• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitReader_2_7.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/IR/AutoUpgrade.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/OperandTraits.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/MemoryBuffer.h"
33 
34 using namespace llvm;
35 using namespace llvm_2_7;
36 
37 #define METADATA_NODE_2_7             2
38 #define METADATA_FN_NODE_2_7          3
39 #define METADATA_NAMED_NODE_2_7       5
40 #define METADATA_ATTACHMENT_2_7       7
41 #define FUNC_CODE_INST_UNWIND_2_7     14
42 #define FUNC_CODE_INST_MALLOC_2_7     17
43 #define FUNC_CODE_INST_FREE_2_7       18
44 #define FUNC_CODE_INST_STORE_2_7      21
45 #define FUNC_CODE_INST_CALL_2_7       22
46 #define FUNC_CODE_INST_GETRESULT_2_7  25
47 #define FUNC_CODE_DEBUG_LOC_2_7       32
48 
49 #define TYPE_BLOCK_ID_OLD_3_0         10
50 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
51 #define TYPE_CODE_STRUCT_OLD_3_0      10
52 
53 namespace {
54 
StripDebugInfoOfFunction(Module * M,const char * name)55   void StripDebugInfoOfFunction(Module* M, const char* name) {
56     if (Function* FuncStart = M->getFunction(name)) {
57       while (!FuncStart->use_empty()) {
58         cast<CallInst>(*FuncStart->use_begin())->eraseFromParent();
59       }
60       FuncStart->eraseFromParent();
61     }
62   }
63 
64   /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
65   /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
66   /// strips that use.
CheckDebugInfoIntrinsics(Module * M)67   void CheckDebugInfoIntrinsics(Module *M) {
68     StripDebugInfoOfFunction(M, "llvm.dbg.func.start");
69     StripDebugInfoOfFunction(M, "llvm.dbg.stoppoint");
70     StripDebugInfoOfFunction(M, "llvm.dbg.region.start");
71     StripDebugInfoOfFunction(M, "llvm.dbg.region.end");
72 
73     if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
74       if (!Declare->use_empty()) {
75         DbgDeclareInst *DDI = cast<DbgDeclareInst>(*Declare->use_begin());
76         if (!isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(0))) ||
77             !isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(1)))) {
78           while (!Declare->use_empty()) {
79             CallInst *CI = cast<CallInst>(*Declare->use_begin());
80             CI->eraseFromParent();
81           }
82           Declare->eraseFromParent();
83         }
84       }
85     }
86   }
87 
88 //===----------------------------------------------------------------------===//
89 //                          BitcodeReaderValueList Class
90 //===----------------------------------------------------------------------===//
91 
92 class BitcodeReaderValueList {
93   std::vector<WeakVH> ValuePtrs;
94 
95   /// ResolveConstants - As we resolve forward-referenced constants, we add
96   /// information about them to this vector.  This allows us to resolve them in
97   /// bulk instead of resolving each reference at a time.  See the code in
98   /// ResolveConstantForwardRefs for more information about this.
99   ///
100   /// The key of this vector is the placeholder constant, the value is the slot
101   /// number that holds the resolved value.
102   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
103   ResolveConstantsTy ResolveConstants;
104   LLVMContext &Context;
105 public:
BitcodeReaderValueList(LLVMContext & C)106   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
~BitcodeReaderValueList()107   ~BitcodeReaderValueList() {
108     assert(ResolveConstants.empty() && "Constants not resolved?");
109   }
110 
111   // vector compatibility methods
size() const112   unsigned size() const { return ValuePtrs.size(); }
resize(unsigned N)113   void resize(unsigned N) { ValuePtrs.resize(N); }
push_back(Value * V)114   void push_back(Value *V) {
115     ValuePtrs.push_back(V);
116   }
117 
clear()118   void clear() {
119     assert(ResolveConstants.empty() && "Constants not resolved?");
120     ValuePtrs.clear();
121   }
122 
operator [](unsigned i) const123   Value *operator[](unsigned i) const {
124     assert(i < ValuePtrs.size());
125     return ValuePtrs[i];
126   }
127 
back() const128   Value *back() const { return ValuePtrs.back(); }
pop_back()129     void pop_back() { ValuePtrs.pop_back(); }
empty() const130   bool empty() const { return ValuePtrs.empty(); }
shrinkTo(unsigned N)131   void shrinkTo(unsigned N) {
132     assert(N <= size() && "Invalid shrinkTo request!");
133     ValuePtrs.resize(N);
134   }
135 
136   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
137   Value *getValueFwdRef(unsigned Idx, Type *Ty);
138 
139   void AssignValue(Value *V, unsigned Idx);
140 
141   /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
142   /// resolves any forward references.
143   void ResolveConstantForwardRefs();
144 };
145 
146 
147 //===----------------------------------------------------------------------===//
148 //                          BitcodeReaderMDValueList Class
149 //===----------------------------------------------------------------------===//
150 
151 class BitcodeReaderMDValueList {
152   unsigned NumFwdRefs;
153   bool AnyFwdRefs;
154   std::vector<TrackingMDRef> MDValuePtrs;
155 
156   LLVMContext &Context;
157 public:
BitcodeReaderMDValueList(LLVMContext & C)158   BitcodeReaderMDValueList(LLVMContext &C)
159       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
160 
161   // vector compatibility methods
size() const162   unsigned size() const       { return MDValuePtrs.size(); }
resize(unsigned N)163   void resize(unsigned N)     { MDValuePtrs.resize(N); }
push_back(Metadata * MD)164   void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
clear()165   void clear()                { MDValuePtrs.clear();  }
back() const166   Metadata *back() const      { return MDValuePtrs.back(); }
pop_back()167   void pop_back()             { MDValuePtrs.pop_back(); }
empty() const168   bool empty() const          { return MDValuePtrs.empty(); }
169 
operator [](unsigned i) const170   Metadata *operator[](unsigned i) const {
171     assert(i < MDValuePtrs.size());
172     return MDValuePtrs[i];
173   }
174 
shrinkTo(unsigned N)175   void shrinkTo(unsigned N) {
176     assert(N <= size() && "Invalid shrinkTo request!");
177     MDValuePtrs.resize(N);
178   }
179 
180   Metadata *getValueFwdRef(unsigned Idx);
181   void AssignValue(Metadata *MD, unsigned Idx);
182   void tryToResolveCycles();
183 };
184 
185 class BitcodeReader : public GVMaterializer {
186   LLVMContext &Context;
187   DiagnosticHandlerFunction DiagnosticHandler;
188   Module *TheModule;
189   std::unique_ptr<MemoryBuffer> Buffer;
190   std::unique_ptr<BitstreamReader> StreamFile;
191   BitstreamCursor Stream;
192   std::unique_ptr<DataStreamer> LazyStreamer;
193   uint64_t NextUnreadBit;
194   bool SeenValueSymbolTable;
195 
196   std::vector<Type*> TypeList;
197   BitcodeReaderValueList ValueList;
198   BitcodeReaderMDValueList MDValueList;
199   SmallVector<Instruction *, 64> InstructionList;
200 
201   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
202   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
203 
204   /// MAttributes - The set of attributes by index.  Index zero in the
205   /// file is for null, and is thus not represented here.  As such all indices
206   /// are off by one.
207   std::vector<AttributeSet> MAttributes;
208 
209   /// \brief The set of attribute groups.
210   std::map<unsigned, AttributeSet> MAttributeGroups;
211 
212   /// FunctionBBs - While parsing a function body, this is a list of the basic
213   /// blocks for the function.
214   std::vector<BasicBlock*> FunctionBBs;
215 
216   // When reading the module header, this list is populated with functions that
217   // have bodies later in the file.
218   std::vector<Function*> FunctionsWithBodies;
219 
220   // When intrinsic functions are encountered which require upgrading they are
221   // stored here with their replacement function.
222   typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
223   UpgradedIntrinsicMap UpgradedIntrinsics;
224 
225   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
226   DenseMap<unsigned, unsigned> MDKindMap;
227 
228   // Several operations happen after the module header has been read, but
229   // before function bodies are processed. This keeps track of whether
230   // we've done this yet.
231   bool SeenFirstFunctionBody;
232 
233   /// DeferredFunctionInfo - When function bodies are initially scanned, this
234   /// map contains info about where to find deferred function body in the
235   /// stream.
236   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
237 
238   /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
239   /// are resolved lazily when functions are loaded.
240   typedef std::pair<unsigned, GlobalVariable*> BlockAddrRefTy;
241   DenseMap<Function*, std::vector<BlockAddrRefTy> > BlockAddrFwdRefs;
242 
243   /// LLVM2_7MetadataDetected - True if metadata produced by LLVM 2.7 or
244   /// earlier was detected, in which case we behave slightly differently,
245   /// for compatibility.
246   /// FIXME: Remove in LLVM 3.0.
247   bool LLVM2_7MetadataDetected;
248   static const std::error_category &BitcodeErrorCategory();
249 
250 public:
251   std::error_code Error(BitcodeError E, const Twine &Message);
252   std::error_code Error(BitcodeError E);
253   std::error_code Error(const Twine &Message);
254 
255   explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
256                          DiagnosticHandlerFunction DiagnosticHandler);
~BitcodeReader()257   ~BitcodeReader() { FreeState(); }
258 
259   void FreeState();
260 
261   void releaseBuffer();
262 
263   bool isDematerializable(const GlobalValue *GV) const;
264   std::error_code materialize(GlobalValue *GV) override;
265   std::error_code materializeModule() override;
266   std::vector<StructType *> getIdentifiedStructTypes() const override;
267   void dematerialize(GlobalValue *GV);
268 
269   /// @brief Main interface to parsing a bitcode buffer.
270   /// @returns true if an error occurred.
271   std::error_code ParseBitcodeInto(Module *M);
272 
273   /// @brief Cheap mechanism to just extract module triple
274   /// @returns true if an error occurred.
275   llvm::ErrorOr<std::string> parseTriple();
276 
277   static uint64_t decodeSignRotatedValue(uint64_t V);
278 
279   /// Materialize any deferred Metadata block.
280   std::error_code materializeMetadata() override;
281 
282   void setStripDebugInfo() override;
283 
284 private:
285   std::vector<StructType *> IdentifiedStructTypes;
286   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
287   StructType *createIdentifiedStructType(LLVMContext &Context);
288 
289   Type *getTypeByID(unsigned ID);
290   Type *getTypeByIDOrNull(unsigned ID);
getFnValueByID(unsigned ID,Type * Ty)291   Value *getFnValueByID(unsigned ID, Type *Ty) {
292     if (Ty && Ty->isMetadataTy())
293       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
294     return ValueList.getValueFwdRef(ID, Ty);
295   }
getFnMetadataByID(unsigned ID)296   Metadata *getFnMetadataByID(unsigned ID) {
297     return MDValueList.getValueFwdRef(ID);
298   }
getBasicBlock(unsigned ID) const299   BasicBlock *getBasicBlock(unsigned ID) const {
300     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
301     return FunctionBBs[ID];
302   }
getAttributes(unsigned i) const303   AttributeSet getAttributes(unsigned i) const {
304     if (i-1 < MAttributes.size())
305       return MAttributes[i-1];
306     return AttributeSet();
307   }
308 
309   /// getValueTypePair - Read a value/type pair out of the specified record from
310   /// slot 'Slot'.  Increment Slot past the number of slots used in the record.
311   /// Return true on failure.
getValueTypePair(SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Value * & ResVal)312   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
313                         unsigned InstNum, Value *&ResVal) {
314     if (Slot == Record.size()) return true;
315     unsigned ValNo = (unsigned)Record[Slot++];
316     if (ValNo < InstNum) {
317       // If this is not a forward reference, just return the value we already
318       // have.
319       ResVal = getFnValueByID(ValNo, nullptr);
320       return ResVal == nullptr;
321     } else if (Slot == Record.size()) {
322       return true;
323     }
324 
325     unsigned TypeNo = (unsigned)Record[Slot++];
326     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
327     return ResVal == nullptr;
328   }
getValue(SmallVector<uint64_t,64> & Record,unsigned & Slot,Type * Ty,Value * & ResVal)329   bool getValue(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
330                 Type *Ty, Value *&ResVal) {
331     if (Slot == Record.size()) return true;
332     unsigned ValNo = (unsigned)Record[Slot++];
333     ResVal = getFnValueByID(ValNo, Ty);
334     return ResVal == 0;
335   }
336 
337 
338   std::error_code ParseModule(bool Resume);
339   std::error_code ParseAttributeBlock();
340   std::error_code ParseTypeTable();
341   std::error_code ParseOldTypeTable();         // FIXME: Remove in LLVM 3.1
342   std::error_code ParseTypeTableBody();
343 
344   std::error_code ParseOldTypeSymbolTable();   // FIXME: Remove in LLVM 3.1
345   std::error_code ParseValueSymbolTable();
346   std::error_code ParseConstants();
347   std::error_code RememberAndSkipFunctionBody();
348   std::error_code ParseFunctionBody(Function *F);
349   std::error_code GlobalCleanup();
350   std::error_code ResolveGlobalAndAliasInits();
351   std::error_code ParseMetadata();
352   std::error_code ParseMetadataAttachment();
353   llvm::ErrorOr<std::string> parseModuleTriple();
354   std::error_code InitStream();
355   std::error_code InitStreamFromBuffer();
356   std::error_code InitLazyStream();
357 };
358 } // end anonymous namespace
359 
Error(DiagnosticHandlerFunction DiagnosticHandler,std::error_code EC,const Twine & Message)360 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
361                              std::error_code EC, const Twine &Message) {
362   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
363   DiagnosticHandler(DI);
364   return EC;
365 }
366 
Error(DiagnosticHandlerFunction DiagnosticHandler,std::error_code EC)367 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
368                              std::error_code EC) {
369   return Error(DiagnosticHandler, EC, EC.message());
370 }
371 
Error(BitcodeError E,const Twine & Message)372 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
373   return ::Error(DiagnosticHandler, make_error_code(E), Message);
374 }
375 
Error(const Twine & Message)376 std::error_code BitcodeReader::Error(const Twine &Message) {
377   return ::Error(DiagnosticHandler,
378                  make_error_code(BitcodeError::CorruptedBitcode), Message);
379 }
380 
Error(BitcodeError E)381 std::error_code BitcodeReader::Error(BitcodeError E) {
382   return ::Error(DiagnosticHandler, make_error_code(E));
383 }
384 
getDiagHandler(DiagnosticHandlerFunction F,LLVMContext & C)385 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
386                                                 LLVMContext &C) {
387   if (F)
388     return F;
389   return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
390 }
391 
BitcodeReader(MemoryBuffer * buffer,LLVMContext & C,DiagnosticHandlerFunction DiagnosticHandler)392 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
393                              DiagnosticHandlerFunction DiagnosticHandler)
394     : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
395       TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
396       NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
397       MDValueList(C), SeenFirstFunctionBody(false),
398       LLVM2_7MetadataDetected(false) {}
399 
400 
FreeState()401 void BitcodeReader::FreeState() {
402   Buffer = nullptr;
403   std::vector<Type*>().swap(TypeList);
404   ValueList.clear();
405   MDValueList.clear();
406 
407   std::vector<AttributeSet>().swap(MAttributes);
408   std::vector<BasicBlock*>().swap(FunctionBBs);
409   std::vector<Function*>().swap(FunctionsWithBodies);
410   DeferredFunctionInfo.clear();
411   MDKindMap.clear();
412 }
413 
414 //===----------------------------------------------------------------------===//
415 //  Helper functions to implement forward reference resolution, etc.
