1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "concurrent_copying.h"
18
19 #include "art_field-inl.h"
20 #include "base/enums.h"
21 #include "base/histogram-inl.h"
22 #include "base/stl_util.h"
23 #include "base/systrace.h"
24 #include "debugger.h"
25 #include "gc/accounting/atomic_stack.h"
26 #include "gc/accounting/heap_bitmap-inl.h"
27 #include "gc/accounting/mod_union_table-inl.h"
28 #include "gc/accounting/read_barrier_table.h"
29 #include "gc/accounting/space_bitmap-inl.h"
30 #include "gc/gc_pause_listener.h"
31 #include "gc/reference_processor.h"
32 #include "gc/space/image_space.h"
33 #include "gc/space/space-inl.h"
34 #include "gc/verification.h"
35 #include "image-inl.h"
36 #include "intern_table.h"
37 #include "mirror/class-inl.h"
38 #include "mirror/object-inl.h"
39 #include "mirror/object-refvisitor-inl.h"
40 #include "scoped_thread_state_change-inl.h"
41 #include "thread-inl.h"
42 #include "thread_list.h"
43 #include "well_known_classes.h"
44
45 namespace art {
46 namespace gc {
47 namespace collector {
48
49 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
50 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
51 // union table. Disabled since it does not seem to help the pause much.
52 static constexpr bool kFilterModUnionCards = kIsDebugBuild;
53 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any that occur during
54 // ConcurrentCopying::Scan. May be used to diagnose possibly unnecessary read barriers.
55 // Only enabled for kIsDebugBuild to avoid performance hit.
56 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
57 // Slow path mark stack size, increase this if the stack is getting full and it is causing
58 // performance problems.
59 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
60 // Verify that there are no missing card marks.
61 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
62
ConcurrentCopying(Heap * heap,const std::string & name_prefix,bool measure_read_barrier_slow_path)63 ConcurrentCopying::ConcurrentCopying(Heap* heap,
64 const std::string& name_prefix,
65 bool measure_read_barrier_slow_path)
66 : GarbageCollector(heap,
67 name_prefix + (name_prefix.empty() ? "" : " ") +
68 "concurrent copying"),
69 region_space_(nullptr), gc_barrier_(new Barrier(0)),
70 gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
71 kDefaultGcMarkStackSize,
72 kDefaultGcMarkStackSize)),
73 rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
74 kReadBarrierMarkStackSize,
75 kReadBarrierMarkStackSize)),
76 rb_mark_bit_stack_full_(false),
77 mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
78 thread_running_gc_(nullptr),
79 is_marking_(false),
80 is_active_(false),
81 is_asserting_to_space_invariant_(false),
82 region_space_bitmap_(nullptr),
83 heap_mark_bitmap_(nullptr),
84 live_stack_freeze_size_(0),
85 from_space_num_objects_at_first_pause_(0),
86 from_space_num_bytes_at_first_pause_(0),
87 mark_stack_mode_(kMarkStackModeOff),
88 weak_ref_access_enabled_(true),
89 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
90 measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
91 mark_from_read_barrier_measurements_(false),
92 rb_slow_path_ns_(0),
93 rb_slow_path_count_(0),
94 rb_slow_path_count_gc_(0),
95 rb_slow_path_histogram_lock_("Read barrier histogram lock"),
96 rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
97 rb_slow_path_count_total_(0),
98 rb_slow_path_count_gc_total_(0),
99 rb_table_(heap_->GetReadBarrierTable()),
100 force_evacuate_all_(false),
101 gc_grays_immune_objects_(false),
102 immune_gray_stack_lock_("concurrent copying immune gray stack lock",
103 kMarkSweepMarkStackLock) {
104 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
105 "The region space size and the read barrier table region size must match");
106 Thread* self = Thread::Current();
107 {
108 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
109 // Cache this so that we won't have to lock heap_bitmap_lock_ in
110 // Mark() which could cause a nested lock on heap_bitmap_lock_
111 // when GC causes a RB while doing GC or a lock order violation
112 // (class_linker_lock_ and heap_bitmap_lock_).
