• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2  *
3  * Permission is hereby granted, free of charge, to any person obtaining a copy
4  * of this software and associated documentation files (the "Software"), to deal
5  * in the Software without restriction, including without limitation the rights
6  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7  * copies of the Software, and to permit persons to whom the Software is
8  * furnished to do so, subject to the following conditions:
9  *
10  * The above copyright notice and this permission notice shall be included in
11  * all copies or substantial portions of the Software.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19  * THE SOFTWARE.
20  *
21  *===-----------------------------------------------------------------------===
22  */
23 
24 #ifndef __IMMINTRIN_H
25 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
26 #endif
27 
28 #ifndef __AVXINTRIN_H
29 #define __AVXINTRIN_H
30 
31 typedef double __v4df __attribute__ ((__vector_size__ (32)));
32 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
33 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
34 typedef int __v8si __attribute__ ((__vector_size__ (32)));
35 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
36 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
37 
38 /* We need an explicitly signed variant for char. Note that this shouldn't
39  * appear in the interface though. */
40 typedef signed char __v32qs __attribute__((__vector_size__(32)));
41 
42 typedef float __m256 __attribute__ ((__vector_size__ (32)));
43 typedef double __m256d __attribute__((__vector_size__(32)));
44 typedef long long __m256i __attribute__((__vector_size__(32)));
45 
46 /* Define the default attributes for the functions in this file. */
47 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx")))
48 
49 /* Arithmetic */
50 /// \brief Adds two 256-bit vectors of [4 x double].
51 ///
52 /// \headerfile <x86intrin.h>
53 ///
54 /// This intrinsic corresponds to the \c VADDPD / ADDPD instruction.
55 ///
56 /// \param __a
57 ///    A 256-bit vector of [4 x double] containing one of the source operands.
58 /// \param __b
59 ///    A 256-bit vector of [4 x double] containing one of the source operands.
60 /// \returns A 256-bit vector of [4 x double] containing the sums of both
61 ///    operands.
62 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_add_pd(__m256d __a,__m256d __b)63 _mm256_add_pd(__m256d __a, __m256d __b)
64 {
65   return __a+__b;
66 }
67 
68 /// \brief Adds two 256-bit vectors of [8 x float].
69 ///
70 /// \headerfile <x86intrin.h>
71 ///
72 /// This intrinsic corresponds to the \c VADDPS / ADDPS instruction.
73 ///
74 /// \param __a
75 ///    A 256-bit vector of [8 x float] containing one of the source operands.
76 /// \param __b
77 ///    A 256-bit vector of [8 x float] containing one of the source operands.
78 /// \returns A 256-bit vector of [8 x float] containing the sums of both
79 ///    operands.
80 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_add_ps(__m256 __a,__m256 __b)81 _mm256_add_ps(__m256 __a, __m256 __b)
82 {
83   return __a+__b;
84 }
85 
86 /// \brief Subtracts two 256-bit vectors of [4 x double].
87 ///
88 /// \headerfile <x86intrin.h>
89 ///
90 /// This intrinsic corresponds to the \c VSUBPD / SUBPD instruction.
91 ///
92 /// \param __a
93 ///    A 256-bit vector of [4 x double] containing the minuend.
94 /// \param __b
95 ///    A 256-bit vector of [4 x double] containing the subtrahend.
96 /// \returns A 256-bit vector of [4 x double] containing the differences between
97 ///    both operands.
98 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sub_pd(__m256d __a,__m256d __b)99 _mm256_sub_pd(__m256d __a, __m256d __b)
100 {
101   return __a-__b;
102 }
103 
104 /// \brief Subtracts two 256-bit vectors of [8 x float].
105 ///
106 /// \headerfile <x86intrin.h>
107 ///
108 /// This intrinsic corresponds to the \c VSUBPS / SUBPS instruction.
109 ///
110 /// \param __a
111 ///    A 256-bit vector of [8 x float] containing the minuend.
112 /// \param __b
113 ///    A 256-bit vector of [8 x float] containing the subtrahend.
114 /// \returns A 256-bit vector of [8 x float] containing the differences between
115 ///    both operands.
116 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sub_ps(__m256 __a,__m256 __b)117 _mm256_sub_ps(__m256 __a, __m256 __b)
118 {
119   return __a-__b;
120 }
121 
122 /// \brief Adds the even-indexed values and subtracts the odd-indexed values of
123 ///    two 256-bit vectors of [4 x double].
124 ///
125 /// \headerfile <x86intrin.h>
126 ///
127 /// This intrinsic corresponds to the \c VADDSUBPD / ADDSUBPD instruction.
128 ///
129 /// \param __a
130 ///    A 256-bit vector of [4 x double] containing the left source operand.
131 /// \param __b
132 ///    A 256-bit vector of [4 x double] containing the right source operand.
133 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
134 ///    and differences between both operands.
135 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_addsub_pd(__m256d __a,__m256d __b)136 _mm256_addsub_pd(__m256d __a, __m256d __b)
137 {
138   return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
139 }
140 
141 /// \brief Adds the even-indexed values and subtracts the odd-indexed values of
142 ///    two 256-bit vectors of [8 x float].
143 ///
144 /// \headerfile <x86intrin.h>
145 ///
146 /// This intrinsic corresponds to the \c VADDSUBPS / ADDSUBPS instruction.
147 ///
148 /// \param __a
149 ///    A 256-bit vector of [8 x float] containing the left source operand.
150 /// \param __b
151 ///    A 256-bit vector of [8 x float] containing the right source operand.
152 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
153 ///    differences between both operands.
154 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_addsub_ps(__m256 __a,__m256 __b)155 _mm256_addsub_ps(__m256 __a, __m256 __b)
156 {
157   return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
158 }
159 
160 /// \brief Divides two 256-bit vectors of [4 x double].
161 ///
162 /// \headerfile <x86intrin.h>
163 ///
164 /// This intrinsic corresponds to the \c VDIVPD / DIVPD instruction.
165 ///
166 /// \param __a
167 ///    A 256-bit vector of [4 x double] containing the dividend.
168 /// \param __b
169 ///    A 256-bit vector of [4 x double] containing the divisor.
170 /// \returns A 256-bit vector of [4 x double] containing the quotients between
171 ///    both operands.
172 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_div_pd(__m256d __a,__m256d __b)173 _mm256_div_pd(__m256d __a, __m256d __b)
174 {
175   return __a / __b;
176 }
177 
178 /// \brief Divides two 256-bit vectors of [8 x float].
179 ///
180 /// \headerfile <x86intrin.h>
181 ///
182 /// This intrinsic corresponds to the \c VDIVPS / DIVPS instruction.
183 ///
184 /// \param __a
185 ///    A 256-bit vector of [8 x float] containing the dividend.
186 /// \param __b
187 ///    A 256-bit vector of [8 x float] containing the divisor.
188 /// \returns A 256-bit vector of [8 x float] containing the quotients between
189 ///    both operands.
190 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_div_ps(__m256 __a,__m256 __b)191 _mm256_div_ps(__m256 __a, __m256 __b)
192 {
193   return __a / __b;
194 }
195 
196 /// \brief Compares two 256-bit vectors of [4 x double] and returns the greater
197 ///    of each pair of values.
198 ///
199 /// \headerfile <x86intrin.h>
200 ///
201 /// This intrinsic corresponds to the \c VMAXPD / MAXPD instruction.
202 ///
203 /// \param __a
204 ///    A 256-bit vector of [4 x double] containing one of the operands.
205 /// \param __b
206 ///    A 256-bit vector of [4 x double] containing one of the operands.
207 /// \returns A 256-bit vector of [4 x double] containing the maximum values
208 ///    between both operands.
209 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_max_pd(__m256d __a,__m256d __b)210 _mm256_max_pd(__m256d __a, __m256d __b)
211 {
212   return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
213 }
214 
215 /// \brief Compares two 256-bit vectors of [8 x float] and returns the greater
216 ///    of each pair of values.
217 ///
218 /// \headerfile <x86intrin.h>
219 ///
220 /// This intrinsic corresponds to the \c VMAXPS / MAXPS instruction.
221 ///
222 /// \param __a
223 ///    A 256-bit vector of [8 x float] containing one of the operands.
224 /// \param __b
225 ///    A 256-bit vector of [8 x float] containing one of the operands.
226 /// \returns A 256-bit vector of [8 x float] containing the maximum values
227 ///    between both operands.
228 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_max_ps(__m256 __a,__m256 __b)229 _mm256_max_ps(__m256 __a, __m256 __b)
230 {
231   return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
232 }
233 
234 /// \brief Compares two 256-bit vectors of [4 x double] and returns the lesser
235 ///    of each pair of values.
236 ///
237 /// \headerfile <x86intrin.h>
238 ///
239 /// This intrinsic corresponds to the \c VMINPD / MINPD instruction.
240 ///
241 /// \param __a
242 ///    A 256-bit vector of [4 x double] containing one of the operands.
243 /// \param __b
244 ///    A 256-bit vector of [4 x double] containing one of the operands.
245 /// \returns A 256-bit vector of [4 x double] containing the minimum values
246 ///    between both operands.
247 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_min_pd(__m256d __a,__m256d __b)248 _mm256_min_pd(__m256d __a, __m256d __b)
249 {
250   return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
251 }
252 
253 /// \brief Compares two 256-bit vectors of [8 x float] and returns the lesser
254 ///    of each pair of values.
255 ///
256 /// \headerfile <x86intrin.h>
257 ///
258 /// This intrinsic corresponds to the \c VMINPS / MINPS instruction.
259 ///
260 /// \param __a
261 ///    A 256-bit vector of [8 x float] containing one of the operands.
262 /// \param __b
263 ///    A 256-bit vector of [8 x float] containing one of the operands.
264 /// \returns A 256-bit vector of [8 x float] containing the minimum values
265 ///    between both operands.
266 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_min_ps(__m256 __a,__m256 __b)267 _mm256_min_ps(__m256 __a, __m256 __b)
268 {
269   return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
270 }
271 
272 /// \brief Multiplies two 256-bit vectors of [4 x double].
273 ///
274 /// \headerfile <x86intrin.h>
275 ///
276 /// This intrinsic corresponds to the \c VMULPD / MULPD instruction.
277 ///
278 /// \param __a
279 ///    A 256-bit vector of [4 x double] containing one of the operands.
280 /// \param __b
281 ///    A 256-bit vector of [4 x double] containing one of the operands.
282 /// \returns A 256-bit vector of [4 x double] containing the products between
283 ///    both operands.
