• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
7 
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips64/assembler-mips64.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 // Give alias names to registers for calling conventions.
16 const Register kReturnRegister0 = {Register::kCode_v0};
17 const Register kReturnRegister1 = {Register::kCode_v1};
18 const Register kReturnRegister2 = {Register::kCode_a0};
19 const Register kJSFunctionRegister = {Register::kCode_a1};
20 const Register kContextRegister = {Register::kCpRegister};
21 const Register kAllocateSizeRegister = {Register::kCode_a0};
22 const Register kInterpreterAccumulatorRegister = {Register::kCode_v0};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t0};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t1};
25 const Register kInterpreterDispatchTableRegister = {Register::kCode_t2};
26 const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0};
27 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3};
28 const Register kRuntimeCallFunctionRegister = {Register::kCode_a1};
29 const Register kRuntimeCallArgCountRegister = {Register::kCode_a0};
30 
31 // Forward declaration.
32 class JumpTarget;
33 
34 // Reserved Register Usage Summary.
35 //
36 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
37 //
38 // The programmer should know that the MacroAssembler may clobber these three,
39 // but won't touch other registers except in special cases.
40 //
41 // Per the MIPS ABI, register t9 must be used for indirect function call
42 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
43 // trying to update gp register for position-independent-code. Whenever
44 // MIPS generated code calls C code, it must be via t9 register.
45 
46 
47 // Flags used for LeaveExitFrame function.
48 enum LeaveExitFrameMode {
49   EMIT_RETURN = true,
50   NO_EMIT_RETURN = false
51 };
52 
53 // Flags used for AllocateHeapNumber
54 enum TaggingMode {
55   // Tag the result.
56   TAG_RESULT,
57   // Don't tag
58   DONT_TAG_RESULT
59 };
60 
61 // Flags used for the ObjectToDoubleFPURegister function.
62 enum ObjectToDoubleFlags {
63   // No special flags.
64   NO_OBJECT_TO_DOUBLE_FLAGS = 0,
65   // Object is known to be a non smi.
66   OBJECT_NOT_SMI = 1 << 0,
67   // Don't load NaNs or infinities, branch to the non number case instead.
68   AVOID_NANS_AND_INFINITIES = 1 << 1
69 };
70 
71 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
72 enum BranchDelaySlot {
73   USE_DELAY_SLOT,
74   PROTECT
75 };
76 
77 // Flags used for the li macro-assembler function.
78 enum LiFlags {
79   // If the constant value can be represented in just 16 bits, then
80   // optimize the li to use a single instruction, rather than lui/ori/dsll
81   // sequence.
82   OPTIMIZE_SIZE = 0,
83   // Always use 6 instructions (lui/ori/dsll sequence), even if the constant
84   // could be loaded with just one, so that this value is patchable later.
85   CONSTANT_SIZE = 1,
86   // For address loads only 4 instruction are required. Used to mark
87   // constant load that will be used as address without relocation
88   // information. It ensures predictable code size, so specific sites
89   // in code are patchable.
90   ADDRESS_LOAD  = 2
91 };
92 
93 
94 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
95 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
96 enum PointersToHereCheck {
97   kPointersToHereMaybeInteresting,
98   kPointersToHereAreAlwaysInteresting
99 };
100 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
101 
102 Register GetRegisterThatIsNotOneOf(Register reg1,
103                                    Register reg2 = no_reg,
104                                    Register reg3 = no_reg,
105                                    Register reg4 = no_reg,
106                                    Register reg5 = no_reg,
107                                    Register reg6 = no_reg);
108 
109 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
110                 Register reg4 = no_reg, Register reg5 = no_reg,
111                 Register reg6 = no_reg, Register reg7 = no_reg,
112                 Register reg8 = no_reg, Register reg9 = no_reg,
113                 Register reg10 = no_reg);
114 
115 
116 // -----------------------------------------------------------------------------
117 // Static helper functions.
118 
119 #if defined(V8_TARGET_LITTLE_ENDIAN)
120 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
121 #else
122 #define SmiWordOffset(offset) offset
123 #endif
124 
125 
ContextMemOperand(Register context,int index)126 inline MemOperand ContextMemOperand(Register context, int index) {
127   return MemOperand(context, Context::SlotOffset(index));
128 }
129 
130 
NativeContextMemOperand()131 inline MemOperand NativeContextMemOperand() {
132   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
133 }
134 
135 
136 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)137 inline MemOperand FieldMemOperand(Register object, int offset) {
138   return MemOperand(object, offset - kHeapObjectTag);
139 }
140 
141 
UntagSmiMemOperand(Register rm,int offset)142 inline MemOperand UntagSmiMemOperand(Register rm, int offset) {
143   // Assumes that Smis are shifted by 32 bits.
144   STATIC_ASSERT(kSmiShift == 32);
145   return MemOperand(rm, SmiWordOffset(offset));
146 }
147 
148 
UntagSmiFieldMemOperand(Register rm,int offset)149 inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) {
150   return UntagSmiMemOperand(rm, offset - kHeapObjectTag);
151 }
152 
153 
154 // Generate a MemOperand for storing arguments 5..N on the stack
155 // when calling CallCFunction().
156 // TODO(plind): Currently ONLY used for O32. Should be fixed for
157 //              n64, and used in RegExp code, and other places
158 //              with more than 8 arguments.
CFunctionArgumentOperand(int index)159 inline MemOperand CFunctionArgumentOperand(int index) {
160   DCHECK(index > kCArgSlotCount);
161   // Argument 5 takes the slot just past the four Arg-slots.
162   int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
163   return MemOperand(sp, offset);
164 }
165 
166 
167 // MacroAssembler implements a collection of frequently used macros.
168 class MacroAssembler: public Assembler {
169  public:
170   MacroAssembler(Isolate* isolate, void* buffer, int size,
171                  CodeObjectRequired create_code_object);
172 
173   // Arguments macros.
174 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
175 #define COND_ARGS cond, r1, r2
176 
177   // Cases when relocation is not needed.
178 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
179   void Name(target_type target, BranchDelaySlot bd = PROTECT); \
180   inline void Name(BranchDelaySlot bd, target_type target) { \
181     Name(target, bd); \
182   } \
183   void Name(target_type target, \
184             COND_TYPED_ARGS, \
185             BranchDelaySlot bd = PROTECT); \
186   inline void Name(BranchDelaySlot bd, \
187                    target_type target, \
188                    COND_TYPED_ARGS) { \
189     Name(target, COND_ARGS, bd); \
190   }
191 
192 #define DECLARE_BRANCH_PROTOTYPES(Name)   \
193   DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
194   DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
195 
196   DECLARE_BRANCH_PROTOTYPES(Branch)
197   DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
198   DECLARE_BRANCH_PROTOTYPES(BranchShort)
199 
200 #undef DECLARE_BRANCH_PROTOTYPES
201 #undef COND_TYPED_ARGS
202 #undef COND_ARGS
203 
204 
205   // Jump, Call, and Ret pseudo instructions implementing inter-working.
206 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
207   const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
208 
209   void Jump(Register target, COND_ARGS);
210   void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
211   void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
212   void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
213   static int CallSize(Register target, COND_ARGS);
214   void Call(Register target, COND_ARGS);
215   static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
216   void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
217   int CallSize(Handle<Code> code,
218                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
219                TypeFeedbackId ast_id = TypeFeedbackId::None(),
220                COND_ARGS);
221   void Call(Handle<Code> code,
222             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
223             TypeFeedbackId ast_id = TypeFeedbackId::None(),
224             COND_ARGS);
225   void Ret(COND_ARGS);
226   inline void Ret(BranchDelaySlot bd, Condition cond = al,
227     Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
228     Ret(cond, rs, rt, bd);
229   }
230 
231   bool IsNear(Label* L, Condition cond, int rs_reg);
232 
233   void Branch(Label* L,
234               Condition cond,
235               Register rs,
236               Heap::RootListIndex index,
237               BranchDelaySlot bdslot = PROTECT);
238 
239   // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
240   // functor/function with 'Label *func(size_t index)' declaration.
241   template <typename Func>
242   void GenerateSwitchTable(Register index, size_t case_count,
243                            Func GetLabelFunction);
244 #undef COND_ARGS
245 
246   // Emit code to discard a non-negative number of pointer-sized elements
247   // from the stack, clobbering only the sp register.
248   void Drop(int count,
249             Condition cond = cc_always,
250             Register reg = no_reg,
251             const Operand& op = Operand(no_reg));
252 
253   // Trivial case of DropAndRet that utilizes the delay slot and only emits
254   // 2 instructions.
255   void DropAndRet(int drop);
256 
257   void DropAndRet(int drop,
258                   Condition cond,
259                   Register reg,
260                   const Operand& op);
261 
262   // Swap two registers.  If the scratch register is omitted then a slightly
263   // less efficient form using xor instead of mov is emitted.
