenSaved,
697                       kDontSaveFPRegs,
698                       OMIT_REMEMBERED_SET,
699                       OMIT_SMI_CHECK);
700   // Replace receiver's backing store with newly created FixedDoubleArray.
701   __ Daddu(scratch1, array, Operand(kHeapObjectTag));
702   __ sd(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset));
703   __ RecordWriteField(receiver,
704                       JSObject::kElementsOffset,
705                       scratch1,
706                       scratch2,
707                       kRAHasBeenSaved,
708                       kDontSaveFPRegs,
709                       EMIT_REMEMBERED_SET,
710                       OMIT_SMI_CHECK);
711 
712 
713   // Prepare for conversion loop.
714   __ Daddu(scratch1, elements,
715       Operand(FixedArray::kHeaderSize - kHeapObjectTag));
716   __ Daddu(scratch3, array, Operand(FixedDoubleArray::kHeaderSize));
717   __ SmiScale(array_end, length, kDoubleSizeLog2);
718   __ Daddu(array_end, array_end, scratch3);
719 
720   // Repurpose registers no longer in use.
721   Register hole_lower = elements;
722   Register hole_upper = length;
723   __ li(hole_lower, Operand(kHoleNanLower32));
724   __ li(hole_upper, Operand(kHoleNanUpper32));
725 
726   // scratch1: begin of source FixedArray element fields, not tagged
727   // hole_lower: kHoleNanLower32
728   // hole_upper: kHoleNanUpper32
729   // array_end: end of destination FixedDoubleArray, not tagged
730   // scratch3: begin of FixedDoubleArray element fields, not tagged
731 
732   __ Branch(&entry);
733 
734   __ bind(&only_change_map);
735   __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
736   __ RecordWriteField(receiver,
737                       HeapObject::kMapOffset,
738                       target_map,
739                       scratch2,
740                       kRAHasBeenSaved,
741                       kDontSaveFPRegs,
742                       OMIT_REMEMBERED_SET,
743                       OMIT_SMI_CHECK);
744   __ Branch(&done);
745 
746   // Call into runtime if GC is required.
747   __ bind(&gc_required);
748   __ ld(ra, MemOperand(sp, 0));
749   __ Branch(USE_DELAY_SLOT, fail);
750   __ daddiu(sp, sp, kPointerSize);  // In delay slot.
751 
752   // Convert and copy elements.
753   __ bind(&loop);
754   __ ld(scratch2, MemOperand(scratch1));
755   __ Daddu(scratch1, scratch1, kPointerSize);
756   // scratch2: current element
757   __ JumpIfNotSmi(scratch2, &convert_hole);
758   __ SmiUntag(scratch2);
759 
760   // Normal smi, convert to double and store.
761   __ mtc1(scratch2, f0);
762   __ cvt_d_w(f0, f0);
763   __ sdc1(f0, MemOperand(scratch3));
764   __ Branch(USE_DELAY_SLOT, &entry);
765   __ daddiu(scratch3, scratch3, kDoubleSize);  // In delay slot.
766 
767   // Hole found, store the-hole NaN.
768   __ bind(&convert_hole);
769   if (FLAG_debug_code) {
770     // Restore a "smi-untagged" heap object.
771     __ Or(scratch2, scratch2, Operand(1));
772     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
773     __ Assert(eq, kObjectFoundInSmiOnlyArray, at, Operand(scratch2));
774   }
775   // mantissa
776   __ sw(hole_lower, MemOperand(scratch3, Register::kMantissaOffset));
777   // exponent
778   __ sw(hole_upper, MemOperand(scratch3, Register::kExponentOffset));
779   __ Daddu(scratch3, scratch3, kDoubleSize);
780 
781   __ bind(&entry);
782   __ Branch(&loop, lt, scratch3, Operand(array_end));
783 
784   __ bind(&done);
785   __ pop(ra);
786 }
787 
788 
GenerateDoubleToObject(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * fail)789 void ElementsTransitionGenerator::GenerateDoubleToObject(
790     MacroAssembler* masm,
791     Register receiver,
792     Register key,
793     Register value,
794     Register target_map,
795     AllocationSiteMode mode,
796     Label* fail) {
797   // Register ra contains the return address.
798   Label entry, loop, convert_hole, gc_required, only_change_map;
799   Register elements = a4;
800   Register array = a6;
801   Register length = a5;
802   Register scratch = t1;
803 
804   // Verify input registers don't conflict with locals.
