1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/base/utils/random-number-generator.h"
6 #include "src/compiler/pipeline.h"
7 #include "test/unittests/compiler/instruction-sequence-unittest.h"
8 #include "test/unittests/test-utils.h"
9 #include "testing/gmock/include/gmock/gmock.h"
10
11 namespace v8 {
12 namespace internal {
13 namespace compiler {
14
15 static const char*
16 general_register_names_[RegisterConfiguration::kMaxGeneralRegisters];
17 static const char*
18 double_register_names_[RegisterConfiguration::kMaxFPRegisters];
19 static char register_names_[10 * (RegisterConfiguration::kMaxGeneralRegisters +
20 RegisterConfiguration::kMaxFPRegisters)];
21
22 namespace {
23 static int allocatable_codes[InstructionSequenceTest::kDefaultNRegs] = {
24 0, 1, 2, 3, 4, 5, 6, 7};
25 static int allocatable_double_codes[InstructionSequenceTest::kDefaultNRegs] = {
26 0, 1, 2, 3, 4, 5, 6, 7};
27 }
28
29
InitializeRegisterNames()30 static void InitializeRegisterNames() {
31 char* loc = register_names_;
32 for (int i = 0; i < RegisterConfiguration::kMaxGeneralRegisters; ++i) {
33 general_register_names_[i] = loc;
34 loc += base::OS::SNPrintF(loc, 100, "gp_%d", i);
35 *loc++ = 0;
36 }
37 for (int i = 0; i < RegisterConfiguration::kMaxFPRegisters; ++i) {
38 double_register_names_[i] = loc;
39 loc += base::OS::SNPrintF(loc, 100, "fp_%d", i) + 1;
40 *loc++ = 0;
41 }
42 }
43
44
InstructionSequenceTest()45 InstructionSequenceTest::InstructionSequenceTest()
46 : sequence_(nullptr),
47 num_general_registers_(kDefaultNRegs),
48 num_double_registers_(kDefaultNRegs),
49 instruction_blocks_(zone()),
50 current_block_(nullptr),
51 block_returns_(false) {
52 InitializeRegisterNames();
53 }
54
55
SetNumRegs(int num_general_registers,int num_double_registers)56 void InstructionSequenceTest::SetNumRegs(int num_general_registers,
57 int num_double_registers) {
58 CHECK(config_.is_empty());
59 CHECK(instructions_.empty());
60 CHECK(instruction_blocks_.empty());
61 num_general_registers_ = num_general_registers;
62 num_double_registers_ = num_double_registers;
63 }
64
65
config()66 RegisterConfiguration* InstructionSequenceTest::config() {
67 if (config_.is_empty()) {
68 config_.Reset(new RegisterConfiguration(
69 num_general_registers_, num_double_registers_, num_general_registers_,
70 num_double_registers_, allocatable_codes, allocatable_double_codes,
71 kSimpleFPAliasing ? RegisterConfiguration::OVERLAP
72 : RegisterConfiguration::COMBINE,
73 general_register_names_,
74 double_register_names_, // float register names
75 double_register_names_));
76 }
77 return config_.get();
78 }
79
80
sequence()81 InstructionSequence* InstructionSequenceTest::sequence() {
82 if (sequence_ == nullptr) {
83 sequence_ = new (zone())
84 InstructionSequence(isolate(), zone(), &instruction_blocks_);
85 }
86 return sequence_;
87 }
88
89
StartLoop(int loop_blocks)90 void InstructionSequenceTest::StartLoop(int loop_blocks) {
91 CHECK(current_block_ == nullptr);
92 if (!loop_blocks_.empty()) {
93 CHECK(!loop_blocks_.back().loop_header_.IsValid());
94 }
95 LoopData loop_data = {Rpo::Invalid(), loop_blocks};
96 loop_blocks_.push_back(loop_data);
97 }
98
99
EndLoop()100 void InstructionSequenceTest::EndLoop() {
101 CHECK(current_block_ == nullptr);
102 CHECK(!loop_blocks_.empty());