416 //===----------------------------------------------------------------------===//
417 
418 /// ConvertToString - Convert a string from a record into an std::string, return
419 /// true on failure.
420 template<typename StrTy>
ConvertToString(ArrayRef<uint64_t> Record,unsigned Idx,StrTy & Result)421 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
422                             StrTy &Result) {
423   if (Idx > Record.size())
424     return true;
425 
426   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
427     Result += (char)Record[i];
428   return false;
429 }
430 
getDecodedLinkage(unsigned Val)431 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
432   switch (Val) {
433   default: // Map unknown/new linkages to external
434   case 0:
435     return GlobalValue::ExternalLinkage;
436   case 1:
437     return GlobalValue::WeakAnyLinkage;
438   case 2:
439     return GlobalValue::AppendingLinkage;
440   case 3:
441     return GlobalValue::InternalLinkage;
442   case 4:
443     return GlobalValue::LinkOnceAnyLinkage;
444   case 5:
445     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
446   case 6:
447     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
448   case 7:
449     return GlobalValue::ExternalWeakLinkage;
450   case 8:
451     return GlobalValue::CommonLinkage;
452   case 9:
453     return GlobalValue::PrivateLinkage;
454   case 10:
455     return GlobalValue::WeakODRLinkage;
456   case 11:
457     return GlobalValue::LinkOnceODRLinkage;
458   case 12:
459     return GlobalValue::AvailableExternallyLinkage;
460   case 13:
461     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
462   case 14:
463     return GlobalValue::ExternalWeakLinkage; // Obsolete LinkerPrivateWeakLinkage
464   //ANDROID: convert LinkOnceODRAutoHideLinkage -> LinkOnceODRLinkage
465   case 15:
466     return GlobalValue::LinkOnceODRLinkage;
467   }
468 }
469 
GetDecodedVisibility(unsigned Val)470 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
471   switch (Val) {
472   default: // Map unknown visibilities to default.
473   case 0: return GlobalValue::DefaultVisibility;
474   case 1: return GlobalValue::HiddenVisibility;
475   case 2: return GlobalValue::ProtectedVisibility;
476   }
477 }
478 
GetDecodedThreadLocalMode(unsigned Val)479 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
480   switch (Val) {
481     case 0: return GlobalVariable::NotThreadLocal;
482     default: // Map unknown non-zero value to general dynamic.
483     case 1: return GlobalVariable::GeneralDynamicTLSModel;
484     case 2: return GlobalVariable::LocalDynamicTLSModel;
485     case 3: return GlobalVariable::InitialExecTLSModel;
486     case 4: return GlobalVariable::LocalExecTLSModel;
487   }
488 }
489 
GetDecodedCastOpcode(unsigned Val)490 static int GetDecodedCastOpcode(unsigned Val) {
491   switch (Val) {
492   default: return -1;
493   case bitc::CAST_TRUNC   : return Instruction::Trunc;
494   case bitc::CAST_ZEXT    : return Instruction::ZExt;
495   case bitc::CAST_SEXT    : return Instruction::SExt;
496   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
497   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
498   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
499   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
500   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
501   case bitc::CAST_FPEXT   : return Instruction::FPExt;
502   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
503   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
504   case bitc::CAST_BITCAST : return Instruction::BitCast;
505   }
506 }
GetDecodedBinaryOpcode(unsigned Val,Type * Ty)507 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
508   switch (Val) {
509   default: return -1;
510   case bitc::BINOP_ADD:
511     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
512   case bitc::BINOP_SUB:
513     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
514   case bitc::BINOP_MUL:
515     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
516   case bitc::BINOP_UDIV: return Instruction::UDiv;
517   case bitc::BINOP_SDIV:
518     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
519   case bitc::BINOP_UREM: return Instruction::URem;
520   case bitc::BINOP_SREM:
521     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
522   case bitc::BINOP_SHL:  return Instruction::Shl;
523   case bitc::BINOP_LSHR: return Instruction::LShr;
524   case bitc::BINOP_ASHR: return Instruction::AShr;
525   case bitc::BINOP_AND:  return Instruction::And;
526   case bitc::BINOP_OR:   return Instruction::Or;
527   case bitc::BINOP_XOR:  return Instruction::Xor;
528   }
529 }
530 
531 namespace llvm {
532 namespace {
533   /// @brief A class for maintaining the slot number definition
534   /// as a placeholder for the actual definition for forward constants defs.
535   class ConstantPlaceHolder : public ConstantExpr {
536     void operator=(const ConstantPlaceHolder &) = delete;
537   public:
538     // allocate space for exactly one operand
operator new(size_t s)539     void *operator new(size_t s) {
540       return User::operator new(s, 1);
541     }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)542     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
543       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
544       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
545     }
546 
547     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)548     static bool classof(const Value *V) {
549       return isa<ConstantExpr>(V) &&
550              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
551     }
552 
553 
554     /// Provide fast operand accessors
555     DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
556   };
557 }
558 
559 // FIXME: can we inherit this from ConstantExpr?
560 template <>
561 struct OperandTraits<ConstantPlaceHolder> :
562   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
563 };
564 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
565 }
566 
567 
AssignValue(Value * V,unsigned Idx)568 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
569   if (Idx == size()) {
570     push_back(V);
571     return;
572   }
573 
574   if (Idx >= size())
575     resize(Idx+1);
576 
577   WeakVH &OldV = ValuePtrs[Idx];
578   if (!OldV) {
579     OldV = V;
580     return;
581   }
582 
583   // Handle constants and non-constants (e.g. instrs) differently for
584   // efficiency.
585   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
586     ResolveConstants.push_back(std::make_pair(PHC, Idx));
587     OldV = V;
588   } else {
589     // If there was a forward reference to this value, replace it.
590     Value *PrevVal = OldV;
591     OldV->replaceAllUsesWith(V);
592     delete PrevVal;
593   }
594 }
595 
596 
getConstantFwdRef(unsigned Idx,Type * Ty)597 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
598                                                     Type *Ty) {
599   if (Idx >= size())
600     resize(Idx + 1);
601 
602   if (Value *V = ValuePtrs[Idx]) {
603     assert(Ty == V->getType() && "Type mismatch in constant table!");
604     return cast<Constant>(V);
605   }
606 
607   // Create and return a placeholder, which will later be RAUW'd.
608   Constant *C = new ConstantPlaceHolder(Ty, Context);
609   ValuePtrs[Idx] = C;
610   return C;
611 }
612 
getValueFwdRef(unsigned Idx,Type * Ty)613 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
614   if (Idx >= size())
615     resize(Idx + 1);
616 
617   if (Value *V = ValuePtrs[Idx]) {
618     assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
619     return V;
620   }
621 
622   // No type specified, must be invalid reference.
623   if (!Ty) return nullptr;
624 
625   // Create and return a placeholder, which will later be RAUW'd.
626   Value *V = new Argument(Ty);
627   ValuePtrs[Idx] = V;
628   return V;
629 }
630 
631 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
632 /// resolves any forward references.  The idea behind this is that we sometimes
633 /// get constants (such as large arrays) which reference *many* forward ref
634 /// constants.  Replacing each of these causes a lot of thrashing when
635 /// building/reuniquing the constant.  Instead of doing this, we look at all the
636 /// uses and rewrite all the place holders at once for any constant that uses
637 /// a placeholder.
ResolveConstantForwardRefs()638 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
639   // Sort the values by-pointer so that they are efficient to look up with a
640   // binary search.
641   std::sort(ResolveConstants.begin(), ResolveConstants.end());
642 
643   SmallVector<Constant*, 64> NewOps;
644 
645   while (!ResolveConstants.empty()) {
646     Value *RealVal = operator[](ResolveConstants.back().second);
647     Constant *Placeholder = ResolveConstants.back().first;
648     ResolveConstants.pop_back();
649 
650     // Loop over all users of the placeholder, updating them to reference the
651     // new value.  If they reference more than one placeholder, update them all
652     // at once.
653     while (!Placeholder->use_empty()) {
654       auto UI = Placeholder->user_begin();
655       User *U = *UI;
656 
657       // If the using object isn't uniqued, just update the operands.  This
658       // handles instructions and initializers for global variables.
659       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
660         UI.getUse().set(RealVal);
661         continue;
662       }
663 
664       // Otherwise, we have a constant that uses the placeholder.  Replace that
665       // constant with a new constant that has *all* placeholder uses updated.
666       Constant *UserC = cast<Constant>(U);
667       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
668            I != E; ++I) {
669         Value *NewOp;
670         if (!isa<ConstantPlaceHolder>(*I)) {
671           // Not a placeholder reference.
672           NewOp = *I;
673         } else if (*I == Placeholder) {
674           // Common case is that it just references this one placeholder.
675           NewOp = RealVal;
676         } else {
677           // Otherwise, look up the placeholder in ResolveConstants.
678           ResolveConstantsTy::iterator It =
679             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
680                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
681                                                             0));
682           assert(It != ResolveConstants.end() && It->first == *I);
683           NewOp = operator[](It->second);
684         }
685 
686         NewOps.push_back(cast<Constant>(NewOp));
687       }
688 
689       // Make the new constant.
690       Constant *NewC;
691       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
692         NewC = ConstantArray::get(UserCA->getType(), NewOps);
693       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
694         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
695       } else if (isa<ConstantVector>(UserC)) {
696         NewC = ConstantVector::get(NewOps);
697       } else {
698         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
699         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
700       }
701 
702       UserC->replaceAllUsesWith(NewC);
703       UserC->destroyConstant();
704       NewOps.clear();
705     }
706 
707     // Update all ValueHandles, they should be the only users at this point.
708     Placeholder->replaceAllUsesWith(RealVal);
709     delete Placeholder;
710   }
711 }
712 
AssignValue(Metadata * MD,unsigned Idx)713 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
714   if (Idx == size()) {
715     push_back(MD);
716     return;
717   }
718 
719   if (Idx >= size())
720     resize(Idx+1);
721 
722   TrackingMDRef &OldMD = MDValuePtrs[Idx];
723   if (!OldMD) {
724     OldMD.reset(MD);
725     return;
726   }
727 
728   // If there was a forward reference to this value, replace it.
729   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
730   PrevMD->replaceAllUsesWith(MD);
731   --NumFwdRefs;
732 }
733 
getValueFwdRef(unsigned Idx)734 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
735   if (Idx >= size())
736     resize(Idx + 1);
737 
738   if (Metadata *MD = MDValuePtrs[Idx])
739     return MD;
740 
741   // Create and return a placeholder, which will later be RAUW'd.
742   AnyFwdRefs = true;
743   ++NumFwdRefs;
744   Metadata *MD = MDNode::getTemporary(Context, None).release();
745   MDValuePtrs[Idx].reset(MD);
746   return MD;
747 }
748 
tryToResolveCycles()749 void BitcodeReaderMDValueList::tryToResolveCycles() {
750   if (!AnyFwdRefs)
751     // Nothing to do.
752     return;
753 
754   if (NumFwdRefs)
755     // Still forward references... can't resolve cycles.
756     return;
757 
758   // Resolve any cycles.
759   for (auto &MD : MDValuePtrs) {
760     auto *N = dyn_cast_or_null<MDNode>(MD);
761     if (!N)
762       continue;
763 
764     assert(!N->isTemporary() && "Unexpected forward reference");
765     N->resolveCycles();
766   }
767 }
768 
getTypeByID(unsigned ID)769 Type *BitcodeReader::getTypeByID(unsigned ID) {
770   // The type table size is always specified correctly.
771   if (ID >= TypeList.size())
772     return nullptr;
773 
774   if (Type *Ty = TypeList[ID])
775     return Ty;
776 
777   // If we have a forward reference, the only possible case is when it is to a
778   // named struct.  Just create a placeholder for now.
779   return TypeList[ID] = createIdentifiedStructType(Context);
780 }
781 
createIdentifiedStructType(LLVMContext & Context,StringRef Name)782 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
783                                                       StringRef Name) {
784   auto *Ret = StructType::create(Context, Name);
785   IdentifiedStructTypes.push_back(Ret);
786   return Ret;
787 }
788 
createIdentifiedStructType(LLVMContext & Context)789 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
790   auto *Ret = StructType::create(Context);
791   IdentifiedStructTypes.push_back(Ret);
792   return Ret;
793 }
794 
795 
796 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
getTypeByIDOrNull(unsigned ID)797 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
798   if (ID >= TypeList.size())
799     TypeList.resize(ID+1);
800 
801   return TypeList[ID];
802 }
803 
804 //===----------------------------------------------------------------------===//
805 //  Functions for parsing blocks from the bitcode file
806 //===----------------------------------------------------------------------===//
807 
808 
809 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
810 /// been decoded from the given integer. This function must stay in sync with
811 /// 'encodeLLVMAttributesForBitcode'.
decodeLLVMAttributesForBitcode(AttrBuilder & B,uint64_t EncodedAttrs)812 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
813                                            uint64_t EncodedAttrs) {
814   // FIXME: Remove in 4.0.
815 
816   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
817   // the bits above 31 down by 11 bits.
818   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
819   assert((!Alignment || isPowerOf2_32(Alignment)) &&
820          "Alignment must be a power of two.");
821 
822   if (Alignment)
823     B.addAlignmentAttr(Alignment);
824   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
825                 (EncodedAttrs & 0xffff));
826 }
827 
ParseAttributeBlock()828 std::error_code BitcodeReader::ParseAttributeBlock() {
829   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
830     return Error("Invalid record");
831 
832   if (!MAttributes.empty())
833     return Error("Invalid multiple blocks");
834 
835   SmallVector<uint64_t, 64> Record;
836 
837   SmallVector<AttributeSet, 8> Attrs;
838 
839   // Read all the records.
840   while (1) {
841     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
842 
843     switch (Entry.Kind) {
844     case BitstreamEntry::SubBlock: // Handled for us already.
845     case BitstreamEntry::Error:
846       return Error("Malformed block");
847     case BitstreamEntry::EndBlock:
848       return std::error_code();
849     case BitstreamEntry::Record:
850       // The interesting case.
851       break;
852     }
853 
854     // Read a record.
855     Record.clear();
856     switch (Stream.readRecord(Entry.ID, Record)) {
857     default:  // Default behavior: ignore.