805   DCHECK(!AreAliased(receiver, key, value, target_map,
806                      elements, array, length, scratch));
807   if (mode == TRACK_ALLOCATION_SITE) {
808     __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
809   }
810 
811   // Check for empty arrays, which only require a map transition and no changes
812   // to the backing store.
813   __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
814   __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
815   __ Branch(&only_change_map, eq, at, Operand(elements));
816 
817   __ MultiPush(
818       value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit());
819 
820   __ ld(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
821   // elements: source FixedArray
822   // length: number of elements (smi-tagged)
823 
824   // Allocate new FixedArray.
825   // Re-use value and target_map registers, as they have been saved on the
826   // stack.
827   Register array_size = value;
828   Register allocate_scratch = target_map;
829   __ SmiScale(array_size, length, kPointerSizeLog2);
830   __ Daddu(array_size, array_size, FixedDoubleArray::kHeaderSize);
831   __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required,
832               NO_ALLOCATION_FLAGS);
833   __ Dsubu(array, array, kHeapObjectTag);
834   // array: destination FixedArray, not tagged as heap object
835   // Set destination FixedDoubleArray's length and map.
836   __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex);
837   __ sd(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
838   __ sd(scratch, MemOperand(array, HeapObject::kMapOffset));
839 
840   // Prepare for conversion loop.
841   Register src_elements = elements;
842   Register dst_elements = target_map;
843   Register dst_end = length;
844   Register heap_number_map = scratch;
845   __ Daddu(src_elements, src_elements,
846            Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
847   __ Daddu(dst_elements, array, Operand(FixedArray::kHeaderSize));
848   __ SmiScale(dst_end, dst_end, kPointerSizeLog2);
849   __ Daddu(dst_end, dst_elements, dst_end);
850 
851   // Allocating heap numbers in the loop below can fail and cause a jump to
852   // gc_required. We can't leave a partly initialized FixedArray behind,
853   // so pessimistically fill it with holes now.
854   Label initialization_loop, initialization_loop_entry;
855   __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
856   __ Branch(&initialization_loop_entry);
857   __ bind(&initialization_loop);
858   __ sd(scratch, MemOperand(dst_elements));
859   __ Daddu(dst_elements, dst_elements, Operand(kPointerSize));
860   __ bind(&initialization_loop_entry);
861   __ Branch(&initialization_loop, lt, dst_elements, Operand(dst_end));
862 
863   __ Daddu(dst_elements, array, Operand(FixedArray::kHeaderSize));
864   __ Daddu(array, array, Operand(kHeapObjectTag));
865   __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
866   // Using offsetted addresses.
867   // dst_elements: begin of destination FixedArray element fields, not tagged
868   // src_elements: begin of source FixedDoubleArray element fields, not tagged,
869   //               points to the exponent
870   // dst_end: end of destination FixedArray, not tagged
871   // array: destination FixedArray
872   // heap_number_map: heap number map
873   __ Branch(&entry);
874 
875   // Call into runtime if GC is required.
876   __ bind(&gc_required);
877   __ MultiPop(
878       value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit());
879 
880   __ Branch(fail);
881 
882   __ bind(&loop);
883   Register upper_bits = key;
884   __ lw(upper_bits, MemOperand(src_elements, Register::kExponentOffset));
885   __ Daddu(src_elements, src_elements, kDoubleSize);
886   // upper_bits: current element's upper 32 bit
887   // src_elements: address of next element
888   __ Branch(&convert_hole, eq, a1, Operand(kHoleNanUpper32));
889 
890   // Non-hole double, copy value into a heap number.
891   Register heap_number = receiver;
892   Register scratch2 = value;
893   Register scratch3 = t2;
894   __ AllocateHeapNumber(heap_number, scratch2, scratch3, heap_number_map,
895                         &gc_required);
896   // heap_number: new heap number
897   // Load current element, src_elements point to next element.
898 
899   __ ld(scratch2, MemOperand(src_elements, -kDoubleSize));
900   __ sd(scratch2, FieldMemOperand(heap_number, HeapNumber::kValueOffset));
901 
902   __ mov(scratch2, dst_elements);
903   __ sd(heap_number, MemOperand(dst_elements));
904   __ Daddu(dst_elements, dst_elements, kPointerSize);
905   __ RecordWrite(array,
906                  scratch2,
907                  heap_number,
908                  kRAHasBeenSaved,
909                  kDontSaveFPRegs,
910                  EMIT_REMEMBERED_SET,
911                  OMIT_SMI_CHECK);
912   __ Branch(&entry);
913 
914   // Replace the-hole NaN with the-hole pointer.
