1 /*
2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <math.h>
12 #include <stdlib.h>
13 #include <string.h>
14
15 #include "third_party/googletest/src/include/gtest/gtest.h"
16 #include "test/acm_random.h"
17 #include "test/clear_system_state.h"
18 #include "test/register_state_check.h"
19 #include "test/util.h"
20
21 #include "./vpx_config.h"
22 #include "./vp9_rtcd.h"
23 #include "vp9/common/vp9_entropy.h"
24 #include "vpx/vpx_integer.h"
25
26 using libvpx_test::ACMRandom;
27
28 namespace {
29 #ifdef _MSC_VER
round(double x)30 static int round(double x) {
31 if (x < 0)
32 return static_cast<int>(ceil(x - 0.5));
33 else
34 return static_cast<int>(floor(x + 0.5));
35 }
36 #endif
37
38 const int kNumCoeffs = 1024;
39 const double kPi = 3.141592653589793238462643383279502884;
reference_32x32_dct_1d(const double in[32],double out[32],int stride)40 void reference_32x32_dct_1d(const double in[32], double out[32], int stride) {
41 const double kInvSqrt2 = 0.707106781186547524400844362104;
42 for (int k = 0; k < 32; k++) {
43 out[k] = 0.0;
44 for (int n = 0; n < 32; n++)
45 out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0);
46 if (k == 0)
47 out[k] = out[k] * kInvSqrt2;
48 }
49 }
50
reference_32x32_dct_2d(const int16_t input[kNumCoeffs],double output[kNumCoeffs])51 void reference_32x32_dct_2d(const int16_t input[kNumCoeffs],
52 double output[kNumCoeffs]) {
53 // First transform columns
54 for (int i = 0; i < 32; ++i) {
55 double temp_in[32], temp_out[32];
56 for (int j = 0; j < 32; ++j)
57 temp_in[j] = input[j*32 + i];
58 reference_32x32_dct_1d(temp_in, temp_out, 1);
59 for (int j = 0; j < 32; ++j)
60 output[j * 32 + i] = temp_out[j];
61 }
62 // Then transform rows
63 for (int i = 0; i < 32; ++i) {
64 double temp_in[32], temp_out[32];
65 for (int j = 0; j < 32; ++j)
66 temp_in[j] = output[j + i*32];
67 reference_32x32_dct_1d(temp_in, temp_out, 1);
68 // Scale by some magic number
69 for (int j = 0; j < 32; ++j)
70 output[j + i * 32] = temp_out[j] / 4;
71 }
72 }
73
74 typedef void (*fwd_txfm_t)(const int16_t *in, int16_t *out, int stride);
75 typedef void (*inv_txfm_t)(const int16_t *in, uint8_t *out, int stride);
76
77 typedef std::tr1::tuple<fwd_txfm_t, inv_txfm_t, int> trans_32x32_param_t;
78
79 class Trans32x32Test : public ::testing::TestWithParam<trans_32x32_param_t> {
80 public:
~Trans32x32Test()81 virtual ~Trans32x32Test() {}
SetUp()82 virtual void SetUp() {
83 fwd_txfm_ = GET_PARAM(0);
84 inv_txfm_ = GET_PARAM(1);
85 version_ = GET_PARAM(2); // 0: high precision forward transform
86 // 1: low precision version for rd loop
87 }
88
TearDown()89 virtual void TearDown() { libvpx_test::ClearSystemState(); }
90
91 protected:
92 int version_;
93 fwd_txfm_t fwd_txfm_;
94 inv_txfm_t inv_txfm_;
95 };
96
TEST_P(Trans32x32Test,AccuracyCheck)97 TEST_P(Trans32x32Test, AccuracyCheck) {
98 ACMRandom rnd(ACMRandom::DeterministicSeed());
99 uint32_t max_error = 0;
100 int64_t total_error = 0;
101 const int count_test_block = 1000;
102 DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs);
103 DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs);
104 DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
105 DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
106
107 for (int i = 0; i < count_test_block; ++i) {
108 // Initialize a test block with input range [-255, 255].
109 for (int j = 0; j < kNumCoeffs; ++j) {
110 src[j] = rnd.Rand8();
111 dst[j] = rnd.Rand8();
112 test_input_block[j] = src[j] - dst[j];
113 }
114
115 REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32));
116 REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32));
117
118 for (int j = 0; j < kNumCoeffs; ++j) {
119 const uint32_t diff = dst[j] - src[j];
120 const uint32_t error = diff * diff;
121 if (max_error < error)
122 max_error = error;
123 total_error += error;
124 }
125 }
126
127 if (version_ == 1) {
128 max_error /= 2;
129 total_error /= 45;
130 }
131
132 EXPECT_GE(1u, max_error)
133 << "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1";
134
135 EXPECT_GE(count_test_block, total_error)
136 << "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block";
137 }
138
TEST_P(Trans32x32Test,CoeffCheck)139 TEST_P(Trans32x32Test, CoeffCheck) {
140 ACMRandom rnd(ACMRandom::DeterministicSeed());
141 const int count_test_block = 1000;
142
143 DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
144 DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
145 DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
146
147 for (int i = 0; i < count_test_block; ++i) {
148 for (int j = 0; j < kNumCoeffs; ++j)
149 input_block[j] = rnd.Rand8() - rnd.Rand8();
150
151 const int stride = 32;
152 vp9_fdct32x32_c(input_block, output_ref_block, stride);
153 REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride));
154
155 if (version_ == 0) {
156 for (int j = 0; j < kNumCoeffs; ++j)
157 EXPECT_EQ(output_block[j], output_ref_block[j])
158 << "Error: 32x32 FDCT versions have mismatched coefficients";
159 } else {
160 for (int j = 0; j < kNumCoeffs; ++j)
161 EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
162 << "Error: 32x32 FDCT rd has mismatched coefficients";
163 }
164 }
165 }
166
TEST_P(Trans32x32Test,MemCheck)167 TEST_P(Trans32x32Test, MemCheck) {
168 ACMRandom rnd(ACMRandom::DeterministicSeed());
169 const int count_test_block = 2000;
170
171 DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
172 DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs);
173 DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
174 DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
175
176 for (int i = 0; i < count_test_block; ++i) {
177 // Initialize a test block with input range [-255, 255].
