• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19 
20 #include <assert.h>
21 #include <errno.h>
22 #include <memory.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <unistd.h>
27 
28 #if !defined(_WIN32)
29 # include <pthread.h>
30 # include <sched.h>
31 # include <sys/resource.h>
32 #else
33 # include <windows.h>
34 # include <stdint.h>
35 # include <process.h>
36 # define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
37 #endif
38 
39 #if defined(__linux__)
40 #include <sys/prctl.h>
41 #endif
42 
43 #include <utils/threads.h>
44 #include <utils/Log.h>
45 
46 #include <cutils/sched_policy.h>
47 
48 #if defined(__ANDROID__)
49 # define __android_unused
50 #else
51 # define __android_unused __attribute__((__unused__))
52 #endif
53 
54 /*
55  * ===========================================================================
56  *      Thread wrappers
57  * ===========================================================================
58  */
59 
60 using namespace android;
61 
62 // ----------------------------------------------------------------------------
63 #if !defined(_WIN32)
64 // ----------------------------------------------------------------------------
65 
66 /*
67  * Create and run a new thread.
68  *
69  * We create it "detached", so it cleans up after itself.
70  */
71 
72 typedef void* (*android_pthread_entry)(void*);
73 
74 struct thread_data_t {
75     thread_func_t   entryFunction;
76     void*           userData;
77     int             priority;
78     char *          threadName;
79 
80     // we use this trampoline when we need to set the priority with
81     // nice/setpriority, and name with prctl.
trampolinethread_data_t82     static int trampoline(const thread_data_t* t) {
83         thread_func_t f = t->entryFunction;
84         void* u = t->userData;
85         int prio = t->priority;
86         char * name = t->threadName;
87         delete t;
88         setpriority(PRIO_PROCESS, 0, prio);
89         if (prio >= ANDROID_PRIORITY_BACKGROUND) {
90             set_sched_policy(0, SP_BACKGROUND);
91         } else {
92             set_sched_policy(0, SP_FOREGROUND);
93         }
94 
95         if (name) {
96             androidSetThreadName(name);
97             free(name);
98         }
99         return f(u);
100     }
101 };
102 
androidSetThreadName(const char * name)103 void androidSetThreadName(const char* name) {
104 #if defined(__linux__)
105     // Mac OS doesn't have this, and we build libutil for the host too
106     int hasAt = 0;
107     int hasDot = 0;
108     const char *s = name;
109     while (*s) {
110         if (*s == '.') hasDot = 1;
111         else if (*s == '@') hasAt = 1;
112         s++;
113     }
114     int len = s - name;
115     if (len < 15 || hasAt || !hasDot) {
116         s = name;
117     } else {
118         s = name + len - 15;
119     }
120     prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
121 #endif
122 }
123 
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName __android_unused,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)124 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
125                                void *userData,
126                                const char* threadName __android_unused,
127                                int32_t threadPriority,
128                                size_t threadStackSize,
129                                android_thread_id_t *threadId)
130 {
131     pthread_attr_t attr;
132     pthread_attr_init(&attr);
133     pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
134 
135 #if defined(__ANDROID__)  /* valgrind is rejecting RT-priority create reqs */
136     if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
137         // Now that the pthread_t has a method to find the associated
138         // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
139         // this trampoline in some cases as the parent could set the properties
140         // for the child.  However, there would be a race condition because the
141         // child becomes ready immediately, and it doesn't work for the name.
142         // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
143         // proposed but not yet accepted.
144         thread_data_t* t = new thread_data_t;
145         t->priority = threadPriority;
146         t->threadName = threadName ? strdup(threadName) : NULL;
147         t->entryFunction = entryFunction;
148         t->userData = userData;
149         entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
150         userData = t;
151     }
152 #endif
153 
154     if (threadStackSize) {
155         pthread_attr_setstacksize(&attr, threadStackSize);
156     }
157 
158     errno = 0;
159     pthread_t thread;
160     int result = pthread_create(&thread, &attr,
161                     (android_pthread_entry)entryFunction, userData);
162     pthread_attr_destroy(&attr);
163     if (result != 0) {
164         ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, %s)\n"
165              "(android threadPriority=%d)",
166             entryFunction, result, strerror(errno), threadPriority);
167         return 0;
168     }
169 
170     // Note that *threadID is directly available to the parent only, as it is
171     // assigned after the child starts.  Use memory barrier / lock if the child
172     // or other threads also need access.
