• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "concurrent_copying.h"
18 
19 #include "art_field-inl.h"
20 #include "base/enums.h"
21 #include "base/histogram-inl.h"
22 #include "base/stl_util.h"
23 #include "base/systrace.h"
24 #include "debugger.h"
25 #include "gc/accounting/atomic_stack.h"
26 #include "gc/accounting/heap_bitmap-inl.h"
27 #include "gc/accounting/mod_union_table-inl.h"
28 #include "gc/accounting/read_barrier_table.h"
29 #include "gc/accounting/space_bitmap-inl.h"
30 #include "gc/gc_pause_listener.h"
31 #include "gc/reference_processor.h"
32 #include "gc/space/image_space.h"
33 #include "gc/space/space-inl.h"
34 #include "gc/verification.h"
35 #include "image-inl.h"
36 #include "intern_table.h"
37 #include "mirror/class-inl.h"
38 #include "mirror/object-inl.h"
39 #include "mirror/object-refvisitor-inl.h"
40 #include "scoped_thread_state_change-inl.h"
41 #include "thread-inl.h"
42 #include "thread_list.h"
43 #include "well_known_classes.h"
44 
45 namespace art {
46 namespace gc {
47 namespace collector {
48 
49 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
50 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
51 // union table. Disabled since it does not seem to help the pause much.
52 static constexpr bool kFilterModUnionCards = kIsDebugBuild;
53 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any that occur during
54 // ConcurrentCopying::Scan. May be used to diagnose possibly unnecessary read barriers.
55 // Only enabled for kIsDebugBuild to avoid performance hit.
56 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
57 // Slow path mark stack size, increase this if the stack is getting full and it is causing
58 // performance problems.
59 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
60 // Verify that there are no missing card marks.
61 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
62 
ConcurrentCopying(Heap * heap,const std::string & name_prefix,bool measure_read_barrier_slow_path)63 ConcurrentCopying::ConcurrentCopying(Heap* heap,
64                                      const std::string& name_prefix,
65                                      bool measure_read_barrier_slow_path)
66     : GarbageCollector(heap,
67                        name_prefix + (name_prefix.empty() ? "" : " ") +
68                        "concurrent copying"),
69       region_space_(nullptr), gc_barrier_(new Barrier(0)),
70       gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
71                                                      kDefaultGcMarkStackSize,
72                                                      kDefaultGcMarkStackSize)),
73       rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
74                                                          kReadBarrierMarkStackSize,
75                                                          kReadBarrierMarkStackSize)),
76       rb_mark_bit_stack_full_(false),
77       mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
78       thread_running_gc_(nullptr),
79       is_marking_(false),
80       is_active_(false),
81       is_asserting_to_space_invariant_(false),
82       region_space_bitmap_(nullptr),
83       heap_mark_bitmap_(nullptr),
84       live_stack_freeze_size_(0),
85       from_space_num_objects_at_first_pause_(0),
86       from_space_num_bytes_at_first_pause_(0),
87       mark_stack_mode_(kMarkStackModeOff),
88       weak_ref_access_enabled_(true),
89       skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
90       measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
91       mark_from_read_barrier_measurements_(false),
92       rb_slow_path_ns_(0),
93       rb_slow_path_count_(0),
94       rb_slow_path_count_gc_(0),
95       rb_slow_path_histogram_lock_("Read barrier histogram lock"),
96       rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
97       rb_slow_path_count_total_(0),
98       rb_slow_path_count_gc_total_(0),
99       rb_table_(heap_->GetReadBarrierTable()),
100       force_evacuate_all_(false),
101       gc_grays_immune_objects_(false),
102       immune_gray_stack_lock_("concurrent copying immune gray stack lock",
103                               kMarkSweepMarkStackLock) {
104   static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
105                 "The region space size and the read barrier table region size must match");
106   Thread* self = Thread::Current();
107   {
108     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
109     // Cache this so that we won't have to lock heap_bitmap_lock_ in
110     // Mark() which could cause a nested lock on heap_bitmap_lock_
111     // when GC causes a RB while doing GC or a lock order violation
112     // (class_linker_lock_ and heap_bitmap_lock_).
113     heap_mark_bitmap_ = heap->GetMarkBitmap();
114   }
115   {
116     MutexLock mu(self, mark_stack_lock_);
117     for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
118       accounting::AtomicStack<mirror::Object>* mark_stack =
119           accounting::AtomicStack<mirror::Object>::Create(
120               "thread local mark stack", kMarkStackSize, kMarkStackSize);
121       pooled_mark_stacks_.push_back(mark_stack);
122     }
123   }
124 }
125 
MarkHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)126 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
127                                           bool do_atomic_update) {
128   if (UNLIKELY(do_atomic_update)) {
129     // Used to mark the referent in DelayReferenceReferent in transaction mode.
130     mirror::Object* from_ref = field->AsMirrorPtr();
131     if (from_ref == nullptr) {
132       return;
133     }
134     mirror::Object* to_ref = Mark(from_ref);
135     if (from_ref != to_ref) {
136       do {
137         if (field->AsMirrorPtr() != from_ref) {
138           // Concurrently overwritten by a mutator.
139           break;
140         }
141       } while (!field->CasWeakRelaxed(from_ref, to_ref));
142     }
143   } else {
144     // Used for preserving soft references, should be OK to not have a CAS here since there should be
145     // no other threads which can trigger read barriers on the same referent during reference
146     // processing.
147     field->Assign(Mark(field->AsMirrorPtr()));
148   }
149 }
150 
~ConcurrentCopying()151 ConcurrentCopying::~ConcurrentCopying() {
152   STLDeleteElements(&pooled_mark_stacks_);
153 }
154 
RunPhases()155 void ConcurrentCopying::RunPhases() {
156   CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
157   CHECK(!is_active_);
158   is_active_ = true;
159   Thread* self = Thread::Current();
160   thread_running_gc_ = self;
161   Locks::mutator_lock_->AssertNotHeld(self);
162   {
163     ReaderMutexLock mu(self, *Locks::mutator_lock_);
164     InitializePhase();
165   }
166   FlipThreadRoots();
167   {
168     ReaderMutexLock mu(self, *Locks::mutator_lock_);
169     MarkingPhase();
170   }
171   // Verify no from space refs. This causes a pause.
172   if (kEnableNoFromSpaceRefsVerification) {
173     TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
174     ScopedPause pause(this, false);
175     CheckEmptyMarkStack();
176     if (kVerboseMode) {
177       LOG(INFO) << "Verifying no from-space refs";
178     }
179     VerifyNoFromSpaceReferences();
180     if (kVerboseMode) {
181       LOG(INFO) << "Done verifying no from-space refs";
182     }
183     CheckEmptyMarkStack();
184   }
185   {
186     ReaderMutexLock mu(self, *Locks::mutator_lock_);
187     ReclaimPhase();
188   }
189   FinishPhase();
190   CHECK(is_active_);
191   is_active_ = false;
192   thread_running_gc_ = nullptr;
193 }
194 
BindBitmaps()195 void ConcurrentCopying::BindBitmaps() {
196   Thread* self = Thread::Current();
197   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
198   // Mark all of the spaces we never collect as immune.
199   for (const auto& space : heap_->GetContinuousSpaces()) {
200     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
201         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
202       CHECK(space->IsZygoteSpace() || space->IsImageSpace());
203       immune_spaces_.AddSpace(space);
204     } else if (space == region_space_) {
205       // It is OK to clear the bitmap with mutators running since the only place it is read is
206       // VisitObjects which has exclusion with CC.
207       region_space_bitmap_ = region_space_->GetMarkBitmap();
208       region_space_bitmap_->Clear();
209     }
210   }
211 }
212 
InitializePhase()213 void ConcurrentCopying::InitializePhase() {
214   TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
215   if (kVerboseMode) {
216     LOG(INFO) << "GC InitializePhase";
217     LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
218               << reinterpret_cast<void*>(region_space_->Limit());
219   }
220   CheckEmptyMarkStack();
221   if (kIsDebugBuild) {
222     MutexLock mu(Thread::Current(), mark_stack_lock_);
223     CHECK(false_gray_stack_.empty());
224   }
225 
226   rb_mark_bit_stack_full_ = false;
227   mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
228   if (measure_read_barrier_slow_path_) {
229     rb_slow_path_ns_.StoreRelaxed(0);
230     rb_slow_path_count_.StoreRelaxed(0);
231     rb_slow_path_count_gc_.StoreRelaxed(0);
232   }
233 
234   immune_spaces_.Reset();
235   bytes_moved_.StoreRelaxed(0);
236   objects_moved_.StoreRelaxed(0);
237   GcCause gc_cause = GetCurrentIteration()->GetGcCause();
238   if (gc_cause == kGcCauseExplicit ||
239       gc_cause == kGcCauseForNativeAlloc ||
240       gc_cause == kGcCauseCollectorTransition ||
241       GetCurrentIteration()->GetClearSoftReferences()) {
242     force_evacuate_all_ = true;
243   } else {
244     force_evacuate_all_ = false;
245   }
246   if (kUseBakerReadBarrier) {
247     updated_all_immune_objects_.StoreRelaxed(false);
248     // GC may gray immune objects in the thread flip.
249     gc_grays_immune_objects_ = true;
250     if (kIsDebugBuild) {
251       MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
252       DCHECK(immune_gray_stack_.empty());
253     }
254   }
255   BindBitmaps();
256   if (kVerboseMode) {
257     LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
258     LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
259               << "-" << immune_spaces_.GetLargestImmuneRegion().End();
260     for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
261       LOG(INFO) << "Immune space: " << *space;
262     }
263     LOG(INFO) << "GC end of InitializePhase";
264   }
265   // Mark all of the zygote large objects without graying them.
266   MarkZygoteLargeObjects();
267 }
268 
269 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
270 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
271  public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)272   ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
273       : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
274   }
275 
Run(Thread * thread)276   virtual void Run(Thread* thread) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
277     // Note: self is not necessarily equal to thread since thread may be suspended.
278     Thread* self = Thread::Current();
279     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
280         << thread->GetState() << " thread " << thread << " self " << self;
281     thread->SetIsGcMarkingAndUpdateEntrypoints(true);
282     if (use_tlab_ && thread->HasTlab()) {
283       if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
284         // This must come before the revoke.
285         size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
286         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
287         reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
288             FetchAndAddSequentiallyConsistent(thread_local_objects);
289       } else {
290         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
291       }
292     }
293     if (kUseThreadLocalAllocationStack) {
294       thread->RevokeThreadLocalAllocationStack();
295     }
296     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
297     // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
298     // only.
299     thread->VisitRoots(this);
300     concurrent_copying_->GetBarrier().Pass(self);
301   }
302 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)303   void VisitRoots(mirror::Object*** roots,
304                   size_t count,
305                   const RootInfo& info ATTRIBUTE_UNUSED)
306       REQUIRES_SHARED(Locks::mutator_lock_) {
307     for (size_t i = 0; i < count; ++i) {
308       mirror::Object** root = roots[i];
309       mirror::Object* ref = *root;
310       if (ref != nullptr) {
311         mirror::Object* to_ref = concurrent_copying_->Mark(ref);
312         if (to_ref != ref) {
313           *root = to_ref;
314         }
315       }
316     }
317   }
318 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)319   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
320                   size_t count,
321                   const RootInfo& info ATTRIBUTE_UNUSED)
322       REQUIRES_SHARED(Locks::mutator_lock_) {
323     for (size_t i = 0; i < count; ++i) {
324       mirror::CompressedReference<mirror::Object>* const root = roots[i];
325       if (!root->IsNull()) {
326         mirror::Object* ref = root->AsMirrorPtr();
327         mirror::Object* to_ref = concurrent_copying_->Mark(ref);
328         if (to_ref != ref) {
329           root->Assign(to_ref);
330         }
331       }
332     }
333   }
334 
335  private:
336   ConcurrentCopying* const concurrent_copying_;
337   const bool use_tlab_;
338 };
339 
340 // Called back from Runtime::FlipThreadRoots() during a pause.