264   void Swap(Register reg1, Register reg2, Register scratch = no_reg);
265 
266   void Call(Label* target);
267 
Move(Register dst,Handle<Object> handle)268   inline void Move(Register dst, Handle<Object> handle) { li(dst, handle); }
Move(Register dst,Smi * smi)269   inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
270 
Move(Register dst,Register src)271   inline void Move(Register dst, Register src) {
272     if (!dst.is(src)) {
273       mov(dst, src);
274     }
275   }
276 
Move_d(FPURegister dst,FPURegister src)277   inline void Move_d(FPURegister dst, FPURegister src) {
278     if (!dst.is(src)) {
279       mov_d(dst, src);
280     }
281   }
282 
Move_s(FPURegister dst,FPURegister src)283   inline void Move_s(FPURegister dst, FPURegister src) {
284     if (!dst.is(src)) {
285       mov_s(dst, src);
286     }
287   }
288 
Move(FPURegister dst,FPURegister src)289   inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
290 
Move(Register dst_low,Register dst_high,FPURegister src)291   inline void Move(Register dst_low, Register dst_high, FPURegister src) {
292     mfc1(dst_low, src);
293     mfhc1(dst_high, src);
294   }
295 
Move(Register dst,FPURegister src)296   inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); }
297 
Move(FPURegister dst,Register src)298   inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); }
299 
FmoveHigh(Register dst_high,FPURegister src)300   inline void FmoveHigh(Register dst_high, FPURegister src) {
301     mfhc1(dst_high, src);
302   }
303 
FmoveHigh(FPURegister dst,Register src_high)304   inline void FmoveHigh(FPURegister dst, Register src_high) {
305     mthc1(src_high, dst);
306   }
307 
FmoveLow(Register dst_low,FPURegister src)308   inline void FmoveLow(Register dst_low, FPURegister src) {
309     mfc1(dst_low, src);
310   }
311 
312   void FmoveLow(FPURegister dst, Register src_low);
313 
Move(FPURegister dst,Register src_low,Register src_high)314   inline void Move(FPURegister dst, Register src_low, Register src_high) {
315     mtc1(src_low, dst);
316     mthc1(src_high, dst);
317   }
318 
319   void Move(FPURegister dst, float imm);
320   void Move(FPURegister dst, double imm);
321 
322   // Conditional move.
323   void Movz(Register rd, Register rs, Register rt);
324   void Movn(Register rd, Register rs, Register rt);
325   void Movt(Register rd, Register rs, uint16_t cc = 0);
326   void Movf(Register rd, Register rs, uint16_t cc = 0);
327 
328   // Min, Max macros.
329   // On pre-r6 these functions may modify at and t8 registers.
330   void MinNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2,
331                      Label* nan = nullptr);
332   void MaxNaNCheck_d(FPURegister dst, FPURegister src1, FPURegister src2,
333                      Label* nan = nullptr);
334   void MinNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2,
335                      Label* nan = nullptr);
336   void MaxNaNCheck_s(FPURegister dst, FPURegister src1, FPURegister src2,
337                      Label* nan = nullptr);
338 
339   void Clz(Register rd, Register rs);
340 
341   // Jump unconditionally to given label.
342   // We NEED a nop in the branch delay slot, as it used by v8, for example in
343   // CodeGenerator::ProcessDeferred().
344   // Currently the branch delay slot is filled by the MacroAssembler.
345   // Use rather b(Label) for code generation.
jmp(Label * L)346   void jmp(Label* L) {
347     Branch(L);
348   }
349 
350   void Load(Register dst, const MemOperand& src, Representation r);
351   void Store(Register src, const MemOperand& dst, Representation r);
352 
PushRoot(Heap::RootListIndex index)353   void PushRoot(Heap::RootListIndex index) {
354     LoadRoot(at, index);
355     Push(at);
356   }
357 
358   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)359   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
360     LoadRoot(at, index);
361     Branch(if_equal, eq, with, Operand(at));
362   }
363 
364   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)365   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
366                      Label* if_not_equal) {
367     LoadRoot(at, index);
368     Branch(if_not_equal, ne, with, Operand(at));
369   }
370 
371   // Load an object from the root table.
372   void LoadRoot(Register destination,
373                 Heap::RootListIndex index);
374   void LoadRoot(Register destination,
375                 Heap::RootListIndex index,
376                 Condition cond, Register src1, const Operand& src2);
377 
378   // Store an object to the root table.
379   void StoreRoot(Register source,
380                  Heap::RootListIndex index);
381   void StoreRoot(Register source,
382                  Heap::RootListIndex index,
383                  Condition cond, Register src1, const Operand& src2);
384 
385   // ---------------------------------------------------------------------------
386   // GC Support
387 
388   void IncrementalMarkingRecordWriteHelper(Register object,
389                                            Register value,
390                                            Register address);
391 
392   enum RememberedSetFinalAction {
393     kReturnAtEnd,
394     kFallThroughAtEnd
395   };
396 
397 
398   // Record in the remembered set the fact that we have a pointer to new space
399   // at the address pointed to by the addr register.  Only works if addr is not
400   // in new space.
401   void RememberedSetHelper(Register object,  // Used for debug code.
402                            Register addr,
403                            Register scratch,
404                            SaveFPRegsMode save_fp,
405                            RememberedSetFinalAction and_then);
406 
407   void CheckPageFlag(Register object,
408                      Register scratch,
409                      int mask,
410                      Condition cc,
411                      Label* condition_met);
412 
413   // Check if object is in new space.  Jumps if the object is not in new space.
414   // The register scratch can be object itself, but it will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)415   void JumpIfNotInNewSpace(Register object,
416                            Register scratch,
417                            Label* branch) {
418     InNewSpace(object, scratch, eq, branch);
419   }
420 
421   // Check if object is in new space.  Jumps if the object is in new space.
422   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)423   void JumpIfInNewSpace(Register object,
424                         Register scratch,
425                         Label* branch) {
426     InNewSpace(object, scratch, ne, branch);
427   }
428 
429   // Check if an object has a given incremental marking color.
430   void HasColor(Register object,
431                 Register scratch0,
432                 Register scratch1,
433                 Label* has_color,
434                 int first_bit,
435                 int second_bit);
436 
437   void JumpIfBlack(Register object,
438                    Register scratch0,
439                    Register scratch1,
440                    Label* on_black);
441 
442   // Checks the color of an object.  If the object is white we jump to the
443   // incremental marker.
444   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
445                    Register scratch3, Label* value_is_white);
446 
447   // Notify the garbage collector that we wrote a pointer into an object.
448   // |object| is the object being stored into, |value| is the object being
449   // stored.  value and scratch registers are clobbered by the operation.
450   // The offset is the offset from the start of the object, not the offset from
451   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
452   void RecordWriteField(
453       Register object,
454       int offset,
455       Register value,
456       Register scratch,
457       RAStatus ra_status,
458       SaveFPRegsMode save_fp,
459       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
460       SmiCheck smi_check = INLINE_SMI_CHECK,
461       PointersToHereCheck pointers_to_here_check_for_value =
462           kPointersToHereMaybeInteresting);
463 
464   // As above, but the offset has the tag presubtracted.  For use with
465   // MemOperand(reg, off).
466   inline void RecordWriteContextSlot(
467       Register context,
468       int offset,
469       Register value,
470       Register scratch,
471       RAStatus ra_status,
472       SaveFPRegsMode save_fp,
473       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
474       SmiCheck smi_check = INLINE_SMI_CHECK,
475       PointersToHereCheck pointers_to_here_check_for_value =
476           kPointersToHereMaybeInteresting) {
477     RecordWriteField(context,
478                      offset + kHeapObjectTag,
479                      value,
480                      scratch,
481                      ra_status,
482                      save_fp,
483                      remembered_set_action,
484                      smi_check,
485                      pointers_to_here_check_for_value);
486   }
487 
488   // Notify the garbage collector that we wrote a code entry into a
489   // JSFunction. Only scratch is clobbered by the operation.
490   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
491                                  Register scratch);
492 
493   void RecordWriteForMap(
494       Register object,
495       Register map,
496       Register dst,
497       RAStatus ra_status,
498       SaveFPRegsMode save_fp);
499 
500   // For a given |object| notify the garbage collector that the slot |address|
501   // has been written.  |value| is the object being stored. The value and
502   // address registers are clobbered by the operation.
503   void RecordWrite(
504       Register object,
505       Register address,
506       Register value,
507       RAStatus ra_status,
508       SaveFPRegsMode save_fp,
509       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
510       SmiCheck smi_check = INLINE_SMI_CHECK,
511       PointersToHereCheck pointers_to_here_check_for_value =
512           kPointersToHereMaybeInteresting);
513 
514 
515   // ---------------------------------------------------------------------------
516   // Inline caching support.
517 
518   // Generate code for checking access rights - used for security checks
519   // on access to global objects across environments. The holder register
520   // is left untouched, whereas both scratch registers are clobbered.
521   void CheckAccessGlobalProxy(Register holder_reg,
522                               Register scratch,
523                               Label* miss);
524 
525   void GetNumberHash(Register reg0, Register scratch);
526 
527   void LoadFromNumberDictionary(Label* miss,
528                                 Register elements,
529                                 Register key,
530                                 Register result,
531                                 Register reg0,
532                                 Register reg1,
533                                 Register reg2);
534 
535 
MarkCode(NopMarkerTypes type)536   inline void MarkCode(NopMarkerTypes type) {
537     nop(type);
538   }
539 
540   // Check if the given instruction is a 'type' marker.
541   // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
542   // nop(type)). These instructions are generated to mark special location in
543   // the code, like some special IC code.
IsMarkedCode(Instr instr,int type)544   static inline bool IsMarkedCode(Instr instr, int type) {
545     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
546     return IsNop(instr, type);
547   }
548 
549 
GetCodeMarker(Instr instr)550   static inline int GetCodeMarker(Instr instr) {
551     uint32_t opcode = ((instr & kOpcodeMask));
552     uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
553     uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
554     uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
555 
556     // Return <n> if we have a sll zero_reg, zero_reg, n
557     // else return -1.