113 heap_mark_bitmap_ = heap->GetMarkBitmap();
114 }
115 {
116 MutexLock mu(self, mark_stack_lock_);
117 for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
118 accounting::AtomicStack<mirror::Object>* mark_stack =
119 accounting::AtomicStack<mirror::Object>::Create(
120 "thread local mark stack", kMarkStackSize, kMarkStackSize);
121 pooled_mark_stacks_.push_back(mark_stack);
122 }
123 }
124 }
125
MarkHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)126 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
127 bool do_atomic_update) {
128 if (UNLIKELY(do_atomic_update)) {
129 // Used to mark the referent in DelayReferenceReferent in transaction mode.
130 mirror::Object* from_ref = field->AsMirrorPtr();
131 if (from_ref == nullptr) {
132 return;
133 }
134 mirror::Object* to_ref = Mark(from_ref);
135 if (from_ref != to_ref) {
136 do {
137 if (field->AsMirrorPtr() != from_ref) {
138 // Concurrently overwritten by a mutator.
139 break;
140 }
141 } while (!field->CasWeakRelaxed(from_ref, to_ref));
142 }
143 } else {
144 // Used for preserving soft references, should be OK to not have a CAS here since there should be
145 // no other threads which can trigger read barriers on the same referent during reference
146 // processing.
147 field->Assign(Mark(field->AsMirrorPtr()));
148 }
149 }
150
~ConcurrentCopying()151 ConcurrentCopying::~ConcurrentCopying() {
152 STLDeleteElements(&pooled_mark_stacks_);
153 }
154
RunPhases()155 void ConcurrentCopying::RunPhases() {
156 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
157 CHECK(!is_active_);
158 is_active_ = true;
159 Thread* self = Thread::Current();
160 thread_running_gc_ = self;
161 Locks::mutator_lock_->AssertNotHeld(self);
162 {
163 ReaderMutexLock mu(self, *Locks::mutator_lock_);
164 InitializePhase();
165 }
166 FlipThreadRoots();
167 {
168 ReaderMutexLock mu(self, *Locks::mutator_lock_);
169 MarkingPhase();
170 }
171 // Verify no from space refs. This causes a pause.
172 if (kEnableNoFromSpaceRefsVerification) {
173 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
174 ScopedPause pause(this, false);
175 CheckEmptyMarkStack();
176 if (kVerboseMode) {
177 LOG(INFO) << "Verifying no from-space refs";
178 }
179 VerifyNoFromSpaceReferences();
180 if (kVerboseMode) {
181 LOG(INFO) << "Done verifying no from-space refs";
182 }
183 CheckEmptyMarkStack();
184 }
185 {
186 ReaderMutexLock mu(self, *Locks::mutator_lock_);
187 ReclaimPhase();
188 }
189 FinishPhase();
190 CHECK(is_active_);
191 is_active_ = false;
192 thread_running_gc_ = nullptr;
193 }
194
BindBitmaps()195 void ConcurrentCopying::BindBitmaps() {
196 Thread* self = Thread::Current();
197 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
198 // Mark all of the spaces we never collect as immune.
199 for (const auto& space : heap_->GetContinuousSpaces()) {
200 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
201 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
202 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
203 immune_spaces_.AddSpace(space);
204 } else if (space == region_space_) {
205 // It is OK to clear the bitmap with mutators running since the only place it is read is
206 // VisitObjects which has exclusion with CC.
207 region_space_bitmap_ = region_space_->GetMarkBitmap();
208 region_space_bitmap_->Clear();
209 }
210 }
211 }
212
InitializePhase()213 void ConcurrentCopying::InitializePhase() {
214 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
215 if (kVerboseMode) {
216 LOG(INFO) << "GC InitializePhase";
217 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
218 << reinterpret_cast<void*>(region_space_->Limit());
219 }
220 CheckEmptyMarkStack();
221 if (kIsDebugBuild) {
222 MutexLock mu(Thread::Current(), mark_stack_lock_);
223 CHECK(false_gray_stack_.empty());
224 }
225
226 rb_mark_bit_stack_full_ = false;
227 mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
228 if (measure_read_barrier_slow_path_) {
229 rb_slow_path_ns_.StoreRelaxed(0);
230 rb_slow_path_count_.StoreRelaxed(0);
231 rb_slow_path_count_gc_.StoreRelaxed(0);
232 }
233
234 immune_spaces_.Reset();
235 bytes_moved_.StoreRelaxed(0);
236 objects_moved_.StoreRelaxed(0);
237 GcCause gc_cause = GetCurrentIteration()->GetGcCause();
238 if (gc_cause == kGcCauseExplicit ||
239 gc_cause == kGcCauseForNativeAlloc ||
240 gc_cause == kGcCauseCollectorTransition ||
241 GetCurrentIteration()->GetClearSoftReferences()) {
242 force_evacuate_all_ = true;
243 } else {
244 force_evacuate_all_ = false;
245 }
246 if (kUseBakerReadBarrier) {
247 updated_all_immune_objects_.StoreRelaxed(false);
248 // GC may gray immune objects in the thread flip.
