• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "VelocityTracker"
18 //#define LOG_NDEBUG 0
19 
20 // Log debug messages about velocity tracking.
21 #define DEBUG_VELOCITY 0
22 
23 // Log debug messages about the progress of the algorithm itself.
24 #define DEBUG_STRATEGY 0
25 
26 #include <math.h>
27 #include <limits.h>
28 
29 #include <cutils/properties.h>
30 #include <input/VelocityTracker.h>
31 #include <utils/BitSet.h>
32 #include <utils/String8.h>
33 #include <utils/Timers.h>
34 
35 namespace android {
36 
37 // Nanoseconds per milliseconds.
38 static const nsecs_t NANOS_PER_MS = 1000000;
39 
40 // Threshold for determining that a pointer has stopped moving.
41 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
42 // stopped.  We need to detect this case so that we can accurately predict the
43 // velocity after the pointer starts moving again.
44 static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
45 
46 
vectorDot(const float * a,const float * b,uint32_t m)47 static float vectorDot(const float* a, const float* b, uint32_t m) {
48     float r = 0;
49     while (m) {
50         m--;
51         r += *(a++) * *(b++);
52     }
53     return r;
54 }
55 
vectorNorm(const float * a,uint32_t m)56 static float vectorNorm(const float* a, uint32_t m) {
57     float r = 0;
58     while (m) {
59         m--;
60         float t = *(a++);
61         r += t * t;
62     }
63     return sqrtf(r);
64 }
65 
66 #if DEBUG_STRATEGY || DEBUG_VELOCITY
vectorToString(const float * a,uint32_t m)67 static String8 vectorToString(const float* a, uint32_t m) {
68     String8 str;
69     str.append("[");
70     while (m--) {
71         str.appendFormat(" %f", *(a++));
72         if (m) {
73             str.append(",");
74         }
75     }
76     str.append(" ]");
77     return str;
78 }
79 
matrixToString(const float * a,uint32_t m,uint32_t n,bool rowMajor)80 static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
81     String8 str;
82     str.append("[");
83     for (size_t i = 0; i < m; i++) {
84         if (i) {
85             str.append(",");
86         }
87         str.append(" [");
88         for (size_t j = 0; j < n; j++) {
89             if (j) {
90                 str.append(",");
91             }
92             str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
93         }
94         str.append(" ]");
95     }
96     str.append(" ]");
97     return str;
98 }
99 #endif
100 
101 
102 // --- VelocityTracker ---
103 
104 // The default velocity tracker strategy.
105 // Although other strategies are available for testing and comparison purposes,
106 // this is the strategy that applications will actually use.  Be very careful
107 // when adjusting the default strategy because it can dramatically affect
108 // (often in a bad way) the user experience.
109 const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
110 
VelocityTracker(const char * strategy)111 VelocityTracker::VelocityTracker(const char* strategy) :
112         mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
113     char value[PROPERTY_VALUE_MAX];
114 
115     // Allow the default strategy to be overridden using a system property for debugging.
116     if (!strategy) {
117         int length = property_get("debug.velocitytracker.strategy", value, NULL);
118         if (length > 0) {
119             strategy = value;
120         } else {
121             strategy = DEFAULT_STRATEGY;
122         }
123     }
124 
125     // Configure the strategy.
126     if (!configureStrategy(strategy)) {
127         ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
128         if (!configureStrategy(DEFAULT_STRATEGY)) {
129             LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
130                     strategy);
131         }
132     }
133 }
134 
~VelocityTracker()135 VelocityTracker::~VelocityTracker() {
136     delete mStrategy;
137 }
138 
configureStrategy(const char * strategy)139 bool VelocityTracker::configureStrategy(const char* strategy) {
140     mStrategy = createStrategy(strategy);
141     return mStrategy != NULL;
142 }
143 
createStrategy(const char * strategy)144 VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
145     if (!strcmp("lsq1", strategy)) {
146         // 1st order least squares.  Quality: POOR.