558     bool sllzz = (opcode == SLL &&
559                   rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
560                   rs == static_cast<uint32_t>(ToNumber(zero_reg)));
561     int type =
562         (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
563     DCHECK((type == -1) ||
564            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
565     return type;
566   }
567 
568 
569 
570   // ---------------------------------------------------------------------------
571   // Allocation support.
572 
573   // Allocate an object in new space or old space. The object_size is
574   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
575   // is passed. If the space is exhausted control continues at the gc_required
576   // label. The allocated object is returned in result. If the flag
577   // tag_allocated_object is true the result is tagged as as a heap object.
578   // All registers are clobbered also when control continues at the gc_required
579   // label.
580   void Allocate(int object_size,
581                 Register result,
582                 Register scratch1,
583                 Register scratch2,
584                 Label* gc_required,
585                 AllocationFlags flags);
586 
587   void Allocate(Register object_size, Register result, Register result_end,
588                 Register scratch, Label* gc_required, AllocationFlags flags);
589 
590   // FastAllocate is right now only used for folded allocations. It just
591   // increments the top pointer without checking against limit. This can only
592   // be done if it was proved earlier that the allocation will succeed.
593   void FastAllocate(int object_size, Register result, Register scratch1,
594                     Register scratch2, AllocationFlags flags);
595 
596   void FastAllocate(Register object_size, Register result, Register result_new,
597                     Register scratch, AllocationFlags flags);
598 
599   void AllocateTwoByteString(Register result,
600                              Register length,
601                              Register scratch1,
602                              Register scratch2,
603                              Register scratch3,
604                              Label* gc_required);
605   void AllocateOneByteString(Register result, Register length,
606                              Register scratch1, Register scratch2,
607                              Register scratch3, Label* gc_required);
608   void AllocateTwoByteConsString(Register result,
609                                  Register length,
610                                  Register scratch1,
611                                  Register scratch2,
612                                  Label* gc_required);
613   void AllocateOneByteConsString(Register result, Register length,
614                                  Register scratch1, Register scratch2,
615                                  Label* gc_required);
616   void AllocateTwoByteSlicedString(Register result,
617                                    Register length,
618                                    Register scratch1,
619                                    Register scratch2,
620                                    Label* gc_required);
621   void AllocateOneByteSlicedString(Register result, Register length,
622                                    Register scratch1, Register scratch2,
623                                    Label* gc_required);
624 
625   // Allocates a heap number or jumps to the gc_required label if the young
626   // space is full and a scavenge is needed. All registers are clobbered also
627   // when control continues at the gc_required label.
628   void AllocateHeapNumber(Register result,
629                           Register scratch1,
630                           Register scratch2,
631                           Register heap_number_map,
632                           Label* gc_required,
633                           MutableMode mode = IMMUTABLE);
634 
635   void AllocateHeapNumberWithValue(Register result,
636                                    FPURegister value,
637                                    Register scratch1,
638                                    Register scratch2,
639                                    Label* gc_required);
640 
641   // Allocate and initialize a JSValue wrapper with the specified {constructor}
642   // and {value}.
643   void AllocateJSValue(Register result, Register constructor, Register value,
644                        Register scratch1, Register scratch2,
645                        Label* gc_required);
646 
647   // ---------------------------------------------------------------------------
648   // Instruction macros.
649 
650 #define DEFINE_INSTRUCTION(instr)                                              \
651   void instr(Register rd, Register rs, const Operand& rt);                     \
652   void instr(Register rd, Register rs, Register rt) {                          \
653     instr(rd, rs, Operand(rt));                                                \
654   }                                                                            \
655   void instr(Register rs, Register rt, int32_t j) {                            \
656     instr(rs, rt, Operand(j));                                                 \
657   }
658 
659 #define DEFINE_INSTRUCTION2(instr)                                             \
660   void instr(Register rs, const Operand& rt);                                  \
661   void instr(Register rs, Register rt) {                                       \
662     instr(rs, Operand(rt));                                                    \
663   }                                                                            \
664   void instr(Register rs, int32_t j) {                                         \
665     instr(rs, Operand(j));                                                     \
666   }
667 
668   DEFINE_INSTRUCTION(Addu);
669   DEFINE_INSTRUCTION(Daddu);
670   DEFINE_INSTRUCTION(Div);
671   DEFINE_INSTRUCTION(Divu);
672   DEFINE_INSTRUCTION(Ddivu);
673   DEFINE_INSTRUCTION(Mod);
674   DEFINE_INSTRUCTION(Modu);
675   DEFINE_INSTRUCTION(Ddiv);
676   DEFINE_INSTRUCTION(Subu);
677   DEFINE_INSTRUCTION(Dsubu);
678   DEFINE_INSTRUCTION(Dmod);
679   DEFINE_INSTRUCTION(Dmodu);
680   DEFINE_INSTRUCTION(Mul);
681   DEFINE_INSTRUCTION(Mulh);
682   DEFINE_INSTRUCTION(Mulhu);
683   DEFINE_INSTRUCTION(Dmul);
684   DEFINE_INSTRUCTION(Dmulh);
685   DEFINE_INSTRUCTION2(Mult);
686   DEFINE_INSTRUCTION2(Dmult);
687   DEFINE_INSTRUCTION2(Multu);
688   DEFINE_INSTRUCTION2(Dmultu);
689   DEFINE_INSTRUCTION2(Div);
690   DEFINE_INSTRUCTION2(Ddiv);
691   DEFINE_INSTRUCTION2(Divu);
692   DEFINE_INSTRUCTION2(Ddivu);
693 
694   DEFINE_INSTRUCTION(And);
695   DEFINE_INSTRUCTION(Or);
696   DEFINE_INSTRUCTION(Xor);
697   DEFINE_INSTRUCTION(Nor);
698   DEFINE_INSTRUCTION2(Neg);
699 
700   DEFINE_INSTRUCTION(Slt);
701   DEFINE_INSTRUCTION(Sltu);
702 
703   // MIPS32 R2 instruction macro.
704   DEFINE_INSTRUCTION(Ror);
705   DEFINE_INSTRUCTION(Dror);
706 
707 #undef DEFINE_INSTRUCTION
708 #undef DEFINE_INSTRUCTION2
709 #undef DEFINE_INSTRUCTION3
710 
711   // Load Scaled Address instructions. Parameter sa (shift argument) must be
712   // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
713   // may be clobbered.
714   void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
715            Register scratch = at);
716   void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
717             Register scratch = at);
718 
719   void Pref(int32_t hint, const MemOperand& rs);
720 
721 
722   // ---------------------------------------------------------------------------
723   // Pseudo-instructions.
724 
725   // Change endianness
726   void ByteSwapSigned(Register reg, int operand_size);
727   void ByteSwapUnsigned(Register reg, int operand_size);
728 
mov(Register rd,Register rt)729   void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
730 
731   void Ulh(Register rd, const MemOperand& rs);
732   void Ulhu(Register rd, const MemOperand& rs);
733   void Ush(Register rd, const MemOperand& rs, Register scratch);
734 
735   void Ulw(Register rd, const MemOperand& rs);
736   void Ulwu(Register rd, const MemOperand& rs);
737   void Usw(Register rd, const MemOperand& rs);
738 
739   void Uld(Register rd, const MemOperand& rs);
740   void Usd(Register rd, const MemOperand& rs);
741 
742   void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
743   void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
744 
745   void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
746   void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
747 
748   void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
749   void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);
750 
751   // Load int32 in the rd register.
752   void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
753   inline bool LiLower32BitHelper(Register rd, Operand j);
754   inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
755     li(rd, Operand(j), mode);
756   }
757   void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
758 
759   // Push multiple registers on the stack.
760   // Registers are saved in numerical order, with higher numbered registers
761   // saved in higher memory addresses.
762   void MultiPush(RegList regs);
763   void MultiPushReversed(RegList regs);
764 
765   void MultiPushFPU(RegList regs);
766   void MultiPushReversedFPU(RegList regs);
767 
push(Register src)768   void push(Register src) {
769     Daddu(sp, sp, Operand(-kPointerSize));
770     sd(src, MemOperand(sp, 0));
771   }
Push(Register src)772   void Push(Register src) { push(src); }
773 
774   // Push a handle.
775   void Push(Handle<Object> handle);
Push(Smi * smi)776   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
777 
778   // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)779   void Push(Register src1, Register src2) {
780     Dsubu(sp, sp, Operand(2 * kPointerSize));
781     sd(src1, MemOperand(sp, 1 * kPointerSize));
782     sd(src2, MemOperand(sp, 0 * kPointerSize));
783   }
784 
785   // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)786   void Push(Register src1, Register src2, Register src3) {
787     Dsubu(sp, sp, Operand(3 * kPointerSize));
788     sd(src1, MemOperand(sp, 2 * kPointerSize));
789     sd(src2, MemOperand(sp, 1 * kPointerSize));
790     sd(src3, MemOperand(sp, 0 * kPointerSize));
791   }
792 
793   // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)794   void Push(Register src1, Register src2, Register src3, Register src4) {
795     Dsubu(sp, sp, Operand(4 * kPointerSize));
796     sd(src1, MemOperand(sp, 3 * kPointerSize));
797     sd(src2, MemOperand(sp, 2 * kPointerSize));
798     sd(src3, MemOperand(sp, 1 * kPointerSize));
799     sd(src4, MemOperand(sp, 0 * kPointerSize));
800   }
801 
802   // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)803   void Push(Register src1, Register src2, Register src3, Register src4,
804             Register src5) {
805     Dsubu(sp, sp, Operand(5 * kPointerSize));
806     sd(src1, MemOperand(sp, 4 * kPointerSize));
807     sd(src2, MemOperand(sp, 3 * kPointerSize));
808     sd(src3, MemOperand(sp, 2 * kPointerSize));
809     sd(src4, MemOperand(sp, 1 * kPointerSize));
810     sd(src5, MemOperand(sp, 0 * kPointerSize));
811   }
812 
Push(Register src,Condition cond,Register tst1,Register tst2)813   void Push(Register src, Condition cond, Register tst1, Register tst2) {
814     // Since we don't have conditional execution we use a Branch.