103 CHECK_EQ(0, loop_blocks_.back().expected_blocks_);
104 loop_blocks_.pop_back();
105 }
106
107
StartBlock(bool deferred)108 void InstructionSequenceTest::StartBlock(bool deferred) {
109 block_returns_ = false;
110 NewBlock(deferred);
111 }
112
113
EndBlock(BlockCompletion completion)114 Instruction* InstructionSequenceTest::EndBlock(BlockCompletion completion) {
115 Instruction* result = nullptr;
116 if (block_returns_) {
117 CHECK(completion.type_ == kBlockEnd || completion.type_ == kFallThrough);
118 completion.type_ = kBlockEnd;
119 }
120 switch (completion.type_) {
121 case kBlockEnd:
122 break;
123 case kFallThrough:
124 result = EmitJump();
125 break;
126 case kJump:
127 CHECK(!block_returns_);
128 result = EmitJump();
129 break;
130 case kBranch:
131 CHECK(!block_returns_);
132 result = EmitBranch(completion.op_);
133 break;
134 }
135 completions_.push_back(completion);
136 CHECK(current_block_ != nullptr);
137 sequence()->EndBlock(current_block_->rpo_number());
138 current_block_ = nullptr;
139 return result;
140 }
141
142
Imm(int32_t imm)143 InstructionSequenceTest::TestOperand InstructionSequenceTest::Imm(int32_t imm) {
144 return TestOperand(kImmediate, imm);
145 }
146
147
Define(TestOperand output_op)148 InstructionSequenceTest::VReg InstructionSequenceTest::Define(
149 TestOperand output_op) {
150 VReg vreg = NewReg();
151 InstructionOperand outputs[1]{ConvertOutputOp(vreg, output_op)};
152 Emit(kArchNop, 1, outputs);
153 return vreg;
154 }
155
156
Return(TestOperand input_op_0)157 Instruction* InstructionSequenceTest::Return(TestOperand input_op_0) {
158 block_returns_ = true;
159 InstructionOperand inputs[1]{ConvertInputOp(input_op_0)};
160 return Emit(kArchRet, 0, nullptr, 1, inputs);
161 }
162
163
Phi(VReg incoming_vreg_0,VReg incoming_vreg_1,VReg incoming_vreg_2,VReg incoming_vreg_3)164 PhiInstruction* InstructionSequenceTest::Phi(VReg incoming_vreg_0,
165 VReg incoming_vreg_1,
166 VReg incoming_vreg_2,
167 VReg incoming_vreg_3) {
168 VReg inputs[] = {incoming_vreg_0, incoming_vreg_1, incoming_vreg_2,
169 incoming_vreg_3};
170 size_t input_count = 0;
171 for (; input_count < arraysize(inputs); ++input_count) {
172 if (inputs[input_count].value_ == kNoValue) break;
173 }
174 CHECK(input_count > 0);
175 auto phi = new (zone()) PhiInstruction(zone(), NewReg().value_, input_count);
176 for (size_t i = 0; i < input_count; ++i) {
177 SetInput(phi, i, inputs[i]);
178 }
179 current_block_->AddPhi(phi);
180 return phi;
181 }
182
183
Phi(VReg incoming_vreg_0,size_t input_count)184 PhiInstruction* InstructionSequenceTest::Phi(VReg incoming_vreg_0,
185 size_t input_count) {
186 auto phi = new (zone()) PhiInstruction(zone(), NewReg().value_, input_count);
187 SetInput(phi, 0, incoming_vreg_0);
188 current_block_->AddPhi(phi);
189 return phi;
190 }
191
192
SetInput(PhiInstruction * phi,size_t input,VReg vreg)193 void InstructionSequenceTest::SetInput(PhiInstruction* phi, size_t input,
194 VReg vreg) {
195 CHECK(vreg.value_ != kNoValue);
196 phi->SetInput(input, vreg.value_);
197 }
198
199
DefineConstant(int32_t imm)200 InstructionSequenceTest::VReg InstructionSequenceTest::DefineConstant(
201 int32_t imm) {
202 VReg vreg = NewReg();
203 sequence()->AddConstant(vreg.value_, Constant(imm));
204 InstructionOperand outputs[1]{ConstantOperand(vreg.value_)};