284 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_mul_pd(__m256d __a,__m256d __b)285 _mm256_mul_pd(__m256d __a, __m256d __b)
286 {
287   return __a * __b;
288 }
289 
290 /// \brief Multiplies two 256-bit vectors of [8 x float].
291 ///
292 /// \headerfile <x86intrin.h>
293 ///
294 /// This intrinsic corresponds to the \c VMULPS / MULPS instruction.
295 ///
296 /// \param __a
297 ///    A 256-bit vector of [8 x float] containing one of the operands.
298 /// \param __b
299 ///    A 256-bit vector of [8 x float] containing one of the operands.
300 /// \returns A 256-bit vector of [8 x float] containing the products between
301 ///    both operands.
302 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_mul_ps(__m256 __a,__m256 __b)303 _mm256_mul_ps(__m256 __a, __m256 __b)
304 {
305   return __a * __b;
306 }
307 
308 /// \brief Calculates the square roots of the values stored in a 256-bit vector
309 ///    of [4 x double].
310 ///
311 /// \headerfile <x86intrin.h>
312 ///
313 /// This intrinsic corresponds to the \c VSQRTPD / SQRTPD instruction.
314 ///
315 /// \param __a
316 ///    A 256-bit vector of [4 x double].
317 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
318 ///    values in the operand.
319 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sqrt_pd(__m256d __a)320 _mm256_sqrt_pd(__m256d __a)
321 {
322   return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
323 }
324 
325 /// \brief Calculates the square roots of the values stored in a 256-bit vector
326 ///    of [8 x float].
327 ///
328 /// \headerfile <x86intrin.h>
329 ///
330 /// This intrinsic corresponds to the \c VSQRTPS / SQRTPS instruction.
331 ///
332 /// \param __a
333 ///    A 256-bit vector of [8 x float].
334 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
335 ///    values in the operand.
336 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sqrt_ps(__m256 __a)337 _mm256_sqrt_ps(__m256 __a)
338 {
339   return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
340 }
341 
342 /// \brief Calculates the reciprocal square roots of the values stored in a
343 ///    256-bit vector of [8 x float].
344 ///
345 /// \headerfile <x86intrin.h>
346 ///
347 /// This intrinsic corresponds to the \c VRSQRTPS / RSQRTPS instruction.
348 ///
349 /// \param __a
350 ///    A 256-bit vector of [8 x float].
351 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
352 ///    roots of the values in the operand.
353 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rsqrt_ps(__m256 __a)354 _mm256_rsqrt_ps(__m256 __a)
355 {
356   return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
357 }
358 
359 /// \brief Calculates the reciprocals of the values stored in a 256-bit vector
360 ///    of [8 x float].
361 ///
362 /// \headerfile <x86intrin.h>
363 ///
364 /// This intrinsic corresponds to the \c VRCPPS / RCPPS instruction.
365 ///
366 /// \param __a
367 ///    A 256-bit vector of [8 x float].
368 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
369 ///    values in the operand.
370 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rcp_ps(__m256 __a)371 _mm256_rcp_ps(__m256 __a)
372 {
373   return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
374 }
375 
376 /// \brief Rounds the values stored in a 256-bit vector of [4 x double] as
377 ///    specified by the byte operand. The source values are rounded to integer
378 ///    values and returned as 64-bit double-precision floating-point values.
379 ///
380 /// \headerfile <x86intrin.h>
381 ///
382 /// \code
383 /// __m256d _mm256_round_pd(__m256d V, const int M);
384 /// \endcode
385 ///
386 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
387 ///
388 /// \param V
389 ///    A 256-bit vector of [4 x double].
390 /// \param M
391 ///    An integer value that specifies the rounding operation.
392 ///    Bits [7:4] are reserved.
393 ///    Bit [3] is a precision exception value:
394 ///    0: A normal PE exception is used
395 ///    1: The PE field is not updated
396 ///    Bit [2] is the rounding control source:
397 ///    0: Use bits [1:0] of M
398 ///    1: Use the current MXCSR setting
399 ///    Bits [1:0] contain the rounding control definition:
400 ///    00: Nearest
401 ///    01: Downward (toward negative infinity)
402 ///    10: Upward (toward positive infinity)
403 ///    11: Truncated
404 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
405 #define _mm256_round_pd(V, M) __extension__ ({ \
406     (__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)); })
407 
408 /// \brief Rounds the values stored in a 256-bit vector of [8 x float] as
409 ///    specified by the byte operand. The source values are rounded to integer
410 ///    values and returned as floating-point values.
411 ///
412 /// \headerfile <x86intrin.h>
413 ///
414 /// \code
415 /// __m256 _mm256_round_ps(__m256 V, const int M);
416 /// \endcode
417 ///
418 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
419 ///
420 /// \param V
421 ///    A 256-bit vector of [8 x float].
422 /// \param M
423 ///    An integer value that specifies the rounding operation.
424 ///    Bits [7:4] are reserved.
425 ///    Bit [3] is a precision exception value:
426 ///    0: A normal PE exception is used
427 ///    1: The PE field is not updated
428 ///    Bit [2] is the rounding control source:
429 ///    0: Use bits [1:0] of M
430 ///    1: Use the current MXCSR setting
431 ///    Bits [1:0] contain the rounding control definition:
432 ///    00: Nearest
433 ///    01: Downward (toward negative infinity)
434 ///    10: Upward (toward positive infinity)
435 ///    11: Truncated
436 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
437 #define _mm256_round_ps(V, M) __extension__ ({ \
438   (__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)); })
439 
440 /// \brief Round up the values stored in a 256-bit vector of [4 x double]. The
441 ///    source values are rounded up to integer values and returned as 64-bit
442 ///    double-precision floating-point values.
443 ///
444 /// \headerfile <x86intrin.h>
445 ///
446 /// \code
447 /// __m256d _mm256_ceil_pd(__m256d V);
448 /// \endcode
449 ///
450 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
451 ///
452 /// \param V
453 ///    A 256-bit vector of [4 x double].
454 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
455 #define _mm256_ceil_pd(V)  _mm256_round_pd((V), _MM_FROUND_CEIL)
456 
457 /// \brief Round down the values stored in a 256-bit vector of [4 x double].
458 ///    The source values are rounded down to integer values and returned as
459 ///    64-bit double-precision floating-point values.
460 ///
461 /// \headerfile <x86intrin.h>
462 ///
463 /// \code
464 /// __m256d _mm256_floor_pd(__m256d V);
465 /// \endcode
466 ///
467 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
468 ///
469 /// \param V
470 ///    A 256-bit vector of [4 x double].
471 /// \returns A 256-bit vector of [4 x double] containing the rounded down
472 ///    values.
473 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
474 
475 /// \brief Round up the values stored in a 256-bit vector of [8 x float]. The
476 ///    source values are rounded up to integer values and returned as
477 ///    floating-point values.
478 ///
479 /// \headerfile <x86intrin.h>
480 ///
481 /// \code
482 /// __m256 _mm256_ceil_ps(__m256 V);
483 /// \endcode
484 ///
485 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
486 ///
487 /// \param V
488 ///    A 256-bit vector of [8 x float].
489 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
490 #define _mm256_ceil_ps(V)  _mm256_round_ps((V), _MM_FROUND_CEIL)
491 
492 /// \brief Round down the values stored in a 256-bit vector of [8 x float]. The
493 ///    source values are rounded down to integer values and returned as
494 ///    floating-point values.
495 ///
496 /// \headerfile <x86intrin.h>
497 ///
498 /// \code
499 /// __m256 _mm256_floor_ps(__m256 V);
500 /// \endcode
501 ///
502 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
503 ///
504 /// \param V
505 ///    A 256-bit vector of [8 x float].
506 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
507 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
508 
509 /* Logical */
510 /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double].
511 ///
512 /// \headerfile <x86intrin.h>
513 ///
514 /// This intrinsic corresponds to the \c VANDPD / ANDPD instruction.
515 ///
516 /// \param __a
517 ///    A 256-bit vector of [4 x double] containing one of the source operands.
518 /// \param __b
519 ///    A 256-bit vector of [4 x double] containing one of the source operands.
520 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
521 ///    values between both operands.
522 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_and_pd(__m256d __a,__m256d __b)523 _mm256_and_pd(__m256d __a, __m256d __b)
524 {
525   return (__m256d)((__v4di)__a & (__v4di)__b);
526 }
527 
528 /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float].
529 ///
530 /// \headerfile <x86intrin.h>
531 ///
532 /// This intrinsic corresponds to the \c VANDPS / ANDPS instruction.
533 ///
534 /// \param __a
535 ///    A 256-bit vector of [8 x float] containing one of the source operands.
536 /// \param __b
537 ///    A 256-bit vector of [8 x float] containing one of the source operands.
538 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
539 ///    values between both operands.
540 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_and_ps(__m256 __a,__m256 __b)541 _mm256_and_ps(__m256 __a, __m256 __b)
542 {
543   return (__m256)((__v8si)__a & (__v8si)__b);
544 }
545 
546 /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double], using
547 ///    the one's complement of the values contained in the first source operand.
548 ///
549 /// \headerfile <x86intrin.h>
550 ///
551 /// This intrinsic corresponds to the \c VANDNPD / ANDNPD instruction.
552 ///
553 /// \param __a
554 ///    A 256-bit vector of [4 x double] containing the left source operand. The
555 ///    one's complement of this value is used in the bitwise AND.
556 /// \param __b
557 ///    A 256-bit vector of [4 x double] containing the right source operand.
558 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
559 ///    values of the second operand and the one's complement of the first
560 ///    operand.
561 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_andnot_pd(__m256d __a,__m256d __b)562 _mm256_andnot_pd(__m256d __a, __m256d __b)
563 {
564   return (__m256d)(~(__v4di)__a & (__v4di)__b);
565 }
566 
567 /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float], using
568 ///    the one's complement of the values contained in the first source operand.
569 ///
570 /// \headerfile <x86intrin.h>
571 ///
572 /// This intrinsic corresponds to the \c VANDNPS / ANDNPS instruction.
573 ///
574 /// \param __a
575 ///    A 256-bit vector of [8 x float] containing the left source operand. The
576 ///    one's complement of this value is used in the bitwise AND.
577 /// \param __b
578 ///    A 256-bit vector of [8 x float] containing the right source operand.
579 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
580 ///    values of the second operand and the one's complement of the first
581 ///    operand.