173     if (threadId != NULL) {
174         *threadId = (android_thread_id_t)thread; // XXX: this is not portable
175     }
176     return 1;
177 }
178 
179 #if defined(__ANDROID__)
android_thread_id_t_to_pthread(android_thread_id_t thread)180 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
181 {
182     return (pthread_t) thread;
183 }
184 #endif
185 
androidGetThreadId()186 android_thread_id_t androidGetThreadId()
187 {
188     return (android_thread_id_t)pthread_self();
189 }
190 
191 // ----------------------------------------------------------------------------
192 #else // !defined(_WIN32)
193 // ----------------------------------------------------------------------------
194 
195 /*
196  * Trampoline to make us __stdcall-compliant.
197  *
198  * We're expected to delete "vDetails" when we're done.
199  */
200 struct threadDetails {
201     int (*func)(void*);
202     void* arg;
203 };
threadIntermediary(void * vDetails)204 static __stdcall unsigned int threadIntermediary(void* vDetails)
205 {
206     struct threadDetails* pDetails = (struct threadDetails*) vDetails;
207     int result;
208 
209     result = (*(pDetails->func))(pDetails->arg);
210 
211     delete pDetails;
212 
213     ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
214     return (unsigned int) result;
215 }
216 
217 /*
218  * Create and run a new thread.
219  */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)220 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
221 {
222     HANDLE hThread;
223     struct threadDetails* pDetails = new threadDetails; // must be on heap
224     unsigned int thrdaddr;
225 
226     pDetails->func = fn;
227     pDetails->arg = arg;
228 
229 #if defined(HAVE__BEGINTHREADEX)
230     hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
231                     &thrdaddr);
232     if (hThread == 0)
233 #elif defined(HAVE_CREATETHREAD)
234     hThread = CreateThread(NULL, 0,
235                     (LPTHREAD_START_ROUTINE) threadIntermediary,
236                     (void*) pDetails, 0, (DWORD*) &thrdaddr);
237     if (hThread == NULL)
238 #endif
239     {
240         ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
241         return false;
242     }
243 
244 #if defined(HAVE_CREATETHREAD)
245     /* close the management handle */
246     CloseHandle(hThread);
247 #endif
248 
249     if (id != NULL) {
250       	*id = (android_thread_id_t)thrdaddr;
251     }
252 
253     return true;
254 }
255 
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char *,int32_t,size_t,android_thread_id_t * threadId)256 int androidCreateRawThreadEtc(android_thread_func_t fn,
257                                void *userData,
258                                const char* /*threadName*/,
259                                int32_t /*threadPriority*/,
260                                size_t /*threadStackSize*/,
261                                android_thread_id_t *threadId)
262 {
263     return doCreateThread(  fn, userData, threadId);
264 }
265 
androidGetThreadId()266 android_thread_id_t androidGetThreadId()
267 {
268     return (android_thread_id_t)GetCurrentThreadId();
269 }
270 
271 // ----------------------------------------------------------------------------
272 #endif // !defined(_WIN32)
273 
274 // ----------------------------------------------------------------------------
275 
androidCreateThread(android_thread_func_t fn,void * arg)276 int androidCreateThread(android_thread_func_t fn, void* arg)
277 {
278     return createThreadEtc(fn, arg);
279 }
280 
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)281 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
282 {
283     return createThreadEtc(fn, arg, "android:unnamed_thread",
284                            PRIORITY_DEFAULT, 0, id);
285 }
286 
287 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
288 
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)289 int androidCreateThreadEtc(android_thread_func_t entryFunction,
290                             void *userData,
291                             const char* threadName,
292                             int32_t threadPriority,
293                             size_t threadStackSize,
294                             android_thread_id_t *threadId)
295 {
296     return gCreateThreadFn(entryFunction, userData, threadName,
297         threadPriority, threadStackSize, threadId);
298 }
299 
androidSetCreateThreadFunc(android_create_thread_fn func)300 void androidSetCreateThreadFunc(android_create_thread_fn func)