341 class ConcurrentCopying::FlipCallback : public Closure {
342  public:
FlipCallback(ConcurrentCopying * concurrent_copying)343   explicit FlipCallback(ConcurrentCopying* concurrent_copying)
344       : concurrent_copying_(concurrent_copying) {
345   }
346 
Run(Thread * thread)347   virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) {
348     ConcurrentCopying* cc = concurrent_copying_;
349     TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
350     // Note: self is not necessarily equal to thread since thread may be suspended.
351     Thread* self = Thread::Current();
352     if (kVerifyNoMissingCardMarks) {
353       cc->VerifyNoMissingCardMarks();
354     }
355     CHECK(thread == self);
356     Locks::mutator_lock_->AssertExclusiveHeld(self);
357     cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
358     cc->SwapStacks();
359     if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
360       cc->RecordLiveStackFreezeSize(self);
361       cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
362       cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
363     }
364     cc->is_marking_ = true;
365     cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal);
366     if (kIsDebugBuild) {
367       cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
368     }
369     if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
370       CHECK(Runtime::Current()->IsAotCompiler());
371       TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
372       Runtime::Current()->VisitTransactionRoots(cc);
373     }
374     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
375       cc->GrayAllDirtyImmuneObjects();
376       if (kIsDebugBuild) {
377         // Check that all non-gray immune objects only refernce immune objects.
378         cc->VerifyGrayImmuneObjects();
379       }
380     }
381     cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(
382         WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr()));
383   }
384 
385  private:
386   ConcurrentCopying* const concurrent_copying_;
387 };
388 
389 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
390  public:
VerifyGrayImmuneObjectsVisitor(ConcurrentCopying * collector)391   explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
392       : collector_(collector) {}
393 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool) const394   void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
395       const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
396       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
397     CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
398                    obj, offset);
399   }
400 
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const401   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
402       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
403     CHECK(klass->IsTypeOfReferenceClass());
404     CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
405                    ref,
406                    mirror::Reference::ReferentOffset());
407   }
408 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const409   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
410       ALWAYS_INLINE
411       REQUIRES_SHARED(Locks::mutator_lock_) {
412     if (!root->IsNull()) {
413       VisitRoot(root);
414     }
415   }
416 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const417   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
418       ALWAYS_INLINE
419       REQUIRES_SHARED(Locks::mutator_lock_) {
420     CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
421   }
422 
423  private:
424   ConcurrentCopying* const collector_;
425 
CheckReference(ObjPtr<mirror::Object> ref,ObjPtr<mirror::Object> holder,MemberOffset offset) const426   void CheckReference(ObjPtr<mirror::Object> ref,
427                       ObjPtr<mirror::Object> holder,
428                       MemberOffset offset) const
429       REQUIRES_SHARED(Locks::mutator_lock_) {
430     if (ref != nullptr) {
431       if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
432         // Not immune, must be a zygote large object.
433         CHECK(Runtime::Current()->GetHeap()->GetLargeObjectsSpace()->IsZygoteLargeObject(
434             Thread::Current(), ref.Ptr()))
435             << "Non gray object references non immune, non zygote large object "<< ref << " "
436             << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
437             << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
438       } else {
439         // Make sure the large object class is immune since we will never scan the large object.
440         CHECK(collector_->immune_spaces_.ContainsObject(
441             ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
442       }
443     }
444   }
445 };
446 
VerifyGrayImmuneObjects()447 void ConcurrentCopying::VerifyGrayImmuneObjects() {
448   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
449   for (auto& space : immune_spaces_.GetSpaces()) {
450     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
451     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
452     VerifyGrayImmuneObjectsVisitor visitor(this);
453     live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
454                                   reinterpret_cast<uintptr_t>(space->Limit()),
455                                   [&visitor](mirror::Object* obj)
456         REQUIRES_SHARED(Locks::mutator_lock_) {
457       // If an object is not gray, it should only have references to things in the immune spaces.
458       if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
459         obj->VisitReferences</*kVisitNativeRoots*/true,
460                              kDefaultVerifyFlags,
461                              kWithoutReadBarrier>(visitor, visitor);
462       }
463     });
464   }
465 }
466 
467 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
468  public:
VerifyNoMissingCardMarkVisitor(ConcurrentCopying * cc,ObjPtr<mirror::Object> holder)469   VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
470     : cc_(cc),
471       holder_(holder) {}
472 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const473   void operator()(ObjPtr<mirror::Object> obj,
474                   MemberOffset offset,
475                   bool is_static ATTRIBUTE_UNUSED) const
476       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
477     if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
478      CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
479          offset), offset.Uint32Value());
480     }
481   }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const482   void operator()(ObjPtr<mirror::Class> klass,
483                   ObjPtr<mirror::Reference> ref) const
484       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
485     CHECK(klass->IsTypeOfReferenceClass());
486     this->operator()(ref, mirror::Reference::ReferentOffset(), false);
487   }
488 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const489   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
490       REQUIRES_SHARED(Locks::mutator_lock_) {
491     if (!root->IsNull()) {
492       VisitRoot(root);
493     }
494   }
495 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const496   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
497       REQUIRES_SHARED(Locks::mutator_lock_) {
498     CheckReference(root->AsMirrorPtr());
499   }
500 
CheckReference(mirror::Object * ref,int32_t offset=-1) const501   void CheckReference(mirror::Object* ref, int32_t offset = -1) const
502       REQUIRES_SHARED(Locks::mutator_lock_) {
503     CHECK(ref == nullptr || !cc_->region_space_->IsInNewlyAllocatedRegion(ref))
504         << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
505         << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
506   }
507 
508  private:
509   ConcurrentCopying* const cc_;
510   ObjPtr<mirror::Object> const holder_;
511 };
512 
VerifyNoMissingCardMarkCallback(mirror::Object * obj,void * arg)513 void ConcurrentCopying::VerifyNoMissingCardMarkCallback(mirror::Object* obj, void* arg) {
514   auto* collector = reinterpret_cast<ConcurrentCopying*>(arg);
515   // Objects not on dirty cards should never have references to newly allocated regions.
516   if (!collector->heap_->GetCardTable()->IsDirty(obj)) {
517     VerifyNoMissingCardMarkVisitor visitor(collector, /*holder*/ obj);
518     obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
519         visitor,
520         visitor);
521   }
522 }
523 
VerifyNoMissingCardMarks()524 void ConcurrentCopying::VerifyNoMissingCardMarks() {
525   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
526   region_space_->Walk(&VerifyNoMissingCardMarkCallback, this);
527   {
528     ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
529     heap_->GetLiveBitmap()->Walk(&VerifyNoMissingCardMarkCallback, this);
530   }
531 }
532 
533 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()534 void ConcurrentCopying::FlipThreadRoots() {
535   TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
536   if (kVerboseMode) {
537     LOG(INFO) << "time=" << region_space_->Time();
538     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
539   }
540   Thread* self = Thread::Current();
541   Locks::mutator_lock_->AssertNotHeld(self);
542   gc_barrier_->Init(self, 0);
543   ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
544   FlipCallback flip_callback(this);
545 
546   // This is the point where Concurrent-Copying will pause all threads. We report a pause here, if
547   // necessary. This is slightly over-reporting, as this includes the time to actually suspend
548   // threads.
549   {
550     GcPauseListener* pause_listener = GetHeap()->GetGcPauseListener();
551     if (pause_listener != nullptr) {
552       pause_listener->StartPause();
553     }
554   }
555 
556   size_t barrier_count = Runtime::Current()->FlipThreadRoots(
557       &thread_flip_visitor, &flip_callback, this);
558 
559   {
560     GcPauseListener* pause_listener = GetHeap()->GetGcPauseListener();
561     if (pause_listener != nullptr) {
562       pause_listener->EndPause();
563     }
564   }
565 
566   {
567     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
568     gc_barrier_->Increment(self, barrier_count);
569   }
570   is_asserting_to_space_invariant_ = true;
571   QuasiAtomic::ThreadFenceForConstructor();
572   if (kVerboseMode) {
573     LOG(INFO) << "time=" << region_space_->Time();
574     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
575     LOG(INFO) << "GC end of FlipThreadRoots";
576   }
577 }
578 
579 class ConcurrentCopying::GrayImmuneObjectVisitor {
580  public:
GrayImmuneObjectVisitor()581   explicit GrayImmuneObjectVisitor() {}
582 
operator ()(mirror::Object * obj) const583   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
584     if (kUseBakerReadBarrier) {
585       if (kIsDebugBuild) {
586         Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
587       }
588       obj->SetReadBarrierState(ReadBarrier::GrayState());
589     }
590   }
591 
Callback(mirror::Object * obj,void * arg)592   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
593     reinterpret_cast<GrayImmuneObjectVisitor*>(arg)->operator()(obj);
594   }
595 };
596 
GrayAllDirtyImmuneObjects()597 void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
598   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
599   gc::Heap* const heap = Runtime::Current()->GetHeap();
600   accounting::CardTable* const card_table = heap->GetCardTable();
601   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
602   for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
603     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
604     GrayImmuneObjectVisitor visitor;
605     accounting::ModUnionTable* table = heap->FindModUnionTableFromSpace(space);
606     // Mark all the objects on dirty cards since these may point to objects in other space.
607     // Once these are marked, the GC will eventually clear them later.
608     // Table is non null for boot image and zygote spaces. It is only null for application image
609     // spaces.
610     if (table != nullptr) {
611       // TODO: Consider adding precleaning outside the pause.
612       table->ProcessCards();
613       table->VisitObjects(GrayImmuneObjectVisitor::Callback, &visitor);
614       // Since the cards are recorded in the mod-union table and this is paused, we can clear
615       // the cards for the space (to madvise).
616       TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
617       card_table->ClearCardRange(space->Begin(),
618                                  AlignDown(space->End(), accounting::CardTable::kCardSize));
619     } else {
620       // TODO: Consider having a mark bitmap for app image spaces and avoid scanning during the
621       // pause because app image spaces are all dirty pages anyways.
622       card_table->Scan<false>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor);
623     }
624   }
625   // Since all of the objects that may point to other spaces are marked, we can avoid all the read
626   // barriers in the immune spaces.
627   updated_all_immune_objects_.StoreRelaxed(true);
628 }
629 
SwapStacks()630 void ConcurrentCopying::SwapStacks() {
631   heap_->SwapStacks();
632 }
633 
RecordLiveStackFreezeSize(Thread * self)634 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
635   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
636   live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
637 }
638 
639 // Used to visit objects in the immune spaces.
ScanImmuneObject(mirror::Object * obj)640 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
641   DCHECK(obj != nullptr);
642   DCHECK(immune_spaces_.ContainsObject(obj));
643   // Update the fields without graying it or pushing it onto the mark stack.
644   Scan(obj);
645 }
646 
647 class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
648  public:
ImmuneSpaceScanObjVisitor(ConcurrentCopying * cc)649   explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
650       : collector_(cc) {}
651 
operator ()(mirror::Object * obj) const652   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
653     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
654       if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
655         collector_->ScanImmuneObject(obj);
656         // Done scanning the object, go back to white.
657         bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
658                                                       ReadBarrier::WhiteState());
659         CHECK(success);
660       }
661     } else {
662       collector_->ScanImmuneObject(obj);
663     }
664   }
665 
Callback(mirror::Object * obj,void * arg)666   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
667     reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
668   }
669 
670  private:
671   ConcurrentCopying* const collector_;
672 };
673 
674 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
MarkingPhase()675 void ConcurrentCopying::MarkingPhase() {
676   TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
677   if (kVerboseMode) {
678     LOG(INFO) << "GC MarkingPhase";
679   }
680   Thread* self = Thread::Current();
681   if (kIsDebugBuild) {
682     MutexLock mu(self, *Locks::thread_list_lock_);
683     CHECK(weak_ref_access_enabled_);
684   }
685 
686   // Scan immune spaces.