815     Branch(3, cond, tst1, Operand(tst2));
816     Dsubu(sp, sp, Operand(kPointerSize));
817     sd(src, MemOperand(sp, 0));
818   }
819 
820   void PushRegisterAsTwoSmis(Register src, Register scratch = at);
821   void PopRegisterAsTwoSmis(Register dst, Register scratch = at);
822 
823   // Pops multiple values from the stack and load them in the
824   // registers specified in regs. Pop order is the opposite as in MultiPush.
825   void MultiPop(RegList regs);
826   void MultiPopReversed(RegList regs);
827 
828   void MultiPopFPU(RegList regs);
829   void MultiPopReversedFPU(RegList regs);
830 
pop(Register dst)831   void pop(Register dst) {
832     ld(dst, MemOperand(sp, 0));
833     Daddu(sp, sp, Operand(kPointerSize));
834   }
Pop(Register dst)835   void Pop(Register dst) { pop(dst); }
836 
837   // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)838   void Pop(Register src1, Register src2) {
839     DCHECK(!src1.is(src2));
840     ld(src2, MemOperand(sp, 0 * kPointerSize));
841     ld(src1, MemOperand(sp, 1 * kPointerSize));
842     Daddu(sp, sp, 2 * kPointerSize);
843   }
844 
845   // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)846   void Pop(Register src1, Register src2, Register src3) {
847     ld(src3, MemOperand(sp, 0 * kPointerSize));
848     ld(src2, MemOperand(sp, 1 * kPointerSize));
849     ld(src1, MemOperand(sp, 2 * kPointerSize));
850     Daddu(sp, sp, 3 * kPointerSize);
851   }
852 
853   void Pop(uint32_t count = 1) {
854     Daddu(sp, sp, Operand(count * kPointerSize));
855   }
856 
857   // Push a fixed frame, consisting of ra, fp.
858   void PushCommonFrame(Register marker_reg = no_reg);
859 
860   // Push a standard frame, consisting of ra, fp, context and JS function.
861   void PushStandardFrame(Register function_reg);
862 
863   void PopCommonFrame(Register marker_reg = no_reg);
864 
865   // Push and pop the registers that can hold pointers, as defined by the
866   // RegList constant kSafepointSavedRegisters.
867   void PushSafepointRegisters();
868   void PopSafepointRegisters();
869   // Store value in register src in the safepoint stack slot for
870   // register dst.
871   void StoreToSafepointRegisterSlot(Register src, Register dst);
872   // Load the value of the src register from its safepoint stack slot
873   // into register dst.
874   void LoadFromSafepointRegisterSlot(Register dst, Register src);
875 
876   // MIPS64 R2 instruction macro.
877   void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
878   void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
879   void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
880   void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
881   void Dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
882   void Dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
883 
884   // ---------------------------------------------------------------------------
885   // FPU macros. These do not handle special cases like NaN or +- inf.
886 
887   // Convert unsigned word to double.
888   void Cvt_d_uw(FPURegister fd, FPURegister fs);
889   void Cvt_d_uw(FPURegister fd, Register rs);
890 
891   // Convert unsigned long to double.
892   void Cvt_d_ul(FPURegister fd, FPURegister fs);
893   void Cvt_d_ul(FPURegister fd, Register rs);
894 
895   // Convert unsigned word to float.
896   void Cvt_s_uw(FPURegister fd, FPURegister fs);
897   void Cvt_s_uw(FPURegister fd, Register rs);
898 
899   // Convert unsigned long to float.
900   void Cvt_s_ul(FPURegister fd, FPURegister fs);
901   void Cvt_s_ul(FPURegister fd, Register rs);
902 
903   // Convert double to unsigned long.
904   void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
905 
906   void Trunc_l_d(FPURegister fd, FPURegister fs);
907   void Round_l_d(FPURegister fd, FPURegister fs);
908   void Floor_l_d(FPURegister fd, FPURegister fs);
909   void Ceil_l_d(FPURegister fd, FPURegister fs);
910 
911   // Convert double to unsigned word.
912   void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
913   void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
914 
915   // Convert single to unsigned word.
916   void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
917   void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch);
918 
919   // Convert double to unsigned long.
920   void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
921                   Register result = no_reg);
922   void Trunc_ul_d(FPURegister fd, Register rs, FPURegister scratch,
923                   Register result = no_reg);
924 
925   // Convert single to unsigned long.
926   void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
927                   Register result = no_reg);
928   void Trunc_ul_s(FPURegister fd, Register rs, FPURegister scratch,
929                   Register result = no_reg);
930 
931   void Trunc_w_d(FPURegister fd, FPURegister fs);
932   void Round_w_d(FPURegister fd, FPURegister fs);
933   void Floor_w_d(FPURegister fd, FPURegister fs);
934   void Ceil_w_d(FPURegister fd, FPURegister fs);
935 
936   // Preserve value of a NaN operand
937   void SubNanPreservePayloadAndSign_s(FPURegister fd, FPURegister fs,
938                                       FPURegister ft);
939   void SubNanPreservePayloadAndSign_d(FPURegister fd, FPURegister fs,
940                                       FPURegister ft);
941 
942   void Madd_d(FPURegister fd,
943               FPURegister fr,
944               FPURegister fs,
945               FPURegister ft,
946               FPURegister scratch);
947 
948   // Wrapper functions for the different cmp/branch types.
949   inline void BranchF32(Label* target, Label* nan, Condition cc,
950                         FPURegister cmp1, FPURegister cmp2,
951                         BranchDelaySlot bd = PROTECT) {
952     BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd);
953   }
954 
955   inline void BranchF64(Label* target, Label* nan, Condition cc,
956                         FPURegister cmp1, FPURegister cmp2,
957                         BranchDelaySlot bd = PROTECT) {
958     BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd);
959   }
960 
961   // Alternate (inline) version for better readability with USE_DELAY_SLOT.
BranchF64(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)962   inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan,
963                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
964     BranchF64(target, nan, cc, cmp1, cmp2, bd);
965   }
966 
BranchF32(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)967   inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan,
968                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
969     BranchF32(target, nan, cc, cmp1, cmp2, bd);
970   }
971 
972   // Alias functions for backward compatibility.
973   inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1,
974                       FPURegister cmp2, BranchDelaySlot bd = PROTECT) {
975     BranchF64(target, nan, cc, cmp1, cmp2, bd);
976   }
977 
BranchF(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)978   inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan,
979                       Condition cc, FPURegister cmp1, FPURegister cmp2) {
980     BranchF64(bd, target, nan, cc, cmp1, cmp2);
981   }
982 
983   // Truncates a double using a specific rounding mode, and writes the value
984   // to the result register.
985   // The except_flag will contain any exceptions caused by the instruction.
986   // If check_inexact is kDontCheckForInexactConversion, then the inexact
987   // exception is masked.
988   void EmitFPUTruncate(FPURoundingMode rounding_mode,
989                        Register result,
990                        DoubleRegister double_input,
991                        Register scratch,
992                        DoubleRegister double_scratch,
993                        Register except_flag,
994                        CheckForInexactConversion check_inexact
995                            = kDontCheckForInexactConversion);
996 
997   // Performs a truncating conversion of a floating point number as used by
998   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
999   // succeeds, otherwise falls through if result is saturated. On return
1000   // 'result' either holds answer, or is clobbered on fall through.
1001   //
1002   // Only public for the test code in test-code-stubs-arm.cc.
1003   void TryInlineTruncateDoubleToI(Register result,
1004                                   DoubleRegister input,
1005                                   Label* done);
1006 
1007   // Performs a truncating conversion of a floating point number as used by
1008   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1009   // Exits with 'result' holding the answer.
1010   void TruncateDoubleToI(Register result, DoubleRegister double_input);
1011 
1012   // Performs a truncating conversion of a heap number as used by
1013   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1014   // must be different registers. Exits with 'result' holding the answer.
1015   void TruncateHeapNumberToI(Register result, Register object);
1016 
1017   // Converts the smi or heap number in object to an int32 using the rules
1018   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1019   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1020   // different registers.
1021   void TruncateNumberToI(Register object,
1022                          Register result,
1023                          Register heap_number_map,
1024                          Register scratch,
1025                          Label* not_int32);
1026 
1027   // Loads the number from object into dst register.
1028   // If |object| is neither smi nor heap number, |not_number| is jumped to
1029   // with |object| still intact.
1030   void LoadNumber(Register object,
1031                   FPURegister dst,
1032                   Register heap_number_map,
1033                   Register scratch,
1034                   Label* not_number);
1035 
1036   // Loads the number from object into double_dst in the double format.