301 {
302     gCreateThreadFn = func;
303 }
304 
305 #if defined(__ANDROID__)
androidSetThreadPriority(pid_t tid,int pri)306 int androidSetThreadPriority(pid_t tid, int pri)
307 {
308     int rc = 0;
309     int lasterr = 0;
310 
311     if (pri >= ANDROID_PRIORITY_BACKGROUND) {
312         rc = set_sched_policy(tid, SP_BACKGROUND);
313     } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
314         rc = set_sched_policy(tid, SP_FOREGROUND);
315     }
316 
317     if (rc) {
318         lasterr = errno;
319     }
320 
321     if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
322         rc = INVALID_OPERATION;
323     } else {
324         errno = lasterr;
325     }
326 
327     return rc;
328 }
329 
androidGetThreadPriority(pid_t tid)330 int androidGetThreadPriority(pid_t tid) {
331     return getpriority(PRIO_PROCESS, tid);
332 }
333 
334 #endif
335 
336 namespace android {
337 
338 /*
339  * ===========================================================================
340  *      Mutex class
341  * ===========================================================================
342  */
343 
344 #if !defined(_WIN32)
345 // implemented as inlines in threads.h
346 #else
347 
348 Mutex::Mutex()
349 {
350     HANDLE hMutex;
351 
352     assert(sizeof(hMutex) == sizeof(mState));
353 
354     hMutex = CreateMutex(NULL, FALSE, NULL);
355     mState = (void*) hMutex;
356 }
357 
358 Mutex::Mutex(const char* name)
359 {
360     // XXX: name not used for now
361     HANDLE hMutex;
362 
363     assert(sizeof(hMutex) == sizeof(mState));
364 
365     hMutex = CreateMutex(NULL, FALSE, NULL);
366     mState = (void*) hMutex;
367 }
368 
369 Mutex::Mutex(int type, const char* name)
370 {
371     // XXX: type and name not used for now
372     HANDLE hMutex;
373 
374     assert(sizeof(hMutex) == sizeof(mState));
375 
376     hMutex = CreateMutex(NULL, FALSE, NULL);
377     mState = (void*) hMutex;
378 }
379 
380 Mutex::~Mutex()
381 {
382     CloseHandle((HANDLE) mState);
383 }
384 
385 status_t Mutex::lock()
386 {
387     DWORD dwWaitResult;
388     dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
389     return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
390 }
391 
392 void Mutex::unlock()
393 {
394     if (!ReleaseMutex((HANDLE) mState))
395         ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
396 }
397 
398 status_t Mutex::tryLock()
399 {
400     DWORD dwWaitResult;
401 
402     dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
403     if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
404         ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
405     return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
406 }
407 
408 #endif // !defined(_WIN32)
409 
410 
411 /*
412  * ===========================================================================
413  *      Condition class
414  * ===========================================================================
415  */
416 
417 #if !defined(_WIN32)
418 // implemented as inlines in threads.h
419 #else
420 
421 /*
422  * Windows doesn't have a condition variable solution.  It's possible
423  * to create one, but it's easy to get it wrong.  For a discussion, and
424  * the origin of this implementation, see:
425  *
426  *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
427  *
428  * The implementation shown on the page does NOT follow POSIX semantics.
429  * As an optimization they require acquiring the external mutex before
430  * calling signal() and broadcast(), whereas POSIX only requires grabbing
431  * it before calling wait().  The implementation here has been un-optimized
432  * to have the correct behavior.
433  */
434 typedef struct WinCondition {
435     // Number of waiting threads.
436     int                 waitersCount;
437 
438     // Serialize access to waitersCount.
439     CRITICAL_SECTION    waitersCountLock;
440 
441     // Semaphore used to queue up threads waiting for the condition to
442     // become signaled.
443     HANDLE              sema;
444 
445     // An auto-reset event used by the broadcast/signal thread to wait
446     // for all the waiting thread(s) to wake up and be released from
447     // the semaphore.
448     HANDLE              waitersDone;
449 
450     // This mutex wouldn't be necessary if we required that the caller
451     // lock the external mutex before calling signal() and broadcast().
452     // I'm trying to mimic pthread semantics though.