687   // Update all the fields in the immune spaces first without graying the objects so that we
688   // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
689   // of the objects.
690   if (kUseBakerReadBarrier) {
691     gc_grays_immune_objects_ = false;
692   }
693   {
694     TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
695     for (auto& space : immune_spaces_.GetSpaces()) {
696       DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
697       accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
698       accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
699       ImmuneSpaceScanObjVisitor visitor(this);
700       if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
701         table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
702       } else {
703         live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
704                                       reinterpret_cast<uintptr_t>(space->Limit()),
705                                       visitor);
706       }
707     }
708   }
709   if (kUseBakerReadBarrier) {
710     // This release fence makes the field updates in the above loop visible before allowing mutator
711     // getting access to immune objects without graying it first.
712     updated_all_immune_objects_.StoreRelease(true);
713     // Now whiten immune objects concurrently accessed and grayed by mutators. We can't do this in
714     // the above loop because we would incorrectly disable the read barrier by whitening an object
715     // which may point to an unscanned, white object, breaking the to-space invariant.
716     //
717     // Make sure no mutators are in the middle of marking an immune object before whitening immune
718     // objects.
719     IssueEmptyCheckpoint();
720     MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
721     if (kVerboseMode) {
722       LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
723     }
724     for (mirror::Object* obj : immune_gray_stack_) {
725       DCHECK(obj->GetReadBarrierState() == ReadBarrier::GrayState());
726       bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
727                                                     ReadBarrier::WhiteState());
728       DCHECK(success);
729     }
730     immune_gray_stack_.clear();
731   }
732 
733   {
734     TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
735     Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
736   }
737   {
738     // TODO: don't visit the transaction roots if it's not active.
739     TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
740     Runtime::Current()->VisitNonThreadRoots(this);
741   }
742 
743   {
744     TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings());
745     // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
746     // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
747     // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
748     // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
749     // reach the point where we process weak references, we can avoid using a lock when accessing
750     // the GC mark stack, which makes mark stack processing more efficient.
751 
752     // Process the mark stack once in the thread local stack mode. This marks most of the live
753     // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
754     // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
755     // objects and push refs on the mark stack.
756     ProcessMarkStack();
757     // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
758     // for the last time before transitioning to the shared mark stack mode, which would process new
759     // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
760     // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
761     // important to do these together in a single checkpoint so that we can ensure that mutators
762     // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
763     // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
764     // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
765     // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
766     SwitchToSharedMarkStackMode();
767     CHECK(!self->GetWeakRefAccessEnabled());
768     // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
769     // (which may be non-empty if there were refs found on thread-local mark stacks during the above
770     // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
771     // (via read barriers) have no way to produce any more refs to process. Marking converges once
772     // before we process weak refs below.
773     ProcessMarkStack();
774     CheckEmptyMarkStack();
775     // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
776     // lock from this point on.
777     SwitchToGcExclusiveMarkStackMode();
778     CheckEmptyMarkStack();
779     if (kVerboseMode) {
780       LOG(INFO) << "ProcessReferences";
781     }
782     // Process weak references. This may produce new refs to process and have them processed via
783     // ProcessMarkStack (in the GC exclusive mark stack mode).
784     ProcessReferences(self);
785     CheckEmptyMarkStack();
786     if (kVerboseMode) {
787       LOG(INFO) << "SweepSystemWeaks";
788     }
789     SweepSystemWeaks(self);
790     if (kVerboseMode) {
791       LOG(INFO) << "SweepSystemWeaks done";
792     }
793     // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
794     // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
795     // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
796     ProcessMarkStack();
797     CheckEmptyMarkStack();
798     // Re-enable weak ref accesses.
799     ReenableWeakRefAccess(self);
800     // Free data for class loaders that we unloaded.
801     Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
802     // Marking is done. Disable marking.
803     DisableMarking();
804     if (kUseBakerReadBarrier) {
805       ProcessFalseGrayStack();
806     }
807     CheckEmptyMarkStack();
808   }
809 
810   if (kIsDebugBuild) {
811     MutexLock mu(self, *Locks::thread_list_lock_);
812     CHECK(weak_ref_access_enabled_);
813   }
814   if (kVerboseMode) {
815     LOG(INFO) << "GC end of MarkingPhase";
816   }
817 }
818 
ReenableWeakRefAccess(Thread * self)819 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
820   if (kVerboseMode) {
821     LOG(INFO) << "ReenableWeakRefAccess";
822   }
823   // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
824   {
825     MutexLock mu(self, *Locks::thread_list_lock_);
826     weak_ref_access_enabled_ = true;  // This is for new threads.
827     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
828     for (Thread* thread : thread_list) {
829       thread->SetWeakRefAccessEnabled(true);
830     }
831   }
832   // Unblock blocking threads.
833   GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
834   Runtime::Current()->BroadcastForNewSystemWeaks();
835 }
836 
837 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
838  public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)839   explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
840       : concurrent_copying_(concurrent_copying) {
841   }
842 
Run(Thread * thread)843   void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
844     // Note: self is not necessarily equal to thread since thread may be suspended.
845     Thread* self = Thread::Current();
846     DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
847         << thread->GetState() << " thread " << thread << " self " << self;
848     // Disable the thread-local is_gc_marking flag.
849     // Note a thread that has just started right before this checkpoint may have already this flag
850     // set to false, which is ok.
851     thread->SetIsGcMarkingAndUpdateEntrypoints(false);
852     // If thread is a running mutator, then act on behalf of the garbage collector.
853     // See the code in ThreadList::RunCheckpoint.
854     concurrent_copying_->GetBarrier().Pass(self);
855   }
856 
857  private:
858   ConcurrentCopying* const concurrent_copying_;
859 };
860 
861 class ConcurrentCopying::DisableMarkingCallback : public Closure {
862  public:
DisableMarkingCallback(ConcurrentCopying * concurrent_copying)863   explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
864       : concurrent_copying_(concurrent_copying) {
865   }
866 
Run(Thread * self ATTRIBUTE_UNUSED)867   void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) {
868     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
869     // to avoid a race with ThreadList::Register().
870     CHECK(concurrent_copying_->is_marking_);
871     concurrent_copying_->is_marking_ = false;
872   }
873 
874  private:
875   ConcurrentCopying* const concurrent_copying_;
876 };
877 
IssueDisableMarkingCheckpoint()878 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
879   Thread* self = Thread::Current();
880   DisableMarkingCheckpoint check_point(this);
881   ThreadList* thread_list = Runtime::Current()->GetThreadList();
882   gc_barrier_->Init(self, 0);
883   DisableMarkingCallback dmc(this);
884   size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
885   // If there are no threads to wait which implies that all the checkpoint functions are finished,
886   // then no need to release the mutator lock.
887   if (barrier_count == 0) {
888     return;
889   }
890   // Release locks then wait for all mutator threads to pass the barrier.
891   Locks::mutator_lock_->SharedUnlock(self);
892   {
893     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
894     gc_barrier_->Increment(self, barrier_count);
895   }
896   Locks::mutator_lock_->SharedLock(self);
897 }
898 
DisableMarking()899 void ConcurrentCopying::DisableMarking() {
900   // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
901   // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
902   // cached in a local variable.
903   IssueDisableMarkingCheckpoint();
904   if (kUseTableLookupReadBarrier) {
905     heap_->rb_table_->ClearAll();
906     DCHECK(heap_->rb_table_->IsAllCleared());
907   }
908   is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1);
909   mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff);
910 }
911 
PushOntoFalseGrayStack(mirror::Object * ref)912 void ConcurrentCopying::PushOntoFalseGrayStack(mirror::Object* ref) {
913   CHECK(kUseBakerReadBarrier);
914   DCHECK(ref != nullptr);
915   MutexLock mu(Thread::Current(), mark_stack_lock_);
916   false_gray_stack_.push_back(ref);
917 }
918 
ProcessFalseGrayStack()919 void ConcurrentCopying::ProcessFalseGrayStack() {
920   CHECK(kUseBakerReadBarrier);
921   // Change the objects on the false gray stack from gray to white.
922   MutexLock mu(Thread::Current(), mark_stack_lock_);
923   for (mirror::Object* obj : false_gray_stack_) {
924     DCHECK(IsMarked(obj));
925     // The object could be white here if a thread got preempted after a success at the
926     // AtomicSetReadBarrierState in Mark(), GC started marking through it (but not finished so
927     // still gray), and the thread ran to register it onto the false gray stack.
928     if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
929       bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
930                                                     ReadBarrier::WhiteState());
931       DCHECK(success);
932     }
933   }
934   false_gray_stack_.clear();
935 }
936 
IssueEmptyCheckpoint()937 void ConcurrentCopying::IssueEmptyCheckpoint() {
938   Thread* self = Thread::Current();
939   ThreadList* thread_list = Runtime::Current()->GetThreadList();
940   // Release locks then wait for all mutator threads to pass the barrier.
941   Locks::mutator_lock_->SharedUnlock(self);
942   thread_list->RunEmptyCheckpoint();
943   Locks::mutator_lock_->SharedLock(self);
944 }
945 
ExpandGcMarkStack()946 void ConcurrentCopying::ExpandGcMarkStack() {
947   DCHECK(gc_mark_stack_->IsFull());
948   const size_t new_size = gc_mark_stack_->Capacity() * 2;
949   std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
950                                                    gc_mark_stack_->End());
951   gc_mark_stack_->Resize(new_size);
952   for (auto& ref : temp) {
953     gc_mark_stack_->PushBack(ref.AsMirrorPtr());
954   }
955   DCHECK(!gc_mark_stack_->IsFull());
956 }
957 
PushOntoMarkStack(mirror::Object * to_ref)958 void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
959   CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0)
960       << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
961   Thread* self = Thread::Current();  // TODO: pass self as an argument from call sites?
962   CHECK(thread_running_gc_ != nullptr);
963   MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
964   if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
965     if (LIKELY(self == thread_running_gc_)) {
966       // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
967       CHECK(self->GetThreadLocalMarkStack() == nullptr);
968       if (UNLIKELY(gc_mark_stack_->IsFull())) {
969         ExpandGcMarkStack();
970       }
971       gc_mark_stack_->PushBack(to_ref);
972     } else {
973       // Otherwise, use a thread-local mark stack.
974       accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
975       if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
976         MutexLock mu(self, mark_stack_lock_);
977         // Get a new thread local mark stack.
978         accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
979         if (!pooled_mark_stacks_.empty()) {
980           // Use a pooled mark stack.
981           new_tl_mark_stack = pooled_mark_stacks_.back();
982           pooled_mark_stacks_.pop_back();
983         } else {
984           // None pooled. Create a new one.
985           new_tl_mark_stack =
986               accounting::AtomicStack<mirror::Object>::Create(
987                   "thread local mark stack", 4 * KB, 4 * KB);
988         }
989         DCHECK(new_tl_mark_stack != nullptr);
990         DCHECK(new_tl_mark_stack->IsEmpty());
991         new_tl_mark_stack->PushBack(to_ref);
992         self->SetThreadLocalMarkStack(new_tl_mark_stack);
993         if (tl_mark_stack != nullptr) {
994           // Store the old full stack into a vector.
995           revoked_mark_stacks_.push_back(tl_mark_stack);
996         }
997       } else {
998         tl_mark_stack->PushBack(to_ref);
999       }
1000     }
1001   } else if (mark_stack_mode == kMarkStackModeShared) {
1002     // Access the shared GC mark stack with a lock.
1003     MutexLock mu(self, mark_stack_lock_);
1004     if (UNLIKELY(gc_mark_stack_->IsFull())) {
1005       ExpandGcMarkStack();
1006     }
1007     gc_mark_stack_->PushBack(to_ref);
1008   } else {
1009     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1010              static_cast<uint32_t>(kMarkStackModeGcExclusive))
1011         << "ref=" << to_ref
1012         << " self->gc_marking=" << self->GetIsGcMarking()
1013         << " cc->is_marking=" << is_marking_;
1014     CHECK(self == thread_running_gc_)
1015         << "Only GC-running thread should access the mark stack "
1016         << "in the GC exclusive mark stack mode";
1017     // Access the GC mark stack without a lock.