582 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_andnot_ps(__m256 __a,__m256 __b)583 _mm256_andnot_ps(__m256 __a, __m256 __b)
584 {
585   return (__m256)(~(__v8si)__a & (__v8si)__b);
586 }
587 
588 /// \brief Performs a bitwise OR of two 256-bit vectors of [4 x double].
589 ///
590 /// \headerfile <x86intrin.h>
591 ///
592 /// This intrinsic corresponds to the \c VORPD / ORPD instruction.
593 ///
594 /// \param __a
595 ///    A 256-bit vector of [4 x double] containing one of the source operands.
596 /// \param __b
597 ///    A 256-bit vector of [4 x double] containing one of the source operands.
598 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
599 ///    values between both operands.
600 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_or_pd(__m256d __a,__m256d __b)601 _mm256_or_pd(__m256d __a, __m256d __b)
602 {
603   return (__m256d)((__v4di)__a | (__v4di)__b);
604 }
605 
606 /// \brief Performs a bitwise OR of two 256-bit vectors of [8 x float].
607 ///
608 /// \headerfile <x86intrin.h>
609 ///
610 /// This intrinsic corresponds to the \c VORPS / ORPS instruction.
611 ///
612 /// \param __a
613 ///    A 256-bit vector of [8 x float] containing one of the source operands.
614 /// \param __b
615 ///    A 256-bit vector of [8 x float] containing one of the source operands.
616 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
617 ///    values between both operands.
618 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_or_ps(__m256 __a,__m256 __b)619 _mm256_or_ps(__m256 __a, __m256 __b)
620 {
621   return (__m256)((__v8si)__a | (__v8si)__b);
622 }
623 
624 /// \brief Performs a bitwise XOR of two 256-bit vectors of [4 x double].
625 ///
626 /// \headerfile <x86intrin.h>
627 ///
628 /// This intrinsic corresponds to the \c VXORPD / XORPD instruction.
629 ///
630 /// \param __a
631 ///    A 256-bit vector of [4 x double] containing one of the source operands.
632 /// \param __b
633 ///    A 256-bit vector of [4 x double] containing one of the source operands.
634 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
635 ///    values between both operands.
636 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_xor_pd(__m256d __a,__m256d __b)637 _mm256_xor_pd(__m256d __a, __m256d __b)
638 {
639   return (__m256d)((__v4di)__a ^ (__v4di)__b);
640 }
641 
642 /// \brief Performs a bitwise XOR of two 256-bit vectors of [8 x float].
643 ///
644 /// \headerfile <x86intrin.h>
645 ///
646 /// This intrinsic corresponds to the \c VXORPS / XORPS instruction.
647 ///
648 /// \param __a
649 ///    A 256-bit vector of [8 x float] containing one of the source operands.
650 /// \param __b
651 ///    A 256-bit vector of [8 x float] containing one of the source operands.
652 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
653 ///    values between both operands.
654 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_xor_ps(__m256 __a,__m256 __b)655 _mm256_xor_ps(__m256 __a, __m256 __b)
656 {
657   return (__m256)((__v8si)__a ^ (__v8si)__b);
658 }
659 
660 /* Horizontal arithmetic */
661 /// \brief Horizontally adds the adjacent pairs of values contained in two
662 ///    256-bit vectors of [4 x double].
663 ///
664 /// \headerfile <x86intrin.h>
665 ///
666 /// This intrinsic corresponds to the \c VHADDPD / HADDPD instruction.
667 ///
668 /// \param __a
669 ///    A 256-bit vector of [4 x double] containing one of the source operands.
670 ///    The horizontal sums of the values are returned in the even-indexed
671 ///    elements of a vector of [4 x double].
672 /// \param __b
673 ///    A 256-bit vector of [4 x double] containing one of the source operands.
674 ///    The horizontal sums of the values are returned in the odd-indexed
675 ///    elements of a vector of [4 x double].
676 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
677 ///    both operands.
678 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hadd_pd(__m256d __a,__m256d __b)679 _mm256_hadd_pd(__m256d __a, __m256d __b)
680 {
681   return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
682 }
683 
684 /// \brief Horizontally adds the adjacent pairs of values contained in two
685 ///    256-bit vectors of [8 x float].
686 ///
687 /// \headerfile <x86intrin.h>
688 ///
689 /// This intrinsic corresponds to the \c VHADDPS / HADDPS instruction.
690 ///
691 /// \param __a
692 ///    A 256-bit vector of [8 x float] containing one of the source operands.
693 ///    The horizontal sums of the values are returned in the elements with
694 ///    index 0, 1, 4, 5 of a vector of [8 x float].
695 /// \param __b
696 ///    A 256-bit vector of [8 x float] containing one of the source operands.
697 ///    The horizontal sums of the values are returned in the elements with
698 ///    index 2, 3, 6, 7 of a vector of [8 x float].
699 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
700 ///    both operands.
701 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hadd_ps(__m256 __a,__m256 __b)702 _mm256_hadd_ps(__m256 __a, __m256 __b)
703 {
704   return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
705 }
706 
707 /// \brief Horizontally subtracts the adjacent pairs of values contained in two
708 ///    256-bit vectors of [4 x double].
709 ///
710 /// \headerfile <x86intrin.h>
711 ///
712 /// This intrinsic corresponds to the \c VHSUBPD / HSUBPD instruction.
713 ///
714 /// \param __a
715 ///    A 256-bit vector of [4 x double] containing one of the source operands.
716 ///    The horizontal differences between the values are returned in the
717 ///    even-indexed elements of a vector of [4 x double].
718 /// \param __b
719 ///    A 256-bit vector of [4 x double] containing one of the source operands.
720 ///    The horizontal differences between the values are returned in the
721 ///    odd-indexed elements of a vector of [4 x double].
722 /// \returns A 256-bit vector of [4 x double] containing the horizontal
723 ///    differences of both operands.
724 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hsub_pd(__m256d __a,__m256d __b)725 _mm256_hsub_pd(__m256d __a, __m256d __b)
726 {
727   return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
728 }
729 
730 /// \brief Horizontally subtracts the adjacent pairs of values contained in two
731 ///    256-bit vectors of [8 x float].
732 ///
733 /// \headerfile <x86intrin.h>
734 ///
735 /// This intrinsic corresponds to the \c VHSUBPS / HSUBPS instruction.
736 ///
737 /// \param __a
738 ///    A 256-bit vector of [8 x float] containing one of the source operands.
739 ///    The horizontal differences between the values are returned in the
740 ///    elements with index 0, 1, 4, 5 of a vector of [8 x float].
741 /// \param __b
742 ///    A 256-bit vector of [8 x float] containing one of the source operands.
743 ///    The horizontal differences between the values are returned in the
744 ///    elements with index 2, 3, 6, 7 of a vector of [8 x float].
745 /// \returns A 256-bit vector of [8 x float] containing the horizontal
746 ///    differences of both operands.
747 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hsub_ps(__m256 __a,__m256 __b)748 _mm256_hsub_ps(__m256 __a, __m256 __b)
749 {
750   return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
751 }
752 
753 /* Vector permutations */
754 /// \brief Copies the values stored in a 128-bit vector of [2 x double] as
755 ///    specified by the 128-bit integer vector operand.
756 ///
757 /// \headerfile <x86intrin.h>
758 ///
759 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
760 ///
761 /// \param __a
762 ///    A 128-bit vector of [2 x double].
763 /// \param __c
764 ///    A 128-bit integer vector operand specifying how the values are to be
765 ///    copied.
766 ///    Bit [1]:
767 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
768 ///    returned vector
769 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
770 ///    returned vector
771 ///    Bit [65]:
772 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
773 ///    returned vector
774 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
775 ///    returned vector
776 /// \returns A 128-bit vector of [2 x double] containing the copied values.
777 static __inline __m128d __DEFAULT_FN_ATTRS
_mm_permutevar_pd(__m128d __a,__m128i __c)778 _mm_permutevar_pd(__m128d __a, __m128i __c)
779 {
780   return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
781 }
782 
783 /// \brief Copies the values stored in a 256-bit vector of [4 x double] as
784 ///    specified by the 256-bit integer vector operand.
785 ///
786 /// \headerfile <x86intrin.h>
787 ///
788 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
789 ///
790 /// \param __a
791 ///    A 256-bit vector of [4 x double].
792 /// \param __c
793 ///    A 256-bit integer vector operand specifying how the values are to be
794 ///    copied.
795 ///    Bit [1]:
796 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
797 ///    returned vector
798 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
799 ///    returned vector
800 ///    Bit [65]:
801 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
802 ///    returned vector
803 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
804 ///    returned vector
805 ///    Bit [129]:
806 ///    0: Bits [191:128] of the source are copied to bits [191:128] of the
807 ///    returned vector
808 ///    1: Bits [255:192] of the source are copied to bits [191:128] of the
809 ///    returned vector
810 ///    Bit [193]:
811 ///    0: Bits [191:128] of the source are copied to bits [255:192] of the
812 ///    returned vector
813 ///    1: Bits [255:192] of the source are copied to bits [255:192] of the
814 ///    returned vector
815 /// \returns A 256-bit vector of [4 x double] containing the copied values.
816 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_permutevar_pd(__m256d __a,__m256i __c)817 _mm256_permutevar_pd(__m256d __a, __m256i __c)
818 {
819   return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
820 }
821 
822 /// \brief Copies the values stored in a 128-bit vector of [4 x float] as
823 ///    specified by the 128-bit integer vector operand.
824 ///
825 /// \headerfile <x86intrin.h>
826 ///
827 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
828 ///
829 /// \param __a
830 ///    A 128-bit vector of [4 x float].
831 /// \param __c
832 ///    A 128-bit integer vector operand specifying how the values are to be
833 ///    copied.
834 ///    Bits [1:0]:
835 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
836 ///    returned vector
837 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
838 ///    returned vector
839 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
840 ///    returned vector
841 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
842 ///    returned vector
843 ///    Bits [33:32]:
844 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
845 ///    returned vector
846 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
847 ///    returned vector
848 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
849 ///    returned vector
850 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
851 ///    returned vector
852 ///    Bits [65:64]:
853 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
854 ///    returned vector
855 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
856 ///    returned vector
857 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
858 ///    returned vector
859 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
860 ///    returned vector
861 ///    Bits [97:96]:
862 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
863 ///    returned vector
864 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
865 ///    returned vector
866 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
867 ///    returned vector
868 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
869 ///    returned vector
870 /// \returns A 128-bit vector of [4 x float] containing the copied values.