858       break;
859     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
860       if (Record.size() & 1)
861         return Error("Invalid record");
862 
863       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
864         AttrBuilder B;
865         decodeLLVMAttributesForBitcode(B, Record[i+1]);
866         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
867       }
868 
869       MAttributes.push_back(AttributeSet::get(Context, Attrs));
870       Attrs.clear();
871       break;
872     }
873     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
874       for (unsigned i = 0, e = Record.size(); i != e; ++i)
875         Attrs.push_back(MAttributeGroups[Record[i]]);
876 
877       MAttributes.push_back(AttributeSet::get(Context, Attrs));
878       Attrs.clear();
879       break;
880     }
881     }
882   }
883 }
884 
885 
ParseTypeTable()886 std::error_code BitcodeReader::ParseTypeTable() {
887   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
888     return Error("Invalid record");
889 
890   return ParseTypeTableBody();
891 }
892 
ParseTypeTableBody()893 std::error_code BitcodeReader::ParseTypeTableBody() {
894   if (!TypeList.empty())
895     return Error("Invalid multiple blocks");
896 
897   SmallVector<uint64_t, 64> Record;
898   unsigned NumRecords = 0;
899 
900   SmallString<64> TypeName;
901 
902   // Read all the records for this type table.
903   while (1) {
904     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
905 
906     switch (Entry.Kind) {
907     case BitstreamEntry::SubBlock: // Handled for us already.
908     case BitstreamEntry::Error:
909       return Error("Malformed block");
910     case BitstreamEntry::EndBlock:
911       if (NumRecords != TypeList.size())
912         return Error("Malformed block");
913       return std::error_code();
914     case BitstreamEntry::Record:
915       // The interesting case.
916       break;
917     }
918 
919     // Read a record.
920     Record.clear();
921     Type *ResultTy = nullptr;
922     switch (Stream.readRecord(Entry.ID, Record)) {
923     default:
924       return Error("Invalid value");
925     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
926       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
927       // type list.  This allows us to reserve space.
928       if (Record.size() < 1)
929         return Error("Invalid record");
930       TypeList.resize(Record[0]);
931       continue;
932     case bitc::TYPE_CODE_VOID:      // VOID
933       ResultTy = Type::getVoidTy(Context);
934       break;
935     case bitc::TYPE_CODE_HALF:     // HALF
936       ResultTy = Type::getHalfTy(Context);
937       break;
938     case bitc::TYPE_CODE_FLOAT:     // FLOAT
939       ResultTy = Type::getFloatTy(Context);
940       break;
941     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
942       ResultTy = Type::getDoubleTy(Context);
943       break;
944     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
945       ResultTy = Type::getX86_FP80Ty(Context);
946       break;
947     case bitc::TYPE_CODE_FP128:     // FP128
948       ResultTy = Type::getFP128Ty(Context);
949       break;
950     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
951       ResultTy = Type::getPPC_FP128Ty(Context);
952       break;
953     case bitc::TYPE_CODE_LABEL:     // LABEL
954       ResultTy = Type::getLabelTy(Context);
955       break;
956     case bitc::TYPE_CODE_METADATA:  // METADATA
957       ResultTy = Type::getMetadataTy(Context);
958       break;
959     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
960       ResultTy = Type::getX86_MMXTy(Context);
961       break;
962     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
963       if (Record.size() < 1)
964         return Error("Invalid record");
965 
966       ResultTy = IntegerType::get(Context, Record[0]);
967       break;
968     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
969                                     //          [pointee type, address space]
970       if (Record.size() < 1)
971         return Error("Invalid record");
972       unsigned AddressSpace = 0;
973       if (Record.size() == 2)
974         AddressSpace = Record[1];
975       ResultTy = getTypeByID(Record[0]);
976       if (!ResultTy)
977         return Error("Invalid type");
978       ResultTy = PointerType::get(ResultTy, AddressSpace);
979       break;
980     }
981     case bitc::TYPE_CODE_FUNCTION_OLD: {
982       // FIXME: attrid is dead, remove it in LLVM 4.0
983       // FUNCTION: [vararg, attrid, retty, paramty x N]
984       if (Record.size() < 3)
985         return Error("Invalid record");
986       SmallVector<Type*, 8> ArgTys;
987       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
988         if (Type *T = getTypeByID(Record[i]))
989           ArgTys.push_back(T);
990         else
991           break;
992       }
993 
994       ResultTy = getTypeByID(Record[2]);
995       if (!ResultTy || ArgTys.size() < Record.size()-3)
996         return Error("Invalid type");
997 
998       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
999       break;
1000     }
1001     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1002       if (Record.size() < 1)
1003         return Error("Invalid record");
1004       SmallVector<Type*, 8> EltTys;
1005       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1006         if (Type *T = getTypeByID(Record[i]))
1007           EltTys.push_back(T);
1008         else
1009           break;
1010       }
1011       if (EltTys.size() != Record.size()-1)
1012         return Error("Invalid type");
1013       ResultTy = StructType::get(Context, EltTys, Record[0]);
1014       break;
1015     }
1016     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1017       if (ConvertToString(Record, 0, TypeName))
1018         return Error("Invalid record");
1019       continue;
1020 
1021     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1022       if (Record.size() < 1)
1023         return Error("Invalid record");
1024 
1025       if (NumRecords >= TypeList.size())
1026         return Error("Invalid TYPE table");
1027 
1028       // Check to see if this was forward referenced, if so fill in the temp.
1029       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1030       if (Res) {
1031         Res->setName(TypeName);
1032         TypeList[NumRecords] = nullptr;
1033       } else  // Otherwise, create a new struct.
1034         Res = createIdentifiedStructType(Context, TypeName);
1035       TypeName.clear();
1036 
1037       SmallVector<Type*, 8> EltTys;
1038       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1039         if (Type *T = getTypeByID(Record[i]))
1040           EltTys.push_back(T);
1041         else
1042           break;
1043       }
1044       if (EltTys.size() != Record.size()-1)
1045         return Error("Invalid record");
1046       Res->setBody(EltTys, Record[0]);
1047       ResultTy = Res;
1048       break;
1049     }
1050     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1051       if (Record.size() != 1)
1052         return Error("Invalid record");
1053 
1054       if (NumRecords >= TypeList.size())
1055         return Error("Invalid TYPE table");
1056 
1057       // Check to see if this was forward referenced, if so fill in the temp.
1058       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1059       if (Res) {
1060         Res->setName(TypeName);
1061         TypeList[NumRecords] = nullptr;
1062       } else  // Otherwise, create a new struct with no body.
1063         Res = createIdentifiedStructType(Context, TypeName);
1064       TypeName.clear();
1065       ResultTy = Res;
1066       break;
1067     }
1068     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1069       if (Record.size() < 2)
1070         return Error("Invalid record");
1071       if ((ResultTy = getTypeByID(Record[1])))
1072         ResultTy = ArrayType::get(ResultTy, Record[0]);
1073       else
1074         return Error("Invalid type");
1075       break;
1076     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1077       if (Record.size() < 2)
1078         return Error("Invalid record");
1079       if ((ResultTy = getTypeByID(Record[1])))
1080         ResultTy = VectorType::get(ResultTy, Record[0]);
1081       else
1082         return Error("Invalid type");
1083       break;
1084     }
1085 
1086     if (NumRecords >= TypeList.size())
1087       return Error("Invalid TYPE table");
1088     assert(ResultTy && "Didn't read a type?");
1089     assert(!TypeList[NumRecords] && "Already read type?");
1090     TypeList[NumRecords++] = ResultTy;
1091   }
1092 }
1093 
1094 // FIXME: Remove in LLVM 3.1
ParseOldTypeTable()1095 std::error_code BitcodeReader::ParseOldTypeTable() {
1096   if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
1097     return Error("Malformed block");
1098 
1099   if (!TypeList.empty())
1100     return Error("Invalid TYPE table");
1101 
1102 
1103   // While horrible, we have no good ordering of types in the bc file.  Just
1104   // iteratively parse types out of the bc file in multiple passes until we get
1105   // them all.  Do this by saving a cursor for the start of the type block.
1106   BitstreamCursor StartOfTypeBlockCursor(Stream);
1107 
1108   unsigned NumTypesRead = 0;
1109 
1110   SmallVector<uint64_t, 64> Record;
1111 RestartScan:
1112   unsigned NextTypeID = 0;
1113   bool ReadAnyTypes = false;
1114 
1115   // Read all the records for this type table.
1116   while (1) {
1117     unsigned Code = Stream.ReadCode();
1118     if (Code == bitc::END_BLOCK) {
1119       if (NextTypeID != TypeList.size())
1120         return Error("Invalid TYPE table");
1121 
1122       // If we haven't read all of the types yet, iterate again.
1123       if (NumTypesRead != TypeList.size()) {
1124         // If we didn't successfully read any types in this pass, then we must
1125         // have an unhandled forward reference.
1126         if (!ReadAnyTypes)
1127           return Error("Invalid TYPE table");
1128 
1129         Stream = StartOfTypeBlockCursor;
1130         goto RestartScan;
1131       }
1132 
1133       if (Stream.ReadBlockEnd())
1134         return Error("Invalid TYPE table");
1135       return std::error_code();
1136     }
1137 
1138     if (Code == bitc::ENTER_SUBBLOCK) {
1139       // No known subblocks, always skip them.
1140       Stream.ReadSubBlockID();
1141       if (Stream.SkipBlock())
1142         return Error("Malformed block");
1143       continue;
1144     }
1145 
1146     if (Code == bitc::DEFINE_ABBREV) {
1147       Stream.ReadAbbrevRecord();
1148       continue;
1149     }
1150 
1151     // Read a record.
1152     Record.clear();
1153     Type *ResultTy = nullptr;
1154     switch (Stream.readRecord(Code, Record)) {
1155     default: return Error("Invalid TYPE table");
1156     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1157       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1158       // type list.  This allows us to reserve space.
1159       if (Record.size() < 1)
1160         return Error("Invalid TYPE table");
1161       TypeList.resize(Record[0]);
1162       continue;
1163     case bitc::TYPE_CODE_VOID:      // VOID
1164       ResultTy = Type::getVoidTy(Context);
1165       break;
1166     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1167       ResultTy = Type::getFloatTy(Context);
1168       break;
1169     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1170       ResultTy = Type::getDoubleTy(Context);
1171       break;
1172     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1173       ResultTy = Type::getX86_FP80Ty(Context);
1174       break;
1175     case bitc::TYPE_CODE_FP128:     // FP128
1176       ResultTy = Type::getFP128Ty(Context);
1177       break;
1178     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1179       ResultTy = Type::getPPC_FP128Ty(Context);
1180       break;
1181     case bitc::TYPE_CODE_LABEL:     // LABEL
1182       ResultTy = Type::getLabelTy(Context);
1183       break;
1184     case bitc::TYPE_CODE_METADATA:  // METADATA
1185       ResultTy = Type::getMetadataTy(Context);
1186       break;
1187     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1188       ResultTy = Type::getX86_MMXTy(Context);
1189       break;
1190     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
1191       if (Record.size() < 1)
1192         return Error("Invalid TYPE table");
1193       ResultTy = IntegerType::get(Context, Record[0]);
1194       break;
1195     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
1196       if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
1197         ResultTy = StructType::create(Context, "");
1198       break;
1199     case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
1200       if (NextTypeID >= TypeList.size()) break;
1201       // If we already read it, don't reprocess.
1202       if (TypeList[NextTypeID] &&
1203           !cast<StructType>(TypeList[NextTypeID])->isOpaque())
1204         break;
1205 
1206       // Set a type.
1207       if (TypeList[NextTypeID] == 0)
1208         TypeList[NextTypeID] = StructType::create(Context, "");
1209 
1210       std::vector<Type*> EltTys;
1211       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1212         if (Type *Elt = getTypeByIDOrNull(Record[i]))
1213           EltTys.push_back(Elt);
1214         else
1215           break;
1216       }
1217 
1218       if (EltTys.size() != Record.size()-1)
1219         break;      // Not all elements are ready.
1220 
1221       cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
1222       ResultTy = TypeList[NextTypeID];
1223       TypeList[NextTypeID] = 0;
1224       break;
1225     }
1226     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1227       //          [pointee type, address space]
1228       if (Record.size() < 1)
1229         return Error("Invalid TYPE table");
1230       unsigned AddressSpace = 0;
1231       if (Record.size() == 2)
1232         AddressSpace = Record[1];
1233       if ((ResultTy = getTypeByIDOrNull(Record[0])))
1234         ResultTy = PointerType::get(ResultTy, AddressSpace);
1235       break;
1236     }
1237     case bitc::TYPE_CODE_FUNCTION_OLD: {
1238       // FIXME: attrid is dead, remove it in LLVM 3.0
1239       // FUNCTION: [vararg, attrid, retty, paramty x N]
1240       if (Record.size() < 3)
1241         return Error("Invalid TYPE table");
1242       std::vector<Type*> ArgTys;
1243       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1244         if (Type *Elt = getTypeByIDOrNull(Record[i]))
1245           ArgTys.push_back(Elt);
1246         else
1247           break;
1248       }
1249       if (ArgTys.size()+3 != Record.size())
1250         break;  // Something was null.
1251       if ((ResultTy = getTypeByIDOrNull(Record[2])))
1252         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1253       break;
1254     }
1255     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1256       if (Record.size() < 2)
1257         return Error("Invalid TYPE table");
1258       if ((ResultTy = getTypeByIDOrNull(Record[1])))
1259         ResultTy = ArrayType::get(ResultTy, Record[0]);
1260       break;
1261     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1262       if (Record.size() < 2)
1263         return Error("Invalid TYPE table");
1264       if ((ResultTy = getTypeByIDOrNull(Record[1])))
1265         ResultTy = VectorType::get(ResultTy, Record[0]);
1266       break;
1267     }
1268 
1269     if (NextTypeID >= TypeList.size())
1270       return Error("Invalid TYPE table");
1271 
1272     if (ResultTy && TypeList[NextTypeID] == 0) {
1273       ++NumTypesRead;
1274       ReadAnyTypes = true;
1275 
1276       TypeList[NextTypeID] = ResultTy;
1277     }
1278 
1279     ++NextTypeID;
1280   }
1281 }
1282 
1283 
ParseOldTypeSymbolTable()1284 std::error_code BitcodeReader::ParseOldTypeSymbolTable() {
1285   if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
1286     return Error("Malformed block");
1287 
1288   SmallVector<uint64_t, 64> Record;
1289 
1290   // Read all the records for this type table.
1291   std::string TypeName;
1292   while (1) {
1293     unsigned Code = Stream.ReadCode();
1294     if (Code == bitc::END_BLOCK) {
1295       if (Stream.ReadBlockEnd())
1296         return Error("Malformed block");
1297       return std::error_code();
1298     }
1299 
1300     if (Code == bitc::ENTER_SUBBLOCK) {
1301       // No known subblocks, always skip them.