1018     if (UNLIKELY(gc_mark_stack_->IsFull())) {
1019       ExpandGcMarkStack();
1020     }
1021     gc_mark_stack_->PushBack(to_ref);
1022   }
1023 }
1024 
GetAllocationStack()1025 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
1026   return heap_->allocation_stack_.get();
1027 }
1028 
GetLiveStack()1029 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
1030   return heap_->live_stack_.get();
1031 }
1032 
1033 // The following visitors are used to verify that there's no references to the from-space left after
1034 // marking.
1035 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
1036  public:
VerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)1037   explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
1038       : collector_(collector) {}
1039 
operator ()(mirror::Object * ref,MemberOffset offset=MemberOffset (0),mirror::Object * holder=nullptr) const1040   void operator()(mirror::Object* ref,
1041                   MemberOffset offset = MemberOffset(0),
1042                   mirror::Object* holder = nullptr) const
1043       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1044     if (ref == nullptr) {
1045       // OK.
1046       return;
1047     }
1048     collector_->AssertToSpaceInvariant(holder, offset, ref);
1049     if (kUseBakerReadBarrier) {
1050       CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::WhiteState())
1051           << "Ref " << ref << " " << ref->PrettyTypeOf()
1052           << " has non-white rb_state ";
1053     }
1054   }
1055 
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)1056   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
1057       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
1058     DCHECK(root != nullptr);
1059     operator()(root);
1060   }
1061 
1062  private:
1063   ConcurrentCopying* const collector_;
1064 };
1065 
1066 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
1067  public:
VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)1068   explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
1069       : collector_(collector) {}
1070 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1071   void operator()(ObjPtr<mirror::Object> obj,
1072                   MemberOffset offset,
1073                   bool is_static ATTRIBUTE_UNUSED) const
1074       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1075     mirror::Object* ref =
1076         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1077     VerifyNoFromSpaceRefsVisitor visitor(collector_);
1078     visitor(ref, offset, obj.Ptr());
1079   }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1080   void operator()(ObjPtr<mirror::Class> klass,
1081                   ObjPtr<mirror::Reference> ref) const
1082       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1083     CHECK(klass->IsTypeOfReferenceClass());
1084     this->operator()(ref, mirror::Reference::ReferentOffset(), false);
1085   }
1086 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1087   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1088       REQUIRES_SHARED(Locks::mutator_lock_) {
1089     if (!root->IsNull()) {
1090       VisitRoot(root);
1091     }
1092   }
1093 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1094   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1095       REQUIRES_SHARED(Locks::mutator_lock_) {
1096     VerifyNoFromSpaceRefsVisitor visitor(collector_);
1097     visitor(root->AsMirrorPtr());
1098   }
1099 
1100  private:
1101   ConcurrentCopying* const collector_;
1102 };
1103 
1104 class ConcurrentCopying::VerifyNoFromSpaceRefsObjectVisitor {
1105  public:
VerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying * collector)1106   explicit VerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
1107       : collector_(collector) {}
operator ()(mirror::Object * obj) const1108   void operator()(mirror::Object* obj) const
1109       REQUIRES_SHARED(Locks::mutator_lock_) {
1110     ObjectCallback(obj, collector_);
1111   }
ObjectCallback(mirror::Object * obj,void * arg)1112   static void ObjectCallback(mirror::Object* obj, void *arg)
1113       REQUIRES_SHARED(Locks::mutator_lock_) {
1114     CHECK(obj != nullptr);
1115     ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
1116     space::RegionSpace* region_space = collector->RegionSpace();
1117     CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
1118     VerifyNoFromSpaceRefsFieldVisitor visitor(collector);
1119     obj->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1120         visitor,
1121         visitor);
1122     if (kUseBakerReadBarrier) {
1123       CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::WhiteState())
1124           << "obj=" << obj << " non-white rb_state " << obj->GetReadBarrierState();
1125     }
1126   }
1127 
1128  private:
1129   ConcurrentCopying* const collector_;
1130 };
1131 
1132 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()1133 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
1134   Thread* self = Thread::Current();
1135   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
1136   // Verify all threads have is_gc_marking to be false
1137   {
1138     MutexLock mu(self, *Locks::thread_list_lock_);
1139     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1140     for (Thread* thread : thread_list) {
1141       CHECK(!thread->GetIsGcMarking());
1142     }
1143   }
1144   VerifyNoFromSpaceRefsObjectVisitor visitor(this);
1145   // Roots.
1146   {
1147     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1148     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
1149     Runtime::Current()->VisitRoots(&ref_visitor);
1150   }
1151   // The to-space.
1152   region_space_->WalkToSpace(VerifyNoFromSpaceRefsObjectVisitor::ObjectCallback, this);
1153   // Non-moving spaces.
1154   {
1155     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1156     heap_->GetMarkBitmap()->Visit(visitor);
1157   }
1158   // The alloc stack.
1159   {
1160     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
1161     for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
1162         it < end; ++it) {
1163       mirror::Object* const obj = it->AsMirrorPtr();
1164       if (obj != nullptr && obj->GetClass() != nullptr) {
1165         // TODO: need to call this only if obj is alive?
1166         ref_visitor(obj);
1167         visitor(obj);
1168       }
1169     }
1170   }
1171   // TODO: LOS. But only refs in LOS are classes.
1172 }
1173 
1174 // The following visitors are used to assert the to-space invariant.
1175 class ConcurrentCopying::AssertToSpaceInvariantRefsVisitor {
1176  public:
AssertToSpaceInvariantRefsVisitor(ConcurrentCopying * collector)1177   explicit AssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
1178       : collector_(collector) {}
1179 
operator ()(mirror::Object * ref) const1180   void operator()(mirror::Object* ref) const
1181       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1182     if (ref == nullptr) {
1183       // OK.
1184       return;
1185     }
1186     collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
1187   }
1188 
1189  private:
1190   ConcurrentCopying* const collector_;
1191 };
1192 
1193 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
1194  public:
AssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)1195   explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
1196       : collector_(collector) {}
1197 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1198   void operator()(ObjPtr<mirror::Object> obj,
1199                   MemberOffset offset,
1200                   bool is_static ATTRIBUTE_UNUSED) const
1201       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1202     mirror::Object* ref =
1203         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1204     AssertToSpaceInvariantRefsVisitor visitor(collector_);
1205     visitor(ref);
1206   }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const1207   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
1208       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1209     CHECK(klass->IsTypeOfReferenceClass());
1210   }
1211 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1212   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1213       REQUIRES_SHARED(Locks::mutator_lock_) {
1214     if (!root->IsNull()) {
1215       VisitRoot(root);
1216     }
1217   }
1218 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1219   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1220       REQUIRES_SHARED(Locks::mutator_lock_) {
1221     AssertToSpaceInvariantRefsVisitor visitor(collector_);
1222     visitor(root->AsMirrorPtr());
1223   }
1224 
1225  private:
1226   ConcurrentCopying* const collector_;
1227 };
1228 
1229 class ConcurrentCopying::AssertToSpaceInvariantObjectVisitor {
1230  public:
AssertToSpaceInvariantObjectVisitor(ConcurrentCopying * collector)1231   explicit AssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
1232       : collector_(collector) {}
operator ()(mirror::Object * obj) const1233   void operator()(mirror::Object* obj) const
1234       REQUIRES_SHARED(Locks::mutator_lock_) {
1235     ObjectCallback(obj, collector_);
1236   }
ObjectCallback(mirror::Object * obj,void * arg)1237   static void ObjectCallback(mirror::Object* obj, void *arg)
1238       REQUIRES_SHARED(Locks::mutator_lock_) {
1239     CHECK(obj != nullptr);
1240     ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
1241     space::RegionSpace* region_space = collector->RegionSpace();
1242     CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
1243     collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
1244     AssertToSpaceInvariantFieldVisitor visitor(collector);
1245     obj->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1246         visitor,
1247         visitor);
1248   }
1249 
1250  private:
1251   ConcurrentCopying* const collector_;
1252 };
1253 
1254 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
1255  public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)1256   RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
1257                                        bool disable_weak_ref_access)
1258       : concurrent_copying_(concurrent_copying),
1259         disable_weak_ref_access_(disable_weak_ref_access) {
1260   }
1261 
Run(Thread * thread)1262   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1263     // Note: self is not necessarily equal to thread since thread may be suspended.
1264     Thread* self = Thread::Current();
1265     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1266         << thread->GetState() << " thread " << thread << " self " << self;
1267     // Revoke thread local mark stacks.
1268     accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
1269     if (tl_mark_stack != nullptr) {
1270       MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
1271       concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
1272       thread->SetThreadLocalMarkStack(nullptr);
1273     }
1274     // Disable weak ref access.
1275     if (disable_weak_ref_access_) {
1276       thread->SetWeakRefAccessEnabled(false);
1277     }
1278     // If thread is a running mutator, then act on behalf of the garbage collector.
1279     // See the code in ThreadList::RunCheckpoint.
1280     concurrent_copying_->GetBarrier().Pass(self);
1281   }
1282 
1283  private:
1284   ConcurrentCopying* const concurrent_copying_;
1285   const bool disable_weak_ref_access_;
1286 };
1287 
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback)1288 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
1289                                                     Closure* checkpoint_callback) {
1290   Thread* self = Thread::Current();
1291   RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
1292   ThreadList* thread_list = Runtime::Current()->GetThreadList();
1293   gc_barrier_->Init(self, 0);
1294   size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
1295   // If there are no threads to wait which implys that all the checkpoint functions are finished,
1296   // then no need to release the mutator lock.
1297   if (barrier_count == 0) {
1298     return;
1299   }
1300   Locks::mutator_lock_->SharedUnlock(self);
1301   {
1302     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1303     gc_barrier_->Increment(self, barrier_count);
1304   }
1305   Locks::mutator_lock_->SharedLock(self);
1306 }
1307 
RevokeThreadLocalMarkStack(Thread * thread)1308 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
1309   Thread* self = Thread::Current();
1310   CHECK_EQ(self, thread);
1311   accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
1312   if (tl_mark_stack != nullptr) {
1313     CHECK(is_marking_);
1314     MutexLock mu(self, mark_stack_lock_);
1315     revoked_mark_stacks_.push_back(tl_mark_stack);
1316     thread->SetThreadLocalMarkStack(nullptr);
1317   }
1318 }
1319 
ProcessMarkStack()1320 void ConcurrentCopying::ProcessMarkStack() {
1321   if (kVerboseMode) {
1322     LOG(INFO) << "ProcessMarkStack. ";
1323   }
1324   bool empty_prev = false;
1325   while (true) {
1326     bool empty = ProcessMarkStackOnce();
1327     if (empty_prev && empty) {
1328       // Saw empty mark stack for a second time, done.
1329       break;
1330     }
1331     empty_prev = empty;
1332   }
1333 }
1334 
ProcessMarkStackOnce()1335 bool ConcurrentCopying::ProcessMarkStackOnce() {
1336   Thread* self = Thread::Current();
1337   CHECK(thread_running_gc_ != nullptr);
1338   CHECK(self == thread_running_gc_);
1339   CHECK(self->GetThreadLocalMarkStack() == nullptr);
1340   size_t count = 0;
1341   MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1342   if (mark_stack_mode == kMarkStackModeThreadLocal) {
1343     // Process the thread-local mark stacks and the GC mark stack.
1344     count += ProcessThreadLocalMarkStacks(false, nullptr);
1345     while (!gc_mark_stack_->IsEmpty()) {
1346       mirror::Object* to_ref = gc_mark_stack_->PopBack();
1347       ProcessMarkStackRef(to_ref);
1348       ++count;
1349     }
1350     gc_mark_stack_->Reset();
1351   } else if (mark_stack_mode == kMarkStackModeShared) {
1352     // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
1353     // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
1354     // disabled at this point.