1037   // Control will jump to not_int32 if the value cannot be exactly represented
1038   // by a 32-bit integer.
1039   // Floating point value in the 32-bit integer range that are not exact integer
1040   // won't be loaded.
1041   void LoadNumberAsInt32Double(Register object,
1042                                DoubleRegister double_dst,
1043                                Register heap_number_map,
1044                                Register scratch1,
1045                                Register scratch2,
1046                                FPURegister double_scratch,
1047                                Label* not_int32);
1048 
1049   // Loads the number from object into dst as a 32-bit integer.
1050   // Control will jump to not_int32 if the object cannot be exactly represented
1051   // by a 32-bit integer.
1052   // Floating point value in the 32-bit integer range that are not exact integer
1053   // won't be converted.
1054   void LoadNumberAsInt32(Register object,
1055                          Register dst,
1056                          Register heap_number_map,
1057                          Register scratch1,
1058                          Register scratch2,
1059                          FPURegister double_scratch0,
1060                          FPURegister double_scratch1,
1061                          Label* not_int32);
1062 
1063   // Enter exit frame.
1064   // argc - argument count to be dropped by LeaveExitFrame.
1065   // save_doubles - saves FPU registers on stack, currently disabled.
1066   // stack_space - extra stack space.
1067   void EnterExitFrame(bool save_doubles,
1068                       int stack_space = 0);
1069 
1070   // Leave the current exit frame.
1071   void LeaveExitFrame(bool save_doubles, Register arg_count,
1072                       bool restore_context, bool do_return = NO_EMIT_RETURN,
1073                       bool argument_count_is_length = false);
1074 
1075   // Get the actual activation frame alignment for target environment.
1076   static int ActivationFrameAlignment();
1077 
1078   // Make sure the stack is aligned. Only emits code in debug mode.
1079   void AssertStackIsAligned();
1080 
1081   void LoadContext(Register dst, int context_chain_length);
1082 
1083   // Load the global object from the current context.
LoadGlobalObject(Register dst)1084   void LoadGlobalObject(Register dst) {
1085     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1086   }
1087 
1088   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1089   void LoadGlobalProxy(Register dst) {
1090     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1091   }
1092 
1093   // Conditionally load the cached Array transitioned map of type
1094   // transitioned_kind from the native context if the map in register
1095   // map_in_out is the cached Array map in the native context of
1096   // expected_kind.
1097   void LoadTransitionedArrayMapConditional(
1098       ElementsKind expected_kind,
1099       ElementsKind transitioned_kind,
1100       Register map_in_out,
1101       Register scratch,
1102       Label* no_map_match);
1103 
1104   void LoadNativeContextSlot(int index, Register dst);
1105 
1106   // Load the initial map from the global function. The registers
1107   // function and map can be the same, function is then overwritten.
1108   void LoadGlobalFunctionInitialMap(Register function,
1109                                     Register map,
1110                                     Register scratch);
1111 
InitializeRootRegister()1112   void InitializeRootRegister() {
1113     ExternalReference roots_array_start =
1114         ExternalReference::roots_array_start(isolate());
1115     li(kRootRegister, Operand(roots_array_start));
1116   }
1117 
1118   // -------------------------------------------------------------------------
1119   // JavaScript invokes.
1120 
1121   // Removes current frame and its arguments from the stack preserving
1122   // the arguments and a return address pushed to the stack for the next call.
1123   // Both |callee_args_count| and |caller_args_count_reg| do not include
1124   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1125   // is trashed.
1126   void PrepareForTailCall(const ParameterCount& callee_args_count,
1127                           Register caller_args_count_reg, Register scratch0,
1128                           Register scratch1);
1129 
1130   // Invoke the JavaScript function code by either calling or jumping.
1131   void InvokeFunctionCode(Register function, Register new_target,
1132                           const ParameterCount& expected,
1133                           const ParameterCount& actual, InvokeFlag flag,
1134                           const CallWrapper& call_wrapper);
1135 
1136   void FloodFunctionIfStepping(Register fun, Register new_target,
1137                                const ParameterCount& expected,
1138                                const ParameterCount& actual);
1139 
1140   // Invoke the JavaScript function in the given register. Changes the
1141   // current context to the context in the function before invoking.
1142   void InvokeFunction(Register function,
1143                       Register new_target,
1144                       const ParameterCount& actual,
1145                       InvokeFlag flag,
1146                       const CallWrapper& call_wrapper);
1147 
1148   void InvokeFunction(Register function,
1149                       const ParameterCount& expected,
1150                       const ParameterCount& actual,
1151                       InvokeFlag flag,
1152                       const CallWrapper& call_wrapper);
1153 
1154   void InvokeFunction(Handle<JSFunction> function,
1155                       const ParameterCount& expected,
1156                       const ParameterCount& actual,
1157                       InvokeFlag flag,
1158                       const CallWrapper& call_wrapper);
1159 
1160 
1161   void IsObjectJSStringType(Register object,
1162                             Register scratch,
1163                             Label* fail);
1164 
1165   void IsObjectNameType(Register object,
1166                         Register scratch,
1167                         Label* fail);
1168 
1169   // -------------------------------------------------------------------------
1170   // Debugger Support.
1171 
1172   void DebugBreak();
1173 
1174   // -------------------------------------------------------------------------
1175   // Exception handling.
1176 
1177   // Push a new stack handler and link into stack handler chain.
1178   void PushStackHandler();
1179 
1180   // Unlink the stack handler on top of the stack from the stack handler chain.
1181   // Must preserve the result register.
1182   void PopStackHandler();
1183 
1184   // Copies a number of bytes from src to dst. All registers are clobbered. On
1185   // exit src and dst will point to the place just after where the last byte was
1186   // read or written and length will be zero.
1187   void CopyBytes(Register src,
1188                  Register dst,
1189                  Register length,
1190                  Register scratch);
1191 
1192   // Initialize fields with filler values.  Fields starting at |current_address|
1193   // not including |end_address| are overwritten with the value in |filler|.  At
1194   // the end the loop, |current_address| takes the value of |end_address|.
1195   void InitializeFieldsWithFiller(Register current_address,
1196                                   Register end_address, Register filler);
1197 
1198   // -------------------------------------------------------------------------
1199   // Support functions.
1200 
1201   // Machine code version of Map::GetConstructor().
1202   // |temp| holds |result|'s map when done, and |temp2| its instance type.
1203   void GetMapConstructor(Register result, Register map, Register temp,
1204                          Register temp2);
1205 
1206   // Try to get function prototype of a function and puts the value in
1207   // the result register. Checks that the function really is a
1208   // function and jumps to the miss label if the fast checks fail. The
1209   // function register will be untouched; the other registers may be
1210   // clobbered.
1211   void TryGetFunctionPrototype(Register function, Register result,
1212                                Register scratch, Label* miss);
1213 
1214   void GetObjectType(Register function,
1215                      Register map,
1216                      Register type_reg);
1217 
GetInstanceType(Register object_map,Register object_instance_type)1218   void GetInstanceType(Register object_map, Register object_instance_type) {
1219     lbu(object_instance_type,
1220         FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1221   }
1222 
1223   // Check if a map for a JSObject indicates that the object has fast elements.
1224   // Jump to the specified label if it does not.
1225   void CheckFastElements(Register map,
1226                          Register scratch,
1227                          Label* fail);
1228 
1229   // Check if a map for a JSObject indicates that the object can have both smi
1230   // and HeapObject elements.  Jump to the specified label if it does not.
1231   void CheckFastObjectElements(Register map,
1232                                Register scratch,
1233                                Label* fail);
1234 
1235   // Check if a map for a JSObject indicates that the object has fast smi only
1236   // elements.  Jump to the specified label if it does not.
1237   void CheckFastSmiElements(Register map,
1238                             Register scratch,
1239                             Label* fail);
1240 
1241   // Check to see if maybe_number can be stored as a double in
1242   // FastDoubleElements. If it can, store it at the index specified by key in
1243   // the FastDoubleElements array elements. Otherwise jump to fail.
1244   void StoreNumberToDoubleElements(Register value_reg,
1245                                    Register key_reg,
1246                                    Register elements_reg,
1247                                    Register scratch1,
1248                                    Register scratch2,
1249                                    Label* fail,
1250                                    int elements_offset = 0);
1251 
1252   // Compare an object's map with the specified map and its transitioned
1253   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1254   // "branch_to" if the result of the comparison is "cond". If multiple map
1255   // compares are required, the compare sequences branches to early_success.
1256   void CompareMapAndBranch(Register obj,
1257                            Register scratch,
1258                            Handle<Map> map,
1259                            Label* early_success,
1260                            Condition cond,
1261                            Label* branch_to);
1262 
1263   // As above, but the map of the object is already loaded into the register
1264   // which is preserved by the code generated.
1265   void CompareMapAndBranch(Register obj_map,
1266                            Handle<Map> map,
1267                            Label* early_success,
1268                            Condition cond,
1269                            Label* branch_to);
1270 
1271   // Check if the map of an object is equal to a specified map and branch to
1272   // label if not. Skip the smi check if not required (object is known to be a
1273   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1274   // against maps that are ElementsKind transition maps of the specificed map.
