• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 
6 // Declares a Simulator for PPC instructions if we are not generating a native
7 // PPC binary. This Simulator allows us to run and debug PPC code generation on
8 // regular desktop machines.
9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10 // which will start execution in the Simulator or forwards to the real entry
11 // on a PPC HW platform.
12 
13 #ifndef V8_PPC_SIMULATOR_PPC_H_
14 #define V8_PPC_SIMULATOR_PPC_H_
15 
16 #include "src/allocation.h"
17 
18 #if !defined(USE_SIMULATOR)
19 // Running without a simulator on a native ppc platform.
20 
21 namespace v8 {
22 namespace internal {
23 
24 // When running without a simulator we call the entry directly.
25 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
26   (entry(p0, p1, p2, p3, p4))
27 
28 typedef int (*ppc_regexp_matcher)(String*, int, const byte*, const byte*, int*,
29                                   int, Address, int, void*, Isolate*);
30 
31 
32 // Call the generated regexp code directly. The code at the entry address
33 // should act as a function matching the type ppc_regexp_matcher.
34 // The ninth argument is a dummy that reserves the space used for
35 // the return address added by the ExitFrame in native calls.
36 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
37                                    p7, p8)                                     \
38   (FUNCTION_CAST<ppc_regexp_matcher>(entry)(p0, p1, p2, p3, p4, p5, p6, p7,    \
39                                             NULL, p8))
40 
41 // The stack limit beyond which we will throw stack overflow errors in
42 // generated code. Because generated code on ppc uses the C stack, we
43 // just use the C stack limit.
44 class SimulatorStack : public v8::internal::AllStatic {
45  public:
JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)46   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
47                                             uintptr_t c_limit) {
48     USE(isolate);
49     return c_limit;
50   }
51 
RegisterCTryCatch(v8::internal::Isolate * isolate,uintptr_t try_catch_address)52   static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
53                                             uintptr_t try_catch_address) {
54     USE(isolate);
55     return try_catch_address;
56   }
57 
UnregisterCTryCatch(v8::internal::Isolate * isolate)58   static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
59     USE(isolate);
60   }
61 };
62 }  // namespace internal
63 }  // namespace v8
64 
65 #else  // !defined(USE_SIMULATOR)
66 // Running with a simulator.
67 
68 #include "src/assembler.h"
69 #include "src/base/hashmap.h"
70 #include "src/ppc/constants-ppc.h"
71 
72 namespace v8 {
73 namespace internal {
74 
75 class CachePage {
76  public:
77   static const int LINE_VALID = 0;
78   static const int LINE_INVALID = 1;
79 
80   static const int kPageShift = 12;
81   static const int kPageSize = 1 << kPageShift;
82   static const int kPageMask = kPageSize - 1;
83   static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
84   static const int kLineLength = 1 << kLineShift;
85   static const int kLineMask = kLineLength - 1;
86 
CachePage()87   CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }
88 
ValidityByte(int offset)89   char* ValidityByte(int offset) {
90     return &validity_map_[offset >> kLineShift];
91   }
92 
CachedData(int offset)93   char* CachedData(int offset) { return &data_[offset]; }
94 
95  private:
96   char data_[kPageSize];  // The cached data.
97   static const int kValidityMapSize = kPageSize >> kLineShift;
98   char validity_map_[kValidityMapSize];  // One byte per line.
99 };
100 
101 
102 class Simulator {
103  public:
104   friend class PPCDebugger;
105   enum Register {
106     no_reg = -1,
107     r0 = 0,
108     sp,
109     r2,
110     r3,
111     r4,
112     r5,
113     r6,
114     r7,
115     r8,
116     r9,
117     r10,
118     r11,
119     r12,
120     r13,
121     r14,
122     r15,
123     r16,
124     r17,
125     r18,
126     r19,
127     r20,
128     r21,
129     r22,
130     r23,
131     r24,
132     r25,
133     r26,
134     r27,
135     r28,
136     r29,
137     r30,
138     fp,
139     kNumGPRs = 32,
140     d0 = 0,
141     d1,
142     d2,
143     d3,
144     d4,
145     d5,
146     d6,
147     d7,
148     d8,
149     d9,
150     d10,
151     d11,
152     d12,
153     d13,
154     d14,
155     d15,
156     d16,
157     d17,
158     d18,
159     d19,
160     d20,
161     d21,
162     d22,
163     d23,
164     d24,
165     d25,
166     d26,
167     d27,
168     d28,
169     d29,
170     d30,
171     d31,
172     kNumFPRs = 32
173   };
174 
175   explicit Simulator(Isolate* isolate);
176   ~Simulator();
177 
178   // The currently executing Simulator instance. Potentially there can be one
179   // for each native thread.