1355     IssueEmptyCheckpoint();
1356     // Process the shared GC mark stack with a lock.
1357     {
1358       MutexLock mu(self, mark_stack_lock_);
1359       CHECK(revoked_mark_stacks_.empty());
1360     }
1361     while (true) {
1362       std::vector<mirror::Object*> refs;
1363       {
1364         // Copy refs with lock. Note the number of refs should be small.
1365         MutexLock mu(self, mark_stack_lock_);
1366         if (gc_mark_stack_->IsEmpty()) {
1367           break;
1368         }
1369         for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
1370              p != gc_mark_stack_->End(); ++p) {
1371           refs.push_back(p->AsMirrorPtr());
1372         }
1373         gc_mark_stack_->Reset();
1374       }
1375       for (mirror::Object* ref : refs) {
1376         ProcessMarkStackRef(ref);
1377         ++count;
1378       }
1379     }
1380   } else {
1381     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1382              static_cast<uint32_t>(kMarkStackModeGcExclusive));
1383     {
1384       MutexLock mu(self, mark_stack_lock_);
1385       CHECK(revoked_mark_stacks_.empty());
1386     }
1387     // Process the GC mark stack in the exclusive mode. No need to take the lock.
1388     while (!gc_mark_stack_->IsEmpty()) {
1389       mirror::Object* to_ref = gc_mark_stack_->PopBack();
1390       ProcessMarkStackRef(to_ref);
1391       ++count;
1392     }
1393     gc_mark_stack_->Reset();
1394   }
1395 
1396   // Return true if the stack was empty.
1397   return count == 0;
1398 }
1399 
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback)1400 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
1401                                                        Closure* checkpoint_callback) {
1402   // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
1403   RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
1404   size_t count = 0;
1405   std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
1406   {
1407     MutexLock mu(Thread::Current(), mark_stack_lock_);
1408     // Make a copy of the mark stack vector.
1409     mark_stacks = revoked_mark_stacks_;
1410     revoked_mark_stacks_.clear();
1411   }
1412   for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
1413     for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
1414       mirror::Object* to_ref = p->AsMirrorPtr();
1415       ProcessMarkStackRef(to_ref);
1416       ++count;
1417     }
1418     {
1419       MutexLock mu(Thread::Current(), mark_stack_lock_);
1420       if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
1421         // The pool has enough. Delete it.
1422         delete mark_stack;
1423       } else {
1424         // Otherwise, put it into the pool for later reuse.
1425         mark_stack->Reset();
1426         pooled_mark_stacks_.push_back(mark_stack);
1427       }
1428     }
1429   }
1430   return count;
1431 }
1432 
ProcessMarkStackRef(mirror::Object * to_ref)1433 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
1434   DCHECK(!region_space_->IsInFromSpace(to_ref));
1435   if (kUseBakerReadBarrier) {
1436     DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
1437         << " " << to_ref << " " << to_ref->GetReadBarrierState()
1438         << " is_marked=" << IsMarked(to_ref);
1439   }
1440   bool add_to_live_bytes = false;
1441   if (region_space_->IsInUnevacFromSpace(to_ref)) {
1442     // Mark the bitmap only in the GC thread here so that we don't need a CAS.
1443     if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
1444       // It may be already marked if we accidentally pushed the same object twice due to the racy
1445       // bitmap read in MarkUnevacFromSpaceRegion.
1446       Scan(to_ref);
1447       // Only add to the live bytes if the object was not already marked.
1448       add_to_live_bytes = true;
1449     }
1450   } else {
1451     Scan(to_ref);
1452   }
1453   if (kUseBakerReadBarrier) {
1454     DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
1455         << " " << to_ref << " " << to_ref->GetReadBarrierState()
1456         << " is_marked=" << IsMarked(to_ref);
1457   }
1458 #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
1459   mirror::Object* referent = nullptr;
1460   if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
1461                 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
1462                 !IsInToSpace(referent)))) {
1463     // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
1464     // will change it to white later in ReferenceQueue::DequeuePendingReference().
1465     DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr) << "Left unenqueued ref gray " << to_ref;
1466   } else {
1467     // We may occasionally leave a reference white in the queue if its referent happens to be
1468     // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
1469     // above IsInToSpace() evaluates to true and we change the color from gray to white here in this
1470     // else block.
1471     if (kUseBakerReadBarrier) {
1472       bool success = to_ref->AtomicSetReadBarrierState</*kCasRelease*/true>(
1473           ReadBarrier::GrayState(),
1474           ReadBarrier::WhiteState());
1475       DCHECK(success) << "Must succeed as we won the race.";
1476     }
1477   }
1478 #else
1479   DCHECK(!kUseBakerReadBarrier);
1480 #endif
1481 
1482   if (add_to_live_bytes) {
1483     // Add to the live bytes per unevacuated from space. Note this code is always run by the
1484     // GC-running thread (no synchronization required).
1485     DCHECK(region_space_bitmap_->Test(to_ref));
1486     size_t obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
1487     size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1488     region_space_->AddLiveBytes(to_ref, alloc_size);
1489   }
1490   if (ReadBarrier::kEnableToSpaceInvariantChecks) {
1491     AssertToSpaceInvariantObjectVisitor visitor(this);
1492     visitor(to_ref);
1493   }
1494 }
1495 
1496 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
1497  public:
DisableWeakRefAccessCallback(ConcurrentCopying * concurrent_copying)1498   explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
1499       : concurrent_copying_(concurrent_copying) {
1500   }
1501 
Run(Thread * self ATTRIBUTE_UNUSED)1502   void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) {
1503     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
1504     // to avoid a deadlock b/31500969.
1505     CHECK(concurrent_copying_->weak_ref_access_enabled_);
1506     concurrent_copying_->weak_ref_access_enabled_ = false;
1507   }
1508 
1509  private:
1510   ConcurrentCopying* const concurrent_copying_;
1511 };
1512 
SwitchToSharedMarkStackMode()1513 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
1514   Thread* self = Thread::Current();
1515   CHECK(thread_running_gc_ != nullptr);
1516   CHECK_EQ(self, thread_running_gc_);
1517   CHECK(self->GetThreadLocalMarkStack() == nullptr);
1518   MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1519   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1520            static_cast<uint32_t>(kMarkStackModeThreadLocal));
1521   mark_stack_mode_.StoreRelaxed(kMarkStackModeShared);
1522   DisableWeakRefAccessCallback dwrac(this);
1523   // Process the thread local mark stacks one last time after switching to the shared mark stack
1524   // mode and disable weak ref accesses.
1525   ProcessThreadLocalMarkStacks(true, &dwrac);
1526   if (kVerboseMode) {
1527     LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
1528   }
1529 }
1530 
SwitchToGcExclusiveMarkStackMode()1531 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
1532   Thread* self = Thread::Current();
1533   CHECK(thread_running_gc_ != nullptr);
1534   CHECK_EQ(self, thread_running_gc_);
1535   CHECK(self->GetThreadLocalMarkStack() == nullptr);
1536   MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1537   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1538            static_cast<uint32_t>(kMarkStackModeShared));
1539   mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive);
1540   QuasiAtomic::ThreadFenceForConstructor();
1541   if (kVerboseMode) {
1542     LOG(INFO) << "Switched to GC exclusive mark stack mode";
1543   }
1544 }
1545 
CheckEmptyMarkStack()1546 void ConcurrentCopying::CheckEmptyMarkStack() {
1547   Thread* self = Thread::Current();
1548   CHECK(thread_running_gc_ != nullptr);
1549   CHECK_EQ(self, thread_running_gc_);
1550   CHECK(self->GetThreadLocalMarkStack() == nullptr);
1551   MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1552   if (mark_stack_mode == kMarkStackModeThreadLocal) {
1553     // Thread-local mark stack mode.
1554     RevokeThreadLocalMarkStacks(false, nullptr);
1555     MutexLock mu(Thread::Current(), mark_stack_lock_);
1556     if (!revoked_mark_stacks_.empty()) {
1557       for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
1558         while (!mark_stack->IsEmpty()) {
1559           mirror::Object* obj = mark_stack->PopBack();
1560           if (kUseBakerReadBarrier) {
1561             uint32_t rb_state = obj->GetReadBarrierState();
1562             LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
1563                       << rb_state << " is_marked=" << IsMarked(obj);
1564           } else {
1565             LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
1566                       << " is_marked=" << IsMarked(obj);
1567           }
1568         }
1569       }
1570       LOG(FATAL) << "mark stack is not empty";
1571     }
1572   } else {
1573     // Shared, GC-exclusive, or off.
1574     MutexLock mu(Thread::Current(), mark_stack_lock_);
1575     CHECK(gc_mark_stack_->IsEmpty());
1576     CHECK(revoked_mark_stacks_.empty());
1577   }
1578 }
1579 
SweepSystemWeaks(Thread * self)1580 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
1581   TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
1582   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1583   Runtime::Current()->SweepSystemWeaks(this);
1584 }
1585 
Sweep(bool swap_bitmaps)1586 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
1587   {
1588     TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
1589     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1590     if (kEnableFromSpaceAccountingCheck) {
1591       CHECK_GE(live_stack_freeze_size_, live_stack->Size());
1592     }
1593     heap_->MarkAllocStackAsLive(live_stack);
1594     live_stack->Reset();
1595   }
1596   CheckEmptyMarkStack();
1597   TimingLogger::ScopedTiming split("Sweep", GetTimings());
1598   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1599     if (space->IsContinuousMemMapAllocSpace()) {
1600       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1601       if (space == region_space_ || immune_spaces_.ContainsSpace(space)) {
1602         continue;
1603       }
1604       TimingLogger::ScopedTiming split2(
1605           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
1606       RecordFree(alloc_space->Sweep(swap_bitmaps));
1607     }
1608   }
1609   SweepLargeObjects(swap_bitmaps);
1610 }
1611 
MarkZygoteLargeObjects()1612 void ConcurrentCopying::MarkZygoteLargeObjects() {
1613   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1614   Thread* const self = Thread::Current();
1615   WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
1616   space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
1617   if (los != nullptr) {
1618     // Pick the current live bitmap (mark bitmap if swapped).
1619     accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
1620     accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
1621     // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
1622     std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
1623     live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
1624                                   reinterpret_cast<uintptr_t>(range.second),
1625                                   [mark_bitmap, los, self](mirror::Object* obj)
1626         REQUIRES(Locks::heap_bitmap_lock_)
1627         REQUIRES_SHARED(Locks::mutator_lock_) {
1628       if (los->IsZygoteLargeObject(self, obj)) {
1629         mark_bitmap->Set(obj);
1630       }
1631     });
1632   }
1633 }
1634 
SweepLargeObjects(bool swap_bitmaps)1635 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
1636   TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
1637   if (heap_->GetLargeObjectsSpace() != nullptr) {
1638     RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1639   }
1640 }
1641 
ReclaimPhase()1642 void ConcurrentCopying::ReclaimPhase() {
1643   TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
1644   if (kVerboseMode) {
1645     LOG(INFO) << "GC ReclaimPhase";
1646   }
1647   Thread* self = Thread::Current();
1648 
1649   {
1650     // Double-check that the mark stack is empty.
1651     // Note: need to set this after VerifyNoFromSpaceRef().
1652     is_asserting_to_space_invariant_ = false;
1653     QuasiAtomic::ThreadFenceForConstructor();
1654     if (kVerboseMode) {
1655       LOG(INFO) << "Issue an empty check point. ";
1656     }
1657     IssueEmptyCheckpoint();
1658     // Disable the check.
1659     is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0);
1660     if (kUseBakerReadBarrier) {
1661       updated_all_immune_objects_.StoreSequentiallyConsistent(false);
1662     }
1663     CheckEmptyMarkStack();
1664   }
1665 
1666   {
1667     // Record freed objects.