453     HANDLE              internalMutex;
454 
455     // Keeps track of whether we were broadcasting or signaling.  This
456     // allows us to optimize the code if we're just signaling.
457     bool                wasBroadcast;
458 
459     status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
460     {
461         // Increment the wait count, avoiding race conditions.
462         EnterCriticalSection(&condState->waitersCountLock);
463         condState->waitersCount++;
464         //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
465         //    condState->waitersCount, getThreadId());
466         LeaveCriticalSection(&condState->waitersCountLock);
467 
468         DWORD timeout = INFINITE;
469         if (abstime) {
470             nsecs_t reltime = *abstime - systemTime();
471             if (reltime < 0)
472                 reltime = 0;
473             timeout = reltime/1000000;
474         }
475 
476         // Atomically release the external mutex and wait on the semaphore.
477         DWORD res =
478             SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
479 
480         //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
481 
482         // Reacquire lock to avoid race conditions.
483         EnterCriticalSection(&condState->waitersCountLock);
484 
485         // No longer waiting.
486         condState->waitersCount--;
487 
488         // Check to see if we're the last waiter after a broadcast.
489         bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
490 
491         //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
492         //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
493 
494         LeaveCriticalSection(&condState->waitersCountLock);
495 
496         // If we're the last waiter thread during this particular broadcast
497         // then signal broadcast() that we're all awake.  It'll drop the
498         // internal mutex.
499         if (lastWaiter) {
500             // Atomically signal the "waitersDone" event and wait until we
501             // can acquire the internal mutex.  We want to do this in one step
502             // because it ensures that everybody is in the mutex FIFO before
503             // any thread has a chance to run.  Without it, another thread
504             // could wake up, do work, and hop back in ahead of us.
505             SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
506                 INFINITE, FALSE);
507         } else {
508             // Grab the internal mutex.
509             WaitForSingleObject(condState->internalMutex, INFINITE);
510         }
511 
512         // Release the internal and grab the external.
513         ReleaseMutex(condState->internalMutex);
514         WaitForSingleObject(hMutex, INFINITE);
515 
516         return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
517     }
518 } WinCondition;
519 
520 /*
521  * Constructor.  Set up the WinCondition stuff.
522  */
523 Condition::Condition()
524 {
525     WinCondition* condState = new WinCondition;
526 
527     condState->waitersCount = 0;
528     condState->wasBroadcast = false;
529     // semaphore: no security, initial value of 0
530     condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
531     InitializeCriticalSection(&condState->waitersCountLock);
532     // auto-reset event, not signaled initially
533     condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
534     // used so we don't have to lock external mutex on signal/broadcast
535     condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
536 
537     mState = condState;
538 }
539 
540 /*
541  * Destructor.  Free Windows resources as well as our allocated storage.
542  */
543 Condition::~Condition()
544 {
545     WinCondition* condState = (WinCondition*) mState;
546     if (condState != NULL) {
547         CloseHandle(condState->sema);
548         CloseHandle(condState->waitersDone);
549         delete condState;
550     }
551 }
552 
553 
554 status_t Condition::wait(Mutex& mutex)
555 {
556     WinCondition* condState = (WinCondition*) mState;
557     HANDLE hMutex = (HANDLE) mutex.mState;
558 
559     return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
560 }
561 
562 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
563 {
564     WinCondition* condState = (WinCondition*) mState;
565     HANDLE hMutex = (HANDLE) mutex.mState;
566     nsecs_t absTime = systemTime()+reltime;
567 
568     return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
569 }
570 
571 /*
572  * Signal the condition variable, allowing one thread to continue.
573  */
574 void Condition::signal()
575 {
576     WinCondition* condState = (WinCondition*) mState;
577 
578     // Lock the internal mutex.  This ensures that we don't clash with
579     // broadcast().
580     WaitForSingleObject(condState->internalMutex, INFINITE);
581 
582     EnterCriticalSection(&condState->waitersCountLock);
583     bool haveWaiters = (condState->waitersCount > 0);
584     LeaveCriticalSection(&condState->waitersCountLock);
585 
586     // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
587     // down a notch.
588     if (haveWaiters)
589         ReleaseSemaphore(condState->sema, 1, 0);
590 
591     // Release internal mutex.