1302       Stream.ReadSubBlockID();
1303       if (Stream.SkipBlock())
1304         return Error("Malformed block");
1305       continue;
1306     }
1307 
1308     if (Code == bitc::DEFINE_ABBREV) {
1309       Stream.ReadAbbrevRecord();
1310       continue;
1311     }
1312 
1313     // Read a record.
1314     Record.clear();
1315     switch (Stream.readRecord(Code, Record)) {
1316     default:  // Default behavior: unknown type.
1317       break;
1318     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
1319       if (ConvertToString(Record, 1, TypeName))
1320         return Error("Invalid record");
1321       unsigned TypeID = Record[0];
1322       if (TypeID >= TypeList.size())
1323         return Error("Invalid record");
1324 
1325       // Only apply the type name to a struct type with no name.
1326       if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
1327         if (!STy->isLiteral() && !STy->hasName())
1328           STy->setName(TypeName);
1329       TypeName.clear();
1330       break;
1331     }
1332   }
1333 }
1334 
ParseValueSymbolTable()1335 std::error_code BitcodeReader::ParseValueSymbolTable() {
1336   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1337     return Error("Invalid record");
1338 
1339   SmallVector<uint64_t, 64> Record;
1340 
1341   // Read all the records for this value table.
1342   SmallString<128> ValueName;
1343   while (1) {
1344     unsigned Code = Stream.ReadCode();
1345     if (Code == bitc::END_BLOCK) {
1346       if (Stream.ReadBlockEnd())
1347         return Error("Malformed block");
1348       return std::error_code();
1349     }
1350     if (Code == bitc::ENTER_SUBBLOCK) {
1351       // No known subblocks, always skip them.
1352       Stream.ReadSubBlockID();
1353       if (Stream.SkipBlock())
1354         return Error("Malformed block");
1355       continue;
1356     }
1357 
1358     if (Code == bitc::DEFINE_ABBREV) {
1359       Stream.ReadAbbrevRecord();
1360       continue;
1361     }
1362 
1363     // Read a record.
1364     Record.clear();
1365     switch (Stream.readRecord(Code, Record)) {
1366     default:  // Default behavior: unknown type.
1367       break;
1368     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1369       if (ConvertToString(Record, 1, ValueName))
1370         return Error("Invalid record");
1371       unsigned ValueID = Record[0];
1372       if (ValueID >= ValueList.size())
1373         return Error("Invalid record");
1374       Value *V = ValueList[ValueID];
1375 
1376       V->setName(StringRef(ValueName.data(), ValueName.size()));
1377       ValueName.clear();
1378       break;
1379     }
1380     case bitc::VST_CODE_BBENTRY: {
1381       if (ConvertToString(Record, 1, ValueName))
1382         return Error("Invalid record");
1383       BasicBlock *BB = getBasicBlock(Record[0]);
1384       if (!BB)
1385         return Error("Invalid record");
1386 
1387       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1388       ValueName.clear();
1389       break;
1390     }
1391     }
1392   }
1393 }
1394 
ParseMetadata()1395 std::error_code BitcodeReader::ParseMetadata() {
1396   unsigned NextMDValueNo = MDValueList.size();
1397 
1398   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1399     return Error("Invalid record");
1400 
1401   SmallVector<uint64_t, 64> Record;
1402 
1403   // Read all the records.
1404   while (1) {
1405     unsigned Code = Stream.ReadCode();
1406     if (Code == bitc::END_BLOCK) {
1407       if (Stream.ReadBlockEnd())
1408         return Error("Malformed block");
1409       return std::error_code();
1410     }
1411 
1412     if (Code == bitc::ENTER_SUBBLOCK) {
1413       // No known subblocks, always skip them.
1414       Stream.ReadSubBlockID();
1415       if (Stream.SkipBlock())
1416         return Error("Malformed block");
1417       continue;
1418     }
1419 
1420     if (Code == bitc::DEFINE_ABBREV) {
1421       Stream.ReadAbbrevRecord();
1422       continue;
1423     }
1424 
1425     bool IsFunctionLocal = false;
1426     // Read a record.
1427     Record.clear();
1428     Code = Stream.readRecord(Code, Record);
1429     switch (Code) {
1430     default:  // Default behavior: ignore.
1431       break;
1432     case bitc::METADATA_NAME: {
1433       // Read named of the named metadata.
1434       unsigned NameLength = Record.size();
1435       SmallString<8> Name;
1436       Name.resize(NameLength);
1437       for (unsigned i = 0; i != NameLength; ++i)
1438         Name[i] = Record[i];
1439       Record.clear();
1440       Code = Stream.ReadCode();
1441 
1442       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1443       unsigned NextBitCode = Stream.readRecord(Code, Record);
1444       if (NextBitCode == METADATA_NAMED_NODE_2_7) {
1445         LLVM2_7MetadataDetected = true;
1446       } else if (NextBitCode != bitc::METADATA_NAMED_NODE) {
1447         assert(!"Invalid Named Metadata record.");  (void)NextBitCode;
1448       }
1449 
1450       // Read named metadata elements.
1451       unsigned Size = Record.size();
1452       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1453       for (unsigned i = 0; i != Size; ++i) {
1454         MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1455         if (!MD)
1456           return Error("Invalid record");
1457         NMD->addOperand(MD);
1458       }
1459 
1460       if (LLVM2_7MetadataDetected) {
1461         MDValueList.AssignValue(0, NextMDValueNo++);
1462       }
1463       break;
1464     }
1465     case METADATA_FN_NODE_2_7:
1466     case bitc::METADATA_OLD_FN_NODE:
1467       IsFunctionLocal = true;
1468       // fall-through
1469     case METADATA_NODE_2_7:
1470     case bitc::METADATA_OLD_NODE: {
1471       if (Code == METADATA_FN_NODE_2_7 ||
1472           Code == METADATA_NODE_2_7) {
1473         LLVM2_7MetadataDetected = true;
1474       }
1475 
1476       if (Record.size() % 2 == 1)
1477         return Error("Invalid record");
1478 
1479       unsigned Size = Record.size();
1480       SmallVector<Metadata *, 8> Elts;
1481       for (unsigned i = 0; i != Size; i += 2) {
1482         Type *Ty = getTypeByID(Record[i]);
1483         if (!Ty)
1484           return Error("Invalid record");
1485         if (Ty->isMetadataTy())
1486           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1487         else if (!Ty->isVoidTy()) {
1488           auto *MD =
1489               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1490           assert(isa<ConstantAsMetadata>(MD) &&
1491                  "Expected non-function-local metadata");
1492           Elts.push_back(MD);
1493         } else
1494           Elts.push_back(nullptr);
1495       }
1496       MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
1497       break;
1498     }
1499     case bitc::METADATA_STRING: {
1500       std::string String(Record.begin(), Record.end());
1501       llvm::UpgradeMDStringConstant(String);
1502       Metadata *MD = MDString::get(Context, String);
1503       MDValueList.AssignValue(MD, NextMDValueNo++);
1504       break;
1505     }
1506     case bitc::METADATA_KIND: {
1507       if (Record.size() < 2)
1508         return Error("Invalid record");
1509 
1510       unsigned Kind = Record[0];
1511       SmallString<8> Name(Record.begin()+1, Record.end());
1512 
1513       unsigned NewKind = TheModule->getMDKindID(Name.str());
1514       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1515         return Error("Conflicting METADATA_KIND records");
1516       break;
1517     }
1518     }
1519   }
1520 }
1521 
1522 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1523 /// the LSB for dense VBR encoding.
decodeSignRotatedValue(uint64_t V)1524 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1525   if ((V & 1) == 0)
1526     return V >> 1;
1527   if (V != 1)
1528     return -(V >> 1);
1529   // There is no such thing as -0 with integers.  "-0" really means MININT.
1530   return 1ULL << 63;
1531 }
1532 
1533 // FIXME: Delete this in LLVM 4.0 and just assert that the aliasee is a
1534 // GlobalObject.
1535 static GlobalObject &
getGlobalObjectInExpr(const DenseMap<GlobalAlias *,Constant * > & Map,Constant & C)1536 getGlobalObjectInExpr(const DenseMap<GlobalAlias *, Constant *> &Map,
1537                       Constant &C) {
1538   auto *GO = dyn_cast<GlobalObject>(&C);
1539   if (GO)
1540     return *GO;
1541 
1542   auto *GA = dyn_cast<GlobalAlias>(&C);
1543   if (GA)
1544     return getGlobalObjectInExpr(Map, *Map.find(GA)->second);
1545 
1546   auto &CE = cast<ConstantExpr>(C);
1547   assert(CE.getOpcode() == Instruction::BitCast ||
1548          CE.getOpcode() == Instruction::GetElementPtr ||
1549          CE.getOpcode() == Instruction::AddrSpaceCast);
1550   if (CE.getOpcode() == Instruction::GetElementPtr)
1551     assert(cast<GEPOperator>(CE).hasAllZeroIndices());
1552   return getGlobalObjectInExpr(Map, *CE.getOperand(0));
1553 }
1554 
1555 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1556 /// values and aliases that we can.
ResolveGlobalAndAliasInits()1557 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1558   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1559   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1560 
1561   GlobalInitWorklist.swap(GlobalInits);
1562   AliasInitWorklist.swap(AliasInits);
1563 
1564   while (!GlobalInitWorklist.empty()) {
1565     unsigned ValID = GlobalInitWorklist.back().second;
1566     if (ValID >= ValueList.size()) {
1567       // Not ready to resolve this yet, it requires something later in the file.
1568       GlobalInits.push_back(GlobalInitWorklist.back());
1569     } else {
1570       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1571         GlobalInitWorklist.back().first->setInitializer(C);
1572       else
1573         return Error("Expected a constant");
1574     }
1575     GlobalInitWorklist.pop_back();
1576   }
1577 
1578   // FIXME: Delete this in LLVM 4.0
1579   // Older versions of llvm could write an alias pointing to another. We cannot
1580   // construct those aliases, so we first collect an alias to aliasee expression
1581   // and then compute the actual aliasee.
1582   DenseMap<GlobalAlias *, Constant *> AliasInit;
1583 
1584   while (!AliasInitWorklist.empty()) {
1585     unsigned ValID = AliasInitWorklist.back().second;
1586     if (ValID >= ValueList.size()) {
1587       AliasInits.push_back(AliasInitWorklist.back());
1588     } else {
1589       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1590         AliasInit.insert(std::make_pair(AliasInitWorklist.back().first, C));
1591       else
1592         return Error("Expected a constant");
1593     }
1594     AliasInitWorklist.pop_back();
1595   }
1596 
1597   for (auto &Pair : AliasInit) {
1598     auto &GO = getGlobalObjectInExpr(AliasInit, *Pair.second);
1599     Pair.first->setAliasee(&GO);
1600   }
1601 
1602   return std::error_code();
1603 }
1604 
ReadWideAPInt(ArrayRef<uint64_t> Vals,unsigned TypeBits)1605 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1606   SmallVector<uint64_t, 8> Words(Vals.size());
1607   std::transform(Vals.begin(), Vals.end(), Words.begin(),
1608                  BitcodeReader::decodeSignRotatedValue);
1609 
1610   return APInt(TypeBits, Words);
1611 }
1612 
ParseConstants()1613 std::error_code BitcodeReader::ParseConstants() {
1614   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1615     return Error("Invalid record");
1616 
1617   SmallVector<uint64_t, 64> Record;
1618 
1619   // Read all the records for this value table.
1620   Type *CurTy = Type::getInt32Ty(Context);
1621   unsigned NextCstNo = ValueList.size();
1622   while (1) {
1623     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1624 
1625     switch (Entry.Kind) {
1626     case BitstreamEntry::SubBlock: // Handled for us already.
1627     case BitstreamEntry::Error:
1628       return Error("Malformed block");
1629     case BitstreamEntry::EndBlock:
1630       if (NextCstNo != ValueList.size())
1631         return Error("Invalid constant reference");
1632 
1633       // Once all the constants have been read, go through and resolve forward
1634       // references.
1635       ValueList.ResolveConstantForwardRefs();
1636       return std::error_code();
1637     case BitstreamEntry::Record:
1638       // The interesting case.
1639       break;
1640     }
1641 
1642     // Read a record.
1643     Record.clear();
1644     Value *V = nullptr;
1645     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1646     switch (BitCode) {
1647     default:  // Default behavior: unknown constant
1648     case bitc::CST_CODE_UNDEF:     // UNDEF
1649       V = UndefValue::get(CurTy);
1650       break;
1651     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1652       if (Record.empty())
1653         return Error("Invalid record");
1654       if (Record[0] >= TypeList.size())
1655         return Error("Invalid record");
1656       CurTy = TypeList[Record[0]];
1657       continue;  // Skip the ValueList manipulation.
1658     case bitc::CST_CODE_NULL:      // NULL
1659       V = Constant::getNullValue(CurTy);
1660       break;
1661     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1662       if (!CurTy->isIntegerTy() || Record.empty())
1663         return Error("Invalid record");
1664       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1665       break;
1666     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1667       if (!CurTy->isIntegerTy() || Record.empty())
1668         return Error("Invalid record");
1669 
1670       APInt VInt = ReadWideAPInt(Record,
1671                                  cast<IntegerType>(CurTy)->getBitWidth());
1672       V = ConstantInt::get(Context, VInt);
1673 
1674       break;
1675     }
1676     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1677       if (Record.empty())
1678         return Error("Invalid record");
1679       if (CurTy->isHalfTy())
1680         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1681                                              APInt(16, (uint16_t)Record[0])));
1682       else if (CurTy->isFloatTy())
1683         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1684                                              APInt(32, (uint32_t)Record[0])));
1685       else if (CurTy->isDoubleTy())
1686         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1687                                              APInt(64, Record[0])));
1688       else if (CurTy->isX86_FP80Ty()) {
1689         // Bits are not stored the same way as a normal i80 APInt, compensate.
