1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 *
21 *===-----------------------------------------------------------------------===
22 */
23
24 #ifndef __IMMINTRIN_H
25 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
26 #endif
27
28 #ifndef __AVXINTRIN_H
29 #define __AVXINTRIN_H
30
31 typedef double __v4df __attribute__ ((__vector_size__ (32)));
32 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
33 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
34 typedef int __v8si __attribute__ ((__vector_size__ (32)));
35 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
36 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
37
38 /* We need an explicitly signed variant for char. Note that this shouldn't
39 * appear in the interface though. */
40 typedef signed char __v32qs __attribute__((__vector_size__(32)));
41
42 typedef float __m256 __attribute__ ((__vector_size__ (32)));
43 typedef double __m256d __attribute__((__vector_size__(32)));
44 typedef long long __m256i __attribute__((__vector_size__(32)));
45
46 /* Define the default attributes for the functions in this file. */
47 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx")))
48
49 /* Arithmetic */
50 /// \brief Adds two 256-bit vectors of [4 x double].
51 ///
52 /// \headerfile <x86intrin.h>
53 ///
54 /// This intrinsic corresponds to the \c VADDPD / ADDPD instruction.
55 ///
56 /// \param __a
57 /// A 256-bit vector of [4 x double] containing one of the source operands.
58 /// \param __b
59 /// A 256-bit vector of [4 x double] containing one of the source operands.
60 /// \returns A 256-bit vector of [4 x double] containing the sums of both
61 /// operands.
62 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_add_pd(__m256d __a,__m256d __b)63 _mm256_add_pd(__m256d __a, __m256d __b)
64 {
65 return __a+__b;
66 }
67
68 /// \brief Adds two 256-bit vectors of [8 x float].
69 ///
70 /// \headerfile <x86intrin.h>
71 ///
72 /// This intrinsic corresponds to the \c VADDPS / ADDPS instruction.
73 ///
74 /// \param __a
75 /// A 256-bit vector of [8 x float] containing one of the source operands.
76 /// \param __b
77 /// A 256-bit vector of [8 x float] containing one of the source operands.
78 /// \returns A 256-bit vector of [8 x float] containing the sums of both
79 /// operands.
80 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_add_ps(__m256 __a,__m256 __b)81 _mm256_add_ps(__m256 __a, __m256 __b)
82 {
83 return __a+__b;
84 }
85
86 /// \brief Subtracts two 256-bit vectors of [4 x double].
87 ///
88 /// \headerfile <x86intrin.h>
89 ///
90 /// This intrinsic corresponds to the \c VSUBPD / SUBPD instruction.
91 ///
92 /// \param __a
93 /// A 256-bit vector of [4 x double] containing the minuend.
94 /// \param __b
95 /// A 256-bit vector of [4 x double] containing the subtrahend.
96 /// \returns A 256-bit vector of [4 x double] containing the differences between
97 /// both operands.
98 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sub_pd(__m256d __a,__m256d __b)99 _mm256_sub_pd(__m256d __a, __m256d __b)
100 {
101 return __a-__b;
102 }
103
104 /// \brief Subtracts two 256-bit vectors of [8 x float].
105 ///
106 /// \headerfile <x86intrin.h>
107 ///
108 /// This intrinsic corresponds to the \c VSUBPS / SUBPS instruction.
109 ///
110 /// \param __a
111 /// A 256-bit vector of [8 x float] containing the minuend.
112 /// \param __b
113 /// A 256-bit vector of [8 x float] containing the subtrahend.
114 /// \returns A 256-bit vector of [8 x float] containing the differences between
115 /// both operands.
116 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sub_ps(__m256 __a,__m256 __b)117 _mm256_sub_ps(__m256 __a, __m256 __b)
118 {
119 return __a-__b;
120 }
121
122 /// \brief Adds the even-indexed values and subtracts the odd-indexed values of
123 /// two 256-bit vectors of [4 x double].
124 ///
125 /// \headerfile <x86intrin.h>
126 ///
127 /// This intrinsic corresponds to the \c VADDSUBPD / ADDSUBPD instruction.
128 ///
129 /// \param __a
130 /// A 256-bit vector of [4 x double] containing the left source operand.
131 /// \param __b
132 /// A 256-bit vector of [4 x double] containing the right source operand.
133 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
134 /// and differences between both operands.
135 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_addsub_pd(__m256d __a,__m256d __b)136 _mm256_addsub_pd(__m256d __a, __m256d __b)
137 {
138 return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
139 }
140
141 /// \brief Adds the even-indexed values and subtracts the odd-indexed values of
142 /// two 256-bit vectors of [8 x float].
143 ///
144 /// \headerfile <x86intrin.h>
145 ///
146 /// This intrinsic corresponds to the \c VADDSUBPS / ADDSUBPS instruction.
147 ///
148 /// \param __a
149 /// A 256-bit vector of [8 x float] containing the left source operand.
150 /// \param __b
151 /// A 256-bit vector of [8 x float] containing the right source operand.
152 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
153 /// differences between both operands.
154 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_addsub_ps(__m256 __a,__m256 __b)155 _mm256_addsub_ps(__m256 __a, __m256 __b)
156 {
157 return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
158 }
159
160 /// \brief Divides two 256-bit vectors of [4 x double].
161 ///
162 /// \headerfile <x86intrin.h>
163 ///
164 /// This intrinsic corresponds to the \c VDIVPD / DIVPD instruction.
165 ///
166 /// \param __a
167 /// A 256-bit vector of [4 x double] containing the dividend.
168 /// \param __b
169 /// A 256-bit vector of [4 x double] containing the divisor.
170 /// \returns A 256-bit vector of [4 x double] containing the quotients between
171 /// both operands.
172 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_div_pd(__m256d __a,__m256d __b)173 _mm256_div_pd(__m256d __a, __m256d __b)
174 {
175 return __a / __b;
176 }
177
178 /// \brief Divides two 256-bit vectors of [8 x float].
179 ///
180 /// \headerfile <x86intrin.h>
181 ///
182 /// This intrinsic corresponds to the \c VDIVPS / DIVPS instruction.
183 ///
184 /// \param __a
185 /// A 256-bit vector of [8 x float] containing the dividend.
186 /// \param __b
187 /// A 256-bit vector of [8 x float] containing the divisor.
188 /// \returns A 256-bit vector of [8 x float] containing the quotients between
189 /// both operands.
190 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_div_ps(__m256 __a,__m256 __b)191 _mm256_div_ps(__m256 __a, __m256 __b)
192 {
193 return __a / __b;
194 }
195
196 /// \brief Compares two 256-bit vectors of [4 x double] and returns the greater
197 /// of each pair of values.
198 ///
199 /// \headerfile <x86intrin.h>
200 ///
201 /// This intrinsic corresponds to the \c VMAXPD / MAXPD instruction.
202 ///
203 /// \param __a
204 /// A 256-bit vector of [4 x double] containing one of the operands.
205 /// \param __b
206 /// A 256-bit vector of [4 x double] containing one of the operands.
207 /// \returns A 256-bit vector of [4 x double] containing the maximum values
208 /// between both operands.
209 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_max_pd(__m256d __a,__m256d __b)210 _mm256_max_pd(__m256d __a, __m256d __b)
211 {
212 return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
213 }
214
215 /// \brief Compares two 256-bit vectors of [8 x float] and returns the greater
216 /// of each pair of values.
217 ///
218 /// \headerfile <x86intrin.h>
219 ///
220 /// This intrinsic corresponds to the \c VMAXPS / MAXPS instruction.
221 ///
222 /// \param __a
223 /// A 256-bit vector of [8 x float] containing one of the operands.
224 /// \param __b
225 /// A 256-bit vector of [8 x float] containing one of the operands.
226 /// \returns A 256-bit vector of [8 x float] containing the maximum values
227 /// between both operands.
228 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_max_ps(__m256 __a,__m256 __b)229 _mm256_max_ps(__m256 __a, __m256 __b)
230 {
231 return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
232 }
233
234 /// \brief Compares two 256-bit vectors of [4 x double] and returns the lesser
235 /// of each pair of values.
236 ///
237 /// \headerfile <x86intrin.h>
238 ///
239 /// This intrinsic corresponds to the \c VMINPD / MINPD instruction.
240 ///
241 /// \param __a
242 /// A 256-bit vector of [4 x double] containing one of the operands.
243 /// \param __b
244 /// A 256-bit vector of [4 x double] containing one of the operands.
245 /// \returns A 256-bit vector of [4 x double] containing the minimum values
246 /// between both operands.
247 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_min_pd(__m256d __a,__m256d __b)248 _mm256_min_pd(__m256d __a, __m256d __b)
249 {
250 return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
251 }
252
253 /// \brief Compares two 256-bit vectors of [8 x float] and returns the lesser
254 /// of each pair of values.
255 ///
256 /// \headerfile <x86intrin.h>
257 ///
258 /// This intrinsic corresponds to the \c VMINPS / MINPS instruction.
259 ///
260 /// \param __a
261 /// A 256-bit vector of [8 x float] containing one of the operands.
262 /// \param __b
263 /// A 256-bit vector of [8 x float] containing one of the operands.
264 /// \returns A 256-bit vector of [8 x float] containing the minimum values
265 /// between both operands.
266 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_min_ps(__m256 __a,__m256 __b)267 _mm256_min_ps(__m256 __a, __m256 __b)
268 {
269 return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
270 }
271
272 /// \brief Multiplies two 256-bit vectors of [4 x double].
273 ///
274 /// \headerfile <x86intrin.h>
275 ///
276 /// This intrinsic corresponds to the \c VMULPD / MULPD instruction.
277 ///
278 /// \param __a
279 /// A 256-bit vector of [4 x double] containing one of the operands.
280 /// \param __b
281 /// A 256-bit vector of [4 x double] containing one of the operands.