205 Emit(kArchNop, 1, outputs);
206 return vreg;
207 }
208
209
EmitNop()210 Instruction* InstructionSequenceTest::EmitNop() { return Emit(kArchNop); }
211
212
CountInputs(size_t size,InstructionSequenceTest::TestOperand * inputs)213 static size_t CountInputs(size_t size,
214 InstructionSequenceTest::TestOperand* inputs) {
215 size_t i = 0;
216 for (; i < size; ++i) {
217 if (inputs[i].type_ == InstructionSequenceTest::kInvalid) break;
218 }
219 return i;
220 }
221
222
EmitI(size_t input_size,TestOperand * inputs)223 Instruction* InstructionSequenceTest::EmitI(size_t input_size,
224 TestOperand* inputs) {
225 InstructionOperand* mapped_inputs = ConvertInputs(input_size, inputs);
226 return Emit(kArchNop, 0, nullptr, input_size, mapped_inputs);
227 }
228
229
EmitI(TestOperand input_op_0,TestOperand input_op_1,TestOperand input_op_2,TestOperand input_op_3)230 Instruction* InstructionSequenceTest::EmitI(TestOperand input_op_0,
231 TestOperand input_op_1,
232 TestOperand input_op_2,
233 TestOperand input_op_3) {
234 TestOperand inputs[] = {input_op_0, input_op_1, input_op_2, input_op_3};
235 return EmitI(CountInputs(arraysize(inputs), inputs), inputs);
236 }
237
238
EmitOI(TestOperand output_op,size_t input_size,TestOperand * inputs)239 InstructionSequenceTest::VReg InstructionSequenceTest::EmitOI(
240 TestOperand output_op, size_t input_size, TestOperand* inputs) {
241 VReg output_vreg = NewReg();
242 InstructionOperand outputs[1]{ConvertOutputOp(output_vreg, output_op)};
243 InstructionOperand* mapped_inputs = ConvertInputs(input_size, inputs);
244 Emit(kArchNop, 1, outputs, input_size, mapped_inputs);
245 return output_vreg;
246 }
247
248
EmitOI(TestOperand output_op,TestOperand input_op_0,TestOperand input_op_1,TestOperand input_op_2,TestOperand input_op_3)249 InstructionSequenceTest::VReg InstructionSequenceTest::EmitOI(
250 TestOperand output_op, TestOperand input_op_0, TestOperand input_op_1,
251 TestOperand input_op_2, TestOperand input_op_3) {
252 TestOperand inputs[] = {input_op_0, input_op_1, input_op_2, input_op_3};
253 return EmitOI(output_op, CountInputs(arraysize(inputs), inputs), inputs);
254 }
255
256
EmitOOI(TestOperand output_op_0,TestOperand output_op_1,size_t input_size,TestOperand * inputs)257 InstructionSequenceTest::VRegPair InstructionSequenceTest::EmitOOI(
258 TestOperand output_op_0, TestOperand output_op_1, size_t input_size,
259 TestOperand* inputs) {
260 VRegPair output_vregs = std::make_pair(NewReg(), NewReg());
261 InstructionOperand outputs[2]{
262 ConvertOutputOp(output_vregs.first, output_op_0),
263 ConvertOutputOp(output_vregs.second, output_op_1)};
264 InstructionOperand* mapped_inputs = ConvertInputs(input_size, inputs);
265 Emit(kArchNop, 2, outputs, input_size, mapped_inputs);
266 return output_vregs;
267 }
268
269
EmitOOI(TestOperand output_op_0,TestOperand output_op_1,TestOperand input_op_0,TestOperand input_op_1,TestOperand input_op_2,TestOperand input_op_3)270 InstructionSequenceTest::VRegPair InstructionSequenceTest::EmitOOI(
271 TestOperand output_op_0, TestOperand output_op_1, TestOperand input_op_0,
272 TestOperand input_op_1, TestOperand input_op_2, TestOperand input_op_3) {
273 TestOperand inputs[] = {input_op_0, input_op_1, input_op_2, input_op_3};
274 return EmitOOI(output_op_0, output_op_1,
