• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2015-2016 The Khronos Group Inc.
3  * Copyright (c) 2015-2016 Valve Corporation
4  * Copyright (c) 2015-2016 LunarG, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and/or associated documentation files (the "Materials"), to
8  * deal in the Materials without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Materials, and to permit persons to whom the Materials are
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice(s) and this permission notice shall be included in
14  * all copies or substantial portions of the Materials.
15  *
16  * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
19  *
20  * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
21  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
22  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE
23  * USE OR OTHER DEALINGS IN THE MATERIALS.
24  *
25  * Relicensed from the WTFPL (http://www.wtfpl.net/faq/).
26  */
27 
28 #ifndef LINMATH_H
29 #define LINMATH_H
30 
31 #include <math.h>
32 
33 // Converts degrees to radians.
34 #define degreesToRadians(angleDegrees) (angleDegrees * M_PI / 180.0)
35 
36 // Converts radians to degrees.
37 #define radiansToDegrees(angleRadians) (angleRadians * 180.0 / M_PI)
38 
39 typedef float vec3[3];
vec3_add(vec3 r,vec3 const a,vec3 const b)40 static inline void vec3_add(vec3 r, vec3 const a, vec3 const b) {
41     int i;
42     for (i = 0; i < 3; ++i)
43         r[i] = a[i] + b[i];
44 }
vec3_sub(vec3 r,vec3 const a,vec3 const b)45 static inline void vec3_sub(vec3 r, vec3 const a, vec3 const b) {
46     int i;
47     for (i = 0; i < 3; ++i)
48         r[i] = a[i] - b[i];
49 }
vec3_scale(vec3 r,vec3 const v,float const s)50 static inline void vec3_scale(vec3 r, vec3 const v, float const s) {
51     int i;
52     for (i = 0; i < 3; ++i)
53         r[i] = v[i] * s;
54 }
vec3_mul_inner(vec3 const a,vec3 const b)55 static inline float vec3_mul_inner(vec3 const a, vec3 const b) {
56     float p = 0.f;
57     int i;
58     for (i = 0; i < 3; ++i)
59         p += b[i] * a[i];
60     return p;
61 }
vec3_mul_cross(vec3 r,vec3 const a,vec3 const b)62 static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) {
63     r[0] = a[1] * b[2] - a[2] * b[1];
64     r[1] = a[2] * b[0] - a[0] * b[2];
65     r[2] = a[0] * b[1] - a[1] * b[0];
66 }
vec3_len(vec3 const v)67 static inline float vec3_len(vec3 const v) {
68     return sqrtf(vec3_mul_inner(v, v));
69 }
vec3_norm(vec3 r,vec3 const v)70 static inline void vec3_norm(vec3 r, vec3 const v) {
71     float k = 1.f / vec3_len(v);
72     vec3_scale(r, v, k);
73 }
vec3_reflect(vec3 r,vec3 const v,vec3 const n)74 static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) {
75     float p = 2.f * vec3_mul_inner(v, n);
76     int i;
77     for (i = 0; i < 3; ++i)
78         r[i] = v[i] - p * n[i];
79 }
80 
81 typedef float vec4[4];
vec4_add(vec4 r,vec4 const a,vec4 const b)82 static inline void vec4_add(vec4 r, vec4 const a, vec4 const b) {
83     int i;
84     for (i = 0; i < 4; ++i)
85         r[i] = a[i] + b[i];
86 }
vec4_sub(vec4 r,vec4 const a,vec4 const b)87 static inline void vec4_sub(vec4 r, vec4 const a, vec4 const b) {
88     int i;
89     for (i = 0; i < 4; ++i)
90         r[i] = a[i] - b[i];
91 }
vec4_scale(vec4 r,vec4 v,float s)92 static inline void vec4_scale(vec4 r, vec4 v, float s) {
93     int i;
94     for (i = 0; i < 4; ++i)
95         r[i] = v[i] * s;
96 }
vec4_mul_inner(vec4 a,vec4 b)97 static inline float vec4_mul_inner(vec4 a, vec4 b) {
98     float p = 0.f;
99     int i;
100     for (i = 0; i < 4; ++i)
101         p += b[i] * a[i];
102     return p;
103 }
vec4_mul_cross(vec4 r,vec4 a,vec4 b)104 static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) {
105     r[0] = a[1] * b[2] - a[2] * b[1];
106     r[1] = a[2] * b[0] - a[0] * b[2];
107     r[2] = a[0] * b[1] - a[1] * b[0];
108     r[3] = 1.f;
109 }
vec4_len(vec4 v)110 static inline float vec4_len(vec4 v) { return sqrtf(vec4_mul_inner(v, v)); }