871 static __inline __m128 __DEFAULT_FN_ATTRS
_mm_permutevar_ps(__m128 __a,__m128i __c)872 _mm_permutevar_ps(__m128 __a, __m128i __c)
873 {
874   return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
875 }
876 
877 /// \brief Copies the values stored in a 256-bit vector of [8 x float] as
878 ///    specified by the 256-bit integer vector operand.
879 ///
880 /// \headerfile <x86intrin.h>
881 ///
882 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
883 ///
884 /// \param __a
885 ///    A 256-bit vector of [8 x float].
886 /// \param __c
887 ///    A 256-bit integer vector operand specifying how the values are to be
888 ///    copied.
889 ///    Bits [1:0]:
890 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
891 ///    returned vector
892 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
893 ///    returned vector
894 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
895 ///    returned vector
896 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
897 ///    returned vector
898 ///    Bits [33:32]:
899 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
900 ///    returned vector
901 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
902 ///    returned vector
903 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
904 ///    returned vector
905 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
906 ///    returned vector
907 ///    Bits [65:64]:
908 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
909 ///    returned vector
910 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
911 ///    returned vector
912 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
913 ///    returned vector
914 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
915 ///    returned vector
916 ///    Bits [97:96]:
917 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
918 ///    returned vector
919 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
920 ///    returned vector
921 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
922 ///    returned vector
923 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
924 ///    returned vector
925 ///    Bits [129:128]:
926 ///    00: Bits [159:128] of the source are copied to bits [159:128] of the
927 ///    returned vector
928 ///    01: Bits [191:160] of the source are copied to bits [159:128] of the
929 ///    returned vector
930 ///    10: Bits [223:192] of the source are copied to bits [159:128] of the
931 ///    returned vector
932 ///    11: Bits [255:224] of the source are copied to bits [159:128] of the
933 ///    returned vector
934 ///    Bits [161:160]:
935 ///    00: Bits [159:128] of the source are copied to bits [191:160] of the
936 ///    returned vector
937 ///    01: Bits [191:160] of the source are copied to bits [191:160] of the
938 ///    returned vector
939 ///    10: Bits [223:192] of the source are copied to bits [191:160] of the
940 ///    returned vector
941 ///    11: Bits [255:224] of the source are copied to bits [191:160] of the
942 ///    returned vector
943 ///    Bits [193:192]:
944 ///    00: Bits [159:128] of the source are copied to bits [223:192] of the
945 ///    returned vector
946 ///    01: Bits [191:160] of the source are copied to bits [223:192] of the
947 ///    returned vector
948 ///    10: Bits [223:192] of the source are copied to bits [223:192] of the
949 ///    returned vector
950 ///    11: Bits [255:224] of the source are copied to bits [223:192] of the
951 ///    returned vector
952 ///    Bits [225:224]:
953 ///    00: Bits [159:128] of the source are copied to bits [255:224] of the
954 ///    returned vector
955 ///    01: Bits [191:160] of the source are copied to bits [255:224] of the
956 ///    returned vector
957 ///    10: Bits [223:192] of the source are copied to bits [255:224] of the
958 ///    returned vector
959 ///    11: Bits [255:224] of the source are copied to bits [255:224] of the
960 ///    returned vector
961 /// \returns A 256-bit vector of [8 x float] containing the copied values.
962 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_permutevar_ps(__m256 __a,__m256i __c)963 _mm256_permutevar_ps(__m256 __a, __m256i __c)
964 {
965   return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
966 }
967 
968 /// \brief Copies the values stored in a 128-bit vector of [2 x double] as
969 ///    specified by the immediate integer operand.
970 ///
971 /// \headerfile <x86intrin.h>
972 ///
973 /// \code
974 /// __m128d _mm_permute_pd(__m128d A, const int C);
975 /// \endcode
976 ///
977 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
978 ///
979 /// \param A
980 ///    A 128-bit vector of [2 x double].
981 /// \param C
982 ///    An immediate integer operand specifying how the values are to be copied.
983 ///    Bit [0]:
984 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
985 ///    returned vector
986 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
987 ///    returned vector
988 ///    Bit [1]:
989 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
990 ///    returned vector
991 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
992 ///    returned vector
993 /// \returns A 128-bit vector of [2 x double] containing the copied values.
994 #define _mm_permute_pd(A, C) __extension__ ({ \
995   (__m128d)__builtin_shufflevector((__v2df)(__m128d)(A), \
996                                    (__v2df)_mm_setzero_pd(), \
997                                    (C) & 0x1, ((C) & 0x2) >> 1); })
998 
999 /// \brief Copies the values stored in a 256-bit vector of [4 x double] as
1000 ///    specified by the immediate integer operand.
1001 ///
1002 /// \headerfile <x86intrin.h>
1003 ///
1004 /// \code
1005 /// __m256d _mm256_permute_pd(__m256d A, const int C);
1006 /// \endcode
1007 ///
1008 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
1009 ///
1010 /// \param A
1011 ///    A 256-bit vector of [4 x double].
1012 /// \param C
1013 ///    An immediate integer operand specifying how the values are to be copied.
1014 ///    Bit [0]:
1015 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
1016 ///    returned vector
1017 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
1018 ///    returned vector
1019 ///    Bit [1]:
1020 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
1021 ///    returned vector
1022 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
1023 ///    returned vector
1024 ///    Bit [2]:
1025 ///    0: Bits [191:128] of the source are copied to bits [191:128] of the
1026 ///    returned vector
1027 ///    1: Bits [255:192] of the source are copied to bits [191:128] of the
1028 ///    returned vector
1029 ///    Bit [3]:
1030 ///    0: Bits [191:128] of the source are copied to bits [255:192] of the
1031 ///    returned vector
1032 ///    1: Bits [255:192] of the source are copied to bits [255:192] of the
1033 ///    returned vector
1034 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1035 #define _mm256_permute_pd(A, C) __extension__ ({ \
1036   (__m256d)__builtin_shufflevector((__v4df)(__m256d)(A), \
1037                                    (__v4df)_mm256_setzero_pd(), \
1038                                    (C) & 0x1, ((C) & 0x2) >> 1, \
1039                                    2 + (((C) & 0x4) >> 2), \
1040                                    2 + (((C) & 0x8) >> 3)); })
1041 
1042 /// \brief Copies the values stored in a 128-bit vector of [4 x float] as
1043 ///    specified by the immediate integer operand.
1044 ///
1045 /// \headerfile <x86intrin.h>
1046 ///
1047 /// \code
1048 /// __m128 _mm_permute_ps(__m128 A, const int C);
1049 /// \endcode
1050 ///
1051 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
1052 ///
1053 /// \param A
1054 ///    A 128-bit vector of [4 x float].
1055 /// \param C
1056 ///    An immediate integer operand specifying how the values are to be copied.
1057 ///    Bits [1:0]:
1058 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
1059 ///    returned vector
1060 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
1061 ///    returned vector
1062 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
1063 ///    returned vector
1064 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
1065 ///    returned vector
1066 ///    Bits [3:2]:
1067 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
1068 ///    returned vector
1069 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
1070 ///    returned vector
1071 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
1072 ///    returned vector
1073 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
1074 ///    returned vector
1075 ///    Bits [5:4]:
1076 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
1077 ///    returned vector
1078 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
1079 ///    returned vector
1080 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
1081 ///    returned vector
1082 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
1083 ///    returned vector
1084 ///    Bits [7:6]:
1085 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
1086 ///    returned vector
1087 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
1088 ///    returned vector
1089 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
1090 ///    returned vector
1091 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
1092 ///    returned vector
1093 /// \returns A 128-bit vector of [4 x float] containing the copied values.
1094 #define _mm_permute_ps(A, C) __extension__ ({ \
1095   (__m128)__builtin_shufflevector((__v4sf)(__m128)(A), \
1096                                   (__v4sf)_mm_setzero_ps(), \
1097                                    (C) & 0x3, ((C) & 0xc) >> 2, \
1098                                    ((C) & 0x30) >> 4, ((C) & 0xc0) >> 6); })
1099 
1100 /// \brief Copies the values stored in a 256-bit vector of [8 x float] as
1101 ///    specified by the immediate integer operand.
1102 ///
1103 /// \headerfile <x86intrin.h>
1104 ///
1105 /// \code
1106 /// __m256 _mm256_permute_ps(__m256 A, const int C);
1107 /// \endcode
1108 ///
1109 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
1110 ///
1111 /// \param A
1112 ///    A 256-bit vector of [8 x float].
1113 /// \param C
1114 ///    An immediate integer operand specifying how the values are to be copied.