1275   void CheckMap(Register obj,
1276                 Register scratch,
1277                 Handle<Map> map,
1278                 Label* fail,
1279                 SmiCheckType smi_check_type);
1280 
1281 
1282   void CheckMap(Register obj,
1283                 Register scratch,
1284                 Heap::RootListIndex index,
1285                 Label* fail,
1286                 SmiCheckType smi_check_type);
1287 
1288   // Check if the map of an object is equal to a specified weak map and branch
1289   // to a specified target if equal. Skip the smi check if not required
1290   // (object is known to be a heap object)
1291   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1292                        Handle<WeakCell> cell, Handle<Code> success,
1293                        SmiCheckType smi_check_type);
1294 
1295   // If the value is a NaN, canonicalize the value else, do nothing.
1296   void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
1297 
1298 
1299   // Get value of the weak cell.
1300   void GetWeakValue(Register value, Handle<WeakCell> cell);
1301 
1302   // Load the value of the weak cell in the value register. Branch to the
1303   // given miss label is the weak cell was cleared.
1304   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1305 
1306   // Load and check the instance type of an object for being a string.
1307   // Loads the type into the second argument register.
1308   // Returns a condition that will be enabled if the object was a string.
IsObjectStringType(Register obj,Register type,Register result)1309   Condition IsObjectStringType(Register obj,
1310                                Register type,
1311                                Register result) {
1312     ld(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1313     lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1314     And(type, type, Operand(kIsNotStringMask));
1315     DCHECK_EQ(0u, kStringTag);
1316     return eq;
1317   }
1318 
1319 
1320   // Picks out an array index from the hash field.
1321   // Register use:
1322   //   hash - holds the index's hash. Clobbered.
1323   //   index - holds the overwritten index on exit.
1324   void IndexFromHash(Register hash, Register index);
1325 
1326   // Get the number of least significant bits from a register.
1327   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1328   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1329 
1330   // Load the value of a number object into a FPU double register. If the
1331   // object is not a number a jump to the label not_number is performed
1332   // and the FPU double register is unchanged.
1333   void ObjectToDoubleFPURegister(
1334       Register object,
1335       FPURegister value,
1336       Register scratch1,
1337       Register scratch2,
1338       Register heap_number_map,
1339       Label* not_number,
1340       ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1341 
1342   // Load the value of a smi object into a FPU double register. The register
1343   // scratch1 can be the same register as smi in which case smi will hold the
1344   // untagged value afterwards.
1345   void SmiToDoubleFPURegister(Register smi,
1346                               FPURegister value,
1347                               Register scratch1);
1348 
1349   // -------------------------------------------------------------------------
1350   // Overflow handling functions.
1351   // Usage: first call the appropriate arithmetic function, then call one of the
1352   // jump functions with the overflow_dst register as the second parameter.
1353 
1354   inline void AddBranchOvf(Register dst, Register left, const Operand& right,
1355                            Label* overflow_label, Register scratch = at) {
1356     AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1357   }
1358 
1359   inline void AddBranchNoOvf(Register dst, Register left, const Operand& right,
1360                              Label* no_overflow_label, Register scratch = at) {
1361     AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1362   }
1363 
1364   void AddBranchOvf(Register dst, Register left, const Operand& right,
1365                     Label* overflow_label, Label* no_overflow_label,
1366                     Register scratch = at);
1367 
1368   void AddBranchOvf(Register dst, Register left, Register right,
1369                     Label* overflow_label, Label* no_overflow_label,
1370                     Register scratch = at);
1371 
1372   inline void SubBranchOvf(Register dst, Register left, const Operand& right,
1373                            Label* overflow_label, Register scratch = at) {
1374     SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1375   }
1376 
1377   inline void SubBranchNoOvf(Register dst, Register left, const Operand& right,
1378                              Label* no_overflow_label, Register scratch = at) {
1379     SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1380   }
1381 
1382   void SubBranchOvf(Register dst, Register left, const Operand& right,
1383                     Label* overflow_label, Label* no_overflow_label,
1384                     Register scratch = at);
1385 
1386   void SubBranchOvf(Register dst, Register left, Register right,
1387                     Label* overflow_label, Label* no_overflow_label,
1388                     Register scratch = at);
1389 
1390   inline void DaddBranchOvf(Register dst, Register left, const Operand& right,
1391                             Label* overflow_label, Register scratch = at) {
1392     DaddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1393   }
1394 
1395   inline void DaddBranchNoOvf(Register dst, Register left, const Operand& right,
1396                               Label* no_overflow_label, Register scratch = at) {
1397     DaddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1398   }
1399 
1400   void DaddBranchOvf(Register dst, Register left, const Operand& right,
1401                      Label* overflow_label, Label* no_overflow_label,
1402                      Register scratch = at);
1403 
1404   void DaddBranchOvf(Register dst, Register left, Register right,
1405                      Label* overflow_label, Label* no_overflow_label,
1406                      Register scratch = at);
1407 
1408   inline void DsubBranchOvf(Register dst, Register left, const Operand& right,
1409                             Label* overflow_label, Register scratch = at) {
1410     DsubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1411   }
1412 
1413   inline void DsubBranchNoOvf(Register dst, Register left, const Operand& right,
1414                               Label* no_overflow_label, Register scratch = at) {
1415     DsubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1416   }
1417 
1418   void DsubBranchOvf(Register dst, Register left, const Operand& right,
1419                      Label* overflow_label, Label* no_overflow_label,
1420                      Register scratch = at);
1421 
1422   void DsubBranchOvf(Register dst, Register left, Register right,
1423                      Label* overflow_label, Label* no_overflow_label,
1424                      Register scratch = at);
1425 
1426   void BranchOnOverflow(Label* label,
1427                         Register overflow_check,
1428                         BranchDelaySlot bd = PROTECT) {
1429     Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1430   }
1431 
1432   void BranchOnNoOverflow(Label* label,
1433                           Register overflow_check,
1434                           BranchDelaySlot bd = PROTECT) {
1435     Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1436   }
1437 
1438   void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1439     Ret(lt, overflow_check, Operand(zero_reg), bd);
1440   }
1441 
1442   void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1443     Ret(ge, overflow_check, Operand(zero_reg), bd);
1444   }
1445 
1446   // -------------------------------------------------------------------------
1447   // Runtime calls.
1448 
1449   // See comments at the beginning of CEntryStub::Generate.
PrepareCEntryArgs(int num_args)1450   inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1451 
PrepareCEntryFunction(const ExternalReference & ref)1452   inline void PrepareCEntryFunction(const ExternalReference& ref) {
1453     li(a1, Operand(ref));
1454   }
1455 
1456 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1457 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1458 
1459   // Call a code stub.
1460   void CallStub(CodeStub* stub,
1461                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1462                 COND_ARGS);
1463 
1464   // Tail call a code stub (jump).
1465   void TailCallStub(CodeStub* stub, COND_ARGS);
1466 
1467 #undef COND_ARGS
1468 
1469   void CallJSExitStub(CodeStub* stub);
1470 
1471   // Call a runtime routine.
1472   void CallRuntime(const Runtime::Function* f, int num_arguments,
1473                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1474                    BranchDelaySlot bd = PROTECT);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1475   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1476     const Runtime::Function* function = Runtime::FunctionForId(fid);
1477     CallRuntime(function, function->nargs, kSaveFPRegs);
1478   }
1479 
1480   // Convenience function: Same as above, but takes the fid instead.
1481   void CallRuntime(Runtime::FunctionId fid,
1482                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1483                    BranchDelaySlot bd = PROTECT) {
1484     const Runtime::Function* function = Runtime::FunctionForId(fid);
1485     CallRuntime(function, function->nargs, save_doubles, bd);
1486   }
1487 
1488   // Convenience function: Same as above, but takes the fid instead.
1489   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1490                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1491                    BranchDelaySlot bd = PROTECT) {
1492     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles, bd);
1493   }
1494 
1495   // Convenience function: call an external reference.
1496   void CallExternalReference(const ExternalReference& ext,
1497                              int num_arguments,
1498                              BranchDelaySlot bd = PROTECT);
1499 
1500   // Convenience function: tail call a runtime routine (jump).
1501   void TailCallRuntime(Runtime::FunctionId fid);
1502 
1503   int CalculateStackPassedWords(int num_reg_arguments,
1504                                 int num_double_arguments);
1505 
1506   // Before calling a C-function from generated code, align arguments on stack
1507   // and add space for the four mips argument slots.
1508   // After aligning the frame, non-register arguments must be stored on the
1509   // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1510   // The argument count assumes all arguments are word sized.
1511   // Some compilers/platforms require the stack to be aligned when calling
1512   // C++ code.
1513   // Needs a scratch register to do some arithmetic. This register will be
1514   // trashed.
1515   void PrepareCallCFunction(int num_reg_arguments,
1516                             int num_double_registers,
1517                             Register scratch);
1518   void PrepareCallCFunction(int num_reg_arguments,
1519                             Register scratch);
1520 
1521   // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1522   // Arguments 5..n are stored to stack using following:
1523   //  sw(a4, CFunctionArgumentOperand(5));
1524 
1525   // Calls a C function and cleans up the space for arguments allocated
1526   // by PrepareCallCFunction. The called function is not allowed to trigger a
1527   // garbage collection, since that might move the code and invalidate the
1528   // return address (unless this is somehow accounted for by the called
1529   // function).