275 CountInputs(arraysize(inputs), inputs), inputs);
276 }
277
278
EmitCall(TestOperand output_op,size_t input_size,TestOperand * inputs)279 InstructionSequenceTest::VReg InstructionSequenceTest::EmitCall(
280 TestOperand output_op, size_t input_size, TestOperand* inputs) {
281 VReg output_vreg = NewReg();
282 InstructionOperand outputs[1]{ConvertOutputOp(output_vreg, output_op)};
283 CHECK(UnallocatedOperand::cast(outputs[0]).HasFixedPolicy());
284 InstructionOperand* mapped_inputs = ConvertInputs(input_size, inputs);
285 Emit(kArchCallCodeObject, 1, outputs, input_size, mapped_inputs, 0, nullptr,
286 true);
287 return output_vreg;
288 }
289
290
EmitCall(TestOperand output_op,TestOperand input_op_0,TestOperand input_op_1,TestOperand input_op_2,TestOperand input_op_3)291 InstructionSequenceTest::VReg InstructionSequenceTest::EmitCall(
292 TestOperand output_op, TestOperand input_op_0, TestOperand input_op_1,
293 TestOperand input_op_2, TestOperand input_op_3) {
294 TestOperand inputs[] = {input_op_0, input_op_1, input_op_2, input_op_3};
295 return EmitCall(output_op, CountInputs(arraysize(inputs), inputs), inputs);
296 }
297
298
EmitBranch(TestOperand input_op)299 Instruction* InstructionSequenceTest::EmitBranch(TestOperand input_op) {
300 InstructionOperand inputs[4]{ConvertInputOp(input_op), ConvertInputOp(Imm()),
301 ConvertInputOp(Imm()), ConvertInputOp(Imm())};
302 InstructionCode opcode = kArchJmp | FlagsModeField::encode(kFlags_branch) |
303 FlagsConditionField::encode(kEqual);
304 auto instruction = NewInstruction(opcode, 0, nullptr, 4, inputs);
305 return AddInstruction(instruction);
306 }
307
308
EmitFallThrough()309 Instruction* InstructionSequenceTest::EmitFallThrough() {
310 auto instruction = NewInstruction(kArchNop, 0, nullptr);
311 return AddInstruction(instruction);
312 }
313
314
EmitJump()315 Instruction* InstructionSequenceTest::EmitJump() {
316 InstructionOperand inputs[1]{ConvertInputOp(Imm())};
317 auto instruction = NewInstruction(kArchJmp, 0, nullptr, 1, inputs);
318 return AddInstruction(instruction);
319 }
320
321
NewInstruction(InstructionCode code,size_t outputs_size,InstructionOperand * outputs,size_t inputs_size,InstructionOperand * inputs,size_t temps_size,InstructionOperand * temps)322 Instruction* InstructionSequenceTest::NewInstruction(
323 InstructionCode code, size_t outputs_size, InstructionOperand* outputs,
324 size_t inputs_size, InstructionOperand* inputs, size_t temps_size,
325 InstructionOperand* temps) {
326 CHECK(current_block_);
327 return Instruction::New(zone(), code, outputs_size, outputs, inputs_size,
328 inputs, temps_size, temps);
329 }
330
331
Unallocated(TestOperand op,UnallocatedOperand::ExtendedPolicy policy)332 InstructionOperand InstructionSequenceTest::Unallocated(
333 TestOperand op, UnallocatedOperand::ExtendedPolicy policy) {
334 return UnallocatedOperand(policy, op.vreg_.value_);
335 }
336
337
Unallocated(TestOperand op,UnallocatedOperand::ExtendedPolicy policy,UnallocatedOperand::Lifetime lifetime)338 InstructionOperand InstructionSequenceTest::Unallocated(
339 TestOperand op, UnallocatedOperand::ExtendedPolicy policy,
340 UnallocatedOperand::Lifetime lifetime) {
341 return UnallocatedOperand(policy, lifetime, op.vreg_.value_);
342 }
343
344