1690         uint64_t Rearrange[2];
1691         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1692         Rearrange[1] = Record[0] >> 48;
1693         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1694                                              APInt(80, Rearrange)));
1695       } else if (CurTy->isFP128Ty())
1696         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1697                                              APInt(128, Record)));
1698       else if (CurTy->isPPC_FP128Ty())
1699         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1700                                              APInt(128, Record)));
1701       else
1702         V = UndefValue::get(CurTy);
1703       break;
1704     }
1705 
1706     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1707       if (Record.empty())
1708         return Error("Invalid record");
1709 
1710       unsigned Size = Record.size();
1711       SmallVector<Constant*, 16> Elts;
1712 
1713       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1714         for (unsigned i = 0; i != Size; ++i)
1715           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1716                                                      STy->getElementType(i)));
1717         V = ConstantStruct::get(STy, Elts);
1718       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1719         Type *EltTy = ATy->getElementType();
1720         for (unsigned i = 0; i != Size; ++i)
1721           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1722         V = ConstantArray::get(ATy, Elts);
1723       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1724         Type *EltTy = VTy->getElementType();
1725         for (unsigned i = 0; i != Size; ++i)
1726           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1727         V = ConstantVector::get(Elts);
1728       } else {
1729         V = UndefValue::get(CurTy);
1730       }
1731       break;
1732     }
1733     case bitc::CST_CODE_STRING: { // STRING: [values]
1734       if (Record.empty())
1735         return Error("Invalid record");
1736 
1737       ArrayType *ATy = cast<ArrayType>(CurTy);
1738       Type *EltTy = ATy->getElementType();
1739 
1740       unsigned Size = Record.size();
1741       std::vector<Constant*> Elts;
1742       for (unsigned i = 0; i != Size; ++i)
1743         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1744       V = ConstantArray::get(ATy, Elts);
1745       break;
1746     }
1747     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1748       if (Record.empty())
1749         return Error("Invalid record");
1750 
1751       ArrayType *ATy = cast<ArrayType>(CurTy);
1752       Type *EltTy = ATy->getElementType();
1753 
1754       unsigned Size = Record.size();
1755       std::vector<Constant*> Elts;
1756       for (unsigned i = 0; i != Size; ++i)
1757         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1758       Elts.push_back(Constant::getNullValue(EltTy));
1759       V = ConstantArray::get(ATy, Elts);
1760       break;
1761     }
1762     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1763       if (Record.size() < 3)
1764         return Error("Invalid record");
1765       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1766       if (Opc < 0) {
1767         V = UndefValue::get(CurTy);  // Unknown binop.
1768       } else {
1769         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1770         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1771         unsigned Flags = 0;
1772         if (Record.size() >= 4) {
1773           if (Opc == Instruction::Add ||
1774               Opc == Instruction::Sub ||
1775               Opc == Instruction::Mul ||
1776               Opc == Instruction::Shl) {
1777             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1778               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1779             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1780               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1781           } else if (Opc == Instruction::SDiv ||
1782                      Opc == Instruction::UDiv ||
1783                      Opc == Instruction::LShr ||
1784                      Opc == Instruction::AShr) {
1785             if (Record[3] & (1 << bitc::PEO_EXACT))
1786               Flags |= SDivOperator::IsExact;
1787           }
1788         }
1789         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1790       }
1791       break;
1792     }
1793     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1794       if (Record.size() < 3)
1795         return Error("Invalid record");
1796       int Opc = GetDecodedCastOpcode(Record[0]);
1797       if (Opc < 0) {
1798         V = UndefValue::get(CurTy);  // Unknown cast.
1799       } else {
1800         Type *OpTy = getTypeByID(Record[1]);
1801         if (!OpTy)
1802           return Error("Invalid record");
1803         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1804         V = ConstantExpr::getCast(Opc, Op, CurTy);
1805       }
1806       break;
1807     }
1808     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1809     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1810       Type *PointeeType = nullptr;
1811       if (Record.size() & 1)
1812         return Error("Invalid record");
1813       SmallVector<Constant*, 16> Elts;
1814       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1815         Type *ElTy = getTypeByID(Record[i]);
1816         if (!ElTy)
1817           return Error("Invalid record");
1818         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1819       }
1820       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1821       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
1822                                          BitCode ==
1823                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
1824       break;
1825     }
1826     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1827       if (Record.size() < 3)
1828         return Error("Invalid record");
1829       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1830                                                               Type::getInt1Ty(Context)),
1831                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1832                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1833       break;
1834     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1835       if (Record.size() < 3)
1836         return Error("Invalid record");
1837       VectorType *OpTy =
1838         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1839       if (!OpTy)
1840         return Error("Invalid record");
1841       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1842       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1843       V = ConstantExpr::getExtractElement(Op0, Op1);
1844       break;
1845     }
1846     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1847       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1848       if (Record.size() < 3 || !OpTy)
1849         return Error("Invalid record");
1850       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1851       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1852                                                   OpTy->getElementType());
1853       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1854       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1855       break;
1856     }
1857     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1858       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1859       if (Record.size() < 3 || !OpTy)
1860         return Error("Invalid record");
1861       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1862       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1863       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1864                                                  OpTy->getNumElements());
1865       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1866       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1867       break;
1868     }
1869     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1870       VectorType *RTy = dyn_cast<VectorType>(CurTy);
1871       VectorType *OpTy =
1872         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1873       if (Record.size() < 4 || !RTy || !OpTy)
1874         return Error("Invalid record");
1875       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1876       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1877       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1878                                                  RTy->getNumElements());
1879       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1880       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1881       break;
1882     }
1883     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1884       if (Record.size() < 4)
1885         return Error("Invalid record");
1886       Type *OpTy = getTypeByID(Record[0]);
1887       if (!OpTy)
1888         return Error("Invalid record");
1889       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1890       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1891 
1892       if (OpTy->isFPOrFPVectorTy())
1893         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1894       else
1895         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1896       break;
1897     }
1898     case bitc::CST_CODE_INLINEASM:
1899     case bitc::CST_CODE_INLINEASM_OLD: {
1900       if (Record.size() < 2)
1901         return Error("Invalid record");
1902       std::string AsmStr, ConstrStr;
1903       bool HasSideEffects = Record[0] & 1;
1904       bool IsAlignStack = Record[0] >> 1;
1905       unsigned AsmStrSize = Record[1];
1906       if (2+AsmStrSize >= Record.size())
1907         return Error("Invalid record");
1908       unsigned ConstStrSize = Record[2+AsmStrSize];
1909       if (3+AsmStrSize+ConstStrSize > Record.size())
1910         return Error("Invalid record");
1911 
1912       for (unsigned i = 0; i != AsmStrSize; ++i)
1913         AsmStr += (char)Record[2+i];
1914       for (unsigned i = 0; i != ConstStrSize; ++i)
1915         ConstrStr += (char)Record[3+AsmStrSize+i];
1916       PointerType *PTy = cast<PointerType>(CurTy);
1917       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1918                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1919       break;
1920     }
1921     case bitc::CST_CODE_BLOCKADDRESS:{
1922       if (Record.size() < 3)
1923         return Error("Invalid record");
1924       Type *FnTy = getTypeByID(Record[0]);
1925       if (!FnTy)
1926         return Error("Invalid record");
1927       Function *Fn =
1928         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1929       if (!Fn)
1930         return Error("Invalid record");
1931 
1932       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1933                                                   Type::getInt8Ty(Context),
1934                                             false, GlobalValue::InternalLinkage,
1935                                                   0, "");
1936       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1937       V = FwdRef;
1938       break;
1939     }
1940     }
1941 
1942     ValueList.AssignValue(V, NextCstNo);
1943     ++NextCstNo;
1944   }
1945 
1946   if (NextCstNo != ValueList.size())
1947     return Error("Invalid constant reference");
1948 
1949   if (Stream.ReadBlockEnd())
1950     return Error("Expected a constant");
1951 
1952   // Once all the constants have been read, go through and resolve forward
1953   // references.
1954   ValueList.ResolveConstantForwardRefs();
1955   return std::error_code();
1956 }
1957 
materializeMetadata()1958 std::error_code BitcodeReader::materializeMetadata() {
1959   return std::error_code();
1960 }
1961 
setStripDebugInfo()1962 void BitcodeReader::setStripDebugInfo() { }
1963 
1964 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1965 /// remember where it is and then skip it.  This lets us lazily deserialize the
1966 /// functions.
RememberAndSkipFunctionBody()1967 std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
1968   // Get the function we are talking about.
1969   if (FunctionsWithBodies.empty())
1970     return Error("Insufficient function protos");
1971 
1972   Function *Fn = FunctionsWithBodies.back();
1973   FunctionsWithBodies.pop_back();
1974 
1975   // Save the current stream state.
1976   uint64_t CurBit = Stream.GetCurrentBitNo();
1977   DeferredFunctionInfo[Fn] = CurBit;
1978 
1979   // Skip over the function block for now.
1980   if (Stream.SkipBlock())
1981     return Error("Invalid record");
1982   return std::error_code();
1983 }
1984 
GlobalCleanup()1985 std::error_code BitcodeReader::GlobalCleanup() {
1986   // Patch the initializers for globals and aliases up.
1987   ResolveGlobalAndAliasInits();
1988   if (!GlobalInits.empty() || !AliasInits.empty())
1989     return Error("Malformed global initializer set");
1990 
1991   // Look for intrinsic functions which need to be upgraded at some point
1992   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1993        FI != FE; ++FI) {
1994     Function *NewFn;
1995     if (UpgradeIntrinsicFunction(&*FI, NewFn))
1996       UpgradedIntrinsics.push_back(std::make_pair(&*FI, NewFn));
1997   }
1998 
1999   // Look for global variables which need to be renamed.
2000   for (Module::global_iterator
2001          GI = TheModule->global_begin(), GE = TheModule->global_end();
2002        GI != GE; GI++) {
2003     GlobalVariable *GV = &*GI;
2004     UpgradeGlobalVariable(&*GV);
2005   }
2006 
2007   // Force deallocation of memory for these vectors to favor the client that
2008   // want lazy deserialization.
2009   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2010   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2011   return std::error_code();
2012 }
2013 
ParseModule(bool Resume)2014 std::error_code BitcodeReader::ParseModule(bool Resume) {
2015   if (Resume)
2016     Stream.JumpToBit(NextUnreadBit);
2017   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2018     return Error("Invalid record");
2019 
2020   SmallVector<uint64_t, 64> Record;
2021   std::vector<std::string> SectionTable;
2022   std::vector<std::string> GCTable;
2023 
2024   // Read all the records for this module.
2025   while (!Stream.AtEndOfStream()) {
2026     unsigned Code = Stream.ReadCode();
2027     if (Code == bitc::END_BLOCK) {
2028       if (Stream.ReadBlockEnd())
2029         return Error("Malformed block");
2030 
2031       // Patch the initializers for globals and aliases up.
2032       ResolveGlobalAndAliasInits();
2033       if (!GlobalInits.empty() || !AliasInits.empty())
2034         return Error("Malformed global initializer set");
2035       if (!FunctionsWithBodies.empty())
2036         return Error("Insufficient function protos");
2037 
2038       // Look for intrinsic functions which need to be upgraded at some point
2039       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2040            FI != FE; ++FI) {
2041         Function* NewFn;
2042         if (UpgradeIntrinsicFunction(&*FI, NewFn))
2043           UpgradedIntrinsics.push_back(std::make_pair(&*FI, NewFn));
2044       }
2045 
2046       // Look for global variables which need to be renamed.
2047       for (Module::global_iterator
2048              GI = TheModule->global_begin(), GE = TheModule->global_end();
2049            GI != GE; ++GI)
2050         UpgradeGlobalVariable(&*GI);
2051 
2052       // Force deallocation of memory for these vectors to favor the client that
2053       // want lazy deserialization.
2054       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2055       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2056       std::vector<Function*>().swap(FunctionsWithBodies);
2057       return std::error_code();
2058     }
2059 
2060     if (Code == bitc::ENTER_SUBBLOCK) {
2061       switch (Stream.ReadSubBlockID()) {
2062       default:  // Skip unknown content.
2063         if (Stream.SkipBlock())
2064           return Error("Invalid record");
2065         break;
2066       case bitc::BLOCKINFO_BLOCK_ID:
2067         if (Stream.ReadBlockInfoBlock())
2068           return Error("Malformed block");
2069         break;
2070       case bitc::PARAMATTR_BLOCK_ID:
2071         if (std::error_code EC = ParseAttributeBlock())
2072           return EC;
2073         break;
2074       case bitc::TYPE_BLOCK_ID_NEW:
2075         if (std::error_code EC = ParseTypeTable())
2076           return EC;
2077         break;
2078       case TYPE_BLOCK_ID_OLD_3_0:
2079         if (std::error_code EC = ParseOldTypeTable())
2080           return EC;
2081         break;
2082       case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
2083         if (std::error_code EC = ParseOldTypeSymbolTable())
2084           return EC;
2085         break;
2086       case bitc::VALUE_SYMTAB_BLOCK_ID:
2087         if (std::error_code EC = ParseValueSymbolTable())
2088           return EC;
2089         SeenValueSymbolTable = true;
2090         break;
2091       case bitc::CONSTANTS_BLOCK_ID:
2092         if (std::error_code EC = ParseConstants())
2093           return EC;
2094         if (std::error_code EC = ResolveGlobalAndAliasInits())
2095           return EC;
2096         break;
2097       case bitc::METADATA_BLOCK_ID:
2098         if (std::error_code EC = ParseMetadata())
2099           return EC;
2100         break;
2101       case bitc::FUNCTION_BLOCK_ID:
2102         // If this is the first function body we've seen, reverse the
2103         // FunctionsWithBodies list.
2104         if (!SeenFirstFunctionBody) {
2105           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
2106           if (std::error_code EC = GlobalCleanup())
2107             return EC;
2108           SeenFirstFunctionBody = true;
2109         }
2110 
2111         if (std::error_code EC = RememberAndSkipFunctionBody())
2112           return EC;
2113         // For streaming bitcode, suspend parsing when we reach the function
2114         // bodies. Subsequent materialization calls will resume it when
2115         // necessary. For streaming, the function bodies must be at the end of
2116         // the bitcode. If the bitcode file is old, the symbol table will be
2117         // at the end instead and will not have been seen yet. In this case,
2118         // just finish the parse now.
2119         if (LazyStreamer && SeenValueSymbolTable) {
2120           NextUnreadBit = Stream.GetCurrentBitNo();
2121           return std::error_code();
2122         }
2123         break;
2124         break;
2125       }
2126       continue;
2127     }
2128 
2129     if (Code == bitc::DEFINE_ABBREV) {
2130       Stream.ReadAbbrevRecord();
2131       continue;
2132     }
2133 
2134     // Read a record.
2135     switch (Stream.readRecord(Code, Record)) {
2136     default: break;  // Default behavior, ignore unknown content.
2137     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
2138       if (Record.size() < 1)
2139         return Error("Invalid record");
2140       // Only version #0 is supported so far.
2141       if (Record[0] != 0)
2142         return Error("Invalid value");
2143       break;
2144     }
2145     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2146       std::string S;
2147       if (ConvertToString(Record, 0, S))
2148         return Error("Invalid record");
2149       TheModule->setTargetTriple(S);
2150       break;
2151     }
2152     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
2153       std::string S;
2154       if (ConvertToString(Record, 0, S))
2155         return Error("Invalid record");
2156       TheModule->setDataLayout(S);
2157       break;
2158     }
2159     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
2160       std::string S;
2161       if (ConvertToString(Record, 0, S))
2162         return Error("Invalid record");
2163       TheModule->setModuleInlineAsm(S);
2164       break;
2165     }
2166     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
2167       std::string S;
2168       if (ConvertToString(Record, 0, S))
2169         return Error("Invalid record");
2170       // ANDROID: Ignore value, since we never used it anyways.