1115 ///    Bits [1:0]:
1116 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
1117 ///    returned vector
1118 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
1119 ///    returned vector
1120 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
1121 ///    returned vector
1122 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
1123 ///    returned vector
1124 ///    Bits [3:2]:
1125 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
1126 ///    returned vector
1127 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
1128 ///    returned vector
1129 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
1130 ///    returned vector
1131 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
1132 ///    returned vector
1133 ///    Bits [5:4]:
1134 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
1135 ///    returned vector
1136 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
1137 ///    returned vector
1138 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
1139 ///    returned vector
1140 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
1141 ///    returned vector
1142 ///    Bits [7:6]:
1143 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
1144 ///    returned vector
1145 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
1146 ///    returned vector
1147 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
1148 ///    returned vector
1149 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
1150 ///    returned vector
1151 ///    Bits [1:0]:
1152 ///    00: Bits [159:128] of the source are copied to bits [159:128] of the
1153 ///    returned vector
1154 ///    01: Bits [191:160] of the source are copied to bits [159:128] of the
1155 ///    returned vector
1156 ///    10: Bits [223:192] of the source are copied to bits [159:128] of the
1157 ///    returned vector
1158 ///    11: Bits [255:224] of the source are copied to bits [159:128] of the
1159 ///    returned vector
1160 ///    Bits [3:2]:
1161 ///    00: Bits [159:128] of the source are copied to bits [191:160] of the
1162 ///    returned vector
1163 ///    01: Bits [191:160] of the source are copied to bits [191:160] of the
1164 ///    returned vector
1165 ///    10: Bits [223:192] of the source are copied to bits [191:160] of the
1166 ///    returned vector
1167 ///    11: Bits [255:224] of the source are copied to bits [191:160] of the
1168 ///    returned vector
1169 ///    Bits [5:4]:
1170 ///    00: Bits [159:128] of the source are copied to bits [223:192] of the
1171 ///    returned vector
1172 ///    01: Bits [191:160] of the source are copied to bits [223:192] of the
1173 ///    returned vector
1174 ///    10: Bits [223:192] of the source are copied to bits [223:192] of the
1175 ///    returned vector
1176 ///    11: Bits [255:224] of the source are copied to bits [223:192] of the
1177 ///    returned vector
1178 ///    Bits [7:6]:
1179 ///    00: Bits [159:128] of the source are copied to bits [255:224] of the
1180 ///    returned vector
1181 ///    01: Bits [191:160] of the source are copied to bits [255:224] of the
1182 ///    returned vector
1183 ///    10: Bits [223:192] of the source are copied to bits [255:224] of the
1184 ///    returned vector
1185 ///    11: Bits [255:224] of the source are copied to bits [255:224] of the
1186 ///    returned vector
1187 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1188 #define _mm256_permute_ps(A, C) __extension__ ({ \
1189   (__m256)__builtin_shufflevector((__v8sf)(__m256)(A), \
1190                                   (__v8sf)_mm256_setzero_ps(), \
1191                                   (C) & 0x3, ((C) & 0xc) >> 2, \
1192                                   ((C) & 0x30) >> 4, ((C) & 0xc0) >> 6, \
1193                                   4 + (((C) & 0x03) >> 0), \
1194                                   4 + (((C) & 0x0c) >> 2), \
1195                                   4 + (((C) & 0x30) >> 4), \
1196                                   4 + (((C) & 0xc0) >> 6)); })
1197 
1198 #define _mm256_permute2f128_pd(V1, V2, M) __extension__ ({ \
1199   (__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1200                                            (__v4df)(__m256d)(V2), (M)); })
1201 
1202 #define _mm256_permute2f128_ps(V1, V2, M) __extension__ ({ \
1203   (__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1204                                           (__v8sf)(__m256)(V2), (M)); })
1205 
1206 #define _mm256_permute2f128_si256(V1, V2, M) __extension__ ({ \
1207   (__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1208                                            (__v8si)(__m256i)(V2), (M)); })
1209 
1210 /* Vector Blend */
1211 #define _mm256_blend_pd(V1, V2, M) __extension__ ({ \
1212   (__m256d)__builtin_shufflevector((__v4df)(__m256d)(V1), \
1213                                    (__v4df)(__m256d)(V2), \
1214                                    (((M) & 0x01) ? 4 : 0), \
1215                                    (((M) & 0x02) ? 5 : 1), \
1216                                    (((M) & 0x04) ? 6 : 2), \
1217                                    (((M) & 0x08) ? 7 : 3)); })
1218 
1219 #define _mm256_blend_ps(V1, V2, M) __extension__ ({ \
1220   (__m256)__builtin_shufflevector((__v8sf)(__m256)(V1), \
1221                                   (__v8sf)(__m256)(V2), \
1222                                   (((M) & 0x01) ?  8 : 0), \
1223                                   (((M) & 0x02) ?  9 : 1), \
1224                                   (((M) & 0x04) ? 10 : 2), \
1225                                   (((M) & 0x08) ? 11 : 3), \
1226                                   (((M) & 0x10) ? 12 : 4), \
1227                                   (((M) & 0x20) ? 13 : 5), \
1228                                   (((M) & 0x40) ? 14 : 6), \
1229                                   (((M) & 0x80) ? 15 : 7)); })
1230 
1231 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_blendv_pd(__m256d __a,__m256d __b,__m256d __c)1232 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1233 {
1234   return (__m256d)__builtin_ia32_blendvpd256(
1235     (__v4df)__a, (__v4df)__b, (__v4df)__c);
1236 }
1237 
1238 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_blendv_ps(__m256 __a,__m256 __b,__m256 __c)1239 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1240 {
1241   return (__m256)__builtin_ia32_blendvps256(
1242     (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1243 }
1244 
1245 /* Vector Dot Product */
1246 #define _mm256_dp_ps(V1, V2, M) __extension__ ({ \
1247   (__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1248                                  (__v8sf)(__m256)(V2), (M)); })
1249 
1250 /* Vector shuffle */
1251 #define _mm256_shuffle_ps(a, b, mask) __extension__ ({ \
1252         (__m256)__builtin_shufflevector((__v8sf)(__m256)(a), \
1253                                         (__v8sf)(__m256)(b), \
1254                                         (mask) & 0x3, \
1255                                         ((mask) & 0xc) >> 2, \
1256                                         (((mask) & 0x30) >> 4) + 8, \
1257                                         (((mask) & 0xc0) >> 6) + 8, \
1258                                         ((mask) & 0x3) + 4, \
1259                                         (((mask) & 0xc) >> 2) + 4, \
1260                                         (((mask) & 0x30) >> 4) + 12, \
1261                                         (((mask) & 0xc0) >> 6) + 12); })
1262 
1263 #define _mm256_shuffle_pd(a, b, mask) __extension__ ({ \
1264         (__m256d)__builtin_shufflevector((__v4df)(__m256d)(a), \
1265                                          (__v4df)(__m256d)(b), \
1266                                          (mask) & 0x1, \
1267                                          (((mask) & 0x2) >> 1) + 4, \
1268                                          (((mask) & 0x4) >> 2) + 2, \
1269                                          (((mask) & 0x8) >> 3) + 6); })
1270 
1271 /* Compare */
1272 #define _CMP_EQ_OQ    0x00 /* Equal (ordered, non-signaling)  */
1273 #define _CMP_LT_OS    0x01 /* Less-than (ordered, signaling)  */
1274 #define _CMP_LE_OS    0x02 /* Less-than-or-equal (ordered, signaling)  */
1275 #define _CMP_UNORD_Q  0x03 /* Unordered (non-signaling)  */
1276 #define _CMP_NEQ_UQ   0x04 /* Not-equal (unordered, non-signaling)  */
1277 #define _CMP_NLT_US   0x05 /* Not-less-than (unordered, signaling)  */
1278 #define _CMP_NLE_US   0x06 /* Not-less-than-or-equal (unordered, signaling)  */
1279 #define _CMP_ORD_Q    0x07 /* Ordered (nonsignaling)   */
1280 #define _CMP_EQ_UQ    0x08 /* Equal (unordered, non-signaling)  */
1281 #define _CMP_NGE_US   0x09 /* Not-greater-than-or-equal (unord, signaling)  */
1282 #define _CMP_NGT_US   0x0a /* Not-greater-than (unordered, signaling)  */
1283 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling)  */
1284 #define _CMP_NEQ_OQ   0x0c /* Not-equal (ordered, non-signaling)  */
1285 #define _CMP_GE_OS    0x0d /* Greater-than-or-equal (ordered, signaling)  */
1286 #define _CMP_GT_OS    0x0e /* Greater-than (ordered, signaling)  */
1287 #define _CMP_TRUE_UQ  0x0f /* True (unordered, non-signaling)  */
1288 #define _CMP_EQ_OS    0x10 /* Equal (ordered, signaling)  */
1289 #define _CMP_LT_OQ    0x11 /* Less-than (ordered, non-signaling)  */
1290 #define _CMP_LE_OQ    0x12 /* Less-than-or-equal (ordered, non-signaling)  */
1291 #define _CMP_UNORD_S  0x13 /* Unordered (signaling)  */
1292 #define _CMP_NEQ_US   0x14 /* Not-equal (unordered, signaling)  */
1293 #define _CMP_NLT_UQ   0x15 /* Not-less-than (unordered, non-signaling)  */
1294 #define _CMP_NLE_UQ   0x16 /* Not-less-than-or-equal (unord, non-signaling)  */
1295 #define _CMP_ORD_S    0x17 /* Ordered (signaling)  */
1296 #define _CMP_EQ_US    0x18 /* Equal (unordered, signaling)  */
1297 #define _CMP_NGE_UQ   0x19 /* Not-greater-than-or-equal (unord, non-sign)  */
1298 #define _CMP_NGT_UQ   0x1a /* Not-greater-than (unordered, non-signaling)  */
1299 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling)  */
1300 #define _CMP_NEQ_OS   0x1c /* Not-equal (ordered, signaling)  */
1301 #define _CMP_GE_OQ    0x1d /* Greater-than-or-equal (ordered, non-signaling)  */
1302 #define _CMP_GT_OQ    0x1e /* Greater-than (ordered, non-signaling)  */
1303 #define _CMP_TRUE_US  0x1f /* True (unordered, signaling)  */
1304 
1305 #define _mm_cmp_pd(a, b, c) __extension__ ({ \
1306   (__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
1307                                 (__v2df)(__m128d)(b), (c)); })
1308 
1309 #define _mm_cmp_ps(a, b, c) __extension__ ({ \
1310   (__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
1311                                (__v4sf)(__m128)(b), (c)); })
1312 
1313 #define _mm256_cmp_pd(a, b, c) __extension__ ({ \
1314   (__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1315                                    (__v4df)(__m256d)(b), (c)); })
1316 
1317 #define _mm256_cmp_ps(a, b, c) __extension__ ({ \
1318   (__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1319                                   (__v8sf)(__m256)(b), (c)); })
1320 
1321 #define _mm_cmp_sd(a, b, c) __extension__ ({ \
1322   (__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
1323                                 (__v2df)(__m128d)(b), (c)); })
1324 
1325 #define _mm_cmp_ss(a, b, c) __extension__ ({ \
1326   (__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
1327                                (__v4sf)(__m128)(b), (c)); })
1328 
1329 static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi32(__m256i __a,const int __imm)1330 _mm256_extract_epi32(__m256i __a, const int __imm)
1331 {
1332   __v8si __b = (__v8si)__a;
1333   return __b[__imm & 7];
1334 }
1335 
1336 static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi16(__m256i __a,const int __imm)1337 _mm256_extract_epi16(__m256i __a, const int __imm)
1338 {
1339   __v16hi __b = (__v16hi)__a;
1340   return __b[__imm & 15];
1341 }
1342 
1343 static __inline int __DEFAULT_FN_ATTRS
_mm256_extract_epi8(__m256i __a,const int __imm)1344 _mm256_extract_epi8(__m256i __a, const int __imm)
1345 {
1346   __v32qi __b = (__v32qi)__a;
1347   return __b[__imm & 31];
1348 }
1349 
1350 #ifdef __x86_64__
1351 static __inline long long  __DEFAULT_FN_ATTRS
_mm256_extract_epi64(__m256i __a,const int __imm)1352 _mm256_extract_epi64(__m256i __a, const int __imm)
1353 {
1354   __v4di __b = (__v4di)__a;
1355   return __b[__imm & 3];
1356 }
1357 #endif
1358 