180   static Simulator* current(v8::internal::Isolate* isolate);
181 
182   // Accessors for register state.
183   void set_register(int reg, intptr_t value);
184   intptr_t get_register(int reg) const;
185   double get_double_from_register_pair(int reg);
set_d_register_from_double(int dreg,const double dbl)186   void set_d_register_from_double(int dreg, const double dbl) {
187     DCHECK(dreg >= 0 && dreg < kNumFPRs);
188     *bit_cast<double*>(&fp_registers_[dreg]) = dbl;
189   }
get_double_from_d_register(int dreg)190   double get_double_from_d_register(int dreg) {
191     DCHECK(dreg >= 0 && dreg < kNumFPRs);
192     return *bit_cast<double*>(&fp_registers_[dreg]);
193   }
set_d_register(int dreg,int64_t value)194   void set_d_register(int dreg, int64_t value) {
195     DCHECK(dreg >= 0 && dreg < kNumFPRs);
196     fp_registers_[dreg] = value;
197   }
get_d_register(int dreg)198   int64_t get_d_register(int dreg) {
199     DCHECK(dreg >= 0 && dreg < kNumFPRs);
200     return fp_registers_[dreg];
201   }
202 
203   // Special case of set_register and get_register to access the raw PC value.
204   void set_pc(intptr_t value);
205   intptr_t get_pc() const;
206 
get_sp()207   Address get_sp() const {
208     return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
209   }
210 
211   // Accessor to the internal simulator stack area.
212   uintptr_t StackLimit(uintptr_t c_limit) const;
213 
214   // Executes PPC instructions until the PC reaches end_sim_pc.
215   void Execute();
216 
217   // Call on program start.
218   static void Initialize(Isolate* isolate);
219 
220   static void TearDown(base::HashMap* i_cache, Redirection* first);
221 
222   // V8 generally calls into generated JS code with 5 parameters and into
223   // generated RegExp code with 7 parameters. This is a convenience function,
224   // which sets up the simulator state and grabs the result on return.
225   intptr_t Call(byte* entry, int argument_count, ...);
226   // Alternative: call a 2-argument double function.
227   void CallFP(byte* entry, double d0, double d1);
228   int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
229   double CallFPReturnsDouble(byte* entry, double d0, double d1);
230 
231   // Push an address onto the JS stack.
232   uintptr_t PushAddress(uintptr_t address);
233 
234   // Pop an address from the JS stack.
235   uintptr_t PopAddress();
236 
237   // Debugger input.
238   void set_last_debugger_input(char* input);
last_debugger_input()239   char* last_debugger_input() { return last_debugger_input_; }
240 
241   // ICache checking.
242   static void FlushICache(base::HashMap* i_cache, void* start, size_t size);
243 
244   // Returns true if pc register contains one of the 'special_values' defined
245   // below (bad_lr, end_sim_pc).
246   bool has_bad_pc() const;
247 
248  private:
249   enum special_values {
250     // Known bad pc value to ensure that the simulator does not execute
251     // without being properly setup.
252     bad_lr = -1,
253     // A pc value used to signal the simulator to stop execution.  Generally
254     // the lr is set to this value on transition from native C code to
255     // simulated execution, so that the simulator can "return" to the native
256     // C code.
257     end_sim_pc = -2
258   };
259 
260   enum BCType { BC_OFFSET, BC_LINK_REG, BC_CTR_REG };
261 
262   // Unsupported instructions use Format to print an error and stop execution.