1530   void CallCFunction(ExternalReference function, int num_arguments);
1531   void CallCFunction(Register function, int num_arguments);
1532   void CallCFunction(ExternalReference function,
1533                      int num_reg_arguments,
1534                      int num_double_arguments);
1535   void CallCFunction(Register function,
1536                      int num_reg_arguments,
1537                      int num_double_arguments);
1538   void MovFromFloatResult(DoubleRegister dst);
1539   void MovFromFloatParameter(DoubleRegister dst);
1540 
1541   // There are two ways of passing double arguments on MIPS, depending on
1542   // whether soft or hard floating point ABI is used. These functions
1543   // abstract parameter passing for the three different ways we call
1544   // C functions from generated code.
1545   void MovToFloatParameter(DoubleRegister src);
1546   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1547   void MovToFloatResult(DoubleRegister src);
1548 
1549   // Jump to the builtin routine.
1550   void JumpToExternalReference(const ExternalReference& builtin,
1551                                BranchDelaySlot bd = PROTECT);
1552 
1553   struct Unresolved {
1554     int pc;
1555     uint32_t flags;  // See Bootstrapper::FixupFlags decoders/encoders.
1556     const char* name;
1557   };
1558 
CodeObject()1559   Handle<Object> CodeObject() {
1560     DCHECK(!code_object_.is_null());
1561     return code_object_;
1562   }
1563 
1564   // Emit code for a truncating division by a constant. The dividend register is
1565   // unchanged and at gets clobbered. Dividend and result must be different.
1566   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1567 
1568   // -------------------------------------------------------------------------
1569   // StatsCounter support.
1570 
1571   void SetCounter(StatsCounter* counter, int value,
1572                   Register scratch1, Register scratch2);
1573   void IncrementCounter(StatsCounter* counter, int value,
1574                         Register scratch1, Register scratch2);
1575   void DecrementCounter(StatsCounter* counter, int value,
1576                         Register scratch1, Register scratch2);
1577 
1578 
1579   // -------------------------------------------------------------------------
1580   // Debugging.
1581 
1582   // Calls Abort(msg) if the condition cc is not satisfied.
1583   // Use --debug_code to enable.
1584   void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1585   void AssertFastElements(Register elements);
1586 
1587   // Like Assert(), but always enabled.
1588   void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1589 
1590   // Print a message to stdout and abort execution.
1591   void Abort(BailoutReason msg);
1592 
1593   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1594   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1595   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1596   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1597   bool has_frame() { return has_frame_; }
1598   inline bool AllowThisStubCall(CodeStub* stub);
1599 
1600   // ---------------------------------------------------------------------------
1601   // Number utilities.
1602 
1603   // Check whether the value of reg is a power of two and not zero. If not
1604   // control continues at the label not_power_of_two. If reg is a power of two
1605   // the register scratch contains the value of (reg - 1) when control falls
1606   // through.
1607   void JumpIfNotPowerOfTwoOrZero(Register reg,
1608                                  Register scratch,
1609                                  Label* not_power_of_two_or_zero);
1610 
1611   // -------------------------------------------------------------------------
1612   // Smi utilities.
1613 
1614   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1615   void SmiTagCheckOverflow(Register reg, Register overflow);
1616   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1617 
SmiTag(Register dst,Register src)1618   void SmiTag(Register dst, Register src) {
1619     STATIC_ASSERT(kSmiTag == 0);
1620     if (SmiValuesAre32Bits()) {
1621       STATIC_ASSERT(kSmiShift == 32);
1622       dsll32(dst, src, 0);
1623     } else {
1624       Addu(dst, src, src);
1625     }
1626   }
1627 
SmiTag(Register reg)1628   void SmiTag(Register reg) {
1629     SmiTag(reg, reg);
1630   }
1631 
1632   // Try to convert int32 to smi. If the value is to large, preserve
1633   // the original value and jump to not_a_smi. Destroys scratch and
1634   // sets flags.
TrySmiTag(Register reg,Register scratch,Label * not_a_smi)1635   void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1636     TrySmiTag(reg, reg, scratch, not_a_smi);
1637   }
1638 
TrySmiTag(Register dst,Register src,Register scratch,Label * not_a_smi)1639   void TrySmiTag(Register dst,
1640                  Register src,
1641                  Register scratch,
1642                  Label* not_a_smi) {
1643     if (SmiValuesAre32Bits()) {
1644       SmiTag(dst, src);
1645     } else {
1646       SmiTagCheckOverflow(at, src, scratch);
1647       BranchOnOverflow(not_a_smi, scratch);
1648       mov(dst, at);
1649     }
1650   }
1651 
SmiUntag(Register dst,Register src)1652   void SmiUntag(Register dst, Register src) {
1653     if (SmiValuesAre32Bits()) {
1654       STATIC_ASSERT(kSmiShift == 32);
1655       dsra32(dst, src, 0);
1656     } else {
1657       sra(dst, src, kSmiTagSize);
1658     }
1659   }
1660 
SmiUntag(Register reg)1661   void SmiUntag(Register reg) {
1662     SmiUntag(reg, reg);
1663   }
1664 
1665   // Left-shifted from int32 equivalent of Smi.
SmiScale(Register dst,Register src,int scale)1666   void SmiScale(Register dst, Register src, int scale) {
1667     if (SmiValuesAre32Bits()) {
1668       // The int portion is upper 32-bits of 64-bit word.
1669       dsra(dst, src, kSmiShift - scale);
1670     } else {
1671       DCHECK(scale >= kSmiTagSize);
1672       sll(dst, src, scale - kSmiTagSize);
1673     }
1674   }
1675 
1676   // Combine load with untagging or scaling.
1677   void SmiLoadUntag(Register dst, MemOperand src);
1678 
1679   void SmiLoadScale(Register dst, MemOperand src, int scale);
1680 
1681   // Returns 2 values: the Smi and a scaled version of the int within the Smi.
1682   void SmiLoadWithScale(Register d_smi,
1683                         Register d_scaled,
1684                         MemOperand src,
1685                         int scale);
1686 
1687   // Returns 2 values: the untagged Smi (int32) and scaled version of that int.
1688   void SmiLoadUntagWithScale(Register d_int,
1689                              Register d_scaled,
1690                              MemOperand src,
1691                              int scale);
1692 
1693 
1694   // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1695   inline void SmiTst(Register value, Register scratch) {
1696     And(scratch, value, Operand(kSmiTagMask));
1697   }
NonNegativeSmiTst(Register value,Register scratch)1698   inline void NonNegativeSmiTst(Register value, Register scratch) {
1699     And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1700   }
1701 
1702   // Untag the source value into destination and jump if source is a smi.
1703   // Source and destination can be the same register.
1704   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1705 
1706   // Untag the source value into destination and jump if source is not a smi.
1707   // Source and destination can be the same register.
1708   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1709 
1710   // Jump the register contains a smi.
1711   void JumpIfSmi(Register value,
1712                  Label* smi_label,
1713                  Register scratch = at,
1714                  BranchDelaySlot bd = PROTECT);
1715 
1716   // Jump if the register contains a non-smi.
1717   void JumpIfNotSmi(Register value,
1718                     Label* not_smi_label,
1719                     Register scratch = at,
1720                     BranchDelaySlot bd = PROTECT);
1721 
1722   // Jump if either of the registers contain a non-smi.
1723   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1724   // Jump if either of the registers contain a smi.
1725   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1726 
1727   // Abort execution if argument is a number, enabled via --debug-code.
1728   void AssertNotNumber(Register object);
1729 
1730   // Abort execution if argument is a smi, enabled via --debug-code.
1731   void AssertNotSmi(Register object);
1732   void AssertSmi(Register object);
1733 
1734   // Abort execution if argument is not a string, enabled via --debug-code.
1735   void AssertString(Register object);
1736 
1737   // Abort execution if argument is not a name, enabled via --debug-code.
1738   void AssertName(Register object);
1739 
1740   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1741   void AssertFunction(Register object);
1742 
1743   // Abort execution if argument is not a JSBoundFunction,
1744   // enabled via --debug-code.
1745   void AssertBoundFunction(Register object);
1746 
1747   // Abort execution if argument is not a JSGeneratorObject,
1748   // enabled via --debug-code.
1749   void AssertGeneratorObject(Register object);
1750 
1751   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1752   void AssertReceiver(Register object);
1753 
1754   // Abort execution if argument is not undefined or an AllocationSite, enabled
1755   // via --debug-code.
1756   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1757 
1758   // Abort execution if reg is not the root value with the given index,
1759   // enabled via --debug-code.
1760   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1761 
1762   // ---------------------------------------------------------------------------
1763   // HeapNumber utilities.
1764 
1765   void JumpIfNotHeapNumber(Register object,
1766                            Register heap_number_map,
1767                            Register scratch,
1768                            Label* on_not_heap_number);
1769 
1770   // -------------------------------------------------------------------------
1771   // String utilities.
1772 
1773   // Checks if both instance types are sequential one-byte strings and jumps to
1774   // label if either is not.
1775   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1776       Register first_object_instance_type, Register second_object_instance_type,
1777       Register scratch1, Register scratch2, Label* failure);
1778 
1779   // Check if instance type is sequential one-byte string and jump to label if
1780   // it is not.
1781   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1782                                                 Label* failure);
1783 
1784   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1785 
1786   void EmitSeqStringSetCharCheck(Register string,
1787                                  Register index,
1788                                  Register value,
1789                                  Register scratch,
1790                                  uint32_t encoding_mask);
1791 
1792   // Checks if both objects are sequential one-byte strings and jumps to label
1793   // if either is not. Assumes that neither object is a smi.