282 /// \returns A 256-bit vector of [4 x double] containing the products between
283 /// both operands.
284 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_mul_pd(__m256d __a,__m256d __b)285 _mm256_mul_pd(__m256d __a, __m256d __b)
286 {
287 return __a * __b;
288 }
289
290 /// \brief Multiplies two 256-bit vectors of [8 x float].
291 ///
292 /// \headerfile <x86intrin.h>
293 ///
294 /// This intrinsic corresponds to the \c VMULPS / MULPS instruction.
295 ///
296 /// \param __a
297 /// A 256-bit vector of [8 x float] containing one of the operands.
298 /// \param __b
299 /// A 256-bit vector of [8 x float] containing one of the operands.
300 /// \returns A 256-bit vector of [8 x float] containing the products between
301 /// both operands.
302 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_mul_ps(__m256 __a,__m256 __b)303 _mm256_mul_ps(__m256 __a, __m256 __b)
304 {
305 return __a * __b;
306 }
307
308 /// \brief Calculates the square roots of the values stored in a 256-bit vector
309 /// of [4 x double].
310 ///
311 /// \headerfile <x86intrin.h>
312 ///
313 /// This intrinsic corresponds to the \c VSQRTPD / SQRTPD instruction.
314 ///
315 /// \param __a
316 /// A 256-bit vector of [4 x double].
317 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
318 /// values in the operand.
319 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sqrt_pd(__m256d __a)320 _mm256_sqrt_pd(__m256d __a)
321 {
322 return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
323 }
324
325 /// \brief Calculates the square roots of the values stored in a 256-bit vector
326 /// of [8 x float].
327 ///
328 /// \headerfile <x86intrin.h>
329 ///
330 /// This intrinsic corresponds to the \c VSQRTPS / SQRTPS instruction.
331 ///
332 /// \param __a
333 /// A 256-bit vector of [8 x float].
334 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
335 /// values in the operand.
336 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sqrt_ps(__m256 __a)337 _mm256_sqrt_ps(__m256 __a)
338 {
339 return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
340 }
341
342 /// \brief Calculates the reciprocal square roots of the values stored in a
343 /// 256-bit vector of [8 x float].
344 ///
345 /// \headerfile <x86intrin.h>
346 ///
347 /// This intrinsic corresponds to the \c VRSQRTPS / RSQRTPS instruction.
348 ///
349 /// \param __a
350 /// A 256-bit vector of [8 x float].
351 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
352 /// roots of the values in the operand.
353 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rsqrt_ps(__m256 __a)354 _mm256_rsqrt_ps(__m256 __a)
355 {
356 return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
357 }
358
359 /// \brief Calculates the reciprocals of the values stored in a 256-bit vector
360 /// of [8 x float].
361 ///
362 /// \headerfile <x86intrin.h>
363 ///
364 /// This intrinsic corresponds to the \c VRCPPS / RCPPS instruction.
365 ///
366 /// \param __a
367 /// A 256-bit vector of [8 x float].
368 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
369 /// values in the operand.
370 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rcp_ps(__m256 __a)371 _mm256_rcp_ps(__m256 __a)
372 {
373 return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
374 }
375
376 /// \brief Rounds the values stored in a 256-bit vector of [4 x double] as
377 /// specified by the byte operand. The source values are rounded to integer
378 /// values and returned as 64-bit double-precision floating-point values.
379 ///
380 /// \headerfile <x86intrin.h>
381 ///
382 /// \code
383 /// __m256d _mm256_round_pd(__m256d V, const int M);
384 /// \endcode
385 ///
386 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
387 ///
388 /// \param V
389 /// A 256-bit vector of [4 x double].
390 /// \param M
391 /// An integer value that specifies the rounding operation.
392 /// Bits [7:4] are reserved.
393 /// Bit [3] is a precision exception value:
394 /// 0: A normal PE exception is used
395 /// 1: The PE field is not updated
396 /// Bit [2] is the rounding control source:
397 /// 0: Use bits [1:0] of M
398 /// 1: Use the current MXCSR setting
399 /// Bits [1:0] contain the rounding control definition:
400 /// 00: Nearest
401 /// 01: Downward (toward negative infinity)
402 /// 10: Upward (toward positive infinity)
403 /// 11: Truncated
404 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
405 #define _mm256_round_pd(V, M) __extension__ ({ \
406 (__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)); })
407
408 /// \brief Rounds the values stored in a 256-bit vector of [8 x float] as
409 /// specified by the byte operand. The source values are rounded to integer
410 /// values and returned as floating-point values.
411 ///
412 /// \headerfile <x86intrin.h>
413 ///
414 /// \code
415 /// __m256 _mm256_round_ps(__m256 V, const int M);
416 /// \endcode
417 ///
418 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
419 ///
420 /// \param V
421 /// A 256-bit vector of [8 x float].
422 /// \param M
423 /// An integer value that specifies the rounding operation.
424 /// Bits [7:4] are reserved.
425 /// Bit [3] is a precision exception value:
426 /// 0: A normal PE exception is used
427 /// 1: The PE field is not updated
428 /// Bit [2] is the rounding control source:
429 /// 0: Use bits [1:0] of M
430 /// 1: Use the current MXCSR setting
431 /// Bits [1:0] contain the rounding control definition:
432 /// 00: Nearest
433 /// 01: Downward (toward negative infinity)
434 /// 10: Upward (toward positive infinity)
435 /// 11: Truncated
436 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
437 #define _mm256_round_ps(V, M) __extension__ ({ \
438 (__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)); })
439
440 /// \brief Round up the values stored in a 256-bit vector of [4 x double]. The
441 /// source values are rounded up to integer values and returned as 64-bit
442 /// double-precision floating-point values.
443 ///
444 /// \headerfile <x86intrin.h>
445 ///
446 /// \code
447 /// __m256d _mm256_ceil_pd(__m256d V);
448 /// \endcode
449 ///
450 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
451 ///
452 /// \param V
453 /// A 256-bit vector of [4 x double].
454 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
455 #define _mm256_ceil_pd(V) _mm256_round_pd((V), _MM_FROUND_CEIL)
456
457 /// \brief Round down the values stored in a 256-bit vector of [4 x double].
458 /// The source values are rounded down to integer values and returned as
459 /// 64-bit double-precision floating-point values.
460 ///
461 /// \headerfile <x86intrin.h>
462 ///
463 /// \code
464 /// __m256d _mm256_floor_pd(__m256d V);
465 /// \endcode
466 ///
467 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
468 ///
469 /// \param V
470 /// A 256-bit vector of [4 x double].
471 /// \returns A 256-bit vector of [4 x double] containing the rounded down
472 /// values.
473 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
474
475 /// \brief Round up the values stored in a 256-bit vector of [8 x float]. The
476 /// source values are rounded up to integer values and returned as
477 /// floating-point values.
478 ///
479 /// \headerfile <x86intrin.h>
480 ///
481 /// \code
482 /// __m256 _mm256_ceil_ps(__m256 V);
483 /// \endcode
484 ///
485 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
486 ///
487 /// \param V
488 /// A 256-bit vector of [8 x float].
489 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
490 #define _mm256_ceil_ps(V) _mm256_round_ps((V), _MM_FROUND_CEIL)
491
492 /// \brief Round down the values stored in a 256-bit vector of [8 x float]. The
493 /// source values are rounded down to integer values and returned as
494 /// floating-point values.
495 ///
496 /// \headerfile <x86intrin.h>
497 ///
498 /// \code
499 /// __m256 _mm256_floor_ps(__m256 V);
500 /// \endcode
501 ///
502 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
503 ///
504 /// \param V
505 /// A 256-bit vector of [8 x float].
506 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
507 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
508
509 /* Logical */
510 /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double].
511 ///
512 /// \headerfile <x86intrin.h>
513 ///
514 /// This intrinsic corresponds to the \c VANDPD / ANDPD instruction.
515 ///
516 /// \param __a
517 /// A 256-bit vector of [4 x double] containing one of the source operands.
518 /// \param __b
519 /// A 256-bit vector of [4 x double] containing one of the source operands.
520 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
521 /// values between both operands.
522 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_and_pd(__m256d __a,__m256d __b)523 _mm256_and_pd(__m256d __a, __m256d __b)
524 {
525 return (__m256d)((__v4di)__a & (__v4di)__b);
526 }
527
528 /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float].
529 ///
530 /// \headerfile <x86intrin.h>
531 ///
532 /// This intrinsic corresponds to the \c VANDPS / ANDPS instruction.
533 ///
534 /// \param __a
535 /// A 256-bit vector of [8 x float] containing one of the source operands.
536 /// \param __b
537 /// A 256-bit vector of [8 x float] containing one of the source operands.
538 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
539 /// values between both operands.
540 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_and_ps(__m256 __a,__m256 __b)541 _mm256_and_ps(__m256 __a, __m256 __b)
542 {
543 return (__m256)((__v8si)__a & (__v8si)__b);
544 }
545
546 /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double], using
547 /// the one's complement of the values contained in the first source operand.
548 ///
549 /// \headerfile <x86intrin.h>
550 ///
551 /// This intrinsic corresponds to the \c VANDNPD / ANDNPD instruction.
552 ///
553 /// \param __a
554 /// A 256-bit vector of [4 x double] containing the left source operand. The
555 /// one's complement of this value is used in the bitwise AND.
556 /// \param __b
557 /// A 256-bit vector of [4 x double] containing the right source operand.
558 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
559 /// values of the second operand and the one's complement of the first
560 /// operand.
561 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_andnot_pd(__m256d __a,__m256d __b)562 _mm256_andnot_pd(__m256d __a, __m256d __b)
563 {
564 return (__m256d)(~(__v4di)__a & (__v4di)__b);
565 }
566
567 /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float], using
568 /// the one's complement of the values contained in the first source operand.