263   void Format(Instruction* instr, const char* format);
264 
265   // Helper functions to set the conditional flags in the architecture state.
266   bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
267   bool BorrowFrom(int32_t left, int32_t right);
268   bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
269                     bool addition);
270 
271   // Helper functions to decode common "addressing" modes
272   int32_t GetShiftRm(Instruction* instr, bool* carry_out);
273   int32_t GetImm(Instruction* instr, bool* carry_out);
274   void ProcessPUW(Instruction* instr, int num_regs, int operand_size,
275                   intptr_t* start_address, intptr_t* end_address);
276   void HandleRList(Instruction* instr, bool load);
277   void HandleVList(Instruction* inst);
278   void SoftwareInterrupt(Instruction* instr);
279 
280   // Stop helper functions.
281   inline bool isStopInstruction(Instruction* instr);
282   inline bool isWatchedStop(uint32_t bkpt_code);
283   inline bool isEnabledStop(uint32_t bkpt_code);
284   inline void EnableStop(uint32_t bkpt_code);
285   inline void DisableStop(uint32_t bkpt_code);
286   inline void IncreaseStopCounter(uint32_t bkpt_code);
287   void PrintStopInfo(uint32_t code);
288 
289   // Read and write memory.
290   inline uint8_t ReadBU(intptr_t addr);
291   inline int8_t ReadB(intptr_t addr);
292   inline void WriteB(intptr_t addr, uint8_t value);
293   inline void WriteB(intptr_t addr, int8_t value);
294 
295   inline uint16_t ReadHU(intptr_t addr, Instruction* instr);
296   inline int16_t ReadH(intptr_t addr, Instruction* instr);
297   // Note: Overloaded on the sign of the value.
298   inline void WriteH(intptr_t addr, uint16_t value, Instruction* instr);
299   inline void WriteH(intptr_t addr, int16_t value, Instruction* instr);
300 
301   inline uint32_t ReadWU(intptr_t addr, Instruction* instr);
302   inline int32_t ReadW(intptr_t addr, Instruction* instr);
303   inline void WriteW(intptr_t addr, uint32_t value, Instruction* instr);
304   inline void WriteW(intptr_t addr, int32_t value, Instruction* instr);
305 
306   intptr_t* ReadDW(intptr_t addr);
307   void WriteDW(intptr_t addr, int64_t value);
308 
309   void Trace(Instruction* instr);
310   void SetCR0(intptr_t result, bool setSO = false);
311   void ExecuteBranchConditional(Instruction* instr, BCType type);
312   void ExecuteExt1(Instruction* instr);
313   bool ExecuteExt2_10bit(Instruction* instr);
314   bool ExecuteExt2_9bit_part1(Instruction* instr);
315   bool ExecuteExt2_9bit_part2(Instruction* instr);
316   void ExecuteExt2_5bit(Instruction* instr);
317   void ExecuteExt2(Instruction* instr);
318   void ExecuteExt3(Instruction* instr);
319   void ExecuteExt4(Instruction* instr);
320 #if V8_TARGET_ARCH_PPC64
321   void ExecuteExt5(Instruction* instr);
322 #endif
323   void ExecuteGeneric(Instruction* instr);
324 
SetFPSCR(int bit)325   void SetFPSCR(int bit) { fp_condition_reg_ |= (1 << (31 - bit)); }
ClearFPSCR(int bit)326   void ClearFPSCR(int bit) { fp_condition_reg_ &= ~(1 << (31 - bit)); }
327 
328   // Executes one instruction.
329   void ExecuteInstruction(Instruction* instr);
330 
331   // ICache.
332   static void CheckICache(base::HashMap* i_cache, Instruction* instr);
333   static void FlushOnePage(base::HashMap* i_cache, intptr_t start, int size);
334   static CachePage* GetCachePage(base::HashMap* i_cache, void* page);
335 
336   // Runtime call support.