592     ReleaseMutex(condState->internalMutex);
593 }
594 
595 /*
596  * Signal the condition variable, allowing all threads to continue.
597  *
598  * First we have to wake up all threads waiting on the semaphore, then
599  * we wait until all of the threads have actually been woken before
600  * releasing the internal mutex.  This ensures that all threads are woken.
601  */
602 void Condition::broadcast()
603 {
604     WinCondition* condState = (WinCondition*) mState;
605 
606     // Lock the internal mutex.  This keeps the guys we're waking up
607     // from getting too far.
608     WaitForSingleObject(condState->internalMutex, INFINITE);
609 
610     EnterCriticalSection(&condState->waitersCountLock);
611     bool haveWaiters = false;
612 
613     if (condState->waitersCount > 0) {
614         haveWaiters = true;
615         condState->wasBroadcast = true;
616     }
617 
618     if (haveWaiters) {
619         // Wake up all the waiters.
620         ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
621 
622         LeaveCriticalSection(&condState->waitersCountLock);
623 
624         // Wait for all awakened threads to acquire the counting semaphore.
625         // The last guy who was waiting sets this.
626         WaitForSingleObject(condState->waitersDone, INFINITE);
627 
628         // Reset wasBroadcast.  (No crit section needed because nobody
629         // else can wake up to poke at it.)
630         condState->wasBroadcast = 0;
631     } else {
632         // nothing to do
633         LeaveCriticalSection(&condState->waitersCountLock);
634     }
635 
636     // Release internal mutex.
637     ReleaseMutex(condState->internalMutex);
638 }
639 
640 #endif // !defined(_WIN32)
641 
642 // ----------------------------------------------------------------------------
643 
644 /*
645  * This is our thread object!
646  */
647 
Thread(bool canCallJava)648 Thread::Thread(bool canCallJava)
649     :   mCanCallJava(canCallJava),
650         mThread(thread_id_t(-1)),
651         mLock("Thread::mLock"),
652         mStatus(NO_ERROR),
653         mExitPending(false), mRunning(false)
654 #if defined(__ANDROID__)
655         , mTid(-1)
656 #endif
657 {
658 }
659 
~Thread()660 Thread::~Thread()
661 {
662 }
663 
readyToRun()664 status_t Thread::readyToRun()
665 {
666     return NO_ERROR;
667 }
668 
run(const char * name,int32_t priority,size_t stack)669 status_t Thread::run(const char* name, int32_t priority, size_t stack)
670 {
671     LOG_ALWAYS_FATAL_IF(name == nullptr, "thread name not provided to Thread::run");
672 
673     Mutex::Autolock _l(mLock);
674 
675     if (mRunning) {
676         // thread already started
677         return INVALID_OPERATION;
678     }
679 
680     // reset status and exitPending to their default value, so we can
681     // try again after an error happened (either below, or in readyToRun())
682     mStatus = NO_ERROR;
683     mExitPending = false;
684     mThread = thread_id_t(-1);
685 
686     // hold a strong reference on ourself
687     mHoldSelf = this;
688 
689     mRunning = true;
690 
691     bool res;
692     if (mCanCallJava) {
693         res = createThreadEtc(_threadLoop,
694                 this, name, priority, stack, &mThread);
695     } else {
696         res = androidCreateRawThreadEtc(_threadLoop,
697                 this, name, priority, stack, &mThread);
698     }
699 
700     if (res == false) {
701         mStatus = UNKNOWN_ERROR;   // something happened!
702         mRunning = false;
703         mThread = thread_id_t(-1);
704         mHoldSelf.clear();  // "this" may have gone away after this.
705 
706         return UNKNOWN_ERROR;
707     }
708 
709     // Do not refer to mStatus here: The thread is already running (may, in fact
710     // already have exited with a valid mStatus result). The NO_ERROR indication
711     // here merely indicates successfully starting the thread and does not
712     // imply successful termination/execution.