2171       // TheModule->addLibrary(S);
2172       break;
2173     }
2174     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
2175       std::string S;
2176       if (ConvertToString(Record, 0, S))
2177         return Error("Invalid record");
2178       SectionTable.push_back(S);
2179       break;
2180     }
2181     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
2182       std::string S;
2183       if (ConvertToString(Record, 0, S))
2184         return Error("Invalid record");
2185       GCTable.push_back(S);
2186       break;
2187     }
2188     // GLOBALVAR: [pointer type, isconst, initid,
2189     //             linkage, alignment, section, visibility, threadlocal,
2190     //             unnamed_addr]
2191     case bitc::MODULE_CODE_GLOBALVAR: {
2192       if (Record.size() < 6)
2193         return Error("Invalid record");
2194       Type *Ty = getTypeByID(Record[0]);
2195       if (!Ty)
2196         return Error("Invalid record");
2197       if (!Ty->isPointerTy())
2198         return Error("Invalid type for value");
2199       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2200       Ty = cast<PointerType>(Ty)->getElementType();
2201 
2202       bool isConstant = Record[1];
2203       uint64_t RawLinkage = Record[3];
2204       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2205       unsigned Alignment = (1 << Record[4]) >> 1;
2206       std::string Section;
2207       if (Record[5]) {
2208         if (Record[5]-1 >= SectionTable.size())
2209           return Error("Invalid ID");
2210         Section = SectionTable[Record[5]-1];
2211       }
2212       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2213       if (Record.size() > 6)
2214         Visibility = GetDecodedVisibility(Record[6]);
2215 
2216       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2217       if (Record.size() > 7)
2218         TLM = GetDecodedThreadLocalMode(Record[7]);
2219 
2220       bool UnnamedAddr = false;
2221       if (Record.size() > 8)
2222         UnnamedAddr = Record[8];
2223 
2224       GlobalVariable *NewGV =
2225         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
2226                            TLM, AddressSpace);
2227       NewGV->setAlignment(Alignment);
2228       if (!Section.empty())
2229         NewGV->setSection(Section);
2230       NewGV->setVisibility(Visibility);
2231       NewGV->setUnnamedAddr(UnnamedAddr);
2232 
2233       ValueList.push_back(NewGV);
2234 
2235       // Remember which value to use for the global initializer.
2236       if (unsigned InitID = Record[2])
2237         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
2238       break;
2239     }
2240     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
2241     //             alignment, section, visibility, gc, unnamed_addr]
2242     case bitc::MODULE_CODE_FUNCTION: {
2243       if (Record.size() < 8)
2244         return Error("Invalid record");
2245       Type *Ty = getTypeByID(Record[0]);
2246       if (!Ty)
2247         return Error("Invalid record");
2248       if (!Ty->isPointerTy())
2249         return Error("Invalid type for value");
2250       FunctionType *FTy =
2251         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
2252       if (!FTy)
2253         return Error("Invalid type for value");
2254 
2255       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2256                                         "", TheModule);
2257 
2258       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
2259       bool isProto = Record[2];
2260       uint64_t RawLinkage = Record[3];
2261       Func->setLinkage(getDecodedLinkage(RawLinkage));
2262       Func->setAttributes(getAttributes(Record[4]));
2263 
2264       Func->setAlignment((1 << Record[5]) >> 1);
2265       if (Record[6]) {
2266         if (Record[6]-1 >= SectionTable.size())
2267           return Error("Invalid ID");
2268         Func->setSection(SectionTable[Record[6]-1]);
2269       }
2270       Func->setVisibility(GetDecodedVisibility(Record[7]));
2271       if (Record.size() > 8 && Record[8]) {
2272         if (Record[8]-1 > GCTable.size())
2273           return Error("Invalid ID");
2274         Func->setGC(GCTable[Record[8]-1].c_str());
2275       }
2276       bool UnnamedAddr = false;
2277       if (Record.size() > 9)
2278         UnnamedAddr = Record[9];
2279       Func->setUnnamedAddr(UnnamedAddr);
2280       ValueList.push_back(Func);
2281 
2282       // If this is a function with a body, remember the prototype we are
2283       // creating now, so that we can match up the body with them later.
2284       if (!isProto) {
2285         Func->setIsMaterializable(true);
2286         FunctionsWithBodies.push_back(Func);
2287         if (LazyStreamer)
2288           DeferredFunctionInfo[Func] = 0;
2289       }
2290       break;
2291     }
2292     // ALIAS: [alias type, aliasee val#, linkage]
2293     // ALIAS: [alias type, aliasee val#, linkage, visibility]
2294     case bitc::MODULE_CODE_ALIAS_OLD: {
2295       if (Record.size() < 3)
2296         return Error("Invalid record");
2297       Type *Ty = getTypeByID(Record[0]);
2298       if (!Ty)
2299         return Error("Invalid record");
2300       auto *PTy = dyn_cast<PointerType>(Ty);
2301       if (!PTy)
2302         return Error("Invalid type for value");
2303 
2304       auto *NewGA =
2305           GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
2306                               getDecodedLinkage(Record[2]), "", TheModule);
2307       // Old bitcode files didn't have visibility field.
2308       if (Record.size() > 3)
2309         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
2310       ValueList.push_back(NewGA);
2311       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
2312       break;
2313     }
2314     /// MODULE_CODE_PURGEVALS: [numvals]
2315     case bitc::MODULE_CODE_PURGEVALS:
2316       // Trim down the value list to the specified size.
2317       if (Record.size() < 1 || Record[0] > ValueList.size())
2318         return Error("Invalid record");
2319       ValueList.shrinkTo(Record[0]);
2320       break;
2321     }
2322     Record.clear();
2323   }
2324 
2325   return Error("Invalid bitcode signature");
2326 }
2327 
ParseBitcodeInto(Module * M)2328 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
2329   TheModule = nullptr;
2330 
2331   if (std::error_code EC = InitStream())
2332     return EC;
2333 
2334   // Sniff for the signature.
2335   if (Stream.Read(8) != 'B' ||
2336       Stream.Read(8) != 'C' ||
2337       Stream.Read(4) != 0x0 ||
2338       Stream.Read(4) != 0xC ||
2339       Stream.Read(4) != 0xE ||
2340       Stream.Read(4) != 0xD)
2341     return Error("Invalid bitcode signature");
2342 
2343   // We expect a number of well-defined blocks, though we don't necessarily
2344   // need to understand them all.
2345   while (1) {
2346     if (Stream.AtEndOfStream())
2347       return std::error_code();
2348 
2349     BitstreamEntry Entry =
2350       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
2351 
2352     switch (Entry.Kind) {
2353     case BitstreamEntry::Error:
2354       return Error("Malformed block");
2355     case BitstreamEntry::EndBlock:
2356       return std::error_code();
2357 
2358     case BitstreamEntry::SubBlock:
2359       switch (Entry.ID) {
2360       case bitc::BLOCKINFO_BLOCK_ID:
2361         if (Stream.ReadBlockInfoBlock())
2362           return Error("Malformed block");
2363         break;
2364       case bitc::MODULE_BLOCK_ID:
2365         // Reject multiple MODULE_BLOCK's in a single bitstream.
2366         if (TheModule)
2367           return Error("Invalid multiple blocks");
2368         TheModule = M;
2369         if (std::error_code EC = ParseModule(false))
2370           return EC;
2371         if (LazyStreamer)
2372           return std::error_code();
2373         break;
2374       default:
2375         if (Stream.SkipBlock())
2376           return Error("Invalid record");
2377         break;
2378       }
2379       continue;
2380     case BitstreamEntry::Record:
2381       // There should be no records in the top-level of blocks.
2382 
2383       // The ranlib in Xcode 4 will align archive members by appending newlines
2384       // to the end of them. If this file size is a multiple of 4 but not 8, we
2385       // have to read and ignore these final 4 bytes :-(
2386       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2387           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2388           Stream.AtEndOfStream())
2389         return std::error_code();
2390 
2391       return Error("Invalid record");
2392     }
2393   }
2394 }
2395 
parseModuleTriple()2396 llvm::ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
2397   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2398     return Error("Invalid record");
2399 
2400   SmallVector<uint64_t, 64> Record;
2401 
2402   std::string Triple;
2403   // Read all the records for this module.
2404   while (1) {
2405     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2406 
2407     switch (Entry.Kind) {
2408     case BitstreamEntry::SubBlock: // Handled for us already.
2409     case BitstreamEntry::Error:
2410       return Error("Malformed block");
2411     case BitstreamEntry::EndBlock:
2412       return Triple;
2413     case BitstreamEntry::Record:
2414       // The interesting case.
2415       break;
2416     }
2417 
2418     // Read a record.
2419     switch (Stream.readRecord(Entry.ID, Record)) {
2420     default: break;  // Default behavior, ignore unknown content.
2421     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
2422       if (Record.size() < 1)
2423         return Error("Invalid record");
2424       // Only version #0 is supported so far.
2425       if (Record[0] != 0)
2426         return Error("Invalid record");
2427       break;
2428     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2429       std::string S;
2430       if (ConvertToString(Record, 0, S))
2431         return Error("Invalid record");
2432       Triple = S;
2433       break;
2434     }
2435     }
2436     Record.clear();
2437   }
2438 
2439   return Error("Invalid bitcode signature");
2440 }
2441 
parseTriple()2442 llvm::ErrorOr<std::string> BitcodeReader::parseTriple() {
2443   if (std::error_code EC = InitStream())
2444     return EC;
2445 
2446   // Sniff for the signature.
2447   if (Stream.Read(8) != 'B' ||
2448       Stream.Read(8) != 'C' ||
2449       Stream.Read(4) != 0x0 ||
2450       Stream.Read(4) != 0xC ||
2451       Stream.Read(4) != 0xE ||
2452       Stream.Read(4) != 0xD)
2453     return Error("Invalid bitcode signature");
2454 
2455   // We expect a number of well-defined blocks, though we don't necessarily
2456   // need to understand them all.
2457   while (1) {
2458     BitstreamEntry Entry = Stream.advance();
2459 
2460     switch (Entry.Kind) {
2461     case BitstreamEntry::Error:
2462       return Error("Malformed block");
2463     case BitstreamEntry::EndBlock:
2464       return std::error_code();
2465 
2466     case BitstreamEntry::SubBlock:
2467       if (Entry.ID == bitc::MODULE_BLOCK_ID)
2468         return parseModuleTriple();
2469 
2470       // Ignore other sub-blocks.
2471       if (Stream.SkipBlock())
2472         return Error("Malformed block");
2473       continue;
2474 
2475     case BitstreamEntry::Record:
2476       Stream.skipRecord(Entry.ID);
2477       continue;
2478     }
2479   }
2480 }
2481 
2482 /// ParseMetadataAttachment - Parse metadata attachments.
ParseMetadataAttachment()2483 std::error_code BitcodeReader::ParseMetadataAttachment() {
2484   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2485     return Error("Invalid record");
2486 
2487   SmallVector<uint64_t, 64> Record;
2488   while (1) {
2489     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2490 
2491     switch (Entry.Kind) {
2492     case BitstreamEntry::SubBlock: // Handled for us already.
2493     case BitstreamEntry::Error:
2494       return Error("Malformed block");
2495     case BitstreamEntry::EndBlock:
2496       return std::error_code();
2497     case BitstreamEntry::Record:
2498       // The interesting case.
2499       break;
2500     }
2501 
2502     // Read a metadata attachment record.
2503     Record.clear();
2504     switch (Stream.readRecord(Entry.ID, Record)) {
2505     default:  // Default behavior: ignore.
2506       break;
2507     case METADATA_ATTACHMENT_2_7:
2508       LLVM2_7MetadataDetected = true;
2509     case bitc::METADATA_ATTACHMENT: {
2510       unsigned RecordLength = Record.size();
2511       if (Record.empty() || (RecordLength - 1) % 2 == 1)
2512         return Error("Invalid record");
2513       Instruction *Inst = InstructionList[Record[0]];
2514       for (unsigned i = 1; i != RecordLength; i = i+2) {
2515         unsigned Kind = Record[i];
2516         DenseMap<unsigned, unsigned>::iterator I =
2517           MDKindMap.find(Kind);
2518         if (I == MDKindMap.end())
2519           return Error("Invalid ID");
2520         Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
2521         Inst->setMetadata(I->second, cast<MDNode>(Node));
2522       }
2523       break;
2524     }
2525     }
2526   }
2527 }
2528 
2529 /// ParseFunctionBody - Lazily parse the specified function body block.
ParseFunctionBody(Function * F)2530 std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
2531   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2532     return Error("Invalid record");
2533 
2534   InstructionList.clear();
2535   unsigned ModuleValueListSize = ValueList.size();
2536   unsigned ModuleMDValueListSize = MDValueList.size();
2537 
2538   // Add all the function arguments to the value table.
2539   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2540     ValueList.push_back(&*I);
2541 
2542   unsigned NextValueNo = ValueList.size();
2543   BasicBlock *CurBB = nullptr;
2544   unsigned CurBBNo = 0;
2545 
2546   DebugLoc LastLoc;
2547 
2548   // Read all the records.
2549   SmallVector<uint64_t, 64> Record;
2550   while (1) {
2551     unsigned Code = Stream.ReadCode();
2552     if (Code == bitc::END_BLOCK) {
2553       if (Stream.ReadBlockEnd())
2554         return Error("Malformed block");
2555       break;
2556     }
2557 
2558     if (Code == bitc::ENTER_SUBBLOCK) {
2559       switch (Stream.ReadSubBlockID()) {
2560       default:  // Skip unknown content.
2561         if (Stream.SkipBlock())
2562           return Error("Invalid record");
2563         break;
2564       case bitc::CONSTANTS_BLOCK_ID:
2565         if (std::error_code EC = ParseConstants())
2566           return EC;
2567         NextValueNo = ValueList.size();
2568         break;
2569       case bitc::VALUE_SYMTAB_BLOCK_ID:
2570         if (std::error_code EC = ParseValueSymbolTable())
2571           return EC;
2572         break;
2573       case bitc::METADATA_ATTACHMENT_ID:
2574         if (std::error_code EC = ParseMetadataAttachment())
2575           return EC;
2576         break;
2577       case bitc::METADATA_BLOCK_ID:
2578         if (std::error_code EC = ParseMetadata())
2579           return EC;
2580         break;
2581       }
2582       continue;
2583     }
2584 
2585     if (Code == bitc::DEFINE_ABBREV) {
2586       Stream.ReadAbbrevRecord();
2587       continue;
2588     }
2589 
2590     // Read a record.
2591     Record.clear();
2592     Instruction *I = nullptr;
2593     unsigned BitCode = Stream.readRecord(Code, Record);
2594     switch (BitCode) {
2595     default: // Default behavior: reject
2596       return Error("Invalid value");
2597     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2598       if (Record.size() < 1 || Record[0] == 0)
2599         return Error("Invalid record");
2600       // Create all the basic blocks for the function.
2601       FunctionBBs.resize(Record[0]);
2602       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2603         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2604       CurBB = FunctionBBs[0];
2605       continue;
2606 
2607     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2608       // This record indicates that the last instruction is at the same
2609       // location as the previous instruction with a location.