1794   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1795                                                     Register second,
1796                                                     Register scratch1,
1797                                                     Register scratch2,
1798                                                     Label* failure);
1799 
1800   // Checks if both objects are sequential one-byte strings and jumps to label
1801   // if either is not.
1802   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1803                                              Register scratch1,
1804                                              Register scratch2,
1805                                              Label* not_flat_one_byte_strings);
1806 
1807   void ClampUint8(Register output_reg, Register input_reg);
1808 
1809   void ClampDoubleToUint8(Register result_reg,
1810                           DoubleRegister input_reg,
1811                           DoubleRegister temp_double_reg);
1812 
1813 
1814   void LoadInstanceDescriptors(Register map, Register descriptors);
1815   void EnumLength(Register dst, Register map);
1816   void NumberOfOwnDescriptors(Register dst, Register map);
1817   void LoadAccessor(Register dst, Register holder, int accessor_index,
1818                     AccessorComponent accessor);
1819 
1820   template<typename Field>
DecodeField(Register dst,Register src)1821   void DecodeField(Register dst, Register src) {
1822     Ext(dst, src, Field::kShift, Field::kSize);
1823   }
1824 
1825   template<typename Field>
DecodeField(Register reg)1826   void DecodeField(Register reg) {
1827     DecodeField<Field>(reg, reg);
1828   }
1829 
1830   template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1831   void DecodeFieldToSmi(Register dst, Register src) {
1832     static const int shift = Field::kShift;
1833     static const int mask = Field::kMask >> shift;
1834     dsrl(dst, src, shift);
1835     And(dst, dst, Operand(mask));
1836     dsll32(dst, dst, 0);
1837   }
1838 
1839   template<typename Field>
DecodeFieldToSmi(Register reg)1840   void DecodeFieldToSmi(Register reg) {
1841     DecodeField<Field>(reg, reg);
1842   }
1843   // Generates function and stub prologue code.
1844   void StubPrologue(StackFrame::Type type);
1845   void Prologue(bool code_pre_aging);
1846 
1847   // Load the type feedback vector from a JavaScript frame.
1848   void EmitLoadTypeFeedbackVector(Register vector);
1849 
1850   // Activation support.
1851   void EnterFrame(StackFrame::Type type);
1852   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1853   void LeaveFrame(StackFrame::Type type);
1854 
1855   // Expects object in a0 and returns map with validated enum cache
1856   // in a0.  Assumes that any other register can be used as a scratch.
1857   void CheckEnumCache(Label* call_runtime);
1858 
1859   // AllocationMemento support. Arrays may have an associated AllocationMemento
1860   // object that can be checked for in order to pretransition to another type.
1861   // On entry, receiver_reg should point to the array object. scratch_reg gets
1862   // clobbered. If no info is present jump to no_memento_found, otherwise fall
1863   // through.
1864   void TestJSArrayForAllocationMemento(Register receiver_reg,
1865                                        Register scratch_reg,
1866                                        Label* no_memento_found);
1867 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)1868   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1869                                          Register scratch_reg,
1870                                          Label* memento_found) {
1871     Label no_memento_found;
1872     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1873                                     &no_memento_found);
1874     Branch(memento_found);
1875     bind(&no_memento_found);
1876   }
1877 
1878   // Jumps to found label if a prototype map has dictionary elements.
1879   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1880                                         Register scratch1, Label* found);
1881 
IsDoubleZeroRegSet()1882   bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
1883 
1884  private:
1885   void CallCFunctionHelper(Register function,
1886                            int num_reg_arguments,
1887                            int num_double_arguments);
1888 
1889   inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
1890   inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
1891   void BranchShortHelperR6(int32_t offset, Label* L);
1892   void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
1893   bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
1894                            Register rs, const Operand& rt);
1895   bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
1896                          const Operand& rt, BranchDelaySlot bdslot);
1897   bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
1898                         const Operand& rt, BranchDelaySlot bdslot);
1899 
1900   void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
1901   void BranchAndLinkShortHelper(int16_t offset, Label* L,
1902                                 BranchDelaySlot bdslot);
1903   void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
1904   void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1905   bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
1906                                   Register rs, const Operand& rt);
1907   bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
1908                                 Register rs, const Operand& rt,
1909                                 BranchDelaySlot bdslot);
1910   bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
1911                                Register rs, const Operand& rt,
1912                                BranchDelaySlot bdslot);
1913   void BranchLong(Label* L, BranchDelaySlot bdslot);
1914   void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
1915 
1916   // Common implementation of BranchF functions for the different formats.
1917   void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan,
1918                      Condition cc, FPURegister cmp1, FPURegister cmp2,
1919                      BranchDelaySlot bd = PROTECT);
1920 
1921   void BranchShortF(SecondaryField sizeField, Label* target, Condition cc,
1922                     FPURegister cmp1, FPURegister cmp2,
1923                     BranchDelaySlot bd = PROTECT);
1924 
1925 
1926   // Helper functions for generating invokes.
1927   void InvokePrologue(const ParameterCount& expected,
1928                       const ParameterCount& actual,
1929                       Label* done,
1930                       bool* definitely_mismatches,
1931                       InvokeFlag flag,
1932                       const CallWrapper& call_wrapper);
1933 
1934   void InitializeNewString(Register string,
1935                            Register length,
1936                            Heap::RootListIndex map_index,
1937                            Register scratch1,
1938                            Register scratch2);
1939 
1940   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1941   void InNewSpace(Register object, Register scratch,
1942                   Condition cond,  // ne for new space, eq otherwise.
1943                   Label* branch);
1944 
1945   // Helper for finding the mark bits for an address.  Afterwards, the
1946   // bitmap register points at the word with the mark bits and the mask
1947   // the position of the first bit.  Leaves addr_reg unchanged.
1948   inline void GetMarkBits(Register addr_reg,
1949                           Register bitmap_reg,
1950                           Register mask_reg);
1951 
1952   // Compute memory operands for safepoint stack slots.
1953   static int SafepointRegisterStackIndex(int reg_code);
1954   MemOperand SafepointRegisterSlot(Register reg);
1955   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1956 
1957   bool generating_stub_;
1958   bool has_frame_;
1959   bool has_double_zero_reg_set_;
1960   // This handle will be patched with the code object on installation.
1961   Handle<Object> code_object_;
1962 
1963   // Needs access to SafepointRegisterStackIndex for compiled frame
1964   // traversal.
1965   friend class StandardFrame;
1966 };
1967 
1968 
1969 // The code patcher is used to patch (typically) small parts of code e.g. for
1970 // debugging and other types of instrumentation. When using the code patcher
1971 // the exact number of bytes specified must be emitted. It is not legal to emit
1972 // relocation information. If any of these constraints are violated it causes
1973 // an assertion to fail.
1974 class CodePatcher {
1975  public:
1976   enum FlushICache {
1977     FLUSH,
1978     DONT_FLUSH
1979   };
1980 
1981   CodePatcher(Isolate* isolate, byte* address, int instructions,
1982               FlushICache flush_cache = FLUSH);
1983   ~CodePatcher();
1984 
1985   // Macro assembler to emit code.
masm()1986   MacroAssembler* masm() { return &masm_; }
1987 
1988   // Emit an instruction directly.
1989   void Emit(Instr instr);
1990 
1991   // Emit an address directly.
1992   void Emit(Address addr);
1993 
1994   // Change the condition part of an instruction leaving the rest of the current
1995   // instruction unchanged.
1996   void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode);
1997 
1998  private:
1999   byte* address_;  // The address of the code being patched.
2000   int size_;  // Number of bytes of the expected patch size.
2001   MacroAssembler masm_;  // Macro assembler used to generate the code.
2002   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
2003 };
2004 
2005 template <typename Func>
GenerateSwitchTable(Register index,size_t case_count,Func GetLabelFunction)2006 void MacroAssembler::GenerateSwitchTable(Register index, size_t case_count,
2007                                          Func GetLabelFunction) {
2008   // Ensure that dd-ed labels following this instruction use 8 bytes aligned
2009   // addresses.
2010   if (kArchVariant >= kMips64r6) {
2011     BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + 6);
2012     // Opposite of Align(8) as we have odd number of instructions in this case.
2013     if ((pc_offset() & 7) == 0) {
2014       nop();
2015     }
2016     addiupc(at, 5);
2017     Dlsa(at, at, index, kPointerSizeLog2);
2018     ld(at, MemOperand(at));
2019   } else {
2020     Label here;
2021     BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 + 11);
2022     Align(8);
2023     push(ra);
2024     bal(&here);
2025     dsll(at, index, kPointerSizeLog2);  // Branch delay slot.
2026     bind(&here);
2027     daddu(at, at, ra);
2028     pop(ra);
2029     ld(at, MemOperand(at, 6 * v8::internal::Assembler::kInstrSize));
2030   }
2031   jr(at);
2032   nop();  // Branch delay slot nop.
2033   for (size_t index = 0; index < case_count; ++index) {
2034     dd(GetLabelFunction(index));
2035   }
2036 }
2037 
2038 #ifdef GENERATED_CODE_COVERAGE
2039 #define CODE_COVERAGE_STRINGIFY(x) #x
2040 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
2041 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
2042 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
2043 #else
2044 #define ACCESS_MASM(masm) masm->
2045 #endif
2046 
2047 }  // namespace internal
2048 }  // namespace v8
2049 
2050 #endif  // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
2051