569 ///
570 /// \headerfile <x86intrin.h>
571 ///
572 /// This intrinsic corresponds to the \c VANDNPS / ANDNPS instruction.
573 ///
574 /// \param __a
575 /// A 256-bit vector of [8 x float] containing the left source operand. The
576 /// one's complement of this value is used in the bitwise AND.
577 /// \param __b
578 /// A 256-bit vector of [8 x float] containing the right source operand.
579 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
580 /// values of the second operand and the one's complement of the first
581 /// operand.
582 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_andnot_ps(__m256 __a,__m256 __b)583 _mm256_andnot_ps(__m256 __a, __m256 __b)
584 {
585 return (__m256)(~(__v8si)__a & (__v8si)__b);
586 }
587
588 /// \brief Performs a bitwise OR of two 256-bit vectors of [4 x double].
589 ///
590 /// \headerfile <x86intrin.h>
591 ///
592 /// This intrinsic corresponds to the \c VORPD / ORPD instruction.
593 ///
594 /// \param __a
595 /// A 256-bit vector of [4 x double] containing one of the source operands.
596 /// \param __b
597 /// A 256-bit vector of [4 x double] containing one of the source operands.
598 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
599 /// values between both operands.
600 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_or_pd(__m256d __a,__m256d __b)601 _mm256_or_pd(__m256d __a, __m256d __b)
602 {
603 return (__m256d)((__v4di)__a | (__v4di)__b);
604 }
605
606 /// \brief Performs a bitwise OR of two 256-bit vectors of [8 x float].
607 ///
608 /// \headerfile <x86intrin.h>
609 ///
610 /// This intrinsic corresponds to the \c VORPS / ORPS instruction.
611 ///
612 /// \param __a
613 /// A 256-bit vector of [8 x float] containing one of the source operands.
614 /// \param __b
615 /// A 256-bit vector of [8 x float] containing one of the source operands.
616 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
617 /// values between both operands.
618 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_or_ps(__m256 __a,__m256 __b)619 _mm256_or_ps(__m256 __a, __m256 __b)
620 {
621 return (__m256)((__v8si)__a | (__v8si)__b);
622 }
623
624 /// \brief Performs a bitwise XOR of two 256-bit vectors of [4 x double].
625 ///
626 /// \headerfile <x86intrin.h>
627 ///
628 /// This intrinsic corresponds to the \c VXORPD / XORPD instruction.
629 ///
630 /// \param __a
631 /// A 256-bit vector of [4 x double] containing one of the source operands.
632 /// \param __b
633 /// A 256-bit vector of [4 x double] containing one of the source operands.
634 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
635 /// values between both operands.
636 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_xor_pd(__m256d __a,__m256d __b)637 _mm256_xor_pd(__m256d __a, __m256d __b)
638 {
639 return (__m256d)((__v4di)__a ^ (__v4di)__b);
640 }
641
642 /// \brief Performs a bitwise XOR of two 256-bit vectors of [8 x float].
643 ///
644 /// \headerfile <x86intrin.h>
645 ///
646 /// This intrinsic corresponds to the \c VXORPS / XORPS instruction.
647 ///
648 /// \param __a
649 /// A 256-bit vector of [8 x float] containing one of the source operands.
650 /// \param __b
651 /// A 256-bit vector of [8 x float] containing one of the source operands.
652 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
653 /// values between both operands.
654 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_xor_ps(__m256 __a,__m256 __b)655 _mm256_xor_ps(__m256 __a, __m256 __b)
656 {
657 return (__m256)((__v8si)__a ^ (__v8si)__b);
658 }
659
660 /* Horizontal arithmetic */
661 /// \brief Horizontally adds the adjacent pairs of values contained in two
662 /// 256-bit vectors of [4 x double].
663 ///
664 /// \headerfile <x86intrin.h>
665 ///
666 /// This intrinsic corresponds to the \c VHADDPD / HADDPD instruction.
667 ///
668 /// \param __a
669 /// A 256-bit vector of [4 x double] containing one of the source operands.
670 /// The horizontal sums of the values are returned in the even-indexed
671 /// elements of a vector of [4 x double].
672 /// \param __b
673 /// A 256-bit vector of [4 x double] containing one of the source operands.
674 /// The horizontal sums of the values are returned in the odd-indexed
675 /// elements of a vector of [4 x double].
676 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
677 /// both operands.
678 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hadd_pd(__m256d __a,__m256d __b)679 _mm256_hadd_pd(__m256d __a, __m256d __b)
680 {
681 return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
682 }
683
684 /// \brief Horizontally adds the adjacent pairs of values contained in two
685 /// 256-bit vectors of [8 x float].
686 ///
687 /// \headerfile <x86intrin.h>
688 ///
689 /// This intrinsic corresponds to the \c VHADDPS / HADDPS instruction.
690 ///
691 /// \param __a
692 /// A 256-bit vector of [8 x float] containing one of the source operands.
693 /// The horizontal sums of the values are returned in the elements with
694 /// index 0, 1, 4, 5 of a vector of [8 x float].
695 /// \param __b
696 /// A 256-bit vector of [8 x float] containing one of the source operands.
697 /// The horizontal sums of the values are returned in the elements with
698 /// index 2, 3, 6, 7 of a vector of [8 x float].
699 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
700 /// both operands.
701 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hadd_ps(__m256 __a,__m256 __b)702 _mm256_hadd_ps(__m256 __a, __m256 __b)
703 {
704 return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
705 }
706
707 /// \brief Horizontally subtracts the adjacent pairs of values contained in two
708 /// 256-bit vectors of [4 x double].
709 ///
710 /// \headerfile <x86intrin.h>
711 ///
712 /// This intrinsic corresponds to the \c VHSUBPD / HSUBPD instruction.
713 ///
714 /// \param __a
715 /// A 256-bit vector of [4 x double] containing one of the source operands.
716 /// The horizontal differences between the values are returned in the
717 /// even-indexed elements of a vector of [4 x double].
718 /// \param __b
719 /// A 256-bit vector of [4 x double] containing one of the source operands.
720 /// The horizontal differences between the values are returned in the
721 /// odd-indexed elements of a vector of [4 x double].
722 /// \returns A 256-bit vector of [4 x double] containing the horizontal
723 /// differences of both operands.
724 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hsub_pd(__m256d __a,__m256d __b)725 _mm256_hsub_pd(__m256d __a, __m256d __b)
726 {
727 return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
728 }
729
730 /// \brief Horizontally subtracts the adjacent pairs of values contained in two
731 /// 256-bit vectors of [8 x float].
732 ///
733 /// \headerfile <x86intrin.h>
734 ///
735 /// This intrinsic corresponds to the \c VHSUBPS / HSUBPS instruction.
736 ///
737 /// \param __a
738 /// A 256-bit vector of [8 x float] containing one of the source operands.
739 /// The horizontal differences between the values are returned in the
740 /// elements with index 0, 1, 4, 5 of a vector of [8 x float].
741 /// \param __b
742 /// A 256-bit vector of [8 x float] containing one of the source operands.
743 /// The horizontal differences between the values are returned in the
744 /// elements with index 2, 3, 6, 7 of a vector of [8 x float].
745 /// \returns A 256-bit vector of [8 x float] containing the horizontal
746 /// differences of both operands.
747 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hsub_ps(__m256 __a,__m256 __b)748 _mm256_hsub_ps(__m256 __a, __m256 __b)
749 {
750 return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
751 }
752
753 /* Vector permutations */
754 /// \brief Copies the values stored in a 128-bit vector of [2 x double] as
755 /// specified by the 128-bit integer vector operand.
756 ///
757 /// \headerfile <x86intrin.h>
758 ///
759 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
760 ///
761 /// \param __a
762 /// A 128-bit vector of [2 x double].
763 /// \param __c
764 /// A 128-bit integer vector operand specifying how the values are to be
765 /// copied.
766 /// Bit [1]:
767 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the
768 /// returned vector
769 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
770 /// returned vector
771 /// Bit [65]:
772 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
773 /// returned vector
774 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
775 /// returned vector
776 /// \returns A 128-bit vector of [2 x double] containing the copied values.
777 static __inline __m128d __DEFAULT_FN_ATTRS
_mm_permutevar_pd(__m128d __a,__m128i __c)778 _mm_permutevar_pd(__m128d __a, __m128i __c)
779 {
780 return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
781 }
782
783 /// \brief Copies the values stored in a 256-bit vector of [4 x double] as
784 /// specified by the 256-bit integer vector operand.
785 ///
786 /// \headerfile <x86intrin.h>
787 ///
788 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
789 ///
790 /// \param __a
791 /// A 256-bit vector of [4 x double].
792 /// \param __c
793 /// A 256-bit integer vector operand specifying how the values are to be
794 /// copied.
795 /// Bit [1]:
796 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the
797 /// returned vector
798 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
799 /// returned vector
800 /// Bit [65]:
801 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
802 /// returned vector
803 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
804 /// returned vector
805 /// Bit [129]:
806 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
807 /// returned vector
808 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
809 /// returned vector
810 /// Bit [193]:
811 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
812 /// returned vector
813 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
814 /// returned vector
815 /// \returns A 256-bit vector of [4 x double] containing the copied values.
816 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_permutevar_pd(__m256d __a,__m256i __c)817 _mm256_permutevar_pd(__m256d __a, __m256i __c)
818 {
819 return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
820 }
821
822 /// \brief Copies the values stored in a 128-bit vector of [4 x float] as
823 /// specified by the 128-bit integer vector operand.
824 ///
825 /// \headerfile <x86intrin.h>
826 ///
827 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
828 ///
829 /// \param __a
830 /// A 128-bit vector of [4 x float].
831 /// \param __c
832 /// A 128-bit integer vector operand specifying how the values are to be
833 /// copied.