2610       I = nullptr;
2611 
2612       // Get the last instruction emitted.
2613       if (CurBB && !CurBB->empty())
2614         I = &CurBB->back();
2615       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2616                !FunctionBBs[CurBBNo-1]->empty())
2617         I = &FunctionBBs[CurBBNo-1]->back();
2618 
2619       if (!I)
2620         return Error("Invalid record");
2621       I->setDebugLoc(LastLoc);
2622       I = nullptr;
2623       continue;
2624 
2625     case FUNC_CODE_DEBUG_LOC_2_7:
2626       LLVM2_7MetadataDetected = true;
2627     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2628       I = nullptr;     // Get the last instruction emitted.
2629       if (CurBB && !CurBB->empty())
2630         I = &CurBB->back();
2631       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2632                !FunctionBBs[CurBBNo-1]->empty())
2633         I = &FunctionBBs[CurBBNo-1]->back();
2634       if (!I || Record.size() < 4)
2635         return Error("Invalid record");
2636 
2637       unsigned Line = Record[0], Col = Record[1];
2638       unsigned ScopeID = Record[2], IAID = Record[3];
2639 
2640       MDNode *Scope = nullptr, *IA = nullptr;
2641       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2642       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2643       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2644       I->setDebugLoc(LastLoc);
2645       I = nullptr;
2646       continue;
2647     }
2648 
2649     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2650       unsigned OpNum = 0;
2651       Value *LHS, *RHS;
2652       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2653           getValue(Record, OpNum, LHS->getType(), RHS) ||
2654           OpNum+1 > Record.size())
2655         return Error("Invalid record");
2656 
2657       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2658       if (Opc == -1)
2659         return Error("Invalid record");
2660       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2661       InstructionList.push_back(I);
2662       if (OpNum < Record.size()) {
2663         if (Opc == Instruction::Add ||
2664             Opc == Instruction::Sub ||
2665             Opc == Instruction::Mul ||
2666             Opc == Instruction::Shl) {
2667           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2668             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2669           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2670             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2671         } else if (Opc == Instruction::SDiv ||
2672                    Opc == Instruction::UDiv ||
2673                    Opc == Instruction::LShr ||
2674                    Opc == Instruction::AShr) {
2675           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2676             cast<BinaryOperator>(I)->setIsExact(true);
2677         }
2678       }
2679       break;
2680     }
2681     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2682       unsigned OpNum = 0;
2683       Value *Op;
2684       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2685           OpNum+2 != Record.size())
2686         return Error("Invalid record");
2687 
2688       Type *ResTy = getTypeByID(Record[OpNum]);
2689       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2690       if (Opc == -1 || !ResTy)
2691         return Error("Invalid record");
2692       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2693       InstructionList.push_back(I);
2694       break;
2695     }
2696     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
2697     case bitc::FUNC_CODE_INST_GEP_OLD: // GEP: [n x operands]
2698     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2699       unsigned OpNum = 0;
2700 
2701       Type *Ty;
2702       bool InBounds;
2703 
2704       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
2705         InBounds = Record[OpNum++];
2706         Ty = getTypeByID(Record[OpNum++]);
2707       } else {
2708         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
2709         Ty = nullptr;
2710       }
2711 
2712       Value *BasePtr;
2713       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2714         return Error("Invalid record");
2715 
2716       if (Ty &&
2717           Ty !=
2718               cast<SequentialType>(BasePtr->getType()->getScalarType())
2719                   ->getElementType())
2720         return Error(
2721             "Explicit gep type does not match pointee type of pointer operand");
2722 
2723       SmallVector<Value*, 16> GEPIdx;
2724       while (OpNum != Record.size()) {
2725         Value *Op;
2726         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2727           return Error("Invalid record");
2728         GEPIdx.push_back(Op);
2729       }
2730 
2731       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
2732 
2733       InstructionList.push_back(I);
2734       if (InBounds)
2735         cast<GetElementPtrInst>(I)->setIsInBounds(true);
2736       break;
2737     }
2738 
2739     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2740                                        // EXTRACTVAL: [opty, opval, n x indices]
2741       unsigned OpNum = 0;
2742       Value *Agg;
2743       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2744         return Error("Invalid record");
2745 
2746       SmallVector<unsigned, 4> EXTRACTVALIdx;
2747       for (unsigned RecSize = Record.size();
2748            OpNum != RecSize; ++OpNum) {
2749         uint64_t Index = Record[OpNum];
2750         if ((unsigned)Index != Index)
2751           return Error("Invalid value");
2752         EXTRACTVALIdx.push_back((unsigned)Index);
2753       }
2754 
2755       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2756       InstructionList.push_back(I);
2757       break;
2758     }
2759 
2760     case bitc::FUNC_CODE_INST_INSERTVAL: {
2761                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
2762       unsigned OpNum = 0;
2763       Value *Agg;
2764       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2765         return Error("Invalid record");
2766       Value *Val;
2767       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2768         return Error("Invalid record");
2769 
2770       SmallVector<unsigned, 4> INSERTVALIdx;
2771       for (unsigned RecSize = Record.size();
2772            OpNum != RecSize; ++OpNum) {
2773         uint64_t Index = Record[OpNum];
2774         if ((unsigned)Index != Index)
2775           return Error("Invalid value");
2776         INSERTVALIdx.push_back((unsigned)Index);
2777       }
2778 
2779       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2780       InstructionList.push_back(I);
2781       break;
2782     }
2783 
2784     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2785       // obsolete form of select
2786       // handles select i1 ... in old bitcode
2787       unsigned OpNum = 0;
2788       Value *TrueVal, *FalseVal, *Cond;
2789       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2790           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2791           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2792         return Error("Invalid record");
2793 
2794       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2795       InstructionList.push_back(I);
2796       break;
2797     }
2798 
2799     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2800       // new form of select
2801       // handles select i1 or select [N x i1]
2802       unsigned OpNum = 0;
2803       Value *TrueVal, *FalseVal, *Cond;
2804       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2805           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2806           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2807         return Error("Invalid record");
2808 
2809       // select condition can be either i1 or [N x i1]
2810       if (VectorType* vector_type =
2811           dyn_cast<VectorType>(Cond->getType())) {
2812         // expect <n x i1>
2813         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2814           return Error("Invalid type for value");
2815       } else {
2816         // expect i1
2817         if (Cond->getType() != Type::getInt1Ty(Context))
2818           return Error("Invalid type for value");
2819       }
2820 
2821       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2822       InstructionList.push_back(I);
2823       break;
2824     }
2825 
2826     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2827       unsigned OpNum = 0;
2828       Value *Vec, *Idx;
2829       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2830           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2831         return Error("Invalid record");
2832       I = ExtractElementInst::Create(Vec, Idx);
2833       InstructionList.push_back(I);
2834       break;
2835     }
2836 
2837     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2838       unsigned OpNum = 0;
2839       Value *Vec, *Elt, *Idx;
2840       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2841           getValue(Record, OpNum,
2842                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2843           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2844         return Error("Invalid record");
2845       I = InsertElementInst::Create(Vec, Elt, Idx);
2846       InstructionList.push_back(I);
2847       break;
2848     }
2849 
2850     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2851       unsigned OpNum = 0;
2852       Value *Vec1, *Vec2, *Mask;
2853       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2854           getValue(Record, OpNum, Vec1->getType(), Vec2))
2855         return Error("Invalid record");
2856 
2857       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2858         return Error("Invalid record");
2859       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2860       InstructionList.push_back(I);
2861       break;
2862     }
2863 
2864     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2865       // Old form of ICmp/FCmp returning bool
2866       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2867       // both legal on vectors but had different behaviour.
2868     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2869       // FCmp/ICmp returning bool or vector of bool
2870 
2871       unsigned OpNum = 0;
2872       Value *LHS, *RHS;
2873       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2874           getValue(Record, OpNum, LHS->getType(), RHS) ||
2875           OpNum+1 != Record.size())
2876         return Error("Invalid record");
2877 
2878       if (LHS->getType()->isFPOrFPVectorTy())
2879         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2880       else
2881         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2882       InstructionList.push_back(I);
2883       break;
2884     }
2885 
2886     case FUNC_CODE_INST_GETRESULT_2_7: {
2887       if (Record.size() != 2) {
2888         return Error("Invalid record");
2889       }
2890       unsigned OpNum = 0;
2891       Value *Op;
2892       getValueTypePair(Record, OpNum, NextValueNo, Op);
2893       unsigned Index = Record[1];
2894       I = ExtractValueInst::Create(Op, Index);
2895       InstructionList.push_back(I);
2896       break;
2897     }
2898 
2899     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2900       {
2901         unsigned Size = Record.size();
2902         if (Size == 0) {
2903           I = ReturnInst::Create(Context);
2904           InstructionList.push_back(I);
2905           break;
2906         }
2907 
2908         unsigned OpNum = 0;
2909         Value *Op = nullptr;
2910         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2911           return Error("Invalid record");
2912         if (OpNum != Record.size())
2913           return Error("Invalid record");
2914 
2915         I = ReturnInst::Create(Context, Op);
2916         InstructionList.push_back(I);
2917         break;
2918       }
2919     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2920       if (Record.size() != 1 && Record.size() != 3)
2921         return Error("Invalid record");
2922       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2923       if (!TrueDest)
2924         return Error("Invalid record");
2925 
2926       if (Record.size() == 1) {
2927         I = BranchInst::Create(TrueDest);
2928         InstructionList.push_back(I);
2929       }
2930       else {
2931         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2932         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2933         if (!FalseDest || !Cond)
2934           return Error("Invalid record");
2935         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2936         InstructionList.push_back(I);
2937       }
2938       break;
2939     }
2940     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2941       if (Record.size() < 3 || (Record.size() & 1) == 0)
2942         return Error("Invalid record");
2943       Type *OpTy = getTypeByID(Record[0]);
2944       Value *Cond = getFnValueByID(Record[1], OpTy);
2945       BasicBlock *Default = getBasicBlock(Record[2]);
2946       if (!OpTy || !Cond || !Default)
2947         return Error("Invalid record");
2948       unsigned NumCases = (Record.size()-3)/2;
2949       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2950       InstructionList.push_back(SI);
2951       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2952         ConstantInt *CaseVal =
2953           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2954         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2955         if (!CaseVal || !DestBB) {
2956           delete SI;
2957           return Error("Invalid record");
2958         }
2959         SI->addCase(CaseVal, DestBB);
2960       }
2961       I = SI;
2962       break;
2963     }
2964     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2965       if (Record.size() < 2)
2966         return Error("Invalid record");
2967       Type *OpTy = getTypeByID(Record[0]);
2968       Value *Address = getFnValueByID(Record[1], OpTy);
2969       if (!OpTy || !Address)
2970         return Error("Invalid record");
2971       unsigned NumDests = Record.size()-2;
2972       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2973       InstructionList.push_back(IBI);
2974       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2975         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2976           IBI->addDestination(DestBB);
2977         } else {
2978           delete IBI;
2979           return Error("Invalid record");
2980         }
2981       }
2982       I = IBI;
2983       break;
2984     }
2985 
2986     case bitc::FUNC_CODE_INST_INVOKE: {
2987       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2988       if (Record.size() < 4)
2989         return Error("Invalid record");
2990       AttributeSet PAL = getAttributes(Record[0]);
2991       unsigned CCInfo = Record[1];
2992       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2993       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2994 
2995       unsigned OpNum = 4;
2996       Value *Callee;
2997       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2998         return Error("Invalid record");
2999 
3000       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
3001       FunctionType *FTy = !CalleeTy ? nullptr :
3002         dyn_cast<FunctionType>(CalleeTy->getElementType());
3003 
3004       // Check that the right number of fixed parameters are here.
3005       if (!FTy || !NormalBB || !UnwindBB ||
3006           Record.size() < OpNum+FTy->getNumParams())
3007         return Error("Invalid record");
3008 
3009       SmallVector<Value*, 16> Ops;
3010       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3011         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3012         if (!Ops.back())
3013           return Error("Invalid record");
3014       }
3015 
3016       if (!FTy->isVarArg()) {
3017         if (Record.size() != OpNum)
3018           return Error("Invalid record");
3019       } else {
3020         // Read type/value pairs for varargs params.
3021         while (OpNum != Record.size()) {
3022           Value *Op;
3023           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3024             return Error("Invalid record");
3025           Ops.push_back(Op);
3026         }
3027       }
3028 
3029       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
3030       InstructionList.push_back(I);
3031       cast<InvokeInst>(I)->setCallingConv(
3032         static_cast<CallingConv::ID>(CCInfo));
3033       cast<InvokeInst>(I)->setAttributes(PAL);
3034       break;
3035     }
3036     case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
3037       // 'unwind' instruction has been removed in LLVM 3.1
3038       // Replace 'unwind' with 'landingpad' and 'resume'.
3039       Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
3040                                     Type::getInt32Ty(Context), nullptr);
3041 
3042       LandingPadInst *LP = LandingPadInst::Create(ExnTy, 1);
3043       LP->setCleanup(true);
3044 
3045       CurBB->getInstList().push_back(LP);
3046       I = ResumeInst::Create(LP);
3047       InstructionList.push_back(I);
3048       break;
3049     }
3050     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
3051       I = new UnreachableInst(Context);
3052       InstructionList.push_back(I);
3053       break;
3054     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
3055       if (Record.size() < 1 || ((Record.size()-1)&1))
3056         return Error("Invalid record");
3057       Type *Ty = getTypeByID(Record[0]);
3058       if (!Ty)
3059         return Error("Invalid record");
3060 
3061       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
3062       InstructionList.push_back(PN);
3063 
3064       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
3065         Value *V = getFnValueByID(Record[1+i], Ty);
3066         BasicBlock *BB = getBasicBlock(Record[2+i]);
3067         if (!V || !BB)
3068           return Error("Invalid record");
3069         PN->addIncoming(V, BB);
3070       }
3071       I = PN;
3072       break;
3073     }
3074 
3075     case FUNC_CODE_INST_MALLOC_2_7: { // MALLOC: [instty, op, align]
3076       // Autoupgrade malloc instruction to malloc call.
3077       // FIXME: Remove in LLVM 3.0.
3078       if (Record.size() < 3) {
3079         return Error("Invalid record");
3080       }
3081       PointerType *Ty =
3082           dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
3083       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
3084       if (!Ty || !Size)
3085         return Error("Invalid record");
3086       if (!CurBB)
3087         return Error("Invalid instruction with no BB");
3088       Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
3089       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
3090       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
3091       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
3092                                  AllocSize, Size, nullptr);
3093       InstructionList.push_back(I);
3094       break;
3095     }
3096     case FUNC_CODE_INST_FREE_2_7: { // FREE: [op, opty]
3097       unsigned OpNum = 0;
3098       Value *Op;
3099       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3100           OpNum != Record.size()) {
3101         return Error("Invalid record");
3102       }
3103       if (!CurBB)
3104         return Error("Invalid instruction with no BB");
3105       I = CallInst::CreateFree(Op, CurBB);
3106       InstructionList.push_back(I);
3107       break;
3108     }
3109 
3110     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
3111       // For backward compatibility, tolerate a lack of an opty, and use i32.