Unallocated(TestOperand op,UnallocatedOperand::ExtendedPolicy policy,int index)345 InstructionOperand InstructionSequenceTest::Unallocated(
346 TestOperand op, UnallocatedOperand::ExtendedPolicy policy, int index) {
347 return UnallocatedOperand(policy, index, op.vreg_.value_);
348 }
349
350
Unallocated(TestOperand op,UnallocatedOperand::BasicPolicy policy,int index)351 InstructionOperand InstructionSequenceTest::Unallocated(
352 TestOperand op, UnallocatedOperand::BasicPolicy policy, int index) {
353 return UnallocatedOperand(policy, index, op.vreg_.value_);
354 }
355
356
ConvertInputs(size_t input_size,TestOperand * inputs)357 InstructionOperand* InstructionSequenceTest::ConvertInputs(
358 size_t input_size, TestOperand* inputs) {
359 InstructionOperand* mapped_inputs =
360 zone()->NewArray<InstructionOperand>(static_cast<int>(input_size));
361 for (size_t i = 0; i < input_size; ++i) {
362 mapped_inputs[i] = ConvertInputOp(inputs[i]);
363 }
364 return mapped_inputs;
365 }
366
367
ConvertInputOp(TestOperand op)368 InstructionOperand InstructionSequenceTest::ConvertInputOp(TestOperand op) {
369 if (op.type_ == kImmediate) {
370 CHECK_EQ(op.vreg_.value_, kNoValue);
371 return ImmediateOperand(ImmediateOperand::INLINE, op.value_);
372 }
373 CHECK_NE(op.vreg_.value_, kNoValue);
374 switch (op.type_) {
375 case kNone:
376 return Unallocated(op, UnallocatedOperand::NONE,
377 UnallocatedOperand::USED_AT_START);
378 case kUnique:
379 return Unallocated(op, UnallocatedOperand::NONE);
380 case kUniqueRegister:
381 return Unallocated(op, UnallocatedOperand::MUST_HAVE_REGISTER);
382 case kRegister:
383 return Unallocated(op, UnallocatedOperand::MUST_HAVE_REGISTER,
384 UnallocatedOperand::USED_AT_START);
385 case kSlot:
386 return Unallocated(op, UnallocatedOperand::MUST_HAVE_SLOT,
387 UnallocatedOperand::USED_AT_START);
388 case kFixedRegister:
389 CHECK(0 <= op.value_ && op.value_ < num_general_registers_);
390 return Unallocated(op, UnallocatedOperand::FIXED_REGISTER, op.value_);
391 case kFixedSlot:
392 return Unallocated(op, UnallocatedOperand::FIXED_SLOT, op.value_);
393 default:
394 break;
395 }
396 CHECK(false);
397 return InstructionOperand();
398 }
399
400
ConvertOutputOp(VReg vreg,TestOperand op)401 InstructionOperand InstructionSequenceTest::ConvertOutputOp(VReg vreg,
402 TestOperand op) {
403 CHECK_EQ(op.vreg_.value_, kNoValue);
404 op.vreg_ = vreg;
405 switch (op.type_) {
406 case kSameAsFirst:
407 return Unallocated(op, UnallocatedOperand::SAME_AS_FIRST_INPUT);
408 case kRegister:
409 return Unallocated(op, UnallocatedOperand::MUST_HAVE_REGISTER);
410 case kFixedSlot:
411 return Unallocated(op, UnallocatedOperand::FIXED_SLOT, op.value_);
412 case kFixedRegister:
413 CHECK(0 <= op.value_ && op.value_ < num_general_registers_);
414 return Unallocated(op, UnallocatedOperand::FIXED_REGISTER, op.value_);
415 default:
416 break;
417 }
418 CHECK(false);
419 return InstructionOperand();
420 }
421
422
NewBlock(bool deferred)423 InstructionBlock* InstructionSequenceTest::NewBlock(bool deferred) {
424 CHECK(current_block_ == nullptr);
425 Rpo rpo = Rpo::FromInt(static_cast<int>(instruction_blocks_.size()));
426 Rpo loop_header = Rpo::Invalid();
427 Rpo loop_end = Rpo::Invalid();
428 if (!loop_blocks_.empty()) {
429 auto& loop_data = loop_blocks_.back();
430 // This is a loop header.