337   static void* RedirectExternalReference(
338       Isolate* isolate, void* external_function,
339       v8::internal::ExternalReference::Type type);
340 
341   // Handle arguments and return value for runtime FP functions.
342   void GetFpArgs(double* x, double* y, intptr_t* z);
343   void SetFpResult(const double& result);
344   void TrashCallerSaveRegisters();
345 
346   void CallInternal(byte* entry);
347 
348   // Architecture state.
349   // Saturating instructions require a Q flag to indicate saturation.
350   // There is currently no way to read the CPSR directly, and thus read the Q
351   // flag, so this is left unimplemented.
352   intptr_t registers_[kNumGPRs];
353   int32_t condition_reg_;
354   int32_t fp_condition_reg_;
355   intptr_t special_reg_lr_;
356   intptr_t special_reg_pc_;
357   intptr_t special_reg_ctr_;
358   int32_t special_reg_xer_;
359 
360   int64_t fp_registers_[kNumFPRs];
361 
362   // Simulator support.
363   char* stack_;
364   static const size_t stack_protection_size_ = 256 * kPointerSize;
365   bool pc_modified_;
366   int icount_;
367 
368   // Debugger input.
369   char* last_debugger_input_;
370 
371   // Icache simulation
372   base::HashMap* i_cache_;
373 
374   // Registered breakpoints.
375   Instruction* break_pc_;
376   Instr break_instr_;
377 
378   v8::internal::Isolate* isolate_;
379 
380   // A stop is watched if its code is less than kNumOfWatchedStops.
381   // Only watched stops support enabling/disabling and the counter feature.
382   static const uint32_t kNumOfWatchedStops = 256;
383 
384   // Breakpoint is disabled if bit 31 is set.
385   static const uint32_t kStopDisabledBit = 1 << 31;
386 
387   // A stop is enabled, meaning the simulator will stop when meeting the
388   // instruction, if bit 31 of watched_stops_[code].count is unset.
389   // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
390   // the breakpoint was hit or gone through.
391   struct StopCountAndDesc {
392     uint32_t count;
393     char* desc;
394   };
395   StopCountAndDesc watched_stops_[kNumOfWatchedStops];
396 };
397 
398 
399 // When running with the simulator transition into simulated execution at this
400 // point.
401 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4)          \
402   reinterpret_cast<Object*>(Simulator::current(isolate)->Call(           \
403       FUNCTION_ADDR(entry), 5, (intptr_t)p0, (intptr_t)p1, (intptr_t)p2, \
404       (intptr_t)p3, (intptr_t)p4))
405 
406 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
407                                    p7, p8)                                     \
408   Simulator::current(isolate)->Call(entry, 10, (intptr_t)p0, (intptr_t)p1,     \
409                                     (intptr_t)p2, (intptr_t)p3, (intptr_t)p4,  \
410                                     (intptr_t)p5, (intptr_t)p6, (intptr_t)p7,  \
411                                     (intptr_t)NULL, (intptr_t)p8)
412 
413 
414 // The simulator has its own stack. Thus it has a different stack limit from
415 // the C-based native code.  The JS-based limit normally points near the end of
416 // the simulator stack.  When the C-based limit is exhausted we reflect that by
417 // lowering the JS-based limit as well, to make stack checks trigger.
418 class SimulatorStack : public v8::internal::AllStatic {
419  public:
JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)420   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
421                                             uintptr_t c_limit) {
422     return Simulator::current(isolate)->StackLimit(c_limit);
423   }
424 
RegisterCTryCatch(v8::internal::Isolate * isolate,uintptr_t try_catch_address)425   static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
426                                             uintptr_t try_catch_address) {
427     Simulator* sim = Simulator::current(isolate);
428     return sim->PushAddress(try_catch_address);
429   }
430 
UnregisterCTryCatch(v8::internal::Isolate * isolate)431   static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
432     Simulator::current(isolate)->PopAddress();
433   }
434 };
435 }  // namespace internal
436 }  // namespace v8
437 
438 #endif  // !defined(USE_SIMULATOR)
439 #endif  // V8_PPC_SIMULATOR_PPC_H_
440