147         // Frequently underfits the touch data especially when the finger accelerates
148         // or changes direction.  Often underestimates velocity.  The direction
149         // is overly influenced by historical touch points.
150         return new LeastSquaresVelocityTrackerStrategy(1);
151     }
152     if (!strcmp("lsq2", strategy)) {
153         // 2nd order least squares.  Quality: VERY GOOD.
154         // Pretty much ideal, but can be confused by certain kinds of touch data,
155         // particularly if the panel has a tendency to generate delayed,
156         // duplicate or jittery touch coordinates when the finger is released.
157         return new LeastSquaresVelocityTrackerStrategy(2);
158     }
159     if (!strcmp("lsq3", strategy)) {
160         // 3rd order least squares.  Quality: UNUSABLE.
161         // Frequently overfits the touch data yielding wildly divergent estimates
162         // of the velocity when the finger is released.
163         return new LeastSquaresVelocityTrackerStrategy(3);
164     }
165     if (!strcmp("wlsq2-delta", strategy)) {
166         // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
167         return new LeastSquaresVelocityTrackerStrategy(2,
168                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
169     }
170     if (!strcmp("wlsq2-central", strategy)) {
171         // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
172         return new LeastSquaresVelocityTrackerStrategy(2,
173                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
174     }
175     if (!strcmp("wlsq2-recent", strategy)) {
176         // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
177         return new LeastSquaresVelocityTrackerStrategy(2,
178                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
179     }
180     if (!strcmp("int1", strategy)) {
181         // 1st order integrating filter.  Quality: GOOD.
182         // Not as good as 'lsq2' because it cannot estimate acceleration but it is
183         // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
184         // the velocity of a fling but this strategy tends to respond to changes in
185         // direction more quickly and accurately.
186         return new IntegratingVelocityTrackerStrategy(1);
187     }
188     if (!strcmp("int2", strategy)) {
189         // 2nd order integrating filter.  Quality: EXPERIMENTAL.
190         // For comparison purposes only.  Unlike 'int1' this strategy can compensate
191         // for acceleration but it typically overestimates the effect.
192         return new IntegratingVelocityTrackerStrategy(2);
193     }
194     if (!strcmp("legacy", strategy)) {
195         // Legacy velocity tracker algorithm.  Quality: POOR.
196         // For comparison purposes only.  This algorithm is strongly influenced by
197         // old data points, consistently underestimates velocity and takes a very long
198         // time to adjust to changes in direction.
199         return new LegacyVelocityTrackerStrategy();
200     }
201     return NULL;
202 }
203 
clear()204 void VelocityTracker::clear() {
205     mCurrentPointerIdBits.clear();
206     mActivePointerId = -1;
207 
208     mStrategy->clear();
209 }
210 
clearPointers(BitSet32 idBits)211 void VelocityTracker::clearPointers(BitSet32 idBits) {
212     BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
213     mCurrentPointerIdBits = remainingIdBits;
214 
215     if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
216         mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
217     }
218 
219     mStrategy->clearPointers(idBits);
220 }
221 
addMovement(nsecs_t eventTime,BitSet32 idBits,const Position * positions)222 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
223     while (idBits.count() > MAX_POINTERS) {
224         idBits.clearLastMarkedBit();
225     }
226 
227     if ((mCurrentPointerIdBits.value & idBits.value)
228             && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
229 #if DEBUG_VELOCITY
230         ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
231                 (eventTime - mLastEventTime) * 0.000001f);
232 #endif
233         // We have not received any movements for too long.  Assume that all pointers
234         // have stopped.