1359 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi32(__m256i __a,int __b,int const __imm)1360 _mm256_insert_epi32(__m256i __a, int __b, int const __imm)
1361 {
1362   __v8si __c = (__v8si)__a;
1363   __c[__imm & 7] = __b;
1364   return (__m256i)__c;
1365 }
1366 
1367 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi16(__m256i __a,int __b,int const __imm)1368 _mm256_insert_epi16(__m256i __a, int __b, int const __imm)
1369 {
1370   __v16hi __c = (__v16hi)__a;
1371   __c[__imm & 15] = __b;
1372   return (__m256i)__c;
1373 }
1374 
1375 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi8(__m256i __a,int __b,int const __imm)1376 _mm256_insert_epi8(__m256i __a, int __b, int const __imm)
1377 {
1378   __v32qi __c = (__v32qi)__a;
1379   __c[__imm & 31] = __b;
1380   return (__m256i)__c;
1381 }
1382 
1383 #ifdef __x86_64__
1384 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_insert_epi64(__m256i __a,long long __b,int const __imm)1385 _mm256_insert_epi64(__m256i __a, long long __b, int const __imm)
1386 {
1387   __v4di __c = (__v4di)__a;
1388   __c[__imm & 3] = __b;
1389   return (__m256i)__c;
1390 }
1391 #endif
1392 
1393 /* Conversion */
1394 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtepi32_pd(__m128i __a)1395 _mm256_cvtepi32_pd(__m128i __a)
1396 {
1397   return (__m256d)__builtin_ia32_cvtdq2pd256((__v4si) __a);
1398 }
1399 
1400 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_cvtepi32_ps(__m256i __a)1401 _mm256_cvtepi32_ps(__m256i __a)
1402 {
1403   return (__m256)__builtin_ia32_cvtdq2ps256((__v8si) __a);
1404 }
1405 
1406 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_cvtpd_ps(__m256d __a)1407 _mm256_cvtpd_ps(__m256d __a)
1408 {
1409   return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
1410 }
1411 
1412 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvtps_epi32(__m256 __a)1413 _mm256_cvtps_epi32(__m256 __a)
1414 {
1415   return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
1416 }
1417 
1418 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtps_pd(__m128 __a)1419 _mm256_cvtps_pd(__m128 __a)
1420 {
1421   return (__m256d)__builtin_ia32_cvtps2pd256((__v4sf) __a);
1422 }
1423 
1424 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvttpd_epi32(__m256d __a)1425 _mm256_cvttpd_epi32(__m256d __a)
1426 {
1427   return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
1428 }
1429 
1430 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvtpd_epi32(__m256d __a)1431 _mm256_cvtpd_epi32(__m256d __a)
1432 {
1433   return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
1434 }
1435 
1436 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvttps_epi32(__m256 __a)1437 _mm256_cvttps_epi32(__m256 __a)
1438 {
1439   return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
1440 }
1441 
1442 /* Vector replicate */
1443 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_movehdup_ps(__m256 __a)1444 _mm256_movehdup_ps(__m256 __a)
1445 {
1446   return __builtin_shufflevector(__a, __a, 1, 1, 3, 3, 5, 5, 7, 7);
1447 }
1448 
1449 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_moveldup_ps(__m256 __a)1450 _mm256_moveldup_ps(__m256 __a)
1451 {
1452   return __builtin_shufflevector(__a, __a, 0, 0, 2, 2, 4, 4, 6, 6);
1453 }
1454 
1455 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_movedup_pd(__m256d __a)1456 _mm256_movedup_pd(__m256d __a)
1457 {
1458   return __builtin_shufflevector(__a, __a, 0, 0, 2, 2);
1459 }
1460 
1461 /* Unpack and Interleave */
1462 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpackhi_pd(__m256d __a,__m256d __b)1463 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
1464 {
1465   return __builtin_shufflevector(__a, __b, 1, 5, 1+2, 5+2);
1466 }
1467 
1468 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpacklo_pd(__m256d __a,__m256d __b)1469 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
1470 {
1471   return __builtin_shufflevector(__a, __b, 0, 4, 0+2, 4+2);
1472 }
1473 
1474 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpackhi_ps(__m256 __a,__m256 __b)1475 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
1476 {
1477   return __builtin_shufflevector(__a, __b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
1478 }
1479 
1480 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpacklo_ps(__m256 __a,__m256 __b)1481 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
1482 {
1483   return __builtin_shufflevector(__a, __b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
1484 }
1485 
1486 /* Bit Test */
1487 static __inline int __DEFAULT_FN_ATTRS
_mm_testz_pd(__m128d __a,__m128d __b)1488 _mm_testz_pd(__m128d __a, __m128d __b)
1489 {
1490   return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
1491 }
1492 
1493 static __inline int __DEFAULT_FN_ATTRS
_mm_testc_pd(__m128d __a,__m128d __b)1494 _mm_testc_pd(__m128d __a, __m128d __b)
1495 {
1496   return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
1497 }
1498 
1499 static __inline int __DEFAULT_FN_ATTRS
_mm_testnzc_pd(__m128d __a,__m128d __b)1500 _mm_testnzc_pd(__m128d __a, __m128d __b)
1501 {
1502   return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
1503 }
1504 
1505 static __inline int __DEFAULT_FN_ATTRS
_mm_testz_ps(__m128 __a,__m128 __b)1506 _mm_testz_ps(__m128 __a, __m128 __b)
1507 {
1508   return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
1509 }
1510 
1511 static __inline int __DEFAULT_FN_ATTRS
_mm_testc_ps(__m128 __a,__m128 __b)1512 _mm_testc_ps(__m128 __a, __m128 __b)
1513 {
1514   return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
1515 }
1516 
1517 static __inline int __DEFAULT_FN_ATTRS
_mm_testnzc_ps(__m128 __a,__m128 __b)1518 _mm_testnzc_ps(__m128 __a, __m128 __b)
1519 {
1520   return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
1521 }
1522 
1523 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_pd(__m256d __a,__m256d __b)1524 _mm256_testz_pd(__m256d __a, __m256d __b)
1525 {
1526   return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
1527 }
1528 
1529 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_pd(__m256d __a,__m256d __b)1530 _mm256_testc_pd(__m256d __a, __m256d __b)
1531 {
1532   return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
1533 }
1534 
1535 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_pd(__m256d __a,__m256d __b)1536 _mm256_testnzc_pd(__m256d __a, __m256d __b)
1537 {
1538   return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
1539 }
1540 
1541 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_ps(__m256 __a,__m256 __b)1542 _mm256_testz_ps(__m256 __a, __m256 __b)
1543 {
1544   return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
1545 }
1546 
1547 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_ps(__m256 __a,__m256 __b)1548 _mm256_testc_ps(__m256 __a, __m256 __b)
1549 {
1550   return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
1551 }
1552 
1553 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_ps(__m256 __a,__m256 __b)1554 _mm256_testnzc_ps(__m256 __a, __m256 __b)
1555 {
1556   return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
1557 }
1558 
1559 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_si256(__m256i __a,__m256i __b)1560 _mm256_testz_si256(__m256i __a, __m256i __b)
1561 {
1562   return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
1563 }
1564 
1565 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_si256(__m256i __a,__m256i __b)1566 _mm256_testc_si256(__m256i __a, __m256i __b)
1567 {
1568   return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
1569 }
1570 
1571 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_si256(__m256i __a,__m256i __b)1572 _mm256_testnzc_si256(__m256i __a, __m256i __b)
1573 {
1574   return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
1575 }
1576 
1577 /* Vector extract sign mask */
1578 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_pd(__m256d __a)1579 _mm256_movemask_pd(__m256d __a)
1580 {
1581   return __builtin_ia32_movmskpd256((__v4df)__a);
1582 }
1583 
1584 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_ps(__m256 __a)1585 _mm256_movemask_ps(__m256 __a)
1586 {
1587   return __builtin_ia32_movmskps256((__v8sf)__a);
1588 }
1589 
1590 /* Vector __zero */
1591 static __inline void __DEFAULT_FN_ATTRS
_mm256_zeroall(void)1592 _mm256_zeroall(void)
1593 {
1594   __builtin_ia32_vzeroall();
1595 }
1596 
1597 static __inline void __DEFAULT_FN_ATTRS
_mm256_zeroupper(void)1598 _mm256_zeroupper(void)
1599 {
1600   __builtin_ia32_vzeroupper();
1601 }
1602 
1603 /* Vector load with broadcast */
1604 static __inline __m128 __DEFAULT_FN_ATTRS
_mm_broadcast_ss(float const * __a)1605 _mm_broadcast_ss(float const *__a)
1606 {
1607   float __f = *__a;
1608   return (__m128)(__v4sf){ __f, __f, __f, __f };
1609 }
1610 
1611 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_sd(double const * __a)1612 _mm256_broadcast_sd(double const *__a)
1613 {
1614   double __d = *__a;
1615   return (__m256d)(__v4df){ __d, __d, __d, __d };
1616 }
1617 
1618 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ss(float const * __a)1619 _mm256_broadcast_ss(float const *__a)
1620 {
1621   float __f = *__a;
1622   return (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
1623 }
1624 
1625 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_pd(__m128d const * __a)1626 _mm256_broadcast_pd(__m128d const *__a)
1627 {
1628   return (__m256d)__builtin_ia32_vbroadcastf128_pd256(__a);
1629 }
1630 
1631 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ps(__m128 const * __a)1632 _mm256_broadcast_ps(__m128 const *__a)
1633 {
1634   return (__m256)__builtin_ia32_vbroadcastf128_ps256(__a);
1635 }
1636 
1637 /* SIMD load ops */
1638 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_load_pd(double const * __p)1639 _mm256_load_pd(double const *__p)
1640 {
1641   return *(__m256d *)__p;
1642 }
1643 
1644 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_load_ps(float const * __p)1645 _mm256_load_ps(float const *__p)
1646 {
1647   return *(__m256 *)__p;
1648 }
1649 
1650 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu_pd(double const * __p)1651 _mm256_loadu_pd(double const *__p)
1652 {
1653   struct __loadu_pd {
1654     __m256d __v;
1655   } __attribute__((__packed__, __may_alias__));
1656   return ((struct __loadu_pd*)__p)->__v;
1657 }
1658 
1659 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu_ps(float const * __p)1660 _mm256_loadu_ps(float const *__p)
1661 {
1662   struct __loadu_ps {
1663     __m256 __v;
1664   } __attribute__((__packed__, __may_alias__));
1665   return ((struct __loadu_ps*)__p)->__v;
1666 }
1667 
1668 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_load_si256(__m256i const * __p)1669 _mm256_load_si256(__m256i const *__p)
1670 {
1671   return *__p;
1672 }
1673 
1674 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu_si256(__m256i const * __p)1675 _mm256_loadu_si256(__m256i const *__p)
1676 {
1677   struct __loadu_si256 {
1678     __m256i __v;
1679   } __attribute__((__packed__, __may_alias__));
1680   return ((struct __loadu_si256*)__p)->__v;
1681 }
1682 
1683 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_lddqu_si256(__m256i const * __p)1684 _mm256_lddqu_si256(__m256i const *__p)
1685 {
1686   return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
1687 }
1688 
1689 /* SIMD store ops */
1690 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_pd(double * __p,__m256d __a)1691 _mm256_store_pd(double *__p, __m256d __a)
1692 {
1693   *(__m256d *)__p = __a;
1694 }
1695 
1696 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_ps(float * __p,__m256 __a)1697 _mm256_store_ps(float *__p, __m256 __a)
1698 {
1699   *(__m256 *)__p = __a;
1700 }
1701 
1702 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_pd(double * __p,__m256d __a)1703 _mm256_storeu_pd(double *__p, __m256d __a)
1704 {
1705   __builtin_ia32_storeupd256(__p, (__v4df)__a);
1706 }
1707 
1708 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_ps(float * __p,__m256 __a)1709 _mm256_storeu_ps(float *__p, __m256 __a)
1710 {
1711   __builtin_ia32_storeups256(__p, (__v8sf)__a);
1712 }
1713 
1714 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_si256(__m256i * __p,__m256i __a)1715 _mm256_store_si256(__m256i *__p, __m256i __a)
1716 {
1717   *__p = __a;
1718 }
1719 
1720 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_si256(__m256i * __p,__m256i __a)1721 _mm256_storeu_si256(__m256i *__p, __m256i __a)
1722 {
1723   __builtin_ia32_storedqu256((char *)__p, (__v32qi)__a);