1668     TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
1669     // Don't include thread-locals that are in the to-space.
1670     const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
1671     const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
1672     const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
1673     const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
1674     uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
1675     cumulative_bytes_moved_.FetchAndAddRelaxed(to_bytes);
1676     uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
1677     cumulative_objects_moved_.FetchAndAddRelaxed(to_objects);
1678     if (kEnableFromSpaceAccountingCheck) {
1679       CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
1680       CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
1681     }
1682     CHECK_LE(to_objects, from_objects);
1683     CHECK_LE(to_bytes, from_bytes);
1684     // cleared_bytes and cleared_objects may be greater than the from space equivalents since
1685     // ClearFromSpace may clear empty unevac regions.
1686     uint64_t cleared_bytes;
1687     uint64_t cleared_objects;
1688     {
1689       TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
1690       region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects);
1691       CHECK_GE(cleared_bytes, from_bytes);
1692       CHECK_GE(cleared_objects, from_objects);
1693     }
1694     int64_t freed_bytes = cleared_bytes - to_bytes;
1695     int64_t freed_objects = cleared_objects - to_objects;
1696     if (kVerboseMode) {
1697       LOG(INFO) << "RecordFree:"
1698                 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
1699                 << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
1700                 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
1701                 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
1702                 << " from_space size=" << region_space_->FromSpaceSize()
1703                 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
1704                 << " to_space size=" << region_space_->ToSpaceSize();
1705       LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1706     }
1707     RecordFree(ObjectBytePair(freed_objects, freed_bytes));
1708     if (kVerboseMode) {
1709       LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1710     }
1711   }
1712 
1713   {
1714     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1715     Sweep(false);
1716     SwapBitmaps();
1717     heap_->UnBindBitmaps();
1718 
1719     // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
1720     DCHECK(region_space_bitmap_ != nullptr);
1721     region_space_bitmap_ = nullptr;
1722   }
1723 
1724   CheckEmptyMarkStack();
1725 
1726   if (kVerboseMode) {
1727     LOG(INFO) << "GC end of ReclaimPhase";
1728   }
1729 }
1730 
1731 // Assert the to-space invariant.
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)1732 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
1733                                                MemberOffset offset,
1734                                                mirror::Object* ref) {
1735   CHECK_EQ(heap_->collector_type_, kCollectorTypeCC);
1736   if (is_asserting_to_space_invariant_) {
1737     using RegionType = space::RegionSpace::RegionType;
1738     space::RegionSpace::RegionType type = region_space_->GetRegionType(ref);
1739     if (type == RegionType::kRegionTypeToSpace) {
1740       // OK.
1741       return;
1742     } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
1743       CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
1744     } else if (UNLIKELY(type == RegionType::kRegionTypeFromSpace)) {
1745       // Not OK. Do extra logging.
1746       if (obj != nullptr) {
1747         LogFromSpaceRefHolder(obj, offset);
1748       }
1749       ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
1750       CHECK(false) << "Found from-space ref " << ref << " " << ref->PrettyTypeOf();
1751     } else {
1752       AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1753     }
1754   }
1755 }
1756 
1757 class RootPrinter {
1758  public:
RootPrinter()1759   RootPrinter() { }
1760 
1761   template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)1762   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1763       REQUIRES_SHARED(Locks::mutator_lock_) {
1764     if (!root->IsNull()) {
1765       VisitRoot(root);
1766     }
1767   }
1768 
1769   template <class MirrorType>
VisitRoot(mirror::Object ** root)1770   void VisitRoot(mirror::Object** root)
1771       REQUIRES_SHARED(Locks::mutator_lock_) {
1772     LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
1773   }
1774 
1775   template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)1776   void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1777       REQUIRES_SHARED(Locks::mutator_lock_) {
1778     LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
1779   }
1780 };
1781 
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)1782 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1783                                                mirror::Object* ref) {
1784   CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1785   if (is_asserting_to_space_invariant_) {
1786     if (region_space_->IsInToSpace(ref)) {
1787       // OK.
1788       return;
1789     } else if (region_space_->IsInUnevacFromSpace(ref)) {
1790       CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
1791     } else if (region_space_->IsInFromSpace(ref)) {
1792       // Not OK. Do extra logging.
1793       if (gc_root_source == nullptr) {
1794         // No info.
1795       } else if (gc_root_source->HasArtField()) {
1796         ArtField* field = gc_root_source->GetArtField();
1797         LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
1798                                  << ArtField::PrettyField(field);
1799         RootPrinter root_printer;
1800         field->VisitRoots(root_printer);
1801       } else if (gc_root_source->HasArtMethod()) {
1802         ArtMethod* method = gc_root_source->GetArtMethod();
1803         LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
1804                                  << ArtMethod::PrettyMethod(method);
1805         RootPrinter root_printer;
1806         method->VisitRoots(root_printer, kRuntimePointerSize);
1807       }
1808       ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
1809       region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
1810       PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
1811       MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), true);
1812       CHECK(false) << "Found from-space ref " << ref << " " << ref->PrettyTypeOf();
1813     } else {
1814       AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1815     }
1816   }
1817 }
1818 
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)1819 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1820   if (kUseBakerReadBarrier) {
1821     LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
1822               << " holder rb_state=" << obj->GetReadBarrierState();
1823   } else {
1824     LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
1825   }
1826   if (region_space_->IsInFromSpace(obj)) {
1827     LOG(INFO) << "holder is in the from-space.";
1828   } else if (region_space_->IsInToSpace(obj)) {
1829     LOG(INFO) << "holder is in the to-space.";
1830   } else if (region_space_->IsInUnevacFromSpace(obj)) {
1831     LOG(INFO) << "holder is in the unevac from-space.";
1832     if (IsMarkedInUnevacFromSpace(obj)) {
1833       LOG(INFO) << "holder is marked in the region space bitmap.";
1834     } else {
1835       LOG(INFO) << "holder is not marked in the region space bitmap.";
1836     }
1837   } else {
1838     // In a non-moving space.
1839     if (immune_spaces_.ContainsObject(obj)) {
1840       LOG(INFO) << "holder is in an immune image or the zygote space.";
1841     } else {
1842       LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
1843       accounting::ContinuousSpaceBitmap* mark_bitmap =
1844           heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1845       accounting::LargeObjectBitmap* los_bitmap =
1846           heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1847       CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1848       bool is_los = mark_bitmap == nullptr;
1849       if (!is_los && mark_bitmap->Test(obj)) {
1850         LOG(INFO) << "holder is marked in the mark bit map.";
1851       } else if (is_los && los_bitmap->Test(obj)) {
1852         LOG(INFO) << "holder is marked in the los bit map.";
1853       } else {
1854         // If ref is on the allocation stack, then it is considered
1855         // mark/alive (but not necessarily on the live stack.)
1856         if (IsOnAllocStack(obj)) {
1857           LOG(INFO) << "holder is on the alloc stack.";
1858         } else {
1859           LOG(INFO) << "holder is not marked or on the alloc stack.";
1860         }
1861       }
1862     }
1863   }
1864   LOG(INFO) << "offset=" << offset.SizeValue();
1865 }
1866 
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)1867 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1868                                                                mirror::Object* ref) {
1869   // In a non-moving spaces. Check that the ref is marked.
1870   if (immune_spaces_.ContainsObject(ref)) {
1871     if (kUseBakerReadBarrier) {
1872       // Immune object may not be gray if called from the GC.
1873       if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
1874         return;
1875       }
1876       bool updated_all_immune_objects = updated_all_immune_objects_.LoadSequentiallyConsistent();
1877       CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
1878           << "Unmarked immune space ref. obj=" << obj << " rb_state="
1879           << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
1880           << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
1881           << " updated_all_immune_objects=" << updated_all_immune_objects;
1882     }
1883   } else {
1884     accounting::ContinuousSpaceBitmap* mark_bitmap =
1885         heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1886     accounting::LargeObjectBitmap* los_bitmap =
1887         heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1888     bool is_los = mark_bitmap == nullptr;
1889     if ((!is_los && mark_bitmap->Test(ref)) ||
1890         (is_los && los_bitmap->Test(ref))) {
1891       // OK.
1892     } else {
1893       // If ref is on the allocation stack, then it may not be
1894       // marked live, but considered marked/alive (but not
1895       // necessarily on the live stack).
1896       CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1897                                  << "obj=" << obj << " ref=" << ref;
1898     }
1899   }
1900 }
1901 
1902 // Used to scan ref fields of an object.
1903 class ConcurrentCopying::RefFieldsVisitor {
1904  public:
RefFieldsVisitor(ConcurrentCopying * collector)1905   explicit RefFieldsVisitor(ConcurrentCopying* collector)
1906       : collector_(collector) {}
1907 
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1908   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1909       const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
1910       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
1911     collector_->Process(obj, offset);
1912   }
1913 
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1914   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1915       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1916     CHECK(klass->IsTypeOfReferenceClass());
1917     collector_->DelayReferenceReferent(klass, ref);
1918   }
1919 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1920   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1921       ALWAYS_INLINE
1922       REQUIRES_SHARED(Locks::mutator_lock_) {
1923     if (!root->IsNull()) {
1924       VisitRoot(root);
1925     }
1926   }
1927 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1928   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1929       ALWAYS_INLINE
1930       REQUIRES_SHARED(Locks::mutator_lock_) {
1931     collector_->MarkRoot</*kGrayImmuneObject*/false>(root);
1932   }
1933 
1934  private:
1935   ConcurrentCopying* const collector_;
1936 };
1937 
1938 // Scan ref fields of an object.
Scan(mirror::Object * to_ref)1939 inline void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1940   if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
1941     // Avoid all read barriers during visit references to help performance.
1942     // Don't do this in transaction mode because we may read the old value of an field which may
1943     // trigger read barriers.
1944     Thread::Current()->ModifyDebugDisallowReadBarrier(1);
1945   }
1946   DCHECK(!region_space_->IsInFromSpace(to_ref));
1947   DCHECK_EQ(Thread::Current(), thread_running_gc_);
1948   RefFieldsVisitor visitor(this);
1949   // Disable the read barrier for a performance reason.
1950   to_ref->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1951       visitor, visitor);
1952   if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
1953     Thread::Current()->ModifyDebugDisallowReadBarrier(-1);
1954   }
1955 }
1956 
1957 // Process a field.
Process(mirror::Object * obj,MemberOffset offset)1958 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1959   DCHECK_EQ(Thread::Current(), thread_running_gc_);
1960   mirror::Object* ref = obj->GetFieldObject<
1961       mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1962   mirror::Object* to_ref = Mark</*kGrayImmuneObject*/false, /*kFromGCThread*/true>(
1963       ref,
1964       /*holder*/ obj,
1965       offset);
1966   if (to_ref == ref) {
1967     return;
1968   }
1969   // This may fail if the mutator writes to the field at the same time. But it's ok.
1970   mirror::Object* expected_ref = ref;
1971   mirror::Object* new_ref = to_ref;
1972   do {
1973     if (expected_ref !=
1974         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1975       // It was updated by the mutator.
1976       break;
1977     }
1978     // Use release cas to make sure threads reading the reference see contents of copied objects.
1979   } while (!obj->CasFieldWeakReleaseObjectWithoutWriteBarrier<false, false, kVerifyNone>(
1980       offset,
1981       expected_ref,
1982       new_ref));
1983 }
1984 
1985 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1986 inline void ConcurrentCopying::VisitRoots(
1987     mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1988   for (size_t i = 0; i < count; ++i) {
1989     mirror::Object** root = roots[i];
1990     mirror::Object* ref = *root;
1991     mirror::Object* to_ref = Mark(ref);
1992     if (to_ref == ref) {
1993       continue;
1994     }
1995     Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1996     mirror::Object* expected_ref = ref;
1997     mirror::Object* new_ref = to_ref;
1998     do {
1999       if (expected_ref != addr->LoadRelaxed()) {
2000         // It was updated by the mutator.