vec4_norm(vec4 r,vec4 v)111 static inline void vec4_norm(vec4 r, vec4 v) {
112     float k = 1.f / vec4_len(v);
113     vec4_scale(r, v, k);
114 }
vec4_reflect(vec4 r,vec4 v,vec4 n)115 static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) {
116     float p = 2.f * vec4_mul_inner(v, n);
117     int i;
118     for (i = 0; i < 4; ++i)
119         r[i] = v[i] - p * n[i];
120 }
121 
122 typedef vec4 mat4x4[4];
mat4x4_identity(mat4x4 M)123 static inline void mat4x4_identity(mat4x4 M) {
124     int i, j;
125     for (i = 0; i < 4; ++i)
126         for (j = 0; j < 4; ++j)
127             M[i][j] = i == j ? 1.f : 0.f;
128 }
mat4x4_dup(mat4x4 M,mat4x4 N)129 static inline void mat4x4_dup(mat4x4 M, mat4x4 N) {
130     int i, j;
131     for (i = 0; i < 4; ++i)
132         for (j = 0; j < 4; ++j)
133             M[i][j] = N[i][j];
134 }
mat4x4_row(vec4 r,mat4x4 M,int i)135 static inline void mat4x4_row(vec4 r, mat4x4 M, int i) {
136     int k;
137     for (k = 0; k < 4; ++k)
138         r[k] = M[k][i];
139 }
mat4x4_col(vec4 r,mat4x4 M,int i)140 static inline void mat4x4_col(vec4 r, mat4x4 M, int i) {
141     int k;
142     for (k = 0; k < 4; ++k)
143         r[k] = M[i][k];
144 }
mat4x4_transpose(mat4x4 M,mat4x4 N)145 static inline void mat4x4_transpose(mat4x4 M, mat4x4 N) {
146     int i, j;
147     for (j = 0; j < 4; ++j)
148         for (i = 0; i < 4; ++i)
149             M[i][j] = N[j][i];
150 }
mat4x4_add(mat4x4 M,mat4x4 a,mat4x4 b)151 static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) {
152     int i;
153     for (i = 0; i < 4; ++i)
154         vec4_add(M[i], a[i], b[i]);
155 }
mat4x4_sub(mat4x4 M,mat4x4 a,mat4x4 b)156 static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) {
157     int i;
158     for (i = 0; i < 4; ++i)
159         vec4_sub(M[i], a[i], b[i]);
160 }
mat4x4_scale(mat4x4 M,mat4x4 a,float k)161 static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k) {
162     int i;
163     for (i = 0; i < 4; ++i)
164         vec4_scale(M[i], a[i], k);
165 }
mat4x4_scale_aniso(mat4x4 M,mat4x4 a,float x,float y,float z)166 static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y,
167                                       float z) {
168     int i;
169     vec4_scale(M[0], a[0], x);
170     vec4_scale(M[1], a[1], y);
171     vec4_scale(M[2], a[2], z);
172     for (i = 0; i < 4; ++i) {
173         M[3][i] = a[3][i];
174     }
175 }
mat4x4_mul(mat4x4 M,mat4x4 a,mat4x4 b)176 static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) {
177     int k, r, c;
178     for (c = 0; c < 4; ++c)
179         for (r = 0; r < 4; ++r) {
180             M[c][r] = 0.f;
181             for (k = 0; k < 4; ++k)
182                 M[c][r] += a[k][r] * b[c][k];
183         }
184 }
mat4x4_mul_vec4(vec4 r,mat4x4 M,vec4 v)185 static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) {
186     int i, j;
187     for (j = 0; j < 4; ++j) {
188         r[j] = 0.f;
189         for (i = 0; i < 4; ++i)
190             r[j] += M[i][j] * v[i];
191     }
192 }
mat4x4_translate(mat4x4 T,float x,float y,float z)193 static inline void mat4x4_translate(mat4x4 T, float x, float y, float z) {
194     mat4x4_identity(T);
195     T[3][0] = x;
196     T[3][1] = y;
197     T[3][2] = z;
198 }
mat4x4_translate_in_place(mat4x4 M,float x,float y,float z)199 static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y,
200                                              float z) {
201     vec4 t = {x, y, z, 0};
202     vec4 r;
203     int i;
204     for (i = 0; i < 4; ++i) {
205         mat4x4_row(r, M, i);
206         M[3][i] += vec4_mul_inner(r, t);
207     }
208 }
mat4x4_from_vec3_mul_outer(mat4x4 M,vec3 a,vec3 b)209 static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) {
210     int i, j;
211     for (i = 0; i < 4; ++i)
212         for (j = 0; j < 4; ++j)
213             M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.f;
214 }