235         mStrategy->clear();
236     }
237     mLastEventTime = eventTime;
238 
239     mCurrentPointerIdBits = idBits;
240     if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
241         mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
242     }
243 
244     mStrategy->addMovement(eventTime, idBits, positions);
245 
246 #if DEBUG_VELOCITY
247     ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d",
248             eventTime, idBits.value, mActivePointerId);
249     for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
250         uint32_t id = iterBits.firstMarkedBit();
251         uint32_t index = idBits.getIndexOfBit(id);
252         iterBits.clearBit(id);
253         Estimator estimator;
254         getEstimator(id, &estimator);
255         ALOGD("  %d: position (%0.3f, %0.3f), "
256                 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
257                 id, positions[index].x, positions[index].y,
258                 int(estimator.degree),
259                 vectorToString(estimator.xCoeff, estimator.degree + 1).string(),
260                 vectorToString(estimator.yCoeff, estimator.degree + 1).string(),
261                 estimator.confidence);
262     }
263 #endif
264 }
265 
addMovement(const MotionEvent * event)266 void VelocityTracker::addMovement(const MotionEvent* event) {
267     int32_t actionMasked = event->getActionMasked();
268 
269     switch (actionMasked) {
270     case AMOTION_EVENT_ACTION_DOWN:
271     case AMOTION_EVENT_ACTION_HOVER_ENTER:
272         // Clear all pointers on down before adding the new movement.
273         clear();
274         break;
275     case AMOTION_EVENT_ACTION_POINTER_DOWN: {
276         // Start a new movement trace for a pointer that just went down.
277         // We do this on down instead of on up because the client may want to query the
278         // final velocity for a pointer that just went up.
279         BitSet32 downIdBits;
280         downIdBits.markBit(event->getPointerId(event->getActionIndex()));
281         clearPointers(downIdBits);
282         break;
283     }
284     case AMOTION_EVENT_ACTION_MOVE:
285     case AMOTION_EVENT_ACTION_HOVER_MOVE:
286         break;
287     default:
288         // Ignore all other actions because they do not convey any new information about
289         // pointer movement.  We also want to preserve the last known velocity of the pointers.
290         // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
291         // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
292         // pointers that remained down but we will also receive an ACTION_MOVE with this
293         // information if any of them actually moved.  Since we don't know how many pointers
294         // will be going up at once it makes sense to just wait for the following ACTION_MOVE
295         // before adding the movement.
296         return;
297     }
298 
299     size_t pointerCount = event->getPointerCount();
300     if (pointerCount > MAX_POINTERS) {
301         pointerCount = MAX_POINTERS;
302     }
303 
304     BitSet32 idBits;
305     for (size_t i = 0; i < pointerCount; i++) {
306         idBits.markBit(event->getPointerId(i));
307     }
308 
309     uint32_t pointerIndex[MAX_POINTERS];
310     for (size_t i = 0; i < pointerCount; i++) {
311         pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
312     }
313 
314     nsecs_t eventTime;
315     Position positions[pointerCount];
316 
317     size_t historySize = event->getHistorySize();
318     for (size_t h = 0; h < historySize; h++) {
319         eventTime = event->getHistoricalEventTime(h);
320         for (size_t i = 0; i < pointerCount; i++) {
321             uint32_t index = pointerIndex[i];
322             positions[index].x = event->getHistoricalX(i, h);
323             positions[index].y = event->getHistoricalY(i, h);
324         }
325         addMovement(eventTime, idBits, positions);
326     }
327 
328     eventTime = event->getEventTime();
329     for (size_t i = 0; i < pointerCount; i++) {
330         uint32_t index = pointerIndex[i];
331         positions[index].x = event->getX(i);
332         positions[index].y = event->getY(i);
333     }
334     addMovement(eventTime, idBits, positions);
335 }
336 
getVelocity(uint32_t id,float * outVx,float * outVy) const337 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
338     Estimator estimator;
339     if (getEstimator(id, &estimator) && estimator.degree >= 1) {
340         *outVx = estimator.xCoeff[1];
341         *outVy = estimator.yCoeff[1];
342         return true;
343     }
344     *outVx = 0;
345     *outVy = 0;
346     return false;
347 }
348 