2001         break;
2002       }
2003     } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
2004   }
2005 }
2006 
2007 template<bool kGrayImmuneObject>
MarkRoot(mirror::CompressedReference<mirror::Object> * root)2008 inline void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) {
2009   DCHECK(!root->IsNull());
2010   mirror::Object* const ref = root->AsMirrorPtr();
2011   mirror::Object* to_ref = Mark<kGrayImmuneObject>(ref);
2012   if (to_ref != ref) {
2013     auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
2014     auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
2015     auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
2016     // If the cas fails, then it was updated by the mutator.
2017     do {
2018       if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
2019         // It was updated by the mutator.
2020         break;
2021       }
2022     } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
2023   }
2024 }
2025 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2026 inline void ConcurrentCopying::VisitRoots(
2027     mirror::CompressedReference<mirror::Object>** roots, size_t count,
2028     const RootInfo& info ATTRIBUTE_UNUSED) {
2029   for (size_t i = 0; i < count; ++i) {
2030     mirror::CompressedReference<mirror::Object>* const root = roots[i];
2031     if (!root->IsNull()) {
2032       // kGrayImmuneObject is true because this is used for the thread flip.
2033       MarkRoot</*kGrayImmuneObject*/true>(root);
2034     }
2035   }
2036 }
2037 
2038 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
2039 class ConcurrentCopying::ScopedGcGraysImmuneObjects {
2040  public:
ScopedGcGraysImmuneObjects(ConcurrentCopying * collector)2041   explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
2042       : collector_(collector), enabled_(false) {
2043     if (kUseBakerReadBarrier &&
2044         collector_->thread_running_gc_ == Thread::Current() &&
2045         !collector_->gc_grays_immune_objects_) {
2046       collector_->gc_grays_immune_objects_ = true;
2047       enabled_ = true;
2048     }
2049   }
2050 
~ScopedGcGraysImmuneObjects()2051   ~ScopedGcGraysImmuneObjects() {
2052     if (kUseBakerReadBarrier &&
2053         collector_->thread_running_gc_ == Thread::Current() &&
2054         enabled_) {
2055       DCHECK(collector_->gc_grays_immune_objects_);
2056       collector_->gc_grays_immune_objects_ = false;
2057     }
2058   }
2059 
2060  private:
2061   ConcurrentCopying* const collector_;
2062   bool enabled_;
2063 };
2064 
2065 // Fill the given memory block with a dummy object. Used to fill in a
2066 // copy of objects that was lost in race.
FillWithDummyObject(mirror::Object * dummy_obj,size_t byte_size)2067 void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
2068   // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
2069   // barriers here because we need the updated reference to the int array class, etc. Temporary set
2070   // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
2071   ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
2072   CHECK_ALIGNED(byte_size, kObjectAlignment);
2073   memset(dummy_obj, 0, byte_size);
2074   // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
2075   // Explicitly mark to make sure to get an object in the to-space.
2076   mirror::Class* int_array_class = down_cast<mirror::Class*>(
2077       Mark(mirror::IntArray::GetArrayClass<kWithoutReadBarrier>()));
2078   CHECK(int_array_class != nullptr);
2079   AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
2080   size_t component_size = int_array_class->GetComponentSize<kWithoutReadBarrier>();
2081   CHECK_EQ(component_size, sizeof(int32_t));
2082   size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
2083   if (data_offset > byte_size) {
2084     // An int array is too big. Use java.lang.Object.
2085     AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
2086     CHECK_EQ(byte_size, (java_lang_Object_->GetObjectSize<kVerifyNone, kWithoutReadBarrier>()));
2087     dummy_obj->SetClass(java_lang_Object_);
2088     CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()));
2089   } else {
2090     // Use an int array.
2091     dummy_obj->SetClass(int_array_class);
2092     CHECK((dummy_obj->IsArrayInstance<kVerifyNone, kWithoutReadBarrier>()));
2093     int32_t length = (byte_size - data_offset) / component_size;
2094     mirror::Array* dummy_arr = dummy_obj->AsArray<kVerifyNone, kWithoutReadBarrier>();
2095     dummy_arr->SetLength(length);
2096     CHECK_EQ(dummy_arr->GetLength(), length)
2097         << "byte_size=" << byte_size << " length=" << length
2098         << " component_size=" << component_size << " data_offset=" << data_offset;
2099     CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()))
2100         << "byte_size=" << byte_size << " length=" << length
2101         << " component_size=" << component_size << " data_offset=" << data_offset;
2102   }
2103 }
2104 
2105 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(size_t alloc_size)2106 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
2107   // Try to reuse the blocks that were unused due to CAS failures.
2108   CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
2109   Thread* self = Thread::Current();
2110   size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
2111   size_t byte_size;
2112   uint8_t* addr;
2113   {
2114     MutexLock mu(self, skipped_blocks_lock_);
2115     auto it = skipped_blocks_map_.lower_bound(alloc_size);
2116     if (it == skipped_blocks_map_.end()) {
2117       // Not found.
2118       return nullptr;
2119     }
2120     byte_size = it->first;
2121     CHECK_GE(byte_size, alloc_size);
2122     if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
2123       // If remainder would be too small for a dummy object, retry with a larger request size.
2124       it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
2125       if (it == skipped_blocks_map_.end()) {
2126         // Not found.
2127         return nullptr;
2128       }
2129       CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
2130       CHECK_GE(it->first - alloc_size, min_object_size)
2131           << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
2132     }
2133     // Found a block.
2134     CHECK(it != skipped_blocks_map_.end());
2135     byte_size = it->first;
2136     addr = it->second;
2137     CHECK_GE(byte_size, alloc_size);
2138     CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
2139     CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
2140     if (kVerboseMode) {
2141       LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
2142     }
2143     skipped_blocks_map_.erase(it);
2144   }
2145   memset(addr, 0, byte_size);
2146   if (byte_size > alloc_size) {
2147     // Return the remainder to the map.
2148     CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
2149     CHECK_GE(byte_size - alloc_size, min_object_size);
2150     // FillWithDummyObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
2151     // violation and possible deadlock. The deadlock case is a recursive case:
2152     // FillWithDummyObject -> IntArray::GetArrayClass -> Mark -> Copy -> AllocateInSkippedBlock.
2153     FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
2154                         byte_size - alloc_size);
2155     CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
2156     {
2157       MutexLock mu(self, skipped_blocks_lock_);
2158       skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
2159     }
2160   }
2161   return reinterpret_cast<mirror::Object*>(addr);
2162 }
2163 
Copy(mirror::Object * from_ref,mirror::Object * holder,MemberOffset offset)2164 mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref,
2165                                         mirror::Object* holder,
2166                                         MemberOffset offset) {
2167   DCHECK(region_space_->IsInFromSpace(from_ref));
2168   // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
2169   // from a previous GC that is either inside or outside the allocated region.
2170   mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
2171   if (UNLIKELY(klass == nullptr)) {
2172     heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal */ true);
2173   }
2174   // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
2175   // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
2176   // objects, but it's ok and necessary.
2177   size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
2178   size_t region_space_alloc_size = (obj_size <= space::RegionSpace::kRegionSize)
2179       ? RoundUp(obj_size, space::RegionSpace::kAlignment)
2180       : RoundUp(obj_size, space::RegionSpace::kRegionSize);
2181   size_t region_space_bytes_allocated = 0U;
2182   size_t non_moving_space_bytes_allocated = 0U;
2183   size_t bytes_allocated = 0U;
2184   size_t dummy;
2185   mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
2186       region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
2187   bytes_allocated = region_space_bytes_allocated;
2188   if (to_ref != nullptr) {
2189     DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
2190   }
2191   bool fall_back_to_non_moving = false;
2192   if (UNLIKELY(to_ref == nullptr)) {
2193     // Failed to allocate in the region space. Try the skipped blocks.
2194     to_ref = AllocateInSkippedBlock(region_space_alloc_size);
2195     if (to_ref != nullptr) {
2196       // Succeeded to allocate in a skipped block.
2197       if (heap_->use_tlab_) {
2198         // This is necessary for the tlab case as it's not accounted in the space.
2199         region_space_->RecordAlloc(to_ref);
2200       }
2201       bytes_allocated = region_space_alloc_size;
2202     } else {
2203       // Fall back to the non-moving space.
2204       fall_back_to_non_moving = true;
2205       if (kVerboseMode) {
2206         LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
2207                   << to_space_bytes_skipped_.LoadSequentiallyConsistent()
2208                   << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
2209       }
2210       fall_back_to_non_moving = true;
2211       to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
2212                                                &non_moving_space_bytes_allocated, nullptr, &dummy);
2213       if (UNLIKELY(to_ref == nullptr)) {
2214         LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
2215                                  << obj_size << " byte object in region type "
2216                                  << region_space_->GetRegionType(from_ref);
2217         LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
2218       }
2219       bytes_allocated = non_moving_space_bytes_allocated;
2220       // Mark it in the mark bitmap.
2221       accounting::ContinuousSpaceBitmap* mark_bitmap =
2222           heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
2223       CHECK(mark_bitmap != nullptr);
2224       CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
2225     }
2226   }
2227   DCHECK(to_ref != nullptr);
2228 
2229   // Copy the object excluding the lock word since that is handled in the loop.
2230   to_ref->SetClass(klass);
2231   const size_t kObjectHeaderSize = sizeof(mirror::Object);
2232   DCHECK_GE(obj_size, kObjectHeaderSize);
2233   static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
2234                     sizeof(LockWord),
2235                 "Object header size does not match");
2236   // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
2237   // object in the from space is immutable other than the lock word. b/31423258
2238   memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
2239          reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
2240          obj_size - kObjectHeaderSize);
2241 
2242   // Attempt to install the forward pointer. This is in a loop as the
2243   // lock word atomic write can fail.
2244   while (true) {
2245     LockWord old_lock_word = from_ref->GetLockWord(false);
2246 
2247     if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
2248       // Lost the race. Another thread (either GC or mutator) stored
2249       // the forwarding pointer first. Make the lost copy (to_ref)
2250       // look like a valid but dead (dummy) object and keep it for
2251       // future reuse.
2252       FillWithDummyObject(to_ref, bytes_allocated);
2253       if (!fall_back_to_non_moving) {
2254         DCHECK(region_space_->IsInToSpace(to_ref));
2255         if (bytes_allocated > space::RegionSpace::kRegionSize) {
2256           // Free the large alloc.
2257           region_space_->FreeLarge(to_ref, bytes_allocated);
2258         } else {
2259           // Record the lost copy for later reuse.
2260           heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
2261           to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
2262           to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
2263           MutexLock mu(Thread::Current(), skipped_blocks_lock_);
2264           skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
2265                                                     reinterpret_cast<uint8_t*>(to_ref)));
2266         }
2267       } else {
2268         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
2269         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
2270         // Free the non-moving-space chunk.
2271         accounting::ContinuousSpaceBitmap* mark_bitmap =
2272             heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
2273         CHECK(mark_bitmap != nullptr);
2274         CHECK(mark_bitmap->Clear(to_ref));
2275         heap_->non_moving_space_->Free(Thread::Current(), to_ref);
2276       }
2277 
2278       // Get the winner's forward ptr.
2279       mirror::Object* lost_fwd_ptr = to_ref;
2280       to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
2281       CHECK(to_ref != nullptr);
2282       CHECK_NE(to_ref, lost_fwd_ptr);
2283       CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
2284           << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
2285       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
2286       return to_ref;
2287     }
2288 
2289     // Copy the old lock word over since we did not copy it yet.
2290     to_ref->SetLockWord(old_lock_word, false);
2291     // Set the gray ptr.
2292     if (kUseBakerReadBarrier) {
2293       to_ref->SetReadBarrierState(ReadBarrier::GrayState());
2294     }
2295 
2296     // Do a fence to prevent the field CAS in ConcurrentCopying::Process from possibly reordering
2297     // before the object copy.
2298     QuasiAtomic::ThreadFenceRelease();
2299 
2300     LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
2301 
2302     // Try to atomically write the fwd ptr.