249 gc_grays_immune_objects_ = true;
250 if (kIsDebugBuild) {
251 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
252 DCHECK(immune_gray_stack_.empty());
253 }
254 }
255 BindBitmaps();
256 if (kVerboseMode) {
257 LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
258 LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
259 << "-" << immune_spaces_.GetLargestImmuneRegion().End();
260 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
261 LOG(INFO) << "Immune space: " << *space;
262 }
263 LOG(INFO) << "GC end of InitializePhase";
264 }
265 // Mark all of the zygote large objects without graying them.
266 MarkZygoteLargeObjects();
267 }
268
269 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
270 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
271 public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)272 ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
273 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
274 }
275
Run(Thread * thread)276 virtual void Run(Thread* thread) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
277 // Note: self is not necessarily equal to thread since thread may be suspended.
278 Thread* self = Thread::Current();
279 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
280 << thread->GetState() << " thread " << thread << " self " << self;
281 thread->SetIsGcMarkingAndUpdateEntrypoints(true);
282 if (use_tlab_ && thread->HasTlab()) {
283 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
284 // This must come before the revoke.
285 size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
286 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
287 reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
288 FetchAndAddSequentiallyConsistent(thread_local_objects);
289 } else {
290 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
291 }
292 }
293 if (kUseThreadLocalAllocationStack) {
294 thread->RevokeThreadLocalAllocationStack();
295 }
296 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
297 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
298 // only.
299 thread->VisitRoots(this);
300 concurrent_copying_->GetBarrier().Pass(self);
301 }
302
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)303 void VisitRoots(mirror::Object*** roots,
304 size_t count,
305 const RootInfo& info ATTRIBUTE_UNUSED)
306 REQUIRES_SHARED(Locks::mutator_lock_) {
307 for (size_t i = 0; i < count; ++i) {
308 mirror::Object** root = roots[i];
309 mirror::Object* ref = *root;
310 if (ref != nullptr) {
311 mirror::Object* to_ref = concurrent_copying_->Mark(ref);
312 if (to_ref != ref) {
313 *root = to_ref;
314 }
315 }
316 }
317 }
318
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)319 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
320 size_t count,
321 const RootInfo& info ATTRIBUTE_UNUSED)
322 REQUIRES_SHARED(Locks::mutator_lock_) {
323 for (size_t i = 0; i < count; ++i) {
324 mirror::CompressedReference<mirror::Object>* const root = roots[i];
325 if (!root->IsNull()) {
326 mirror::Object* ref = root->AsMirrorPtr();
327 mirror::Object* to_ref = concurrent_copying_->Mark(ref);
328 if (to_ref != ref) {
329 root->Assign(to_ref);
330 }
331 }
332 }
333 }
334
335 private:
336 ConcurrentCopying* const concurrent_copying_;
337 const bool use_tlab_;
338 };
339
340 // Called back from Runtime::FlipThreadRoots() during a pause.
341 class ConcurrentCopying::FlipCallback : public Closure {
342 public:
FlipCallback(ConcurrentCopying * concurrent_copying)343 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
344 : concurrent_copying_(concurrent_copying) {
345 }
346
Run(Thread * thread)347 virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) {
348 ConcurrentCopying* cc = concurrent_copying_;
349 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
350 // Note: self is not necessarily equal to thread since thread may be suspended.