713     return NO_ERROR;
714 
715     // Exiting scope of mLock is a memory barrier and allows new thread to run
716 }
717 
_threadLoop(void * user)718 int Thread::_threadLoop(void* user)
719 {
720     Thread* const self = static_cast<Thread*>(user);
721 
722     sp<Thread> strong(self->mHoldSelf);
723     wp<Thread> weak(strong);
724     self->mHoldSelf.clear();
725 
726 #if defined(__ANDROID__)
727     // this is very useful for debugging with gdb
728     self->mTid = gettid();
729 #endif
730 
731     bool first = true;
732 
733     do {
734         bool result;
735         if (first) {
736             first = false;
737             self->mStatus = self->readyToRun();
738             result = (self->mStatus == NO_ERROR);
739 
740             if (result && !self->exitPending()) {
741                 // Binder threads (and maybe others) rely on threadLoop
742                 // running at least once after a successful ::readyToRun()
743                 // (unless, of course, the thread has already been asked to exit
744                 // at that point).
745                 // This is because threads are essentially used like this:
746                 //   (new ThreadSubclass())->run();
747                 // The caller therefore does not retain a strong reference to
748                 // the thread and the thread would simply disappear after the
749                 // successful ::readyToRun() call instead of entering the
750                 // threadLoop at least once.
751                 result = self->threadLoop();
752             }
753         } else {
754             result = self->threadLoop();
755         }
756 
757         // establish a scope for mLock
758         {
759         Mutex::Autolock _l(self->mLock);
760         if (result == false || self->mExitPending) {
761             self->mExitPending = true;
762             self->mRunning = false;
763             // clear thread ID so that requestExitAndWait() does not exit if
764             // called by a new thread using the same thread ID as this one.
765             self->mThread = thread_id_t(-1);
766             // note that interested observers blocked in requestExitAndWait are
767             // awoken by broadcast, but blocked on mLock until break exits scope
768             self->mThreadExitedCondition.broadcast();
769             break;
770         }
771         }
772 
773         // Release our strong reference, to let a chance to the thread
774         // to die a peaceful death.
775         strong.clear();
776         // And immediately, re-acquire a strong reference for the next loop
777         strong = weak.promote();
778     } while(strong != 0);
779 
780     return 0;
781 }
782 
requestExit()783 void Thread::requestExit()
784 {
785     Mutex::Autolock _l(mLock);
786     mExitPending = true;
787 }
788 
requestExitAndWait()789 status_t Thread::requestExitAndWait()
790 {
791     Mutex::Autolock _l(mLock);
792     if (mThread == getThreadId()) {
793         ALOGW(
794         "Thread (this=%p): don't call waitForExit() from this "
795         "Thread object's thread. It's a guaranteed deadlock!",
796         this);
797 
798         return WOULD_BLOCK;
799     }
800 
801     mExitPending = true;
802 
803     while (mRunning == true) {
804         mThreadExitedCondition.wait(mLock);
805     }
806     // This next line is probably not needed any more, but is being left for
807     // historical reference. Note that each interested party will clear flag.
808     mExitPending = false;
809 
810     return mStatus;
811 }
812 
join()813 status_t Thread::join()
814 {
815     Mutex::Autolock _l(mLock);
816     if (mThread == getThreadId()) {
817         ALOGW(
818         "Thread (this=%p): don't call join() from this "
819         "Thread object's thread. It's a guaranteed deadlock!",
820         this);
821 
822         return WOULD_BLOCK;
823     }
824 
825     while (mRunning == true) {
826         mThreadExitedCondition.wait(mLock);
827     }
828 
829     return mStatus;
830 }
831 
isRunning() const832 bool Thread::isRunning() const {
833     Mutex::Autolock _l(mLock);
834     return mRunning;
835 }
836 
837 #if defined(__ANDROID__)
getTid() const838 pid_t Thread::getTid() const
839 {
840     // mTid is not defined until the child initializes it, and the caller may need it earlier
841     Mutex::Autolock _l(mLock);
842     pid_t tid;
843     if (mRunning) {
844         pthread_t pthread = android_thread_id_t_to_pthread(mThread);
845         tid = pthread_gettid_np(pthread);
846     } else {
847         ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
848         tid = -1;
849     }
850     return tid;
851 }
852 #endif
853 
exitPending() const854 bool Thread::exitPending() const
855 {
856     Mutex::Autolock _l(mLock);
857     return mExitPending;
858 }
859 
860 
861 
862 };  // namespace android
863