2303     bool success = from_ref->CasLockWordWeakRelaxed(old_lock_word, new_lock_word);
2304     if (LIKELY(success)) {
2305       // The CAS succeeded.
2306       objects_moved_.FetchAndAddRelaxed(1);
2307       bytes_moved_.FetchAndAddRelaxed(region_space_alloc_size);
2308       if (LIKELY(!fall_back_to_non_moving)) {
2309         DCHECK(region_space_->IsInToSpace(to_ref));
2310       } else {
2311         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
2312         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
2313       }
2314       if (kUseBakerReadBarrier) {
2315         DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
2316       }
2317       DCHECK(GetFwdPtr(from_ref) == to_ref);
2318       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
2319       PushOntoMarkStack(to_ref);
2320       return to_ref;
2321     } else {
2322       // The CAS failed. It may have lost the race or may have failed
2323       // due to monitor/hashcode ops. Either way, retry.
2324     }
2325   }
2326 }
2327 
IsMarked(mirror::Object * from_ref)2328 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
2329   DCHECK(from_ref != nullptr);
2330   space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
2331   if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
2332     // It's already marked.
2333     return from_ref;
2334   }
2335   mirror::Object* to_ref;
2336   if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
2337     to_ref = GetFwdPtr(from_ref);
2338     DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
2339            heap_->non_moving_space_->HasAddress(to_ref))
2340         << "from_ref=" << from_ref << " to_ref=" << to_ref;
2341   } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
2342     if (IsMarkedInUnevacFromSpace(from_ref)) {
2343       to_ref = from_ref;
2344     } else {
2345       to_ref = nullptr;
2346     }
2347   } else {
2348     // from_ref is in a non-moving space.
2349     if (immune_spaces_.ContainsObject(from_ref)) {
2350       // An immune object is alive.
2351       to_ref = from_ref;
2352     } else {
2353       // Non-immune non-moving space. Use the mark bitmap.
2354       accounting::ContinuousSpaceBitmap* mark_bitmap =
2355           heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
2356       accounting::LargeObjectBitmap* los_bitmap =
2357           heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
2358       CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
2359       bool is_los = mark_bitmap == nullptr;
2360       if (!is_los && mark_bitmap->Test(from_ref)) {
2361         // Already marked.
2362         to_ref = from_ref;
2363       } else if (is_los && los_bitmap->Test(from_ref)) {
2364         // Already marked in LOS.
2365         to_ref = from_ref;
2366       } else {
2367         // Not marked.
2368         if (IsOnAllocStack(from_ref)) {
2369           // If on the allocation stack, it's considered marked.
2370           to_ref = from_ref;
2371         } else {
2372           // Not marked.
2373           to_ref = nullptr;
2374         }
2375       }
2376     }
2377   }
2378   return to_ref;
2379 }
2380 
IsOnAllocStack(mirror::Object * ref)2381 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
2382   QuasiAtomic::ThreadFenceAcquire();
2383   accounting::ObjectStack* alloc_stack = GetAllocationStack();
2384   return alloc_stack->Contains(ref);
2385 }
2386 
MarkNonMoving(mirror::Object * ref,mirror::Object * holder,MemberOffset offset)2387 mirror::Object* ConcurrentCopying::MarkNonMoving(mirror::Object* ref,
2388                                                  mirror::Object* holder,
2389                                                  MemberOffset offset) {
2390   // ref is in a non-moving space (from_ref == to_ref).
2391   DCHECK(!region_space_->HasAddress(ref)) << ref;
2392   DCHECK(!immune_spaces_.ContainsObject(ref));
2393   // Use the mark bitmap.
2394   accounting::ContinuousSpaceBitmap* mark_bitmap =
2395       heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
2396   accounting::LargeObjectBitmap* los_bitmap =
2397       heap_mark_bitmap_->GetLargeObjectBitmap(ref);
2398   bool is_los = mark_bitmap == nullptr;
2399   if (!is_los && mark_bitmap->Test(ref)) {
2400     // Already marked.
2401     if (kUseBakerReadBarrier) {
2402       DCHECK(ref->GetReadBarrierState() == ReadBarrier::GrayState() ||
2403              ref->GetReadBarrierState() == ReadBarrier::WhiteState());
2404     }
2405   } else if (is_los && los_bitmap->Test(ref)) {
2406     // Already marked in LOS.
2407     if (kUseBakerReadBarrier) {
2408       DCHECK(ref->GetReadBarrierState() == ReadBarrier::GrayState() ||
2409              ref->GetReadBarrierState() == ReadBarrier::WhiteState());
2410     }
2411   } else {
2412     // Not marked.
2413     if (IsOnAllocStack(ref)) {
2414       // If it's on the allocation stack, it's considered marked. Keep it white.
2415       // Objects on the allocation stack need not be marked.
2416       if (!is_los) {
2417         DCHECK(!mark_bitmap->Test(ref));
2418       } else {
2419         DCHECK(!los_bitmap->Test(ref));
2420       }
2421       if (kUseBakerReadBarrier) {
2422         DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::WhiteState());
2423       }
2424     } else {
2425       // For the baker-style RB, we need to handle 'false-gray' cases. See the
2426       // kRegionTypeUnevacFromSpace-case comment in Mark().
2427       if (kUseBakerReadBarrier) {
2428         // Test the bitmap first to reduce the chance of false gray cases.
2429         if ((!is_los && mark_bitmap->Test(ref)) ||
2430             (is_los && los_bitmap->Test(ref))) {
2431           return ref;
2432         }
2433       }
2434       if (is_los && !IsAligned<kPageSize>(ref)) {
2435         // Ref is a large object that is not aligned, it must be heap corruption. Dump data before
2436         // AtomicSetReadBarrierState since it will fault if the address is not valid.
2437         heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal */ true);
2438       }
2439       // Not marked or on the allocation stack. Try to mark it.
2440       // This may or may not succeed, which is ok.
2441       bool cas_success = false;
2442       if (kUseBakerReadBarrier) {
2443         cas_success = ref->AtomicSetReadBarrierState(ReadBarrier::WhiteState(),
2444                                                      ReadBarrier::GrayState());
2445       }
2446       if (!is_los && mark_bitmap->AtomicTestAndSet(ref)) {
2447         // Already marked.
2448         if (kUseBakerReadBarrier && cas_success &&
2449             ref->GetReadBarrierState() == ReadBarrier::GrayState()) {
2450           PushOntoFalseGrayStack(ref);
2451         }
2452       } else if (is_los && los_bitmap->AtomicTestAndSet(ref)) {
2453         // Already marked in LOS.
2454         if (kUseBakerReadBarrier && cas_success &&
2455             ref->GetReadBarrierState() == ReadBarrier::GrayState()) {
2456           PushOntoFalseGrayStack(ref);
2457         }
2458       } else {
2459         // Newly marked.
2460         if (kUseBakerReadBarrier) {
2461           DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
2462         }
2463         PushOntoMarkStack(ref);
2464       }
2465     }
2466   }
2467   return ref;
2468 }
2469 
FinishPhase()2470 void ConcurrentCopying::FinishPhase() {
2471   Thread* const self = Thread::Current();
2472   {
2473     MutexLock mu(self, mark_stack_lock_);
2474     CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2475   }
2476   // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
2477   // positives.
2478   if (!kVerifyNoMissingCardMarks) {
2479     TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
2480     // We do not currently use the region space cards at all, madvise them away to save ram.
2481     heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
2482   }
2483   {
2484     MutexLock mu(self, skipped_blocks_lock_);
2485     skipped_blocks_map_.clear();
2486   }
2487   {
2488     ReaderMutexLock mu(self, *Locks::mutator_lock_);
2489     {
2490       WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2491       heap_->ClearMarkedObjects();
2492     }
2493     if (kUseBakerReadBarrier && kFilterModUnionCards) {
2494       TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
2495       ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2496       for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
2497         DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
2498         accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
2499         // Filter out cards that don't need to be set.
2500         if (table != nullptr) {
2501           table->FilterCards();
2502         }
2503       }
2504     }
2505     if (kUseBakerReadBarrier) {
2506       TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
2507       DCHECK(rb_mark_bit_stack_ != nullptr);
2508       const auto* limit = rb_mark_bit_stack_->End();
2509       for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
2510         CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0));
2511       }
2512       rb_mark_bit_stack_->Reset();
2513     }
2514   }
2515   if (measure_read_barrier_slow_path_) {
2516     MutexLock mu(self, rb_slow_path_histogram_lock_);
2517     rb_slow_path_time_histogram_.AdjustAndAddValue(rb_slow_path_ns_.LoadRelaxed());
2518     rb_slow_path_count_total_ += rb_slow_path_count_.LoadRelaxed();
2519     rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.LoadRelaxed();
2520   }
2521 }
2522 
IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)2523 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
2524                                                     bool do_atomic_update) {
2525   mirror::Object* from_ref = field->AsMirrorPtr();
2526   if (from_ref == nullptr) {
2527     return true;
2528   }
2529   mirror::Object* to_ref = IsMarked(from_ref);
2530   if (to_ref == nullptr) {
2531     return false;
2532   }
2533   if (from_ref != to_ref) {
2534     if (do_atomic_update) {
2535       do {
2536         if (field->AsMirrorPtr() != from_ref) {
2537           // Concurrently overwritten by a mutator.
2538           break;
2539         }
2540       } while (!field->CasWeakRelaxed(from_ref, to_ref));
2541     } else {
2542       QuasiAtomic::ThreadFenceRelease();
2543       field->Assign(to_ref);
2544       QuasiAtomic::ThreadFenceSequentiallyConsistent();
2545     }
2546   }
2547   return true;
2548 }
2549 
MarkObject(mirror::Object * from_ref)2550 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
2551   return Mark(from_ref);
2552 }
2553 
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> reference)2554 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
2555                                                ObjPtr<mirror::Reference> reference) {
2556   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
2557 }
2558 
ProcessReferences(Thread * self)2559 void ConcurrentCopying::ProcessReferences(Thread* self) {
2560   TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
2561   // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
2562   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2563   GetHeap()->GetReferenceProcessor()->ProcessReferences(
2564       true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
2565 }
2566 
RevokeAllThreadLocalBuffers()2567 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
2568   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
2569   region_space_->RevokeAllThreadLocalBuffers();
2570 }
2571 
MarkFromReadBarrierWithMeasurements(mirror::Object * from_ref)2572 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(mirror::Object* from_ref) {
2573   if (Thread::Current() != thread_running_gc_) {
2574     rb_slow_path_count_.FetchAndAddRelaxed(1u);
2575   } else {
2576     rb_slow_path_count_gc_.FetchAndAddRelaxed(1u);
2577   }
2578   ScopedTrace tr(__FUNCTION__);
2579   const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
2580   mirror::Object* ret = Mark(from_ref);
2581   if (measure_read_barrier_slow_path_) {
2582     rb_slow_path_ns_.FetchAndAddRelaxed(NanoTime() - start_time);
2583   }
2584   return ret;
2585 }
2586 
DumpPerformanceInfo(std::ostream & os)2587 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
2588   GarbageCollector::DumpPerformanceInfo(os);
2589   MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
2590   if (rb_slow_path_time_histogram_.SampleSize() > 0) {
2591     Histogram<uint64_t>::CumulativeData cumulative_data;
2592     rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
2593     rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
2594   }
2595   if (rb_slow_path_count_total_ > 0) {
2596     os << "Slow path count " << rb_slow_path_count_total_ << "\n";
2597   }
2598   if (rb_slow_path_count_gc_total_ > 0) {
2599     os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
2600   }
2601   os << "Cumulative bytes moved " << cumulative_bytes_moved_.LoadRelaxed() << "\n";
2602   os << "Cumulative objects moved " << cumulative_objects_moved_.LoadRelaxed() << "\n";
2603 }
2604 
2605 }  // namespace collector
2606 }  // namespace gc
2607 }  // namespace art
2608