834 /// Bits [1:0]:
835 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
836 /// returned vector
837 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
838 /// returned vector
839 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
840 /// returned vector
841 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
842 /// returned vector
843 /// Bits [33:32]:
844 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
845 /// returned vector
846 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
847 /// returned vector
848 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
849 /// returned vector
850 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
851 /// returned vector
852 /// Bits [65:64]:
853 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
854 /// returned vector
855 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
856 /// returned vector
857 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
858 /// returned vector
859 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
860 /// returned vector
861 /// Bits [97:96]:
862 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
863 /// returned vector
864 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
865 /// returned vector
866 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
867 /// returned vector
868 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
869 /// returned vector
870 /// \returns A 128-bit vector of [4 x float] containing the copied values.
871 static __inline __m128 __DEFAULT_FN_ATTRS
_mm_permutevar_ps(__m128 __a,__m128i __c)872 _mm_permutevar_ps(__m128 __a, __m128i __c)
873 {
874 return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
875 }
876
877 /// \brief Copies the values stored in a 256-bit vector of [8 x float] as
878 /// specified by the 256-bit integer vector operand.
879 ///
880 /// \headerfile <x86intrin.h>
881 ///
882 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
883 ///
884 /// \param __a
885 /// A 256-bit vector of [8 x float].
886 /// \param __c
887 /// A 256-bit integer vector operand specifying how the values are to be
888 /// copied.
889 /// Bits [1:0]:
890 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
891 /// returned vector
892 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
893 /// returned vector
894 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
895 /// returned vector
896 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
897 /// returned vector
898 /// Bits [33:32]:
899 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
900 /// returned vector
901 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
902 /// returned vector
903 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
904 /// returned vector
905 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
906 /// returned vector
907 /// Bits [65:64]:
908 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
909 /// returned vector
910 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
911 /// returned vector
912 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
913 /// returned vector
914 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
915 /// returned vector
916 /// Bits [97:96]:
917 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
918 /// returned vector
919 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
920 /// returned vector
921 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
922 /// returned vector
923 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
924 /// returned vector
925 /// Bits [129:128]:
926 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
927 /// returned vector
928 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
929 /// returned vector
930 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
931 /// returned vector
932 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
933 /// returned vector
934 /// Bits [161:160]:
935 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
936 /// returned vector
937 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
938 /// returned vector
939 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
940 /// returned vector
941 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
942 /// returned vector
943 /// Bits [193:192]:
944 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
945 /// returned vector
946 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
947 /// returned vector
948 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
949 /// returned vector
950 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
951 /// returned vector
952 /// Bits [225:224]:
953 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
954 /// returned vector
955 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
956 /// returned vector
957 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
958 /// returned vector
959 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
960 /// returned vector
961 /// \returns A 256-bit vector of [8 x float] containing the copied values.
962 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_permutevar_ps(__m256 __a,__m256i __c)963 _mm256_permutevar_ps(__m256 __a, __m256i __c)
964 {
965 return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
966 }
967
968 /// \brief Copies the values stored in a 128-bit vector of [2 x double] as
969 /// specified by the immediate integer operand.
970 ///
971 /// \headerfile <x86intrin.h>
972 ///
973 /// \code
974 /// __m128d _mm_permute_pd(__m128d A, const int C);
975 /// \endcode
976 ///
977 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
978 ///
979 /// \param A
980 /// A 128-bit vector of [2 x double].
981 /// \param C
982 /// An immediate integer operand specifying how the values are to be copied.
983 /// Bit [0]:
984 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the
985 /// returned vector
986 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
987 /// returned vector
988 /// Bit [1]:
989 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
990 /// returned vector
991 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
992 /// returned vector
993 /// \returns A 128-bit vector of [2 x double] containing the copied values.
994 #define _mm_permute_pd(A, C) __extension__ ({ \
995 (__m128d)__builtin_shufflevector((__v2df)(__m128d)(A), \
996 (__v2df)_mm_setzero_pd(), \
997 (C) & 0x1, ((C) & 0x2) >> 1); })
998
999 /// \brief Copies the values stored in a 256-bit vector of [4 x double] as
1000 /// specified by the immediate integer operand.
1001 ///
1002 /// \headerfile <x86intrin.h>
1003 ///
1004 /// \code
1005 /// __m256d _mm256_permute_pd(__m256d A, const int C);
1006 /// \endcode
1007 ///
1008 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
1009 ///
1010 /// \param A
1011 /// A 256-bit vector of [4 x double].
1012 /// \param C
1013 /// An immediate integer operand specifying how the values are to be copied.
1014 /// Bit [0]:
1015 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the
1016 /// returned vector
1017 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
1018 /// returned vector
1019 /// Bit [1]:
1020 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
1021 /// returned vector
1022 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
1023 /// returned vector
1024 /// Bit [2]:
1025 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
1026 /// returned vector
1027 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
1028 /// returned vector
1029 /// Bit [3]:
1030 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
1031 /// returned vector
1032 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
1033 /// returned vector
1034 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1035 #define _mm256_permute_pd(A, C) __extension__ ({ \
1036 (__m256d)__builtin_shufflevector((__v4df)(__m256d)(A), \
1037 (__v4df)_mm256_setzero_pd(), \
1038 (C) & 0x1, ((C) & 0x2) >> 1, \
1039 2 + (((C) & 0x4) >> 2), \
1040 2 + (((C) & 0x8) >> 3)); })
1041
1042 /// \brief Copies the values stored in a 128-bit vector of [4 x float] as
1043 /// specified by the immediate integer operand.
1044 ///
1045 /// \headerfile <x86intrin.h>
1046 ///
1047 /// \code
1048 /// __m128 _mm_permute_ps(__m128 A, const int C);
1049 /// \endcode
1050 ///
1051 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
1052 ///
1053 /// \param A
1054 /// A 128-bit vector of [4 x float].
1055 /// \param C
1056 /// An immediate integer operand specifying how the values are to be copied.
1057 /// Bits [1:0]:
1058 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1059 /// returned vector
1060 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1061 /// returned vector
1062 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1063 /// returned vector
1064 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1065 /// returned vector
1066 /// Bits [3:2]:
1067 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1068 /// returned vector
1069 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1070 /// returned vector
1071 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1072 /// returned vector
1073 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1074 /// returned vector
1075 /// Bits [5:4]:
1076 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1077 /// returned vector
1078 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1079 /// returned vector
1080 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1081 /// returned vector
1082 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1083 /// returned vector
1084 /// Bits [7:6]:
1085 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1086 /// returned vector
1087 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1088 /// returned vector
1089 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1090 /// returned vector
1091 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1092 /// returned vector
1093 /// \returns A 128-bit vector of [4 x float] containing the copied values.
1094 #define _mm_permute_ps(A, C) __extension__ ({ \
1095 (__m128)__builtin_shufflevector((__v4sf)(__m128)(A), \
1096 (__v4sf)_mm_setzero_ps(), \
1097 (C) & 0x3, ((C) & 0xc) >> 2, \
1098 ((C) & 0x30) >> 4, ((C) & 0xc0) >> 6); })
1099
1100 /// \brief Copies the values stored in a 256-bit vector of [8 x float] as
1101 /// specified by the immediate integer operand.
1102 ///
1103 /// \headerfile <x86intrin.h>
1104 ///
1105 /// \code
1106 /// __m256 _mm256_permute_ps(__m256 A, const int C);
1107 /// \endcode
1108 ///
1109 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
1110 ///
1111 /// \param A
1112 /// A 256-bit vector of [8 x float].
1113 /// \param C
1114 /// An immediate integer operand specifying how the values are to be copied.