351 Thread* self = Thread::Current();
352 if (kVerifyNoMissingCardMarks) {
353 cc->VerifyNoMissingCardMarks();
354 }
355 CHECK(thread == self);
356 Locks::mutator_lock_->AssertExclusiveHeld(self);
357 cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
358 cc->SwapStacks();
359 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
360 cc->RecordLiveStackFreezeSize(self);
361 cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
362 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
363 }
364 cc->is_marking_ = true;
365 cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal);
366 if (kIsDebugBuild) {
367 cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
368 }
369 if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
370 CHECK(Runtime::Current()->IsAotCompiler());
371 TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
372 Runtime::Current()->VisitTransactionRoots(cc);
373 }
374 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
375 cc->GrayAllDirtyImmuneObjects();
376 if (kIsDebugBuild) {
377 // Check that all non-gray immune objects only refernce immune objects.
378 cc->VerifyGrayImmuneObjects();
379 }
380 }
381 cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(
382 WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr()));
383 }
384
385 private:
386 ConcurrentCopying* const concurrent_copying_;
387 };
388
389 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
390 public:
VerifyGrayImmuneObjectsVisitor(ConcurrentCopying * collector)391 explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
392 : collector_(collector) {}
393
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool) const394 void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
395 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
396 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
397 CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
398 obj, offset);
399 }
400
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const401 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
402 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
403 CHECK(klass->IsTypeOfReferenceClass());
404 CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
405 ref,
406 mirror::Reference::ReferentOffset());
407 }
408
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const409 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
410 ALWAYS_INLINE
411 REQUIRES_SHARED(Locks::mutator_lock_) {
412 if (!root->IsNull()) {
413 VisitRoot(root);
414 }
415 }
416
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const417 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
418 ALWAYS_INLINE
419 REQUIRES_SHARED(Locks::mutator_lock_) {
420 CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
421 }
422
423 private:
424 ConcurrentCopying* const collector_;
425
CheckReference(ObjPtr<mirror::Object> ref,ObjPtr<mirror::Object> holder,MemberOffset offset) const426 void CheckReference(ObjPtr<mirror::Object> ref,
427 ObjPtr<mirror::Object> holder,
428 MemberOffset offset) const
429 REQUIRES_SHARED(Locks::mutator_lock_) {
430 if (ref != nullptr) {
431 if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
432 // Not immune, must be a zygote large object.
433 CHECK(Runtime::Current()->GetHeap()->GetLargeObjectsSpace()->IsZygoteLargeObject(
434 Thread::Current(), ref.Ptr()))
435 << "Non gray object references non immune, non zygote large object "<< ref << " "
436 << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
437 << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
438 } else {
439 // Make sure the large object class is immune since we will never scan the large object.
440 CHECK(collector_->immune_spaces_.ContainsObject(
441 ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
442 }
443 }
444 }
445 };
446
VerifyGrayImmuneObjects()447 void ConcurrentCopying::VerifyGrayImmuneObjects() {
448 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
449 for (auto& space : immune_spaces_.GetSpaces()) {
450 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
451 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
452 VerifyGrayImmuneObjectsVisitor visitor(this);
453 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
454 reinterpret_cast<uintptr_t>(space->Limit()),
455 [&visitor](mirror::Object* obj)
456 REQUIRES_SHARED(Locks::mutator_lock_) {
457 // If an object is not gray, it should only have references to things in the immune spaces.