getEstimator(uint32_t id,Estimator * outEstimator) const349 bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
350     return mStrategy->getEstimator(id, outEstimator);
351 }
352 
353 
354 // --- LeastSquaresVelocityTrackerStrategy ---
355 
356 const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
357 const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;
358 
LeastSquaresVelocityTrackerStrategy(uint32_t degree,Weighting weighting)359 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
360         uint32_t degree, Weighting weighting) :
361         mDegree(degree), mWeighting(weighting) {
362     clear();
363 }
364 
~LeastSquaresVelocityTrackerStrategy()365 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
366 }
367 
clear()368 void LeastSquaresVelocityTrackerStrategy::clear() {
369     mIndex = 0;
370     mMovements[0].idBits.clear();
371 }
372 
clearPointers(BitSet32 idBits)373 void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
374     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
375     mMovements[mIndex].idBits = remainingIdBits;
376 }
377 
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)378 void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
379         const VelocityTracker::Position* positions) {
380     if (++mIndex == HISTORY_SIZE) {
381         mIndex = 0;
382     }
383 
384     Movement& movement = mMovements[mIndex];
385     movement.eventTime = eventTime;
386     movement.idBits = idBits;
387     uint32_t count = idBits.count();
388     for (uint32_t i = 0; i < count; i++) {
389         movement.positions[i] = positions[i];
390     }
391 }
392 
393 /**
394  * Solves a linear least squares problem to obtain a N degree polynomial that fits
395  * the specified input data as nearly as possible.
396  *
397  * Returns true if a solution is found, false otherwise.
398  *
399  * The input consists of two vectors of data points X and Y with indices 0..m-1
400  * along with a weight vector W of the same size.
401  *
402  * The output is a vector B with indices 0..n that describes a polynomial
403  * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
404  * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
405  *
406  * Accordingly, the weight vector W should be initialized by the caller with the
407  * reciprocal square root of the variance of the error in each input data point.
408  * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
409  * The weights express the relative importance of each data point.  If the weights are
410  * all 1, then the data points are considered to be of equal importance when fitting
411  * the polynomial.  It is a good idea to choose weights that diminish the importance
412  * of data points that may have higher than usual error margins.
413  *
414  * Errors among data points are assumed to be independent.  W is represented here
415  * as a vector although in the literature it is typically taken to be a diagonal matrix.
416  *
417  * That is to say, the function that generated the input data can be approximated
418  * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
419  *
420  * The coefficient of determination (R^2) is also returned to describe the goodness
421  * of fit of the model for the given data.  It is a value between 0 and 1, where 1
422  * indicates perfect correspondence.
423  *
424  * This function first expands the X vector to a m by n matrix A such that
425  * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
426  * multiplies it by w[i]./
427  *
428  * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
429  * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
430  * part is all zeroes), we can simplify the decomposition into an m by n matrix
431  * Q1 and a n by n matrix R1 such that A = Q1 R1.
432  *
433  * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
434  * to find B.
435  *
436  * For efficiency, we lay out A and Q column-wise in memory because we frequently
437  * operate on the column vectors.  Conversely, we lay out R row-wise.
438  *
439  * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
440  * http://en.wikipedia.org/wiki/Gram-Schmidt
441  */
solveLeastSquares(const float * x,const float * y,const float * w,uint32_t m,uint32_t n,float * outB,float * outDet)442 static bool solveLeastSquares(const float* x, const float* y,
443         const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
444 #if DEBUG_STRATEGY
445     ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
446             vectorToString(x, m).string(), vectorToString(y, m).string(),
447             vectorToString(w, m).string());
448 #endif
449 
450     // Expand the X vector to a matrix A, pre-multiplied by the weights.