1115 /// Bits [1:0]:
1116 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1117 /// returned vector
1118 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1119 /// returned vector
1120 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1121 /// returned vector
1122 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1123 /// returned vector
1124 /// Bits [3:2]:
1125 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1126 /// returned vector
1127 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1128 /// returned vector
1129 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1130 /// returned vector
1131 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1132 /// returned vector
1133 /// Bits [5:4]:
1134 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1135 /// returned vector
1136 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1137 /// returned vector
1138 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1139 /// returned vector
1140 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1141 /// returned vector
1142 /// Bits [7:6]:
1143 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1144 /// returned vector
1145 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1146 /// returned vector
1147 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1148 /// returned vector
1149 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1150 /// returned vector
1151 /// Bits [1:0]:
1152 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
1153 /// returned vector
1154 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
1155 /// returned vector
1156 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
1157 /// returned vector
1158 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
1159 /// returned vector
1160 /// Bits [3:2]:
1161 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
1162 /// returned vector
1163 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
1164 /// returned vector
1165 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
1166 /// returned vector
1167 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
1168 /// returned vector
1169 /// Bits [5:4]:
1170 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
1171 /// returned vector
1172 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
1173 /// returned vector
1174 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
1175 /// returned vector
1176 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
1177 /// returned vector
1178 /// Bits [7:6]:
1179 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
1180 /// returned vector
1181 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
1182 /// returned vector
1183 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
1184 /// returned vector
1185 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
1186 /// returned vector
1187 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1188 #define _mm256_permute_ps(A, C) __extension__ ({ \
1189 (__m256)__builtin_shufflevector((__v8sf)(__m256)(A), \
1190 (__v8sf)_mm256_setzero_ps(), \
1191 (C) & 0x3, ((C) & 0xc) >> 2, \
1192 ((C) & 0x30) >> 4, ((C) & 0xc0) >> 6, \
1193 4 + (((C) & 0x03) >> 0), \
1194 4 + (((C) & 0x0c) >> 2), \
1195 4 + (((C) & 0x30) >> 4), \
1196 4 + (((C) & 0xc0) >> 6)); })
1197
1198 #define _mm256_permute2f128_pd(V1, V2, M) __extension__ ({ \
1199 (__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1200 (__v4df)(__m256d)(V2), (M)); })
1201
1202 #define _mm256_permute2f128_ps(V1, V2, M) __extension__ ({ \
1203 (__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1204 (__v8sf)(__m256)(V2), (M)); })
1205
1206 #define _mm256_permute2f128_si256(V1, V2, M) __extension__ ({ \
1207 (__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1208 (__v8si)(__m256i)(V2), (M)); })
1209
1210 /* Vector Blend */
1211 #define _mm256_blend_pd(V1, V2, M) __extension__ ({ \
1212 (__m256d)__builtin_shufflevector((__v4df)(__m256d)(V1), \
1213 (__v4df)(__m256d)(V2), \
1214 (((M) & 0x01) ? 4 : 0), \
1215 (((M) & 0x02) ? 5 : 1), \
1216 (((M) & 0x04) ? 6 : 2), \
1217 (((M) & 0x08) ? 7 : 3)); })
1218
1219 #define _mm256_blend_ps(V1, V2, M) __extension__ ({ \
1220 (__m256)__builtin_shufflevector((__v8sf)(__m256)(V1), \
1221 (__v8sf)(__m256)(V2), \
1222 (((M) & 0x01) ? 8 : 0), \
1223 (((M) & 0x02) ? 9 : 1), \
1224 (((M) & 0x04) ? 10 : 2), \
1225 (((M) & 0x08) ? 11 : 3), \
1226 (((M) & 0x10) ? 12 : 4), \
1227 (((M) & 0x20) ? 13 : 5), \
1228 (((M) & 0x40) ? 14 : 6), \
1229 (((M) & 0x80) ? 15 : 7)); })
1230
1231 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_blendv_pd(__m256d __a,__m256d __b,__m256d __c)1232 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1233 {
1234 return (__m256d)__builtin_ia32_blendvpd256(
1235 (__v4df)__a, (__v4df)__b, (__v4df)__c);
1236 }
1237
1238 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_blendv_ps(__m256 __a,__m256 __b,__m256 __c)1239 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1240 {
1241 return (__m256)__builtin_ia32_blendvps256(
1242 (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1243 }
1244
1245 /* Vector Dot Product */
1246 #define _mm256_dp_ps(V1, V2, M) __extension__ ({ \
1247 (__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1248 (__v8sf)(__m256)(V2), (M)); })
1249
1250 /* Vector shuffle */
1251 #define _mm256_shuffle_ps(a, b, mask) __extension__ ({ \
1252 (__m256)__builtin_shufflevector((__v8sf)(__m256)(a), \
1253 (__v8sf)(__m256)(b), \
1254 (mask) & 0x3, \
1255 ((mask) & 0xc) >> 2, \
1256 (((mask) & 0x30) >> 4) + 8, \
1257 (((mask) & 0xc0) >> 6) + 8, \
1258 ((mask) & 0x3) + 4, \
1259 (((mask) & 0xc) >> 2) + 4, \
1260 (((mask) & 0x30) >> 4) + 12, \
1261 (((mask) & 0xc0) >> 6) + 12); })
1262
1263 #define _mm256_shuffle_pd(a, b, mask) __extension__ ({ \
1264 (__m256d)__builtin_shufflevector((__v4df)(__m256d)(a), \
1265 (__v4df)(__m256d)(b), \
1266 (mask) & 0x1, \
1267 (((mask) & 0x2) >> 1) + 4, \
1268 (((mask) & 0x4) >> 2) + 2, \
1269 (((mask) & 0x8) >> 3) + 6); })
1270
1271 /* Compare */
1272 #define _CMP_EQ_OQ 0x00 /* Equal (ordered, non-signaling) */
1273 #define _CMP_LT_OS 0x01 /* Less-than (ordered, signaling) */
1274 #define _CMP_LE_OS 0x02 /* Less-than-or-equal (ordered, signaling) */
1275 #define _CMP_UNORD_Q 0x03 /* Unordered (non-signaling) */
1276 #define _CMP_NEQ_UQ 0x04 /* Not-equal (unordered, non-signaling) */
1277 #define _CMP_NLT_US 0x05 /* Not-less-than (unordered, signaling) */
1278 #define _CMP_NLE_US 0x06 /* Not-less-than-or-equal (unordered, signaling) */
1279 #define _CMP_ORD_Q 0x07 /* Ordered (nonsignaling) */
1280 #define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */
1281 #define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unord, signaling) */
1282 #define _CMP_NGT_US 0x0a /* Not-greater-than (unordered, signaling) */
1283 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling) */
1284 #define _CMP_NEQ_OQ 0x0c /* Not-equal (ordered, non-signaling) */
1285 #define _CMP_GE_OS 0x0d /* Greater-than-or-equal (ordered, signaling) */
1286 #define _CMP_GT_OS 0x0e /* Greater-than (ordered, signaling) */
1287 #define _CMP_TRUE_UQ 0x0f /* True (unordered, non-signaling) */
1288 #define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */
1289 #define _CMP_LT_OQ 0x11 /* Less-than (ordered, non-signaling) */
1290 #define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, non-signaling) */
1291 #define _CMP_UNORD_S 0x13 /* Unordered (signaling) */
1292 #define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */
1293 #define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, non-signaling) */
1294 #define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unord, non-signaling) */
1295 #define _CMP_ORD_S 0x17 /* Ordered (signaling) */
1296 #define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */
1297 #define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unord, non-sign) */
1298 #define _CMP_NGT_UQ 0x1a /* Not-greater-than (unordered, non-signaling) */
1299 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling) */
1300 #define _CMP_NEQ_OS 0x1c /* Not-equal (ordered, signaling) */
1301 #define _CMP_GE_OQ 0x1d /* Greater-than-or-equal (ordered, non-signaling) */
1302 #define _CMP_GT_OQ 0x1e /* Greater-than (ordered, non-signaling) */
1303 #define _CMP_TRUE_US 0x1f /* True (unordered, signaling) */
1304
1305 #define _mm_cmp_pd(a, b, c) __extension__ ({ \
1306 (__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
1307 (__v2df)(__m128d)(b), (c)); })
1308
1309 #define _mm_cmp_ps(a, b, c) __extension__ ({ \
1310 (__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
1311 (__v4sf)(__m128)(b), (c)); })
1312
1313 #define _mm256_cmp_pd(a, b, c) __extension__ ({ \
1314 (__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1315 (__v4df)(__m256d)(b), (c)); })
1316
1317 #define _mm256_cmp_ps(a, b, c) __extension__ ({ \
1318 (__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1319 (__v8sf)(__m256)(b), (c)); })
1320
1321 #define _mm_cmp_sd(a, b, c) __extension__ ({ \
1322 (__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
1323 (__v2df)(__m128d)(b), (c)); })
1324
1325 #define _mm_cmp_ss(a, b, c) __extension__ ({ \
1326 (__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
1327 (__v4sf)(__m128)(b), (c)); })
1328
1329 static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi32(__m256i __a,const int __imm)1330 _mm256_extract_epi32(__m256i __a, const int __imm)
1331 {
1332 __v8si __b = (__v8si)__a;
1333 return __b[__imm & 7];
1334 }
1335
1336 static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi16(__m256i __a,const int __imm)1337 _mm256_extract_epi16(__m256i __a, const int __imm)
1338 {
1339 __v16hi __b = (__v16hi)__a;
1340 return __b[__imm & 15];
1341 }
1342
1343 static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi8(__m256i __a,const int __imm)1344 _mm256_extract_epi8(__m256i __a, const int __imm)
1345 {
1346 __v32qi __b = (__v32qi)__a;
1347 return __b[__imm & 31];
1348 }
1349
1350 #ifdef __x86_64__
1351 static __inline long long __DEFAULT_FN_ATTRS
_mm256_extract_epi64(__m256i __a,const int __imm)1352 _mm256_extract_epi64(__m256i __a, const int __imm)
1353 {
1354 __v4di __b = (__v4di)__a;
1355 return __b[__imm & 3];
1356 }
1357 #endif
1358
1359 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi32(__m256i __a,int __b,int const __imm)1360 _mm256_insert_epi32(__m256i __a, int __b, int const __imm)
1361 {
1362 __v8si __c = (__v8si)__a;
1363 __c[__imm & 7] = __b;
1364 return (__m256i)__c;
1365 }
1366
1367 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi16(__m256i __a,int __b,int const __imm)1368 _mm256_insert_epi16(__m256i __a, int __b, int const __imm)
1369 {
1370 __v16hi __c = (__v16hi)__a;
1371 __c[__imm & 15] = __b;
1372 return (__m256i)__c;
1373 }
1374
1375 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi8(__m256i __a,int __b,int const __imm)1376 _mm256_insert_epi8(__m256i __a, int __b, int const __imm)
1377 {
1378 __v32qi __c = (__v32qi)__a;
1379 __c[__imm & 31] = __b;
1380 return (__m256i)__c;
1381 }
1382
1383 #ifdef __x86_64__
1384 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi64(__m256i __a,long long __b,int const __imm)1385 _mm256_insert_epi64(__m256i __a, long long __b, int const __imm)
1386 {
1387 __v4di __c = (__v4di)__a;
1388 __c[__imm & 3] = __b;
1389 return (__m256i)__c;
1390 }
1391 #endif
1392
1393 /* Conversion */
1394 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtepi32_pd(__m128i __a)1395 _mm256_cvtepi32_pd(__m128i __a)