458 if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
459 obj->VisitReferences</*kVisitNativeRoots*/true,
460 kDefaultVerifyFlags,
461 kWithoutReadBarrier>(visitor, visitor);
462 }
463 });
464 }
465 }
466
467 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
468 public:
VerifyNoMissingCardMarkVisitor(ConcurrentCopying * cc,ObjPtr<mirror::Object> holder)469 VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
470 : cc_(cc),
471 holder_(holder) {}
472
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const473 void operator()(ObjPtr<mirror::Object> obj,
474 MemberOffset offset,
475 bool is_static ATTRIBUTE_UNUSED) const
476 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
477 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
478 CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
479 offset), offset.Uint32Value());
480 }
481 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const482 void operator()(ObjPtr<mirror::Class> klass,
483 ObjPtr<mirror::Reference> ref) const
484 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
485 CHECK(klass->IsTypeOfReferenceClass());
486 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
487 }
488
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const489 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
490 REQUIRES_SHARED(Locks::mutator_lock_) {
491 if (!root->IsNull()) {
492 VisitRoot(root);
493 }
494 }
495
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const496 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
497 REQUIRES_SHARED(Locks::mutator_lock_) {
498 CheckReference(root->AsMirrorPtr());
499 }
500
CheckReference(mirror::Object * ref,int32_t offset=-1) const501 void CheckReference(mirror::Object* ref, int32_t offset = -1) const
502 REQUIRES_SHARED(Locks::mutator_lock_) {
503 CHECK(ref == nullptr || !cc_->region_space_->IsInNewlyAllocatedRegion(ref))
504 << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
505 << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
506 }
507
508 private:
509 ConcurrentCopying* const cc_;
510 ObjPtr<mirror::Object> const holder_;
511 };
512
VerifyNoMissingCardMarkCallback(mirror::Object * obj,void * arg)513 void ConcurrentCopying::VerifyNoMissingCardMarkCallback(mirror::Object* obj, void* arg) {
514 auto* collector = reinterpret_cast<ConcurrentCopying*>(arg);
515 // Objects not on dirty cards should never have references to newly allocated regions.
516 if (!collector->heap_->GetCardTable()->IsDirty(obj)) {
517 VerifyNoMissingCardMarkVisitor visitor(collector, /*holder*/ obj);
518 obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
519 visitor,
520 visitor);
521 }
522 }
523
VerifyNoMissingCardMarks()524 void ConcurrentCopying::VerifyNoMissingCardMarks() {
525 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
526 region_space_->Walk(&VerifyNoMissingCardMarkCallback, this);
527 {
528 ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
529 heap_->GetLiveBitmap()->Walk(&VerifyNoMissingCardMarkCallback, this);
530 }
531 }
532
533 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()534 void ConcurrentCopying::FlipThreadRoots() {
535 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
536 if (kVerboseMode) {
537 LOG(INFO) << "time=" << region_space_->Time();
538 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
539 }
540 Thread* self = Thread::Current();
541 Locks::mutator_lock_->AssertNotHeld(self);
542 gc_barrier_->Init(self, 0);
543 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
544 FlipCallback flip_callback(this);
545
546 // This is the point where Concurrent-Copying will pause all threads. We report a pause here, if
547 // necessary. This is slightly over-reporting, as this includes the time to actually suspend
548 // threads.
549 {
550 GcPauseListener* pause_listener = GetHeap()->GetGcPauseListener();
551 if (pause_listener != nullptr) {
552 pause_listener->StartPause();
553 }
554 }
555
556 size_t barrier_count = Runtime::Current()->FlipThreadRoots(
557 &thread_flip_visitor, &flip_callback, this);
558
559 {
560 GcPauseListener* pause_listener = GetHeap()->GetGcPauseListener();
561 if (pause_listener != nullptr) {
562 pause_listener->EndPause();
563 }
564 }
565
566 {
567 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
568 gc_barrier_->Increment(self, barrier_count);
569 }
570 is_asserting_to_space_invariant_ = true;
571 QuasiAtomic::ThreadFenceForConstructor();
572 if (kVerboseMode) {
573 LOG(INFO) << "time=" << region_space_->Time();
574 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
575 LOG(INFO) << "GC end of FlipThreadRoots";
576 }
577 }
578
579 class ConcurrentCopying::GrayImmuneObjectVisitor {
580 public:
GrayImmuneObjectVisitor()581 explicit GrayImmuneObjectVisitor() {}
582
operator ()(mirror::Object * obj) const583 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
584 if (kUseBakerReadBarrier) {
585 if (kIsDebugBuild) {
586 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
587 }
588 obj->SetReadBarrierState(ReadBarrier::GrayState());
589 }
590 }
591
Callback(mirror::Object * obj,void * arg)592 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
593 reinterpret_cast<GrayImmuneObjectVisitor*>(arg)->operator()(obj);
594 }
595 };
596
GrayAllDirtyImmuneObjects()597 void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
598 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
599 gc::Heap* const heap = Runtime::Current()->GetHeap();
600 accounting::CardTable* const card_table = heap->GetCardTable();
601 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
602 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
603 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
604 GrayImmuneObjectVisitor visitor;
605 accounting::ModUnionTable* table = heap->FindModUnionTableFromSpace(space);
606 // Mark all the objects on dirty cards since these may point to objects in other space.