451     float a[n][m]; // column-major order
452     for (uint32_t h = 0; h < m; h++) {
453         a[0][h] = w[h];
454         for (uint32_t i = 1; i < n; i++) {
455             a[i][h] = a[i - 1][h] * x[h];
456         }
457     }
458 #if DEBUG_STRATEGY
459     ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
460 #endif
461 
462     // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
463     float q[n][m]; // orthonormal basis, column-major order
464     float r[n][n]; // upper triangular matrix, row-major order
465     for (uint32_t j = 0; j < n; j++) {
466         for (uint32_t h = 0; h < m; h++) {
467             q[j][h] = a[j][h];
468         }
469         for (uint32_t i = 0; i < j; i++) {
470             float dot = vectorDot(&q[j][0], &q[i][0], m);
471             for (uint32_t h = 0; h < m; h++) {
472                 q[j][h] -= dot * q[i][h];
473             }
474         }
475 
476         float norm = vectorNorm(&q[j][0], m);
477         if (norm < 0.000001f) {
478             // vectors are linearly dependent or zero so no solution
479 #if DEBUG_STRATEGY
480             ALOGD("  - no solution, norm=%f", norm);
481 #endif
482             return false;
483         }
484 
485         float invNorm = 1.0f / norm;
486         for (uint32_t h = 0; h < m; h++) {
487             q[j][h] *= invNorm;
488         }
489         for (uint32_t i = 0; i < n; i++) {
490             r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
491         }
492     }
493 #if DEBUG_STRATEGY
494     ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
495     ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());
496 
497     // calculate QR, if we factored A correctly then QR should equal A
498     float qr[n][m];
499     for (uint32_t h = 0; h < m; h++) {
500         for (uint32_t i = 0; i < n; i++) {
501             qr[i][h] = 0;
502             for (uint32_t j = 0; j < n; j++) {
503                 qr[i][h] += q[j][h] * r[j][i];
504             }
505         }
506     }
507     ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
508 #endif
509 
510     // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
511     // We just work from bottom-right to top-left calculating B's coefficients.
512     float wy[m];
513     for (uint32_t h = 0; h < m; h++) {
514         wy[h] = y[h] * w[h];
515     }
516     for (uint32_t i = n; i != 0; ) {
517         i--;
518         outB[i] = vectorDot(&q[i][0], wy, m);
519         for (uint32_t j = n - 1; j > i; j--) {
520             outB[i] -= r[i][j] * outB[j];
521         }
522         outB[i] /= r[i][i];
523     }
524 #if DEBUG_STRATEGY
525     ALOGD("  - b=%s", vectorToString(outB, n).string());
526 #endif
527 
528     // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
529     // SSerr is the residual sum of squares (variance of the error),
530     // and SStot is the total sum of squares (variance of the data) where each
531     // has been weighted.
532     float ymean = 0;
533     for (uint32_t h = 0; h < m; h++) {
534         ymean += y[h];
535     }
536     ymean /= m;
537 
538     float sserr = 0;
539     float sstot = 0;
540     for (uint32_t h = 0; h < m; h++) {
541         float err = y[h] - outB[0];
542         float term = 1;
543         for (uint32_t i = 1; i < n; i++) {
544             term *= x[h];
545             err -= term * outB[i];
546         }
547         sserr += w[h] * w[h] * err * err;
548         float var = y[h] - ymean;
549         sstot += w[h] * w[h] * var * var;
550     }
551     *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
552 #if DEBUG_STRATEGY
553     ALOGD("  - sserr=%f", sserr);
554     ALOGD("  - sstot=%f", sstot);
555     ALOGD("  - det=%f", *outDet);
556 #endif
557     return true;
558 }
559 
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const560 bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
561         VelocityTracker::Estimator* outEstimator) const {
562     outEstimator->clear();
563 
564     // Iterate over movement samples in reverse time order and collect samples.
565     float x[HISTORY_SIZE];
566     float y[HISTORY_SIZE];
567     float w[HISTORY_SIZE];
568     float time[HISTORY_SIZE];
569     uint32_t m = 0;
570     uint32_t index = mIndex;
571     const Movement& newestMovement = mMovements[mIndex];
572     do {
573         const Movement& movement = mMovements[index];
574         if (!movement.idBits.hasBit(id)) {
575             break;
576         }
577 
578         nsecs_t age = newestMovement.eventTime - movement.eventTime;
579         if (age > HORIZON) {
580             break;
581         }
582 
583         const VelocityTracker::Position& position = movement.getPosition(id);
584         x[m] = position.x;
585         y[m] = position.y;
586         w[m] = chooseWeight(index);
587         time[m] = -age * 0.000000001f;
588         index = (index == 0 ? HISTORY_SIZE : index) - 1;
589     } while (++m < HISTORY_SIZE);
590 
591     if (m == 0) {
592         return false; // no data
593     }
594 
595     // Calculate a least squares polynomial fit.