3112       // Remove this in LLVM 3.0.
3113       if (Record.size() < 3 || Record.size() > 4) {
3114         return Error("Invalid record");
3115       }
3116       unsigned OpNum = 0;
3117       PointerType *Ty =
3118         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
3119       Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
3120                                               Type::getInt32Ty(Context);
3121       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
3122       unsigned Align = Record[OpNum++];
3123       if (!Ty || !Size)
3124         return Error("Invalid record");
3125       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
3126       InstructionList.push_back(I);
3127       break;
3128     }
3129     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
3130       unsigned OpNum = 0;
3131       Value *Op;
3132       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3133           OpNum+2 != Record.size())
3134         return Error("Invalid record");
3135 
3136       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3137       InstructionList.push_back(I);
3138       break;
3139     }
3140     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
3141       unsigned OpNum = 0;
3142       Value *Val, *Ptr;
3143       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3144           getValue(Record, OpNum,
3145                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3146           OpNum+2 != Record.size())
3147         return Error("Invalid record");
3148 
3149       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3150       InstructionList.push_back(I);
3151       break;
3152     }
3153     case FUNC_CODE_INST_STORE_2_7: {
3154       unsigned OpNum = 0;
3155       Value *Val, *Ptr;
3156       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
3157           getValue(Record, OpNum,
3158                    PointerType::getUnqual(Val->getType()), Ptr)||
3159           OpNum+2 != Record.size()) {
3160         return Error("Invalid record");
3161       }
3162       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3163       InstructionList.push_back(I);
3164       break;
3165     }
3166     case FUNC_CODE_INST_CALL_2_7:
3167       LLVM2_7MetadataDetected = true;
3168     case bitc::FUNC_CODE_INST_CALL: {
3169       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
3170       if (Record.size() < 3)
3171         return Error("Invalid record");
3172 
3173       AttributeSet PAL = getAttributes(Record[0]);
3174       unsigned CCInfo = Record[1];
3175 
3176       unsigned OpNum = 2;
3177       Value *Callee;
3178       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3179         return Error("Invalid record");
3180 
3181       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
3182       FunctionType *FTy = nullptr;
3183       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
3184       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
3185         return Error("Invalid record");
3186 
3187       SmallVector<Value*, 16> Args;
3188       // Read the fixed params.
3189       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3190         if (FTy->getParamType(i)->isLabelTy())
3191           Args.push_back(getBasicBlock(Record[OpNum]));
3192         else
3193           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3194         if (!Args.back())
3195           return Error("Invalid record");
3196       }
3197 
3198       // Read type/value pairs for varargs params.
3199       if (!FTy->isVarArg()) {
3200         if (OpNum != Record.size())
3201           return Error("Invalid record");
3202       } else {
3203         while (OpNum != Record.size()) {
3204           Value *Op;
3205           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3206             return Error("Invalid record");
3207           Args.push_back(Op);
3208         }
3209       }
3210 
3211       I = CallInst::Create(Callee, Args);
3212       InstructionList.push_back(I);
3213       cast<CallInst>(I)->setCallingConv(
3214         static_cast<CallingConv::ID>(CCInfo>>1));
3215       cast<CallInst>(I)->setTailCall(CCInfo & 1);
3216       cast<CallInst>(I)->setAttributes(PAL);
3217       break;
3218     }
3219     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
3220       if (Record.size() < 3)
3221         return Error("Invalid record");
3222       Type *OpTy = getTypeByID(Record[0]);
3223       Value *Op = getFnValueByID(Record[1], OpTy);
3224       Type *ResTy = getTypeByID(Record[2]);
3225       if (!OpTy || !Op || !ResTy)
3226         return Error("Invalid record");
3227       I = new VAArgInst(Op, ResTy);
3228       InstructionList.push_back(I);
3229       break;
3230     }
3231     }
3232 
3233     // Add instruction to end of current BB.  If there is no current BB, reject
3234     // this file.
3235     if (!CurBB) {
3236       delete I;
3237       return Error("Invalid instruction with no BB");
3238     }
3239     CurBB->getInstList().push_back(I);
3240 
3241     // If this was a terminator instruction, move to the next block.
3242     if (isa<TerminatorInst>(I)) {
3243       ++CurBBNo;
3244       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
3245     }
3246 
3247     // Non-void values get registered in the value table for future use.
3248     if (I && !I->getType()->isVoidTy())
3249       ValueList.AssignValue(I, NextValueNo++);
3250   }
3251 
3252   // Check the function list for unresolved values.
3253   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
3254     if (!A->getParent()) {
3255       // We found at least one unresolved value.  Nuke them all to avoid leaks.
3256       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
3257         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
3258           A->replaceAllUsesWith(UndefValue::get(A->getType()));
3259           delete A;
3260         }
3261       }
3262       return Error("Never resolved value found in function");
3263     }
3264   }
3265 
3266   // FIXME: Check for unresolved forward-declared metadata references
3267   // and clean up leaks.
3268 
3269   // See if anything took the address of blocks in this function.  If so,
3270   // resolve them now.
3271   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3272     BlockAddrFwdRefs.find(F);
3273   if (BAFRI != BlockAddrFwdRefs.end()) {
3274     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3275     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3276       unsigned BlockIdx = RefList[i].first;
3277       if (BlockIdx >= FunctionBBs.size())
3278         return Error("Invalid ID");
3279 
3280       GlobalVariable *FwdRef = RefList[i].second;
3281       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3282       FwdRef->eraseFromParent();
3283     }
3284 
3285     BlockAddrFwdRefs.erase(BAFRI);
3286   }
3287 
3288   unsigned NewMDValueListSize = MDValueList.size();
3289   // Trim the value list down to the size it was before we parsed this function.
3290   ValueList.shrinkTo(ModuleValueListSize);
3291   MDValueList.shrinkTo(ModuleMDValueListSize);
3292 
3293   if (LLVM2_7MetadataDetected) {
3294     MDValueList.resize(NewMDValueListSize);
3295   }
3296 
3297   std::vector<BasicBlock*>().swap(FunctionBBs);
3298   return std::error_code();
3299 }
3300 
3301 //===----------------------------------------------------------------------===//
3302 // GVMaterializer implementation
3303 //===----------------------------------------------------------------------===//
3304 
releaseBuffer()3305 void BitcodeReader::releaseBuffer() { Buffer.release(); }
3306 
materialize(GlobalValue * GV)3307 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
3308   if (std::error_code EC = materializeMetadata())
3309     return EC;
3310 
3311   Function *F = dyn_cast<Function>(GV);
3312   // If it's not a function or is already material, ignore the request.
3313   if (!F || !F->isMaterializable())
3314     return std::error_code();
3315 
3316   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3317   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3318 
3319   // Move the bit stream to the saved position of the deferred function body.
3320   Stream.JumpToBit(DFII->second);
3321 
3322   if (std::error_code EC = ParseFunctionBody(F))
3323     return EC;
3324   F->setIsMaterializable(false);
3325 
3326   // Upgrade any old intrinsic calls in the function.
3327   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3328        E = UpgradedIntrinsics.end(); I != E; ++I) {
3329     if (I->first != I->second) {
3330       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3331            UI != UE;) {
3332         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3333           UpgradeIntrinsicCall(CI, I->second);
3334       }
3335     }
3336   }
3337 
3338   return std::error_code();
3339 }
3340 
isDematerializable(const GlobalValue * GV) const3341 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3342   const Function *F = dyn_cast<Function>(GV);
3343   if (!F || F->isDeclaration())
3344     return false;
3345   return DeferredFunctionInfo.count(const_cast<Function*>(F));
3346 }
3347 
dematerialize(GlobalValue * GV)3348 void BitcodeReader::dematerialize(GlobalValue *GV) {
3349   Function *F = dyn_cast<Function>(GV);
3350   // If this function isn't dematerializable, this is a noop.
3351   if (!F || !isDematerializable(F))
3352     return;
3353 
3354   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3355 
3356   // Just forget the function body, we can remat it later.
3357   F->deleteBody();
3358   F->setIsMaterializable(true);
3359 }
3360 
materializeModule()3361 std::error_code BitcodeReader::materializeModule() {
3362   // Iterate over the module, deserializing any functions that are still on
3363   // disk.
3364   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3365        F != E; ++F) {
3366     if (std::error_code EC = materialize(&*F))
3367       return EC;
3368   }
3369   // At this point, if there are any function bodies, the current bit is
3370   // pointing to the END_BLOCK record after them. Now make sure the rest
3371   // of the bits in the module have been read.
3372   if (NextUnreadBit)
3373     ParseModule(true);
3374 
3375   // Upgrade any intrinsic calls that slipped through (should not happen!) and
3376   // delete the old functions to clean up. We can't do this unless the entire
3377   // module is materialized because there could always be another function body
3378   // with calls to the old function.
3379   for (std::vector<std::pair<Function*, Function*> >::iterator I =
3380        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3381     if (I->first != I->second) {
3382       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3383            UI != UE;) {
3384         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3385           UpgradeIntrinsicCall(CI, I->second);
3386       }
3387       if (!I->first->use_empty())
3388         I->first->replaceAllUsesWith(I->second);
3389       I->first->eraseFromParent();
3390     }
3391   }
3392   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3393 
3394   // Check debug info intrinsics.
3395   CheckDebugInfoIntrinsics(TheModule);
3396 
3397   return std::error_code();
3398 }
3399 
getIdentifiedStructTypes() const3400 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
3401   return IdentifiedStructTypes;
3402 }
3403 
InitStream()3404 std::error_code BitcodeReader::InitStream() {
3405   if (LazyStreamer)
3406     return InitLazyStream();
3407   return InitStreamFromBuffer();
3408 }
3409 
InitStreamFromBuffer()3410 std::error_code BitcodeReader::InitStreamFromBuffer() {
3411   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3412   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3413 
3414   if (Buffer->getBufferSize() & 3)
3415     return Error("Invalid bitcode signature");
3416 
3417   // If we have a wrapper header, parse it and ignore the non-bc file contents.
3418   // The magic number is 0x0B17C0DE stored in little endian.
3419   if (isBitcodeWrapper(BufPtr, BufEnd))
3420     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3421       return Error("Invalid bitcode wrapper header");
3422 
3423   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3424   Stream.init(&*StreamFile);
3425 
3426   return std::error_code();
3427 }
3428 
InitLazyStream()3429 std::error_code BitcodeReader::InitLazyStream() {
3430   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3431   // see it.
3432   auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(
3433       std::move(LazyStreamer));
3434   StreamingMemoryObject &Bytes = *OwnedBytes;
3435   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
3436   Stream.init(&*StreamFile);
3437 
3438   unsigned char buf[16];
3439   if (Bytes.readBytes(buf, 16, 0) != 16)
3440     return Error("Invalid bitcode signature");
3441 
3442   if (!isBitcode(buf, buf + 16))
3443     return Error("Invalid bitcode signature");
3444 
3445   if (isBitcodeWrapper(buf, buf + 4)) {
3446     const unsigned char *bitcodeStart = buf;
3447     const unsigned char *bitcodeEnd = buf + 16;
3448     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3449     Bytes.dropLeadingBytes(bitcodeStart - buf);
3450     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
3451   }
3452   return std::error_code();
3453 }
3454 
3455 namespace {
3456 class BitcodeErrorCategoryType : public std::error_category {
name() const3457   const char *name() const LLVM_NOEXCEPT override {
3458     return "llvm.bitcode";
3459   }
message(int IE) const3460   std::string message(int IE) const override {
3461     BitcodeError E = static_cast<BitcodeError>(IE);
3462     switch (E) {
3463     case BitcodeError::InvalidBitcodeSignature:
3464       return "Invalid bitcode signature";
3465     case BitcodeError::CorruptedBitcode:
3466       return "Corrupted bitcode";
3467     }
3468     llvm_unreachable("Unknown error type!");
3469   }
3470 };
3471 }
3472 
3473 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
3474 
BitcodeErrorCategory()3475 const std::error_category &BitcodeReader::BitcodeErrorCategory() {
3476   return *ErrorCategory;
3477 }
3478 
3479 //===----------------------------------------------------------------------===//
3480 // External interface
3481 //===----------------------------------------------------------------------===//
3482 
3483 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3484 ///
3485 static llvm::ErrorOr<llvm::Module *>
getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,bool WillMaterializeAll,DiagnosticHandlerFunction DiagnosticHandler)3486 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
3487                          LLVMContext &Context, bool WillMaterializeAll,
3488                          DiagnosticHandlerFunction DiagnosticHandler) {
3489   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3490   BitcodeReader *R =
3491       new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
3492   M->setMaterializer(R);
3493 
3494   auto cleanupOnError = [&](std::error_code EC) {
3495     R->releaseBuffer(); // Never take ownership on error.
3496     delete M;  // Also deletes R.
3497     return EC;
3498   };
3499 
3500   if (std::error_code EC = R->ParseBitcodeInto(M))
3501     return cleanupOnError(EC);
3502 
3503   Buffer.release(); // The BitcodeReader owns it now.
3504   return M;
3505 }
3506 
3507 llvm::ErrorOr<Module *>
getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,DiagnosticHandlerFunction DiagnosticHandler)3508 llvm_2_7::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
3509                            LLVMContext &Context,
3510                            DiagnosticHandlerFunction DiagnosticHandler) {
3511   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
3512                                   DiagnosticHandler);
3513 }
3514 
3515 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3516 /// If an error occurs, return null and fill in *ErrMsg if non-null.
3517 llvm::ErrorOr<llvm::Module *>
parseBitcodeFile(MemoryBufferRef Buffer,LLVMContext & Context,DiagnosticHandlerFunction DiagnosticHandler)3518 llvm_2_7::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
3519                        DiagnosticHandlerFunction DiagnosticHandler) {
3520   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3521   ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
3522       std::move(Buf), Context, true, DiagnosticHandler);
3523   if (!ModuleOrErr)
3524     return ModuleOrErr;
3525   Module *M = ModuleOrErr.get();
3526   // Read in the entire module, and destroy the BitcodeReader.
3527   if (std::error_code EC = M->materializeAll()) {
3528     delete M;
3529     return EC;
3530   }
3531 
3532   return M;
3533 }
3534 
3535 std::string
getBitcodeTargetTriple(MemoryBufferRef Buffer,LLVMContext & Context,DiagnosticHandlerFunction DiagnosticHandler)3536 llvm_2_7::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
3537                              DiagnosticHandlerFunction DiagnosticHandler) {
3538   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3539   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
3540                                             DiagnosticHandler);
3541   ErrorOr<std::string> Triple = R->parseTriple();
3542   if (Triple.getError())
3543     return "";
3544   return Triple.get();
3545 }
3546