431 if (!loop_data.loop_header_.IsValid()) {
432 loop_end = Rpo::FromInt(rpo.ToInt() + loop_data.expected_blocks_);
433 loop_data.expected_blocks_--;
434 loop_data.loop_header_ = rpo;
435 } else {
436 // This is a loop body.
437 CHECK_NE(0, loop_data.expected_blocks_);
438 // TODO(dcarney): handle nested loops.
439 loop_data.expected_blocks_--;
440 loop_header = loop_data.loop_header_;
441 }
442 }
443 // Construct instruction block.
444 auto instruction_block = new (zone())
445 InstructionBlock(zone(), rpo, loop_header, loop_end, deferred, false);
446 instruction_blocks_.push_back(instruction_block);
447 current_block_ = instruction_block;
448 sequence()->StartBlock(rpo);
449 return instruction_block;
450 }
451
452
WireBlocks()453 void InstructionSequenceTest::WireBlocks() {
454 CHECK(!current_block());
455 CHECK(instruction_blocks_.size() == completions_.size());
456 CHECK(loop_blocks_.empty());
457 // Wire in end block to look like a scheduler produced cfg.
458 auto end_block = NewBlock();
459 current_block_ = nullptr;
460 sequence()->EndBlock(end_block->rpo_number());
461 size_t offset = 0;
462 for (const auto& completion : completions_) {
463 switch (completion.type_) {
464 case kBlockEnd: {
465 auto block = instruction_blocks_[offset];
466 block->successors().push_back(end_block->rpo_number());
467 end_block->predecessors().push_back(block->rpo_number());
468 break;
469 }
470 case kFallThrough: // Fallthrough.
471 case kJump:
472 WireBlock(offset, completion.offset_0_);
473 break;
474 case kBranch:
475 WireBlock(offset, completion.offset_0_);
476 WireBlock(offset, completion.offset_1_);
477 break;
478 }
479 ++offset;
480 }
481 }
482
483
WireBlock(size_t block_offset,int jump_offset)484 void InstructionSequenceTest::WireBlock(size_t block_offset, int jump_offset) {
485 size_t target_block_offset = block_offset + static_cast<size_t>(jump_offset);
486 CHECK(block_offset < instruction_blocks_.size());
487 CHECK(target_block_offset < instruction_blocks_.size());
488 auto block = instruction_blocks_[block_offset];
489 auto target = instruction_blocks_[target_block_offset];
490 block->successors().push_back(target->rpo_number());
491 target->predecessors().push_back(block->rpo_number());
492 }
493
494
Emit(InstructionCode code,size_t outputs_size,InstructionOperand * outputs,size_t inputs_size,InstructionOperand * inputs,size_t temps_size,InstructionOperand * temps,bool is_call)495 Instruction* InstructionSequenceTest::Emit(
496 InstructionCode code, size_t outputs_size, InstructionOperand* outputs,
497 size_t inputs_size, InstructionOperand* inputs, size_t temps_size,
498 InstructionOperand* temps, bool is_call) {
499 auto instruction = NewInstruction(code, outputs_size, outputs, inputs_size,
500 inputs, temps_size, temps);
501 if (is_call) instruction->MarkAsCall();
502 return AddInstruction(instruction);
503 }
504
505
AddInstruction(Instruction * instruction)506 Instruction* InstructionSequenceTest::AddInstruction(Instruction* instruction) {
507 sequence()->AddInstruction(instruction);
508 return instruction;
509 }
510
511 } // namespace compiler
512 } // namespace internal
513 } // namespace v8
514