596     uint32_t degree = mDegree;
597     if (degree > m - 1) {
598         degree = m - 1;
599     }
600     if (degree >= 1) {
601         float xdet, ydet;
602         uint32_t n = degree + 1;
603         if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
604                 && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
605             outEstimator->time = newestMovement.eventTime;
606             outEstimator->degree = degree;
607             outEstimator->confidence = xdet * ydet;
608 #if DEBUG_STRATEGY
609             ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
610                     int(outEstimator->degree),
611                     vectorToString(outEstimator->xCoeff, n).string(),
612                     vectorToString(outEstimator->yCoeff, n).string(),
613                     outEstimator->confidence);
614 #endif
615             return true;
616         }
617     }
618 
619     // No velocity data available for this pointer, but we do have its current position.
620     outEstimator->xCoeff[0] = x[0];
621     outEstimator->yCoeff[0] = y[0];
622     outEstimator->time = newestMovement.eventTime;
623     outEstimator->degree = 0;
624     outEstimator->confidence = 1;
625     return true;
626 }
627 
chooseWeight(uint32_t index) const628 float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
629     switch (mWeighting) {
630     case WEIGHTING_DELTA: {
631         // Weight points based on how much time elapsed between them and the next
632         // point so that points that "cover" a shorter time span are weighed less.
633         //   delta  0ms: 0.5
634         //   delta 10ms: 1.0
635         if (index == mIndex) {
636             return 1.0f;
637         }
638         uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
639         float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
640                 * 0.000001f;
641         if (deltaMillis < 0) {
642             return 0.5f;
643         }
644         if (deltaMillis < 10) {
645             return 0.5f + deltaMillis * 0.05;
646         }
647         return 1.0f;
648     }
649 
650     case WEIGHTING_CENTRAL: {
651         // Weight points based on their age, weighing very recent and very old points less.
652         //   age  0ms: 0.5
653         //   age 10ms: 1.0
654         //   age 50ms: 1.0
655         //   age 60ms: 0.5
656         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
657                 * 0.000001f;
658         if (ageMillis < 0) {
659             return 0.5f;
660         }
661         if (ageMillis < 10) {
662             return 0.5f + ageMillis * 0.05;
663         }
664         if (ageMillis < 50) {
665             return 1.0f;
666         }
667         if (ageMillis < 60) {
668             return 0.5f + (60 - ageMillis) * 0.05;
669         }
670         return 0.5f;
671     }
672 
673     case WEIGHTING_RECENT: {
674         // Weight points based on their age, weighing older points less.