mat4x4_rotate(mat4x4 R,mat4x4 M,float x,float y,float z,float angle)215 static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z,
216                                  float angle) {
217     float s = sinf(angle);
218     float c = cosf(angle);
219     vec3 u = {x, y, z};
220 
221     if (vec3_len(u) > 1e-4) {
222         vec3_norm(u, u);
223         mat4x4 T;
224         mat4x4_from_vec3_mul_outer(T, u, u);
225 
226         mat4x4 S = {{0, u[2], -u[1], 0},
227                     {-u[2], 0, u[0], 0},
228                     {u[1], -u[0], 0, 0},
229                     {0, 0, 0, 0}};
230         mat4x4_scale(S, S, s);
231 
232         mat4x4 C;
233         mat4x4_identity(C);
234         mat4x4_sub(C, C, T);
235 
236         mat4x4_scale(C, C, c);
237 
238         mat4x4_add(T, T, C);
239         mat4x4_add(T, T, S);
240 
241         T[3][3] = 1.;
242         mat4x4_mul(R, M, T);
243     } else {
244         mat4x4_dup(R, M);
245     }
246 }
mat4x4_rotate_X(mat4x4 Q,mat4x4 M,float angle)247 static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) {
248     float s = sinf(angle);
249     float c = cosf(angle);
250     mat4x4 R = {{1.f, 0.f, 0.f, 0.f},
251                 {0.f, c, s, 0.f},
252                 {0.f, -s, c, 0.f},
253                 {0.f, 0.f, 0.f, 1.f}};
254     mat4x4_mul(Q, M, R);
255 }
mat4x4_rotate_Y(mat4x4 Q,mat4x4 M,float angle)256 static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) {
257     float s = sinf(angle);
258     float c = cosf(angle);
259     mat4x4 R = {{c, 0.f, s, 0.f},
260                 {0.f, 1.f, 0.f, 0.f},
261                 {-s, 0.f, c, 0.f},
262                 {0.f, 0.f, 0.f, 1.f}};
263     mat4x4_mul(Q, M, R);
264 }
mat4x4_rotate_Z(mat4x4 Q,mat4x4 M,float angle)265 static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) {
266     float s = sinf(angle);
267     float c = cosf(angle);
268     mat4x4 R = {{c, s, 0.f, 0.f},
269                 {-s, c, 0.f, 0.f},
270                 {0.f, 0.f, 1.f, 0.f},
271                 {0.f, 0.f, 0.f, 1.f}};
272     mat4x4_mul(Q, M, R);
273 }
mat4x4_invert(mat4x4 T,mat4x4 M)274 static inline void mat4x4_invert(mat4x4 T, mat4x4 M) {
275     float s[6];
276     float c[6];
277     s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1];
278     s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2];
279     s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3];
280     s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2];
281     s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3];
282     s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3];
283 
284     c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1];
285     c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2];
286     c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3];
287     c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2];
288     c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3];
289     c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3];
290 
291     /* Assumes it is invertible */
292     float idet = 1.0f / (s[0] * c[5] - s[1] * c[4] + s[2] * c[3] + s[3] * c[2] -
293                          s[4] * c[1] + s[5] * c[0]);
294 
295     T[0][0] = (M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
296     T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
297     T[0][2] = (M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet;
298     T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet;
299 
300     T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet;
301     T[1][1] = (M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet;
302     T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet;
303     T[1][3] = (M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet;
304 
305     T[2][0] = (M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet;
306     T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet;
307     T[2][2] = (M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet;
308     T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet;