607 // Once these are marked, the GC will eventually clear them later.
608 // Table is non null for boot image and zygote spaces. It is only null for application image
609 // spaces.
610 if (table != nullptr) {
611 // TODO: Consider adding precleaning outside the pause.
612 table->ProcessCards();
613 table->VisitObjects(GrayImmuneObjectVisitor::Callback, &visitor);
614 // Since the cards are recorded in the mod-union table and this is paused, we can clear
615 // the cards for the space (to madvise).
616 TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
617 card_table->ClearCardRange(space->Begin(),
618 AlignDown(space->End(), accounting::CardTable::kCardSize));
619 } else {
620 // TODO: Consider having a mark bitmap for app image spaces and avoid scanning during the
621 // pause because app image spaces are all dirty pages anyways.
622 card_table->Scan<false>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor);
623 }
624 }
625 // Since all of the objects that may point to other spaces are marked, we can avoid all the read
626 // barriers in the immune spaces.
627 updated_all_immune_objects_.StoreRelaxed(true);
628 }
629
SwapStacks()630 void ConcurrentCopying::SwapStacks() {
631 heap_->SwapStacks();
632 }
633
RecordLiveStackFreezeSize(Thread * self)634 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
635 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
636 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
637 }
638
639 // Used to visit objects in the immune spaces.
ScanImmuneObject(mirror::Object * obj)640 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
641 DCHECK(obj != nullptr);
642 DCHECK(immune_spaces_.ContainsObject(obj));
643 // Update the fields without graying it or pushing it onto the mark stack.
644 Scan(obj);
645 }
646
647 class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
648 public:
ImmuneSpaceScanObjVisitor(ConcurrentCopying * cc)649 explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
650 : collector_(cc) {}
651
operator ()(mirror::Object * obj) const652 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
653 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
654 if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
655 collector_->ScanImmuneObject(obj);
656 // Done scanning the object, go back to white.
657 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
658 ReadBarrier::WhiteState());
659 CHECK(success);
660 }
661 } else {
662 collector_->ScanImmuneObject(obj);
663 }
664 }
665
Callback(mirror::Object * obj,void * arg)666 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
667 reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
668 }
669
670 private:
671 ConcurrentCopying* const collector_;
672 };
673
674 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
MarkingPhase()675 void ConcurrentCopying::MarkingPhase() {
676 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
677 if (kVerboseMode) {
678 LOG(INFO) << "GC MarkingPhase";
679 }
680 Thread* self = Thread::Current();
681 if (kIsDebugBuild) {
682 MutexLock mu(self, *Locks::thread_list_lock_);
683 CHECK(weak_ref_access_enabled_);
684 }
685
686 // Scan immune spaces.
687 // Update all the fields in the immune spaces first without graying the objects so that we
688 // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
689 // of the objects.
690 if (kUseBakerReadBarrier) {
691 gc_grays_immune_objects_ = false;
692 }
693 {
694 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
695 for (auto& space : immune_spaces_.GetSpaces()) {
696 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
697 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
698 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
699 ImmuneSpaceScanObjVisitor visitor(this);
700 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
701 table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
702 } else {
703 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
704 reinterpret_cast<uintptr_t>(space->Limit()),
705 visitor);
706 }
707 }
708 }
709 if (kUseBakerReadBarrier) {
710 // This release fence makes the field updates in the above loop visible before allowing mutator
711 // getting access to immune objects without graying it first.
712 updated_all_immune_objects_.StoreRelease(true);
713 // Now whiten immune objects concurrently accessed and grayed by mutators. We can't do this in
714 // the above loop because we would incorrectly disable the read barrier by whitening an object
715 // which may point to an unscanned, white object, breaking the to-space invariant.
716 //
717 // Make sure no mutators are in the middle of marking an immune object before whitening immune
718 // objects.
719 IssueEmptyCheckpoint();
720 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
721 if (kVerboseMode) {
722 LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
723 }
724 for (mirror::Object* obj : immune_gray_stack_) {
725 DCHECK(obj->GetReadBarrierState() == ReadBarrier::GrayState());
726 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
727 ReadBarrier::WhiteState());
728 DCHECK(success);
729 }
730 immune_gray_stack_.clear();
731 }
732
733 {
734 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
735 Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
736 }
737 {
738 // TODO: don't visit the transaction roots if it's not active.