1396 {
1397 return (__m256d)__builtin_ia32_cvtdq2pd256((__v4si) __a);
1398 }
1399
1400 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_cvtepi32_ps(__m256i __a)1401 _mm256_cvtepi32_ps(__m256i __a)
1402 {
1403 return (__m256)__builtin_ia32_cvtdq2ps256((__v8si) __a);
1404 }
1405
1406 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_cvtpd_ps(__m256d __a)1407 _mm256_cvtpd_ps(__m256d __a)
1408 {
1409 return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
1410 }
1411
1412 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvtps_epi32(__m256 __a)1413 _mm256_cvtps_epi32(__m256 __a)
1414 {
1415 return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
1416 }
1417
1418 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtps_pd(__m128 __a)1419 _mm256_cvtps_pd(__m128 __a)
1420 {
1421 return (__m256d)__builtin_ia32_cvtps2pd256((__v4sf) __a);
1422 }
1423
1424 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvttpd_epi32(__m256d __a)1425 _mm256_cvttpd_epi32(__m256d __a)
1426 {
1427 return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
1428 }
1429
1430 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvtpd_epi32(__m256d __a)1431 _mm256_cvtpd_epi32(__m256d __a)
1432 {
1433 return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
1434 }
1435
1436 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvttps_epi32(__m256 __a)1437 _mm256_cvttps_epi32(__m256 __a)
1438 {
1439 return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
1440 }
1441
1442 /* Vector replicate */
1443 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_movehdup_ps(__m256 __a)1444 _mm256_movehdup_ps(__m256 __a)
1445 {
1446 return __builtin_shufflevector(__a, __a, 1, 1, 3, 3, 5, 5, 7, 7);
1447 }
1448
1449 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_moveldup_ps(__m256 __a)1450 _mm256_moveldup_ps(__m256 __a)
1451 {
1452 return __builtin_shufflevector(__a, __a, 0, 0, 2, 2, 4, 4, 6, 6);
1453 }
1454
1455 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_movedup_pd(__m256d __a)1456 _mm256_movedup_pd(__m256d __a)
1457 {
1458 return __builtin_shufflevector(__a, __a, 0, 0, 2, 2);
1459 }
1460
1461 /* Unpack and Interleave */
1462 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpackhi_pd(__m256d __a,__m256d __b)1463 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
1464 {
1465 return __builtin_shufflevector(__a, __b, 1, 5, 1+2, 5+2);
1466 }
1467
1468 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpacklo_pd(__m256d __a,__m256d __b)1469 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
1470 {
1471 return __builtin_shufflevector(__a, __b, 0, 4, 0+2, 4+2);
1472 }
1473
1474 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpackhi_ps(__m256 __a,__m256 __b)1475 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
1476 {
1477 return __builtin_shufflevector(__a, __b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
1478 }
1479
1480 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpacklo_ps(__m256 __a,__m256 __b)1481 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
1482 {
1483 return __builtin_shufflevector(__a, __b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
1484 }
1485
1486 /* Bit Test */
1487 static __inline int __DEFAULT_FN_ATTRS
_mm_testz_pd(__m128d __a,__m128d __b)1488 _mm_testz_pd(__m128d __a, __m128d __b)
1489 {
1490 return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
1491 }
1492
1493 static __inline int __DEFAULT_FN_ATTRS
_mm_testc_pd(__m128d __a,__m128d __b)1494 _mm_testc_pd(__m128d __a, __m128d __b)
1495 {
1496 return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
1497 }
1498
1499 static __inline int __DEFAULT_FN_ATTRS
_mm_testnzc_pd(__m128d __a,__m128d __b)1500 _mm_testnzc_pd(__m128d __a, __m128d __b)
1501 {
1502 return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
1503 }
1504
1505 static __inline int __DEFAULT_FN_ATTRS
_mm_testz_ps(__m128 __a,__m128 __b)1506 _mm_testz_ps(__m128 __a, __m128 __b)
1507 {
1508 return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
1509 }
1510
1511 static __inline int __DEFAULT_FN_ATTRS
_mm_testc_ps(__m128 __a,__m128 __b)1512 _mm_testc_ps(__m128 __a, __m128 __b)
1513 {
1514 return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
1515 }
1516
1517 static __inline int __DEFAULT_FN_ATTRS
_mm_testnzc_ps(__m128 __a,__m128 __b)1518 _mm_testnzc_ps(__m128 __a, __m128 __b)
1519 {
1520 return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
1521 }
1522
1523 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_pd(__m256d __a,__m256d __b)1524 _mm256_testz_pd(__m256d __a, __m256d __b)
1525 {
1526 return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
1527 }
1528
1529 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_pd(__m256d __a,__m256d __b)1530 _mm256_testc_pd(__m256d __a, __m256d __b)
1531 {
1532 return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
1533 }
1534
1535 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_pd(__m256d __a,__m256d __b)1536 _mm256_testnzc_pd(__m256d __a, __m256d __b)
1537 {
1538 return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
1539 }
1540
1541 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_ps(__m256 __a,__m256 __b)1542 _mm256_testz_ps(__m256 __a, __m256 __b)
1543 {
1544 return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
1545 }
1546
1547 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_ps(__m256 __a,__m256 __b)1548 _mm256_testc_ps(__m256 __a, __m256 __b)
1549 {
1550 return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
1551 }
1552
1553 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_ps(__m256 __a,__m256 __b)1554 _mm256_testnzc_ps(__m256 __a, __m256 __b)
1555 {
1556 return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
1557 }
1558
1559 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_si256(__m256i __a,__m256i __b)1560 _mm256_testz_si256(__m256i __a, __m256i __b)
1561 {
1562 return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
1563 }
1564
1565 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_si256(__m256i __a,__m256i __b)1566 _mm256_testc_si256(__m256i __a, __m256i __b)
1567 {
1568 return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
1569 }
1570
1571 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_si256(__m256i __a,__m256i __b)1572 _mm256_testnzc_si256(__m256i __a, __m256i __b)
1573 {
1574 return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
1575 }
1576
1577 /* Vector extract sign mask */
1578 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_pd(__m256d __a)1579 _mm256_movemask_pd(__m256d __a)
1580 {
1581 return __builtin_ia32_movmskpd256((__v4df)__a);
1582 }
1583
1584 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_ps(__m256 __a)1585 _mm256_movemask_ps(__m256 __a)
1586 {
1587 return __builtin_ia32_movmskps256((__v8sf)__a);
1588 }
1589
1590 /* Vector __zero */
1591 static __inline void __DEFAULT_FN_ATTRS
_mm256_zeroall(void)1592 _mm256_zeroall(void)
1593 {
1594 __builtin_ia32_vzeroall();
1595 }
1596
1597 static __inline void __DEFAULT_FN_ATTRS
_mm256_zeroupper(void)1598 _mm256_zeroupper(void)
1599 {
1600 __builtin_ia32_vzeroupper();
1601 }
1602
1603 /* Vector load with broadcast */
1604 static __inline __m128 __DEFAULT_FN_ATTRS
_mm_broadcast_ss(float const * __a)1605 _mm_broadcast_ss(float const *__a)
1606 {
1607 float __f = *__a;
1608 return (__m128)(__v4sf){ __f, __f, __f, __f };
1609 }
1610
1611 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_sd(double const * __a)1612 _mm256_broadcast_sd(double const *__a)
1613 {
1614 double __d = *__a;
1615 return (__m256d)(__v4df){ __d, __d, __d, __d };
1616 }
1617
1618 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ss(float const * __a)1619 _mm256_broadcast_ss(float const *__a)
1620 {
1621 float __f = *__a;
1622 return (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
1623 }
1624
1625 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_pd(__m128d const * __a)1626 _mm256_broadcast_pd(__m128d const *__a)
1627 {
1628 return (__m256d)__builtin_ia32_vbroadcastf128_pd256(__a);
1629 }
1630
1631 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ps(__m128 const * __a)1632 _mm256_broadcast_ps(__m128 const *__a)
1633 {
1634 return (__m256)__builtin_ia32_vbroadcastf128_ps256(__a);
1635 }
1636
1637 /* SIMD load ops */
1638 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_load_pd(double const * __p)1639 _mm256_load_pd(double const *__p)
1640 {
1641 return *(__m256d *)__p;
1642 }
1643
1644 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_load_ps(float const * __p)1645 _mm256_load_ps(float const *__p)
1646 {
1647 return *(__m256 *)__p;
1648 }
1649
1650 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu_pd(double const * __p)1651 _mm256_loadu_pd(double const *__p)
1652 {
1653 struct __loadu_pd {
1654 __m256d __v;
1655 } __attribute__((__packed__, __may_alias__));
1656 return ((struct __loadu_pd*)__p)->__v;
1657 }
1658
1659 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu_ps(float const * __p)1660 _mm256_loadu_ps(float const *__p)
1661 {
1662 struct __loadu_ps {
1663 __m256 __v;
1664 } __attribute__((__packed__, __may_alias__));
1665 return ((struct __loadu_ps*)__p)->__v;
1666 }
1667
1668 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_load_si256(__m256i const * __p)1669 _mm256_load_si256(__m256i const *__p)
1670 {
1671 return *__p;
1672 }
1673
1674 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu_si256(__m256i const * __p)1675 _mm256_loadu_si256(__m256i const *__p)
1676 {
1677 struct __loadu_si256 {
1678 __m256i __v;
1679 } __attribute__((__packed__, __may_alias__));
1680 return ((struct __loadu_si256*)__p)->__v;
1681 }
1682
1683 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_lddqu_si256(__m256i const * __p)1684 _mm256_lddqu_si256(__m256i const *__p)
1685 {
1686 return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
1687 }
1688
1689 /* SIMD store ops */
1690 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_pd(double * __p,__m256d __a)1691 _mm256_store_pd(double *__p, __m256d __a)
1692 {
1693 *(__m256d *)__p = __a;
1694 }
1695
1696 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_ps(float * __p,__m256 __a)1697 _mm256_store_ps(float *__p, __m256 __a)
1698 {
1699 *(__m256 *)__p = __a;
1700 }
1701
1702 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_pd(double * __p,__m256d __a)1703 _mm256_storeu_pd(double *__p, __m256d __a)
1704 {
1705 __builtin_ia32_storeupd256(__p, (__v4df)__a);
1706 }
1707
1708 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_ps(float * __p,__m256 __a)1709 _mm256_storeu_ps(float *__p, __m256 __a)
1710 {
1711 __builtin_ia32_storeups256(__p, (__v8sf)__a);
1712 }
1713
1714 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_si256(__m256i * __p,__m256i __a)1715 _mm256_store_si256(__m256i *__p, __m256i __a)
1716 {
1717 *__p = __a;
1718 }
1719
1720 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_si256(__m256i * __p,__m256i __a)1721 _mm256_storeu_si256(__m256i *__p, __m256i __a)
1722 {
1723 __builtin_ia32_storedqu256((char *)__p, (__v32qi)__a);
1724 }
1725
1726 /* Conditional load ops */
1727 static __inline __m128d __DEFAULT_FN_ATTRS
_mm_maskload_pd(double const * __p,__m128i __m)1728 _mm_maskload_pd(double const *__p, __m128i __m)
1729 {
1730 return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
1731 }
1732
1733 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_maskload_pd(double const * __p,__m256i __m)1734 _mm256_maskload_pd(double const *__p, __m256i __m)