309 
310     T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet;
311     T[3][1] = (M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet;
312     T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
313     T[3][3] = (M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
314 }
mat4x4_orthonormalize(mat4x4 R,mat4x4 M)315 static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) {
316     mat4x4_dup(R, M);
317     float s = 1.;
318     vec3 h;
319 
320     vec3_norm(R[2], R[2]);
321 
322     s = vec3_mul_inner(R[1], R[2]);
323     vec3_scale(h, R[2], s);
324     vec3_sub(R[1], R[1], h);
325     vec3_norm(R[2], R[2]);
326 
327     s = vec3_mul_inner(R[1], R[2]);
328     vec3_scale(h, R[2], s);
329     vec3_sub(R[1], R[1], h);
330     vec3_norm(R[1], R[1]);
331 
332     s = vec3_mul_inner(R[0], R[1]);
333     vec3_scale(h, R[1], s);
334     vec3_sub(R[0], R[0], h);
335     vec3_norm(R[0], R[0]);
336 }
337 
mat4x4_frustum(mat4x4 M,float l,float r,float b,float t,float n,float f)338 static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t,
339                                   float n, float f) {
340     M[0][0] = 2.f * n / (r - l);
341     M[0][1] = M[0][2] = M[0][3] = 0.f;
342 
343     M[1][1] = 2.f * n / (t - b);
344     M[1][0] = M[1][2] = M[1][3] = 0.f;
345 
346     M[2][0] = (r + l) / (r - l);
347     M[2][1] = (t + b) / (t - b);
348     M[2][2] = -(f + n) / (f - n);
349     M[2][3] = -1.f;
350 
351     M[3][2] = -2.f * (f * n) / (f - n);
352     M[3][0] = M[3][1] = M[3][3] = 0.f;
353 }
mat4x4_ortho(mat4x4 M,float l,float r,float b,float t,float n,float f)354 static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t,
355                                 float n, float f) {
356     M[0][0] = 2.f / (r - l);
357     M[0][1] = M[0][2] = M[0][3] = 0.f;
358 
359     M[1][1] = 2.f / (t - b);
360     M[1][0] = M[1][2] = M[1][3] = 0.f;
361 
362     M[2][2] = -2.f / (f - n);
363     M[2][0] = M[2][1] = M[2][3] = 0.f;
364 
365     M[3][0] = -(r + l) / (r - l);
366     M[3][1] = -(t + b) / (t - b);
367     M[3][2] = -(f + n) / (f - n);
368     M[3][3] = 1.f;
369 }
mat4x4_perspective(mat4x4 m,float y_fov,float aspect,float n,float f)370 static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect,
371                                       float n, float f) {
372     /* NOTE: Degrees are an unhandy unit to work with.
373      * linmath.h uses radians for everything! */
374     float const a = (float)(1.f / tan(y_fov / 2.f));
375 
376     m[0][0] = a / aspect;
377     m[0][1] = 0.f;
378     m[0][2] = 0.f;
379     m[0][3] = 0.f;
380 
381     m[1][0] = 0.f;
382     m[1][1] = a;
383     m[1][2] = 0.f;
384     m[1][3] = 0.f;
385 
386     m[2][0] = 0.f;
387     m[2][1] = 0.f;
388     m[2][2] = -((f + n) / (f - n));
389     m[2][3] = -1.f;
390 
391     m[3][0] = 0.f;
392     m[3][1] = 0.f;
393     m[3][2] = -((2.f * f * n) / (f - n));
394     m[3][3] = 0.f;
395 }
mat4x4_look_at(mat4x4 m,vec3 eye,vec3 center,vec3 up)396 static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) {
397     /* Adapted from Android's OpenGL Matrix.java.                        */
398     /* See the OpenGL GLUT documentation for gluLookAt for a description */
399     /* of the algorithm. We implement it in a straightforward way:       */
400 
401     /* TODO: The negation of of can be spared by swapping the order of
402      *       operands in the following cross products in the right way. */
403     vec3 f;
404     vec3_sub(f, center, eye);
405     vec3_norm(f, f);
406 
407     vec3 s;
408     vec3_mul_cross(s, f, up);
409     vec3_norm(s, s);
410 
411     vec3 t;
412     vec3_mul_cross(t, s, f);
413 
414     m[0][0] = s[0];
415     m[0][1] = t[0];
416     m[0][2] = -f[0];
417     m[0][3] = 0.f;
418 
419     m[1][0] = s[1];
420     m[1][1] = t[1];
421     m[1][2] = -f[1];
422     m[1][3] = 0.f;
423 
424     m[2][0] = s[2];
425     m[2][1] = t[2];
426     m[2][2] = -f[2];