915   __ bind(&convert_hole);
916   __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex);
917   __ sd(scratch2, MemOperand(dst_elements));
918   __ Daddu(dst_elements, dst_elements, kPointerSize);
919 
920   __ bind(&entry);
921   __ Branch(&loop, lt, dst_elements, Operand(dst_end));
922 
923   __ MultiPop(receiver.bit() | target_map.bit() | value.bit() | key.bit());
924   // Replace receiver's backing store with newly created and filled FixedArray.
925   __ sd(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
926   __ RecordWriteField(receiver,
927                       JSObject::kElementsOffset,
928                       array,
929                       scratch,
930                       kRAHasBeenSaved,
931                       kDontSaveFPRegs,
932                       EMIT_REMEMBERED_SET,
933                       OMIT_SMI_CHECK);
934   __ pop(ra);
935 
936   __ bind(&only_change_map);
937   // Update receiver's map.
938   __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
939   __ RecordWriteField(receiver,
940                       HeapObject::kMapOffset,
941                       target_map,
942                       scratch,
943                       kRAHasNotBeenSaved,
944                       kDontSaveFPRegs,
945                       OMIT_REMEMBERED_SET,
946                       OMIT_SMI_CHECK);
947 }
948 
949 
Generate(MacroAssembler * masm,Register string,Register index,Register result,Label * call_runtime)950 void StringCharLoadGenerator::Generate(MacroAssembler* masm,
951                                        Register string,
952                                        Register index,
953                                        Register result,
954                                        Label* call_runtime) {
955   // Fetch the instance type of the receiver into result register.
956   __ ld(result, FieldMemOperand(string, HeapObject::kMapOffset));
957   __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
958 
959   // We need special handling for indirect strings.
960   Label check_sequential;
961   __ And(at, result, Operand(kIsIndirectStringMask));
962   __ Branch(&check_sequential, eq, at, Operand(zero_reg));
963 
964   // Dispatch on the indirect string shape: slice or cons.
965   Label cons_string;
966   __ And(at, result, Operand(kSlicedNotConsMask));
967   __ Branch(&cons_string, eq, at, Operand(zero_reg));
968 
969   // Handle slices.
970   Label indirect_string_loaded;
971   __ ld(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
972   __ ld(string, FieldMemOperand(string, SlicedString::kParentOffset));
973   __ dsra32(at, result, 0);
974   __ Daddu(index, index, at);
975   __ jmp(&indirect_string_loaded);
976 
977   // Handle cons strings.
978   // Check whether the right hand side is the empty string (i.e. if
979   // this is really a flat string in a cons string). If that is not
980   // the case we would rather go to the runtime system now to flatten
981   // the string.
982   __ bind(&cons_string);
983   __ ld(result, FieldMemOperand(string, ConsString::kSecondOffset));
984   __ LoadRoot(at, Heap::kempty_stringRootIndex);
985   __ Branch(call_runtime, ne, result, Operand(at));
986   // Get the first of the two strings and load its instance type.
987   __ ld(string, FieldMemOperand(string, ConsString::kFirstOffset));
988 
989   __ bind(&indirect_string_loaded);
990   __ ld(result, FieldMemOperand(string, HeapObject::kMapOffset));
991   __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
992 
993   // Distinguish sequential and external strings. Only these two string
994   // representations can reach here (slices and flat cons strings have been
995   // reduced to the underlying sequential or external string).
996   Label external_string, check_encoding;
997   __ bind(&check_sequential);
998   STATIC_ASSERT(kSeqStringTag == 0);
999   __ And(at, result, Operand(kStringRepresentationMask));
1000   __ Branch(&external_string, ne, at, Operand(zero_reg));
1001 
1002   // Prepare sequential strings
1003   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1004   __ Daddu(string,
1005           string,
1006           SeqTwoByteString::kHeaderSize - kHeapObjectTag);
1007   __ jmp(&check_encoding);
1008 
1009   // Handle external strings.
1010   __ bind(&external_string);
1011   if (FLAG_debug_code) {
1012     // Assert that we do not have a cons or slice (indirect strings) here.
1013     // Sequential strings have already been ruled out.
1014     __ And(at, result, Operand(kIsIndirectStringMask));
1015     __ Assert(eq, kExternalStringExpectedButNotFound,
1016         at, Operand(zero_reg));
1017   }
1018   // Rule out short external strings.