1735 {
1736 return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
1737 (__v4di)__m);
1738 }
1739
1740 static __inline __m128 __DEFAULT_FN_ATTRS
_mm_maskload_ps(float const * __p,__m128i __m)1741 _mm_maskload_ps(float const *__p, __m128i __m)
1742 {
1743 return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
1744 }
1745
1746 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_maskload_ps(float const * __p,__m256i __m)1747 _mm256_maskload_ps(float const *__p, __m256i __m)
1748 {
1749 return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
1750 }
1751
1752 /* Conditional store ops */
1753 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_ps(float * __p,__m256i __m,__m256 __a)1754 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
1755 {
1756 __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
1757 }
1758
1759 static __inline void __DEFAULT_FN_ATTRS
_mm_maskstore_pd(double * __p,__m128i __m,__m128d __a)1760 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
1761 {
1762 __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
1763 }
1764
1765 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_pd(double * __p,__m256i __m,__m256d __a)1766 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
1767 {
1768 __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
1769 }
1770
1771 static __inline void __DEFAULT_FN_ATTRS
_mm_maskstore_ps(float * __p,__m128i __m,__m128 __a)1772 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
1773 {
1774 __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
1775 }
1776
1777 /* Cacheability support ops */
1778 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_si256(__m256i * __a,__m256i __b)1779 _mm256_stream_si256(__m256i *__a, __m256i __b)
1780 {
1781 __builtin_ia32_movntdq256((__v4di *)__a, (__v4di)__b);
1782 }
1783
1784 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_pd(double * __a,__m256d __b)1785 _mm256_stream_pd(double *__a, __m256d __b)
1786 {
1787 __builtin_ia32_movntpd256(__a, (__v4df)__b);
1788 }
1789
1790 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_ps(float * __p,__m256 __a)1791 _mm256_stream_ps(float *__p, __m256 __a)
1792 {
1793 __builtin_ia32_movntps256(__p, (__v8sf)__a);
1794 }
1795
1796 /* Create vectors */
1797 static __inline__ __m256d __DEFAULT_FN_ATTRS
_mm256_undefined_pd()1798 _mm256_undefined_pd()
1799 {
1800 return (__m256d)__builtin_ia32_undef256();
1801 }
1802
1803 static __inline__ __m256 __DEFAULT_FN_ATTRS
_mm256_undefined_ps()1804 _mm256_undefined_ps()
1805 {
1806 return (__m256)__builtin_ia32_undef256();
1807 }
1808
1809 static __inline__ __m256i __DEFAULT_FN_ATTRS
_mm256_undefined_si256()1810 _mm256_undefined_si256()
1811 {
1812 return (__m256i)__builtin_ia32_undef256();
1813 }
1814
1815 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_pd(double __a,double __b,double __c,double __d)1816 _mm256_set_pd(double __a, double __b, double __c, double __d)
1817 {
1818 return (__m256d){ __d, __c, __b, __a };
1819 }
1820
1821 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)1822 _mm256_set_ps(float __a, float __b, float __c, float __d,
1823 float __e, float __f, float __g, float __h)
1824 {
1825 return (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
1826 }
1827
1828 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)1829 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
1830 int __i4, int __i5, int __i6, int __i7)
1831 {
1832 return (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
1833 }
1834
1835 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)1836 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
1837 short __w11, short __w10, short __w09, short __w08,
1838 short __w07, short __w06, short __w05, short __w04,
1839 short __w03, short __w02, short __w01, short __w00)
1840 {
1841 return (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
1842 __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
1843 }
1844
1845 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)1846 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
1847 char __b27, char __b26, char __b25, char __b24,
1848 char __b23, char __b22, char __b21, char __b20,
1849 char __b19, char __b18, char __b17, char __b16,
1850 char __b15, char __b14, char __b13, char __b12,
1851 char __b11, char __b10, char __b09, char __b08,
1852 char __b07, char __b06, char __b05, char __b04,
1853 char __b03, char __b02, char __b01, char __b00)
1854 {
1855 return (__m256i)(__v32qi){
1856 __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
1857 __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
1858 __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
1859 __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
1860 };
1861 }
1862
1863 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi64x(long long __a,long long __b,long long __c,long long __d)1864 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
1865 {
1866 return (__m256i)(__v4di){ __d, __c, __b, __a };
1867 }
1868
1869 /* Create vectors with elements in reverse order */
1870 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_pd(double __a,double __b,double __c,double __d)1871 _mm256_setr_pd(double __a, double __b, double __c, double __d)
1872 {
1873 return (__m256d){ __a, __b, __c, __d };
1874 }
1875
1876 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)1877 _mm256_setr_ps(float __a, float __b, float __c, float __d,
1878 float __e, float __f, float __g, float __h)
1879 {
1880 return (__m256){ __a, __b, __c, __d, __e, __f, __g, __h };
1881 }
1882
1883 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)1884 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
1885 int __i4, int __i5, int __i6, int __i7)
1886 {
1887 return (__m256i)(__v8si){ __i0, __i1, __i2, __i3, __i4, __i5, __i6, __i7 };
1888 }
1889
1890 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)1891 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
1892 short __w11, short __w10, short __w09, short __w08,
1893 short __w07, short __w06, short __w05, short __w04,
1894 short __w03, short __w02, short __w01, short __w00)
1895 {
1896 return (__m256i)(__v16hi){ __w15, __w14, __w13, __w12, __w11, __w10, __w09,
1897 __w08, __w07, __w06, __w05, __w04, __w03, __w02, __w01, __w00 };
1898 }
1899
1900 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)1901 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
1902 char __b27, char __b26, char __b25, char __b24,
1903 char __b23, char __b22, char __b21, char __b20,
1904 char __b19, char __b18, char __b17, char __b16,
1905 char __b15, char __b14, char __b13, char __b12,
1906 char __b11, char __b10, char __b09, char __b08,
1907 char __b07, char __b06, char __b05, char __b04,
1908 char __b03, char __b02, char __b01, char __b00)
1909 {
1910 return (__m256i)(__v32qi){
1911 __b31, __b30, __b29, __b28, __b27, __b26, __b25, __b24,
1912 __b23, __b22, __b21, __b20, __b19, __b18, __b17, __b16,
1913 __b15, __b14, __b13, __b12, __b11, __b10, __b09, __b08,
1914 __b07, __b06, __b05, __b04, __b03, __b02, __b01, __b00 };
1915 }
1916
1917 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi64x(long long __a,long long __b,long long __c,long long __d)1918 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
1919 {
1920 return (__m256i)(__v4di){ __a, __b, __c, __d };
1921 }
1922
1923 /* Create vectors with repeated elements */
1924 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set1_pd(double __w)1925 _mm256_set1_pd(double __w)
1926 {
1927 return (__m256d){ __w, __w, __w, __w };
1928 }
1929
1930 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set1_ps(float __w)1931 _mm256_set1_ps(float __w)
1932 {
1933 return (__m256){ __w, __w, __w, __w, __w, __w, __w, __w };
1934 }
1935
1936 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi32(int __i)1937 _mm256_set1_epi32(int __i)
1938 {
1939 return (__m256i)(__v8si){ __i, __i, __i, __i, __i, __i, __i, __i };
1940 }
1941
1942 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi16(short __w)1943 _mm256_set1_epi16(short __w)
1944 {
1945 return (__m256i)(__v16hi){ __w, __w, __w, __w, __w, __w, __w, __w, __w, __w,
1946 __w, __w, __w, __w, __w, __w };
1947 }
1948
1949 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi8(char __b)1950 _mm256_set1_epi8(char __b)
1951 {
1952 return (__m256i)(__v32qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
1953 __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
1954 __b, __b, __b, __b, __b, __b, __b };
1955 }
1956
1957 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi64x(long long __q)1958 _mm256_set1_epi64x(long long __q)
1959 {
1960 return (__m256i)(__v4di){ __q, __q, __q, __q };
1961 }
1962
1963 /* Create __zeroed vectors */
1964 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setzero_pd(void)1965 _mm256_setzero_pd(void)
1966 {
1967 return (__m256d){ 0, 0, 0, 0 };
1968 }
1969
1970 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setzero_ps(void)1971 _mm256_setzero_ps(void)
1972 {
1973 return (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
1974 }
1975
1976 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setzero_si256(void)1977 _mm256_setzero_si256(void)
1978 {
1979 return (__m256i){ 0LL, 0LL, 0LL, 0LL };
1980 }
1981
1982 /* Cast between vector types */
1983 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castpd_ps(__m256d __a)1984 _mm256_castpd_ps(__m256d __a)
1985 {
1986 return (__m256)__a;
1987 }
1988
1989 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castpd_si256(__m256d __a)1990 _mm256_castpd_si256(__m256d __a)
1991 {
1992 return (__m256i)__a;
1993 }
1994
1995 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castps_pd(__m256 __a)1996 _mm256_castps_pd(__m256 __a)
1997 {
1998 return (__m256d)__a;
1999 }
2000
2001 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castps_si256(__m256 __a)2002 _mm256_castps_si256(__m256 __a)
2003 {
2004 return (__m256i)__a;
2005 }
2006
2007 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castsi256_ps(__m256i __a)2008 _mm256_castsi256_ps(__m256i __a)
2009 {
2010 return (__m256)__a;
2011 }
2012
2013 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castsi256_pd(__m256i __a)2014 _mm256_castsi256_pd(__m256i __a)
2015 {
2016 return (__m256d)__a;
2017 }
2018
2019 static __inline __m128d __DEFAULT_FN_ATTRS
_mm256_castpd256_pd128(__m256d __a)2020 _mm256_castpd256_pd128(__m256d __a)
2021 {
2022 return __builtin_shufflevector(__a, __a, 0, 1);
2023 }
2024
2025 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_castps256_ps128(__m256 __a)2026 _mm256_castps256_ps128(__m256 __a)
2027 {
2028 return __builtin_shufflevector(__a, __a, 0, 1, 2, 3);
2029 }
2030
2031 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_castsi256_si128(__m256i __a)2032 _mm256_castsi256_si128(__m256i __a)
2033 {
2034 return __builtin_shufflevector(__a, __a, 0, 1);
2035 }
2036
2037 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castpd128_pd256(__m128d __a)2038 _mm256_castpd128_pd256(__m128d __a)
2039 {
2040 return __builtin_shufflevector(__a, __a, 0, 1, -1, -1);
2041 }
2042
2043 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castps128_ps256(__m128 __a)2044 _mm256_castps128_ps256(__m128 __a)
2045 {
2046 return __builtin_shufflevector(__a, __a, 0, 1, 2, 3, -1, -1, -1, -1);
2047 }
2048
2049 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castsi128_si256(__m128i __a)2050 _mm256_castsi128_si256(__m128i __a)
2051 {
2052 return __builtin_shufflevector(__a, __a, 0, 1, -1, -1);