427     m[2][3] = 0.f;
428 
429     m[3][0] = 0.f;
430     m[3][1] = 0.f;
431     m[3][2] = 0.f;
432     m[3][3] = 1.f;
433 
434     mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]);
435 }
436 
437 typedef float quat[4];
quat_identity(quat q)438 static inline void quat_identity(quat q) {
439     q[0] = q[1] = q[2] = 0.f;
440     q[3] = 1.f;
441 }
quat_add(quat r,quat a,quat b)442 static inline void quat_add(quat r, quat a, quat b) {
443     int i;
444     for (i = 0; i < 4; ++i)
445         r[i] = a[i] + b[i];
446 }
quat_sub(quat r,quat a,quat b)447 static inline void quat_sub(quat r, quat a, quat b) {
448     int i;
449     for (i = 0; i < 4; ++i)
450         r[i] = a[i] - b[i];
451 }
quat_mul(quat r,quat p,quat q)452 static inline void quat_mul(quat r, quat p, quat q) {
453     vec3 w;
454     vec3_mul_cross(r, p, q);
455     vec3_scale(w, p, q[3]);
456     vec3_add(r, r, w);
457     vec3_scale(w, q, p[3]);
458     vec3_add(r, r, w);
459     r[3] = p[3] * q[3] - vec3_mul_inner(p, q);
460 }
quat_scale(quat r,quat v,float s)461 static inline void quat_scale(quat r, quat v, float s) {
462     int i;
463     for (i = 0; i < 4; ++i)
464         r[i] = v[i] * s;
465 }
quat_inner_product(quat a,quat b)466 static inline float quat_inner_product(quat a, quat b) {
467     float p = 0.f;
468     int i;
469     for (i = 0; i < 4; ++i)
470         p += b[i] * a[i];
471     return p;
472 }
quat_conj(quat r,quat q)473 static inline void quat_conj(quat r, quat q) {
474     int i;
475     for (i = 0; i < 3; ++i)
476         r[i] = -q[i];
477     r[3] = q[3];
478 }
479 #define quat_norm vec4_norm
quat_mul_vec3(vec3 r,quat q,vec3 v)480 static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) {
481     quat v_ = {v[0], v[1], v[2], 0.f};
482 
483     quat_conj(r, q);
484     quat_norm(r, r);
485     quat_mul(r, v_, r);
486     quat_mul(r, q, r);
487 }
mat4x4_from_quat(mat4x4 M,quat q)488 static inline void mat4x4_from_quat(mat4x4 M, quat q) {
489     float a = q[3];
490     float b = q[0];
491     float c = q[1];
492     float d = q[2];
493     float a2 = a * a;
494     float b2 = b * b;
495     float c2 = c * c;
496     float d2 = d * d;
497 
498     M[0][0] = a2 + b2 - c2 - d2;
499     M[0][1] = 2.f * (b * c + a * d);
500     M[0][2] = 2.f * (b * d - a * c);
501     M[0][3] = 0.f;
502 
503     M[1][0] = 2 * (b * c - a * d);
504     M[1][1] = a2 - b2 + c2 - d2;
505     M[1][2] = 2.f * (c * d + a * b);
506     M[1][3] = 0.f;
507 
508     M[2][0] = 2.f * (b * d + a * c);
509     M[2][1] = 2.f * (c * d - a * b);
510     M[2][2] = a2 - b2 - c2 + d2;
511     M[2][3] = 0.f;
512 
513     M[3][0] = M[3][1] = M[3][2] = 0.f;
514     M[3][3] = 1.f;
515 }
516 
mat4x4o_mul_quat(mat4x4 R,mat4x4 M,quat q)517 static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) {
518     /*  XXX: The way this is written only works for othogonal matrices. */
519     /* TODO: Take care of non-orthogonal case. */
520     quat_mul_vec3(R[0], q, M[0]);
521     quat_mul_vec3(R[1], q, M[1]);
522     quat_mul_vec3(R[2], q, M[2]);
523 
524     R[3][0] = R[3][1] = R[3][2] = 0.f;
525     R[3][3] = 1.f;
526 }
quat_from_mat4x4(quat q,mat4x4 M)527 static inline void quat_from_mat4x4(quat q, mat4x4 M) {
528     float r = 0.f;
529     int i;
530 
531     int perm[] = {0, 1, 2, 0, 1};
532     int *p = perm;
533 
534     for (i = 0; i < 3; i++) {
535         float m = M[i][i];
536         if (m < r)
537             continue;
538         m = r;
539         p = &perm[i];
540     }
541 
542     r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]);
543 
544     if (r < 1e-6) {
545         q[0] = 1.f;
546         q[1] = q[2] = q[3] = 0.f;
547         return;
548     }
549 
550     q[0] = r / 2.f;
551     q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]]) / (2.f * r);
552     q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]]) / (2.f * r);
553     q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]]) / (2.f * r);
554 }
555 
556 #endif
557