1724 }
1725 
1726 /* Conditional load ops */
1727 static __inline __m128d __DEFAULT_FN_ATTRS
_mm_maskload_pd(double const * __p,__m128i __m)1728 _mm_maskload_pd(double const *__p, __m128i __m)
1729 {
1730   return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
1731 }
1732 
1733 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_maskload_pd(double const * __p,__m256i __m)1734 _mm256_maskload_pd(double const *__p, __m256i __m)
1735 {
1736   return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
1737                                                (__v4di)__m);
1738 }
1739 
1740 static __inline __m128 __DEFAULT_FN_ATTRS
_mm_maskload_ps(float const * __p,__m128i __m)1741 _mm_maskload_ps(float const *__p, __m128i __m)
1742 {
1743   return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
1744 }
1745 
1746 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_maskload_ps(float const * __p,__m256i __m)1747 _mm256_maskload_ps(float const *__p, __m256i __m)
1748 {
1749   return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
1750 }
1751 
1752 /* Conditional store ops */
1753 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_ps(float * __p,__m256i __m,__m256 __a)1754 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
1755 {
1756   __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
1757 }
1758 
1759 static __inline void __DEFAULT_FN_ATTRS
_mm_maskstore_pd(double * __p,__m128i __m,__m128d __a)1760 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
1761 {
1762   __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
1763 }
1764 
1765 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_pd(double * __p,__m256i __m,__m256d __a)1766 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
1767 {
1768   __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
1769 }
1770 
1771 static __inline void __DEFAULT_FN_ATTRS
_mm_maskstore_ps(float * __p,__m128i __m,__m128 __a)1772 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
1773 {
1774   __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
1775 }
1776 
1777 /* Cacheability support ops */
1778 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_si256(__m256i * __a,__m256i __b)1779 _mm256_stream_si256(__m256i *__a, __m256i __b)
1780 {
1781   __builtin_ia32_movntdq256((__v4di *)__a, (__v4di)__b);
1782 }
1783 
1784 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_pd(double * __a,__m256d __b)1785 _mm256_stream_pd(double *__a, __m256d __b)
1786 {
1787   __builtin_ia32_movntpd256(__a, (__v4df)__b);
1788 }
1789 
1790 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_ps(float * __p,__m256 __a)1791 _mm256_stream_ps(float *__p, __m256 __a)
1792 {
1793   __builtin_ia32_movntps256(__p, (__v8sf)__a);
1794 }
1795 
1796 /* Create vectors */
1797 static __inline__ __m256d __DEFAULT_FN_ATTRS
_mm256_undefined_pd()1798 _mm256_undefined_pd()
1799 {
1800   return (__m256d)__builtin_ia32_undef256();
1801 }
1802 
1803 static __inline__ __m256 __DEFAULT_FN_ATTRS
_mm256_undefined_ps()1804 _mm256_undefined_ps()
1805 {
1806   return (__m256)__builtin_ia32_undef256();
1807 }
1808 
1809 static __inline__ __m256i __DEFAULT_FN_ATTRS
_mm256_undefined_si256()1810 _mm256_undefined_si256()
1811 {
1812   return (__m256i)__builtin_ia32_undef256();
1813 }
1814 
1815 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_pd(double __a,double __b,double __c,double __d)1816 _mm256_set_pd(double __a, double __b, double __c, double __d)
1817 {
1818   return (__m256d){ __d, __c, __b, __a };
1819 }
1820 
1821 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)1822 _mm256_set_ps(float __a, float __b, float __c, float __d,
1823               float __e, float __f, float __g, float __h)
1824 {
1825   return (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
1826 }
1827 
1828 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)1829 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
1830                  int __i4, int __i5, int __i6, int __i7)
1831 {
1832   return (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
1833 }
1834 
1835 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)1836 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
1837                  short __w11, short __w10, short __w09, short __w08,
1838                  short __w07, short __w06, short __w05, short __w04,
1839                  short __w03, short __w02, short __w01, short __w00)
1840 {
1841   return (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
1842     __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
1843 }
1844 
1845 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)1846 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
1847                 char __b27, char __b26, char __b25, char __b24,
1848                 char __b23, char __b22, char __b21, char __b20,
1849                 char __b19, char __b18, char __b17, char __b16,
1850                 char __b15, char __b14, char __b13, char __b12,
1851                 char __b11, char __b10, char __b09, char __b08,
1852                 char __b07, char __b06, char __b05, char __b04,
1853                 char __b03, char __b02, char __b01, char __b00)
1854 {
1855   return (__m256i)(__v32qi){
1856     __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
1857     __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
1858     __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
1859     __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
1860   };
1861 }
1862 
1863 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi64x(long long __a,long long __b,long long __c,long long __d)1864 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
1865 {
1866   return (__m256i)(__v4di){ __d, __c, __b, __a };
1867 }
1868 
1869 /* Create vectors with elements in reverse order */
1870 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_pd(double __a,double __b,double __c,double __d)1871 _mm256_setr_pd(double __a, double __b, double __c, double __d)
1872 {
1873   return (__m256d){ __a, __b, __c, __d };
1874 }
1875 
1876 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)1877 _mm256_setr_ps(float __a, float __b, float __c, float __d,
1878                float __e, float __f, float __g, float __h)
1879 {
1880   return (__m256){ __a, __b, __c, __d, __e, __f, __g, __h };
1881 }
1882 
1883 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)1884 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
1885                   int __i4, int __i5, int __i6, int __i7)
1886 {
1887   return (__m256i)(__v8si){ __i0, __i1, __i2, __i3, __i4, __i5, __i6, __i7 };
1888 }
1889 
1890 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)1891 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
1892        short __w11, short __w10, short __w09, short __w08,
1893        short __w07, short __w06, short __w05, short __w04,
1894        short __w03, short __w02, short __w01, short __w00)
1895 {
1896   return (__m256i)(__v16hi){ __w15, __w14, __w13, __w12, __w11, __w10, __w09,
1897     __w08, __w07, __w06, __w05, __w04, __w03, __w02, __w01, __w00 };
1898 }
1899 
1900 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)1901 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
1902                  char __b27, char __b26, char __b25, char __b24,
1903                  char __b23, char __b22, char __b21, char __b20,
1904                  char __b19, char __b18, char __b17, char __b16,
1905                  char __b15, char __b14, char __b13, char __b12,
1906                  char __b11, char __b10, char __b09, char __b08,
1907                  char __b07, char __b06, char __b05, char __b04,
1908                  char __b03, char __b02, char __b01, char __b00)
1909 {
1910   return (__m256i)(__v32qi){
1911     __b31, __b30, __b29, __b28, __b27, __b26, __b25, __b24,
1912     __b23, __b22, __b21, __b20, __b19, __b18, __b17, __b16,
1913     __b15, __b14, __b13, __b12, __b11, __b10, __b09, __b08,
1914     __b07, __b06, __b05, __b04, __b03, __b02, __b01, __b00 };
1915 }
1916 
1917 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi64x(long long __a,long long __b,long long __c,long long __d)1918 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
1919 {
1920   return (__m256i)(__v4di){ __a, __b, __c, __d };
1921 }
1922 
1923 /* Create vectors with repeated elements */
1924 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set1_pd(double __w)1925 _mm256_set1_pd(double __w)
1926 {
1927   return (__m256d){ __w, __w, __w, __w };
1928 }
1929 
1930 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set1_ps(float __w)1931 _mm256_set1_ps(float __w)
1932 {
1933   return (__m256){ __w, __w, __w, __w, __w, __w, __w, __w };
1934 }
1935 
1936 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi32(int __i)1937 _mm256_set1_epi32(int __i)
1938 {
1939   return (__m256i)(__v8si){ __i, __i, __i, __i, __i, __i, __i, __i };
1940 }
1941 
1942 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi16(short __w)1943 _mm256_set1_epi16(short __w)
1944 {
1945   return (__m256i)(__v16hi){ __w, __w, __w, __w, __w, __w, __w, __w, __w, __w,
1946     __w, __w, __w, __w, __w, __w };
1947 }
1948 
1949 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi8(char __b)1950 _mm256_set1_epi8(char __b)
1951 {
1952   return (__m256i)(__v32qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
1953     __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
1954     __b, __b, __b, __b, __b, __b, __b };
1955 }
1956 
1957 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi64x(long long __q)1958 _mm256_set1_epi64x(long long __q)
1959 {
1960   return (__m256i)(__v4di){ __q, __q, __q, __q };
1961 }
1962 
1963 /* Create __zeroed vectors */
1964 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setzero_pd(void)1965 _mm256_setzero_pd(void)
1966 {
1967   return (__m256d){ 0, 0, 0, 0 };
1968 }
1969 
1970 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setzero_ps(void)1971 _mm256_setzero_ps(void)
1972 {
1973   return (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
1974 }
1975 
1976 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setzero_si256(void)1977 _mm256_setzero_si256(void)
1978 {
1979   return (__m256i){ 0LL, 0LL, 0LL, 0LL };
1980 }
1981 
1982 /* Cast between vector types */
1983 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castpd_ps(__m256d __a)1984 _mm256_castpd_ps(__m256d __a)
1985 {
1986   return (__m256)__a;
1987 }
1988 
1989 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castpd_si256(__m256d __a)1990 _mm256_castpd_si256(__m256d __a)
1991 {
1992   return (__m256i)__a;
1993 }
1994 
1995 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castps_pd(__m256 __a)1996 _mm256_castps_pd(__m256 __a)
1997 {
1998   return (__m256d)__a;
1999 }
2000 
2001 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castps_si256(__m256 __a)2002 _mm256_castps_si256(__m256 __a)
2003 {
2004   return (__m256i)__a;
2005 }
2006 
2007 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castsi256_ps(__m256i __a)2008 _mm256_castsi256_ps(__m256i __a)
2009 {
2010   return (__m256)__a;
2011 }
2012 
2013 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castsi256_pd(__m256i __a)2014 _mm256_castsi256_pd(__m256i __a)
2015 {
2016   return (__m256d)__a;
2017 }
2018 
2019 static __inline __m128d __DEFAULT_FN_ATTRS
_mm256_castpd256_pd128(__m256d __a)2020 _mm256_castpd256_pd128(__m256d __a)
2021 {
2022   return __builtin_shufflevector(__a, __a, 0, 1);
2023 }
2024 
2025 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_castps256_ps128(__m256 __a)2026 _mm256_castps256_ps128(__m256 __a)
2027 {
2028   return __builtin_shufflevector(__a, __a, 0, 1, 2, 3);
2029 }
2030 
2031 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_castsi256_si128(__m256i __a)2032 _mm256_castsi256_si128(__m256i __a)
2033 {
2034   return __builtin_shufflevector(__a, __a, 0, 1);
2035 }
2036 
2037 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castpd128_pd256(__m128d __a)2038 _mm256_castpd128_pd256(__m128d __a)
2039 {
2040   return __builtin_shufflevector(__a, __a, 0, 1, -1, -1);
2041 }
2042 
2043 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castps128_ps256(__m128 __a)2044 _mm256_castps128_ps256(__m128 __a)
2045 {
2046   return __builtin_shufflevector(__a, __a, 0, 1, 2, 3, -1, -1, -1, -1);
2047 }
2048 
2049 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castsi128_si256(__m128i __a)2050 _mm256_castsi128_si256(__m128i __a)
2051 {
2052   return __builtin_shufflevector(__a, __a, 0, 1, -1, -1);