1019   STATIC_ASSERT(kShortExternalStringTag != 0);
1020   __ And(at, result, Operand(kShortExternalStringMask));
1021   __ Branch(call_runtime, ne, at, Operand(zero_reg));
1022   __ ld(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
1023 
1024   Label one_byte, done;
1025   __ bind(&check_encoding);
1026   STATIC_ASSERT(kTwoByteStringTag == 0);
1027   __ And(at, result, Operand(kStringEncodingMask));
1028   __ Branch(&one_byte, ne, at, Operand(zero_reg));
1029   // Two-byte string.
1030   __ Dlsa(at, string, index, 1);
1031   __ lhu(result, MemOperand(at));
1032   __ jmp(&done);
1033   __ bind(&one_byte);
1034   // One_byte string.
1035   __ Daddu(at, string, index);
1036   __ lbu(result, MemOperand(at));
1037   __ bind(&done);
1038 }
1039 
1040 #ifdef DEBUG
1041 // nop(CODE_AGE_MARKER_NOP)
1042 static const uint32_t kCodeAgePatchFirstInstruction = 0x00010180;
1043 #endif
1044 
1045 
CodeAgingHelper(Isolate * isolate)1046 CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
1047   USE(isolate);
1048   DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
1049   // Since patcher is a large object, allocate it dynamically when needed,
1050   // to avoid overloading the stack in stress conditions.
1051   // DONT_FLUSH is used because the CodeAgingHelper is initialized early in
1052   // the process, before MIPS simulator ICache is setup.
1053   base::SmartPointer<CodePatcher> patcher(
1054       new CodePatcher(isolate, young_sequence_.start(),
1055                       young_sequence_.length() / Assembler::kInstrSize,
1056                       CodePatcher::DONT_FLUSH));
1057   PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
1058   patcher->masm()->PushStandardFrame(a1);
1059   patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP);
1060   patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP);
1061   patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP);
1062 }
1063 
1064 
1065 #ifdef DEBUG
IsOld(byte * candidate) const1066 bool CodeAgingHelper::IsOld(byte* candidate) const {
1067   return Memory::uint32_at(candidate) == kCodeAgePatchFirstInstruction;
1068 }
1069 #endif
1070 
1071 
IsYoungSequence(Isolate * isolate,byte * sequence)1072 bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
1073   bool result = isolate->code_aging_helper()->IsYoung(sequence);
1074   DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
1075   return result;
1076 }
1077 
1078 
GetCodeAgeAndParity(Isolate * isolate,byte * sequence,Age * age,MarkingParity * parity)1079 void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
1080                                MarkingParity* parity) {
1081   if (IsYoungSequence(isolate, sequence)) {
1082     *age = kNoAgeCodeAge;
1083     *parity = NO_MARKING_PARITY;
1084   } else {
1085     Address target_address = Assembler::target_address_at(
1086         sequence + Assembler::kInstrSize);
1087     Code* stub = GetCodeFromTargetAddress(target_address);
1088     GetCodeAgeAndParity(stub, age, parity);
1089   }
1090 }
1091 
1092 
PatchPlatformCodeAge(Isolate * isolate,byte * sequence,Code::Age age,MarkingParity parity)1093 void Code::PatchPlatformCodeAge(Isolate* isolate,
1094                                 byte* sequence,
1095                                 Code::Age age,
1096                                 MarkingParity parity) {
1097   uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
1098   if (age == kNoAgeCodeAge) {
1099     isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
1100     Assembler::FlushICache(isolate, sequence, young_length);
1101   } else {
1102     Code* stub = GetCodeAgeStub(isolate, age, parity);
1103     CodePatcher patcher(isolate, sequence,
1104                         young_length / Assembler::kInstrSize);
1105     // Mark this code sequence for FindPlatformCodeAgeSequence().
1106     patcher.masm()->nop(Assembler::CODE_AGE_MARKER_NOP);
1107     // Load the stub address to t9 and call it,
1108     // GetCodeAgeAndParity() extracts the stub address from this instruction.
1109     patcher.masm()->li(
1110         t9,
1111         Operand(reinterpret_cast<uint64_t>(stub->instruction_start())),
1112         ADDRESS_LOAD);
1113     patcher.masm()->nop();  // Prevent jalr to jal optimization.
1114     patcher.masm()->jalr(t9, a0);
1115     patcher.masm()->nop();  // Branch delay slot nop.
1116     patcher.masm()->nop();  // Pad the empty space.
1117   }
1118 }
1119 
1120 
1121 #undef __
1122 
1123 }  // namespace internal
1124 }  // namespace v8
1125 
1126 #endif  // V8_TARGET_ARCH_MIPS64
1127