739 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
740 Runtime::Current()->VisitNonThreadRoots(this);
741 }
742
743 {
744 TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings());
745 // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
746 // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
747 // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
748 // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
749 // reach the point where we process weak references, we can avoid using a lock when accessing
750 // the GC mark stack, which makes mark stack processing more efficient.
751
752 // Process the mark stack once in the thread local stack mode. This marks most of the live
753 // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
754 // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
755 // objects and push refs on the mark stack.
756 ProcessMarkStack();
757 // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
758 // for the last time before transitioning to the shared mark stack mode, which would process new
759 // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
760 // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
761 // important to do these together in a single checkpoint so that we can ensure that mutators
762 // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
763 // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
764 // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
765 // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
766 SwitchToSharedMarkStackMode();
767 CHECK(!self->GetWeakRefAccessEnabled());
768 // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
769 // (which may be non-empty if there were refs found on thread-local mark stacks during the above
770 // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
771 // (via read barriers) have no way to produce any more refs to process. Marking converges once
772 // before we process weak refs below.
773 ProcessMarkStack();
774 CheckEmptyMarkStack();
775 // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
776 // lock from this point on.
777 SwitchToGcExclusiveMarkStackMode();
778 CheckEmptyMarkStack();
779 if (kVerboseMode) {
780 LOG(INFO) << "ProcessReferences";
781 }
782 // Process weak references. This may produce new refs to process and have them processed via
783 // ProcessMarkStack (in the GC exclusive mark stack mode).
784 ProcessReferences(self);
785 CheckEmptyMarkStack();
786 if (kVerboseMode) {
787 LOG(INFO) << "SweepSystemWeaks";
788 }
789 SweepSystemWeaks(self);
790 if (kVerboseMode) {
791 LOG(INFO) << "SweepSystemWeaks done";
792 }
793 // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
794 // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
795 // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
796 ProcessMarkStack();
797 CheckEmptyMarkStack();
798 // Re-enable weak ref accesses.
799 ReenableWeakRefAccess(self);
800 // Free data for class loaders that we unloaded.
801 Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
802 // Marking is done. Disable marking.
803 DisableMarking();
804 if (kUseBakerReadBarrier) {
805 ProcessFalseGrayStack();
806 }
807 CheckEmptyMarkStack();
808 }
809
810 if (kIsDebugBuild) {
811 MutexLock mu(self, *Locks::thread_list_lock_);
812 CHECK(weak_ref_access_enabled_);
813 }
814 if (kVerboseMode) {
815 LOG(INFO) << "GC end of MarkingPhase";
816 }
817 }
818
ReenableWeakRefAccess(Thread * self)819 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
820 if (kVerboseMode) {
821 LOG(INFO) << "ReenableWeakRefAccess";
822 }
823 // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
824 {
825 MutexLock mu(self, *Locks::thread_list_lock_);
826 weak_ref_access_enabled_ = true; // This is for new threads.
827 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
828 for (Thread* thread : thread_list) {
829 thread->SetWeakRefAccessEnabled(true);
830 }
831 }
832 // Unblock blocking threads.
833 GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
834 Runtime::Current()->BroadcastForNewSystemWeaks();
835 }
836
837 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
838 public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)839 explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
840 : concurrent_copying_(concurrent_copying) {
841 }
842
Run(Thread * thread)843 void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
844 // Note: self is not necessarily equal to thread since thread may be suspended.
845 Thread* self = Thread::Current();
846 DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
847 << thread->GetState() << " thread " << thread << " self " << self;
848 // Disable the thread-local is_gc_marking flag.
849 // Note a thread that has just started right before this checkpoint may have already this flag
850 // set to false, which is ok.
851 thread->SetIsGcMarkingAndUpdateEntrypoints(false);
852 // If thread is a running mutator, then act on behalf of the garbage collector.
853 // See the code in ThreadList::RunCheckpoint.