2053 }
2054
2055 /*
2056 Vector insert.
2057 We use macros rather than inlines because we only want to accept
2058 invocations where the immediate M is a constant expression.
2059 */
2060 #define _mm256_insertf128_ps(V1, V2, M) __extension__ ({ \
2061 (__m256)__builtin_shufflevector( \
2062 (__v8sf)(__m256)(V1), \
2063 (__v8sf)_mm256_castps128_ps256((__m128)(V2)), \
2064 (((M) & 1) ? 0 : 8), \
2065 (((M) & 1) ? 1 : 9), \
2066 (((M) & 1) ? 2 : 10), \
2067 (((M) & 1) ? 3 : 11), \
2068 (((M) & 1) ? 8 : 4), \
2069 (((M) & 1) ? 9 : 5), \
2070 (((M) & 1) ? 10 : 6), \
2071 (((M) & 1) ? 11 : 7) );})
2072
2073 #define _mm256_insertf128_pd(V1, V2, M) __extension__ ({ \
2074 (__m256d)__builtin_shufflevector( \
2075 (__v4df)(__m256d)(V1), \
2076 (__v4df)_mm256_castpd128_pd256((__m128d)(V2)), \
2077 (((M) & 1) ? 0 : 4), \
2078 (((M) & 1) ? 1 : 5), \
2079 (((M) & 1) ? 4 : 2), \
2080 (((M) & 1) ? 5 : 3) );})
2081
2082 #define _mm256_insertf128_si256(V1, V2, M) __extension__ ({ \
2083 (__m256i)__builtin_shufflevector( \
2084 (__v4di)(__m256i)(V1), \
2085 (__v4di)_mm256_castsi128_si256((__m128i)(V2)), \
2086 (((M) & 1) ? 0 : 4), \
2087 (((M) & 1) ? 1 : 5), \
2088 (((M) & 1) ? 4 : 2), \
2089 (((M) & 1) ? 5 : 3) );})
2090
2091 /*
2092 Vector extract.
2093 We use macros rather than inlines because we only want to accept
2094 invocations where the immediate M is a constant expression.
2095 */
2096 #define _mm256_extractf128_ps(V, M) __extension__ ({ \
2097 (__m128)__builtin_shufflevector( \
2098 (__v8sf)(__m256)(V), \
2099 (__v8sf)(_mm256_setzero_ps()), \
2100 (((M) & 1) ? 4 : 0), \
2101 (((M) & 1) ? 5 : 1), \
2102 (((M) & 1) ? 6 : 2), \
2103 (((M) & 1) ? 7 : 3) );})
2104
2105 #define _mm256_extractf128_pd(V, M) __extension__ ({ \
2106 (__m128d)__builtin_shufflevector( \
2107 (__v4df)(__m256d)(V), \
2108 (__v4df)(_mm256_setzero_pd()), \
2109 (((M) & 1) ? 2 : 0), \
2110 (((M) & 1) ? 3 : 1) );})
2111
2112 #define _mm256_extractf128_si256(V, M) __extension__ ({ \
2113 (__m128i)__builtin_shufflevector( \
2114 (__v4di)(__m256i)(V), \
2115 (__v4di)(_mm256_setzero_si256()), \
2116 (((M) & 1) ? 2 : 0), \
2117 (((M) & 1) ? 3 : 1) );})
2118
2119 /* SIMD load ops (unaligned) */
2120 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu2_m128(float const * __addr_hi,float const * __addr_lo)2121 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
2122 {
2123 struct __loadu_ps {
2124 __m128 __v;
2125 } __attribute__((__packed__, __may_alias__));
2126
2127 __m256 __v256 = _mm256_castps128_ps256(((struct __loadu_ps*)__addr_lo)->__v);
2128 return _mm256_insertf128_ps(__v256, ((struct __loadu_ps*)__addr_hi)->__v, 1);
2129 }
2130
2131 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu2_m128d(double const * __addr_hi,double const * __addr_lo)2132 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
2133 {
2134 struct __loadu_pd {
2135 __m128d __v;
2136 } __attribute__((__packed__, __may_alias__));
2137
2138 __m256d __v256 = _mm256_castpd128_pd256(((struct __loadu_pd*)__addr_lo)->__v);
2139 return _mm256_insertf128_pd(__v256, ((struct __loadu_pd*)__addr_hi)->__v, 1);
2140 }
2141
2142 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu2_m128i(__m128i const * __addr_hi,__m128i const * __addr_lo)2143 _mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo)
2144 {
2145 struct __loadu_si128 {
2146 __m128i __v;
2147 } __attribute__((__packed__, __may_alias__));
2148 __m256i __v256 = _mm256_castsi128_si256(
2149 ((struct __loadu_si128*)__addr_lo)->__v);
2150 return _mm256_insertf128_si256(__v256,
2151 ((struct __loadu_si128*)__addr_hi)->__v, 1);
2152 }
2153
2154 /* SIMD store ops (unaligned) */
2155 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128(float * __addr_hi,float * __addr_lo,__m256 __a)2156 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
2157 {
2158 __m128 __v128;
2159
2160 __v128 = _mm256_castps256_ps128(__a);
2161 __builtin_ia32_storeups(__addr_lo, __v128);
2162 __v128 = _mm256_extractf128_ps(__a, 1);
2163 __builtin_ia32_storeups(__addr_hi, __v128);
2164 }
2165
2166 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128d(double * __addr_hi,double * __addr_lo,__m256d __a)2167 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
2168 {
2169 __m128d __v128;
2170
2171 __v128 = _mm256_castpd256_pd128(__a);
2172 __builtin_ia32_storeupd(__addr_lo, __v128);
2173 __v128 = _mm256_extractf128_pd(__a, 1);
2174 __builtin_ia32_storeupd(__addr_hi, __v128);
2175 }
2176
2177 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128i(__m128i * __addr_hi,__m128i * __addr_lo,__m256i __a)2178 _mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a)
2179 {
2180 __m128i __v128;
2181
2182 __v128 = _mm256_castsi256_si128(__a);
2183 __builtin_ia32_storedqu((char *)__addr_lo, (__v16qi)__v128);
2184 __v128 = _mm256_extractf128_si256(__a, 1);
2185 __builtin_ia32_storedqu((char *)__addr_hi, (__v16qi)__v128);
2186 }
2187
2188 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_m128(__m128 __hi,__m128 __lo)2189 _mm256_set_m128 (__m128 __hi, __m128 __lo) {
2190 return (__m256) __builtin_shufflevector(__lo, __hi, 0, 1, 2, 3, 4, 5, 6, 7);
2191 }
2192
2193 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_m128d(__m128d __hi,__m128d __lo)2194 _mm256_set_m128d (__m128d __hi, __m128d __lo) {
2195 return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2196 }
2197
2198 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_m128i(__m128i __hi,__m128i __lo)2199 _mm256_set_m128i (__m128i __hi, __m128i __lo) {
2200 return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2201 }
2202
2203 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_m128(__m128 __lo,__m128 __hi)2204 _mm256_setr_m128 (__m128 __lo, __m128 __hi) {
2205 return _mm256_set_m128(__hi, __lo);
2206 }
2207
2208 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_m128d(__m128d __lo,__m128d __hi)2209 _mm256_setr_m128d (__m128d __lo, __m128d __hi) {
2210 return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2211 }
2212
2213 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_m128i(__m128i __lo,__m128i __hi)2214 _mm256_setr_m128i (__m128i __lo, __m128i __hi) {
2215 return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2216 }
2217
2218 #undef __DEFAULT_FN_ATTRS
2219
2220 #endif /* __AVXINTRIN_H */
2221