675         //   age   0ms: 1.0
676         //   age  50ms: 1.0
677         //   age 100ms: 0.5
678         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
679                 * 0.000001f;
680         if (ageMillis < 50) {
681             return 1.0f;
682         }
683         if (ageMillis < 100) {
684             return 0.5f + (100 - ageMillis) * 0.01f;
685         }
686         return 0.5f;
687     }
688 
689     case WEIGHTING_NONE:
690     default:
691         return 1.0f;
692     }
693 }
694 
695 
696 // --- IntegratingVelocityTrackerStrategy ---
697 
IntegratingVelocityTrackerStrategy(uint32_t degree)698 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
699         mDegree(degree) {
700 }
701 
~IntegratingVelocityTrackerStrategy()702 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
703 }
704 
clear()705 void IntegratingVelocityTrackerStrategy::clear() {
706     mPointerIdBits.clear();
707 }
708 
clearPointers(BitSet32 idBits)709 void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
710     mPointerIdBits.value &= ~idBits.value;
711 }
712 
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)713 void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
714         const VelocityTracker::Position* positions) {
715     uint32_t index = 0;
716     for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
717         uint32_t id = iterIdBits.clearFirstMarkedBit();
718         State& state = mPointerState[id];
719         const VelocityTracker::Position& position = positions[index++];
720         if (mPointerIdBits.hasBit(id)) {
721             updateState(state, eventTime, position.x, position.y);
722         } else {
723             initState(state, eventTime, position.x, position.y);
724         }
725     }
726 
727     mPointerIdBits = idBits;
728 }
729 
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const730 bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
731         VelocityTracker::Estimator* outEstimator) const {
732     outEstimator->clear();
733 
734     if (mPointerIdBits.hasBit(id)) {
735         const State& state = mPointerState[id];
736         populateEstimator(state, outEstimator);
737         return true;
738     }
739 
740     return false;
741 }
742 
initState(State & state,nsecs_t eventTime,float xpos,float ypos) const743 void IntegratingVelocityTrackerStrategy::initState(State& state,
744         nsecs_t eventTime, float xpos, float ypos) const {
745     state.updateTime = eventTime;
746     state.degree = 0;
747 
748     state.xpos = xpos;
749     state.xvel = 0;
750     state.xaccel = 0;
751     state.ypos = ypos;
752     state.yvel = 0;
753     state.yaccel = 0;
754 }
755 
updateState(State & state,nsecs_t eventTime,float xpos,float ypos) const756 void IntegratingVelocityTrackerStrategy::updateState(State& state,
757         nsecs_t eventTime, float xpos, float ypos) const {
758     const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
759     const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
760 
761     if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
762         return;
763     }
764 
765     float dt = (eventTime - state.updateTime) * 0.000000001f;
766     state.updateTime = eventTime;
767 
768     float xvel = (xpos - state.xpos) / dt;
769     float yvel = (ypos - state.ypos) / dt;
770     if (state.degree == 0) {
771         state.xvel = xvel;
772         state.yvel = yvel;
773         state.degree = 1;
774     } else {
775         float alpha = dt / (FILTER_TIME_CONSTANT + dt);
776         if (mDegree == 1) {
777             state.xvel += (xvel - state.xvel) * alpha;
778             state.yvel += (yvel - state.yvel) * alpha;
779         } else {
780             float xaccel = (xvel - state.xvel) / dt;
781             float yaccel = (yvel - state.yvel) / dt;
782             if (state.degree == 1) {
783                 state.xaccel = xaccel;
784                 state.yaccel = yaccel;
785                 state.degree = 2;
786             } else {
787                 state.xaccel += (xaccel - state.xaccel) * alpha;
788                 state.yaccel += (yaccel - state.yaccel) * alpha;
789             }
790             state.xvel += (state.xaccel * dt) * alpha;
791             state.yvel += (state.yaccel * dt) * alpha;
792         }
793     }
794     state.xpos = xpos;
795     state.ypos = ypos;
796 }
797 
populateEstimator(const State & state,VelocityTracker::Estimator * outEstimator) const798 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
799         VelocityTracker::Estimator* outEstimator) const {
800     outEstimator->time = state.updateTime;
801     outEstimator->confidence = 1.0f;
802     outEstimator->degree = state.degree;
803     outEstimator->xCoeff[0] = state.xpos;
804     outEstimator->xCoeff[1] = state.xvel;
805     outEstimator->xCoeff[2] = state.xaccel / 2;
806     outEstimator->yCoeff[0] = state.ypos;
807     outEstimator->yCoeff[1] = state.yvel;
808     outEstimator->yCoeff[2] = state.yaccel / 2;
809 }
810 
811 
812 // --- LegacyVelocityTrackerStrategy ---
813 
814 const nsecs_t LegacyVelocityTrackerStrategy::HORIZON;
815 const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE;
816 const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION;
817 
LegacyVelocityTrackerStrategy()818 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
819     clear();
820 }
821 
~LegacyVelocityTrackerStrategy()822 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
823 }
824 
clear()825 void LegacyVelocityTrackerStrategy::clear() {
826     mIndex = 0;
827     mMovements[0].idBits.clear();
828 }
829 
clearPointers(BitSet32 idBits)830 void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
831     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
832     mMovements[mIndex].idBits = remainingIdBits;
833 }
834 
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)835 void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
836         const VelocityTracker::Position* positions) {
837     if (++mIndex == HISTORY_SIZE) {
838         mIndex = 0;
839     }
840 
841     Movement& movement = mMovements[mIndex];
842     movement.eventTime = eventTime;
843     movement.idBits = idBits;
844     uint32_t count = idBits.count();
845     for (uint32_t i = 0; i < count; i++) {
846         movement.positions[i] = positions[i];
847     }
848 }
849 
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const850 bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
851         VelocityTracker::Estimator* outEstimator) const {
852     outEstimator->clear();
853 
854     const Movement& newestMovement = mMovements[mIndex];
855     if (!newestMovement.idBits.hasBit(id)) {
856         return false; // no data
857     }
858 
859     // Find the oldest sample that contains the pointer and that is not older than HORIZON.