178 for (int j = 0; j < kNumCoeffs; ++j) {
179 input_block[j] = rnd.Rand8() - rnd.Rand8();
180 input_extreme_block[j] = rnd.Rand8() & 1 ? 255 : -255;
181 }
182 if (i == 0)
183 for (int j = 0; j < kNumCoeffs; ++j)
184 input_extreme_block[j] = 255;
185 if (i == 1)
186 for (int j = 0; j < kNumCoeffs; ++j)
187 input_extreme_block[j] = -255;
188
189 const int stride = 32;
190 vp9_fdct32x32_c(input_extreme_block, output_ref_block, stride);
191 REGISTER_STATE_CHECK(fwd_txfm_(input_extreme_block, output_block, stride));
192
193 // The minimum quant value is 4.
194 for (int j = 0; j < kNumCoeffs; ++j) {
195 if (version_ == 0) {
196 EXPECT_EQ(output_block[j], output_ref_block[j])
197 << "Error: 32x32 FDCT versions have mismatched coefficients";
198 } else {
199 EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
200 << "Error: 32x32 FDCT rd has mismatched coefficients";
201 }
202 EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_ref_block[j]))
203 << "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE";
204 EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j]))
205 << "Error: 32x32 FDCT has coefficient larger than "
206 << "4*DCT_MAX_VALUE";
207 }
208 }
209 }
210
TEST_P(Trans32x32Test,InverseAccuracy)211 TEST_P(Trans32x32Test, InverseAccuracy) {
212 ACMRandom rnd(ACMRandom::DeterministicSeed());
213 const int count_test_block = 1000;
214 DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs);
215 DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs);
216 DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
217 DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
218
219 for (int i = 0; i < count_test_block; ++i) {
220 double out_r[kNumCoeffs];
221
222 // Initialize a test block with input range [-255, 255]
223 for (int j = 0; j < kNumCoeffs; ++j) {
224 src[j] = rnd.Rand8();
225 dst[j] = rnd.Rand8();
226 in[j] = src[j] - dst[j];
227 }
228
229 reference_32x32_dct_2d(in, out_r);
230 for (int j = 0; j < kNumCoeffs; ++j)
231 coeff[j] = round(out_r[j]);
232 REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32));
233 for (int j = 0; j < kNumCoeffs; ++j) {
234 const int diff = dst[j] - src[j];
235 const int error = diff * diff;
236 EXPECT_GE(1, error)
237 << "Error: 32x32 IDCT has error " << error
238 << " at index " << j;
239 }
240 }
241 }
242
243 using std::tr1::make_tuple;
244
245 INSTANTIATE_TEST_CASE_P(
246 C, Trans32x32Test,
247 ::testing::Values(
248 make_tuple(&vp9_fdct32x32_c, &vp9_idct32x32_1024_add_c, 0),
249 make_tuple(&vp9_fdct32x32_rd_c, &vp9_idct32x32_1024_add_c, 1)));
250
251 #if HAVE_NEON
252 INSTANTIATE_TEST_CASE_P(
253 NEON, Trans32x32Test,
254 ::testing::Values(
255 make_tuple(&vp9_fdct32x32_c,
256 &vp9_idct32x32_1024_add_neon, 0),
257 make_tuple(&vp9_fdct32x32_rd_c,
258 &vp9_idct32x32_1024_add_neon, 1)));
259 #endif
260
261 #if HAVE_SSE2
262 INSTANTIATE_TEST_CASE_P(
263 SSE2, Trans32x32Test,
264 ::testing::Values(
265 make_tuple(&vp9_fdct32x32_sse2,
266 &vp9_idct32x32_1024_add_sse2, 0),
267 make_tuple(&vp9_fdct32x32_rd_sse2,
268 &vp9_idct32x32_1024_add_sse2, 1)));
269 #endif
270
271 #if HAVE_AVX2
272 INSTANTIATE_TEST_CASE_P(
273 AVX2, Trans32x32Test,
274 ::testing::Values(
275 make_tuple(&vp9_fdct32x32_avx2,
276 &vp9_idct32x32_1024_add_sse2, 0),
277 make_tuple(&vp9_fdct32x32_rd_avx2,
278 &vp9_idct32x32_1024_add_sse2, 1)));
279 #endif
280 } // namespace
281