2053 }
2054 
2055 /*
2056    Vector insert.
2057    We use macros rather than inlines because we only want to accept
2058    invocations where the immediate M is a constant expression.
2059 */
2060 #define _mm256_insertf128_ps(V1, V2, M) __extension__ ({ \
2061   (__m256)__builtin_shufflevector( \
2062     (__v8sf)(__m256)(V1), \
2063     (__v8sf)_mm256_castps128_ps256((__m128)(V2)), \
2064     (((M) & 1) ?  0 :  8), \
2065     (((M) & 1) ?  1 :  9), \
2066     (((M) & 1) ?  2 : 10), \
2067     (((M) & 1) ?  3 : 11), \
2068     (((M) & 1) ?  8 :  4), \
2069     (((M) & 1) ?  9 :  5), \
2070     (((M) & 1) ? 10 :  6), \
2071     (((M) & 1) ? 11 :  7) );})
2072 
2073 #define _mm256_insertf128_pd(V1, V2, M) __extension__ ({ \
2074   (__m256d)__builtin_shufflevector( \
2075     (__v4df)(__m256d)(V1), \
2076     (__v4df)_mm256_castpd128_pd256((__m128d)(V2)), \
2077     (((M) & 1) ? 0 : 4), \
2078     (((M) & 1) ? 1 : 5), \
2079     (((M) & 1) ? 4 : 2), \
2080     (((M) & 1) ? 5 : 3) );})
2081 
2082 #define _mm256_insertf128_si256(V1, V2, M) __extension__ ({ \
2083   (__m256i)__builtin_shufflevector( \
2084     (__v4di)(__m256i)(V1), \
2085     (__v4di)_mm256_castsi128_si256((__m128i)(V2)), \
2086     (((M) & 1) ? 0 : 4), \
2087     (((M) & 1) ? 1 : 5), \
2088     (((M) & 1) ? 4 : 2), \
2089     (((M) & 1) ? 5 : 3) );})
2090 
2091 /*
2092    Vector extract.
2093    We use macros rather than inlines because we only want to accept
2094    invocations where the immediate M is a constant expression.
2095 */
2096 #define _mm256_extractf128_ps(V, M) __extension__ ({ \
2097   (__m128)__builtin_shufflevector( \
2098     (__v8sf)(__m256)(V), \
2099     (__v8sf)(_mm256_setzero_ps()), \
2100     (((M) & 1) ? 4 : 0), \
2101     (((M) & 1) ? 5 : 1), \
2102     (((M) & 1) ? 6 : 2), \
2103     (((M) & 1) ? 7 : 3) );})
2104 
2105 #define _mm256_extractf128_pd(V, M) __extension__ ({ \
2106   (__m128d)__builtin_shufflevector( \
2107     (__v4df)(__m256d)(V), \
2108     (__v4df)(_mm256_setzero_pd()), \
2109     (((M) & 1) ? 2 : 0), \
2110     (((M) & 1) ? 3 : 1) );})
2111 
2112 #define _mm256_extractf128_si256(V, M) __extension__ ({ \
2113   (__m128i)__builtin_shufflevector( \
2114     (__v4di)(__m256i)(V), \
2115     (__v4di)(_mm256_setzero_si256()), \
2116     (((M) & 1) ? 2 : 0), \
2117     (((M) & 1) ? 3 : 1) );})
2118 
2119 /* SIMD load ops (unaligned) */
2120 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu2_m128(float const * __addr_hi,float const * __addr_lo)2121 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
2122 {
2123   struct __loadu_ps {
2124     __m128 __v;
2125   } __attribute__((__packed__, __may_alias__));
2126 
2127   __m256 __v256 = _mm256_castps128_ps256(((struct __loadu_ps*)__addr_lo)->__v);
2128   return _mm256_insertf128_ps(__v256, ((struct __loadu_ps*)__addr_hi)->__v, 1);
2129 }
2130 
2131 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu2_m128d(double const * __addr_hi,double const * __addr_lo)2132 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
2133 {
2134   struct __loadu_pd {
2135     __m128d __v;
2136   } __attribute__((__packed__, __may_alias__));
2137 
2138   __m256d __v256 = _mm256_castpd128_pd256(((struct __loadu_pd*)__addr_lo)->__v);
2139   return _mm256_insertf128_pd(__v256, ((struct __loadu_pd*)__addr_hi)->__v, 1);
2140 }
2141 
2142 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu2_m128i(__m128i const * __addr_hi,__m128i const * __addr_lo)2143 _mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo)
2144 {
2145   struct __loadu_si128 {
2146     __m128i __v;
2147   } __attribute__((__packed__, __may_alias__));
2148   __m256i __v256 = _mm256_castsi128_si256(
2149     ((struct __loadu_si128*)__addr_lo)->__v);
2150   return _mm256_insertf128_si256(__v256,
2151                                  ((struct __loadu_si128*)__addr_hi)->__v, 1);
2152 }
2153 
2154 /* SIMD store ops (unaligned) */
2155 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128(float * __addr_hi,float * __addr_lo,__m256 __a)2156 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
2157 {
2158   __m128 __v128;
2159 
2160   __v128 = _mm256_castps256_ps128(__a);
2161   __builtin_ia32_storeups(__addr_lo, __v128);
2162   __v128 = _mm256_extractf128_ps(__a, 1);
2163   __builtin_ia32_storeups(__addr_hi, __v128);
2164 }
2165 
2166 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128d(double * __addr_hi,double * __addr_lo,__m256d __a)2167 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
2168 {
2169   __m128d __v128;
2170 
2171   __v128 = _mm256_castpd256_pd128(__a);
2172   __builtin_ia32_storeupd(__addr_lo, __v128);
2173   __v128 = _mm256_extractf128_pd(__a, 1);
2174   __builtin_ia32_storeupd(__addr_hi, __v128);
2175 }
2176 
2177 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128i(__m128i * __addr_hi,__m128i * __addr_lo,__m256i __a)2178 _mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a)
2179 {
2180   __m128i __v128;
2181 
2182   __v128 = _mm256_castsi256_si128(__a);
2183   __builtin_ia32_storedqu((char *)__addr_lo, (__v16qi)__v128);
2184   __v128 = _mm256_extractf128_si256(__a, 1);
2185   __builtin_ia32_storedqu((char *)__addr_hi, (__v16qi)__v128);
2186 }
2187 
2188 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_m128(__m128 __hi,__m128 __lo)2189 _mm256_set_m128 (__m128 __hi, __m128 __lo) {
2190   return (__m256) __builtin_shufflevector(__lo, __hi, 0, 1, 2, 3, 4, 5, 6, 7);
2191 }
2192 
2193 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_m128d(__m128d __hi,__m128d __lo)2194 _mm256_set_m128d (__m128d __hi, __m128d __lo) {
2195   return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2196 }
2197 
2198 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_m128i(__m128i __hi,__m128i __lo)2199 _mm256_set_m128i (__m128i __hi, __m128i __lo) {
2200   return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2201 }
2202 
2203 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_m128(__m128 __lo,__m128 __hi)2204 _mm256_setr_m128 (__m128 __lo, __m128 __hi) {
2205   return _mm256_set_m128(__hi, __lo);
2206 }
2207 
2208 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_m128d(__m128d __lo,__m128d __hi)2209 _mm256_setr_m128d (__m128d __lo, __m128d __hi) {
2210   return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2211 }
2212 
2213 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_m128i(__m128i __lo,__m128i __hi)2214 _mm256_setr_m128i (__m128i __lo, __m128i __hi) {
2215   return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2216 }
2217 
2218 #undef __DEFAULT_FN_ATTRS
2219 
2220 #endif /* __AVXINTRIN_H */
2221