860     nsecs_t minTime = newestMovement.eventTime - HORIZON;
861     uint32_t oldestIndex = mIndex;
862     uint32_t numTouches = 1;
863     do {
864         uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
865         const Movement& nextOldestMovement = mMovements[nextOldestIndex];
866         if (!nextOldestMovement.idBits.hasBit(id)
867                 || nextOldestMovement.eventTime < minTime) {
868             break;
869         }
870         oldestIndex = nextOldestIndex;
871     } while (++numTouches < HISTORY_SIZE);
872 
873     // Calculate an exponentially weighted moving average of the velocity estimate
874     // at different points in time measured relative to the oldest sample.
875     // This is essentially an IIR filter.  Newer samples are weighted more heavily
876     // than older samples.  Samples at equal time points are weighted more or less
877     // equally.
878     //
879     // One tricky problem is that the sample data may be poorly conditioned.
880     // Sometimes samples arrive very close together in time which can cause us to
881     // overestimate the velocity at that time point.  Most samples might be measured
882     // 16ms apart but some consecutive samples could be only 0.5sm apart because
883     // the hardware or driver reports them irregularly or in bursts.
884     float accumVx = 0;
885     float accumVy = 0;
886     uint32_t index = oldestIndex;
887     uint32_t samplesUsed = 0;
888     const Movement& oldestMovement = mMovements[oldestIndex];
889     const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
890     nsecs_t lastDuration = 0;
891 
892     while (numTouches-- > 1) {
893         if (++index == HISTORY_SIZE) {
894             index = 0;
895         }
896         const Movement& movement = mMovements[index];
897         nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
898 
899         // If the duration between samples is small, we may significantly overestimate
900         // the velocity.  Consequently, we impose a minimum duration constraint on the
901         // samples that we include in the calculation.
902         if (duration >= MIN_DURATION) {
903             const VelocityTracker::Position& position = movement.getPosition(id);
904             float scale = 1000000000.0f / duration; // one over time delta in seconds
905             float vx = (position.x - oldestPosition.x) * scale;
906             float vy = (position.y - oldestPosition.y) * scale;
907             accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
908             accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
909             lastDuration = duration;
910             samplesUsed += 1;
911         }
912     }
913 
914     // Report velocity.
915     const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
916     outEstimator->time = newestMovement.eventTime;
917     outEstimator->confidence = 1;
918     outEstimator->xCoeff[0] = newestPosition.x;
919     outEstimator->yCoeff[0] = newestPosition.y;
920     if (samplesUsed) {
921         outEstimator->xCoeff[1] = accumVx;
922         outEstimator->yCoeff[1] = accumVy;
923         outEstimator->degree = 1;
924     } else {
925         outEstimator->degree = 0;
926     }
927     return true;
928 }
929 
930 } // namespace android
931