854 concurrent_copying_->GetBarrier().Pass(self);
855 }
856
857 private:
858 ConcurrentCopying* const concurrent_copying_;
859 };
860
861 class ConcurrentCopying::DisableMarkingCallback : public Closure {
862 public:
DisableMarkingCallback(ConcurrentCopying * concurrent_copying)863 explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
864 : concurrent_copying_(concurrent_copying) {
865 }
866
Run(Thread * self ATTRIBUTE_UNUSED)867 void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) {
868 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
869 // to avoid a race with ThreadList::Register().
870 CHECK(concurrent_copying_->is_marking_);
871 concurrent_copying_->is_marking_ = false;
872 }
873
874 private:
875 ConcurrentCopying* const concurrent_copying_;
876 };
877
IssueDisableMarkingCheckpoint()878 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
879 Thread* self = Thread::Current();
880 DisableMarkingCheckpoint check_point(this);
881 ThreadList* thread_list = Runtime::Current()->GetThreadList();
882 gc_barrier_->Init(self, 0);
883 DisableMarkingCallback dmc(this);
884 size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
885 // If there are no threads to wait which implies that all the checkpoint functions are finished,
886 // then no need to release the mutator lock.
887 if (barrier_count == 0) {
888 return;
889 }
890 // Release locks then wait for all mutator threads to pass the barrier.
891 Locks::mutator_lock_->SharedUnlock(self);
892 {
893 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
894 gc_barrier_->Increment(self, barrier_count);
895 }
896 Locks::mutator_lock_->SharedLock(self);
897 }
898
DisableMarking()899 void ConcurrentCopying::DisableMarking() {
900 // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
901 // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
902 // cached in a local variable.
903 IssueDisableMarkingCheckpoint();
904 if (kUseTableLookupReadBarrier) {
905 heap_->rb_table_->ClearAll();
906 DCHECK(heap_->rb_table_->IsAllCleared());
907 }
908 is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1);
909 mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff);
910 }
911
PushOntoFalseGrayStack(mirror::Object * ref)912 void ConcurrentCopying::PushOntoFalseGrayStack(mirror::Object* ref) {
913 CHECK(kUseBakerReadBarrier);
914 DCHECK(ref != nullptr);
915 MutexLock mu(Thread::Current(), mark_stack_lock_);
916 false_gray_stack_.push_back(ref);
917 }
918
ProcessFalseGrayStack()919 void ConcurrentCopying::ProcessFalseGrayStack() {
920 CHECK(kUseBakerReadBarrier);
921 // Change the objects on the false gray stack from gray to white.
922 MutexLock mu(Thread::Current(), mark_stack_lock_);
923 for (mirror::Object* obj : false_gray_stack_) {
924 DCHECK(IsMarked(obj));
925 // The object could be white here if a thread got preempted after a success at the
926 // AtomicSetReadBarrierState in Mark(), GC started marking through it (but not finished so
927 // still gray), and the thread ran to register it onto the false gray stack.
928 if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
929 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
930 ReadBarrier::WhiteState());
931 DCHECK(success);
932 }
933 }
934 false_gray_stack_.clear();
935 }
936
IssueEmptyCheckpoint()937 void ConcurrentCopying::IssueEmptyCheckpoint() {
938 Thread* self = Thread::Current();
939 ThreadList* thread_list = Runtime::Current()->GetThreadList();
940 // Release locks then wait for all mutator threads to pass the barrier.
941 Locks::mutator_lock_->SharedUnlock(self);
942 thread_list->RunEmptyCheckpoint();
943 Locks::mutator_lock_->SharedLock(self);
944 }
945
ExpandGcMarkStack()946 void ConcurrentCopying::ExpandGcMarkStack() {
947 DCHECK(gc_mark_stack_->IsFull());
948 const size_t new_size = gc_mark_stack_->Capacity() * 2;
949 std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
950 gc_mark_stack_->End());
951 gc_mark_stack_->Resize(new_size);
952 for (auto& ref : temp) {
953 gc_mark_stack_->PushBack(ref.AsMirrorPtr());
954 }
955 DCHECK(!gc_mark_stack_->IsFull());
956 }
957
PushOntoMarkStack(mirror::Object * to_ref)958 void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
959 CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0)
960 << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
961 Thread* self = Thread::Current(); // TODO: pass self as an argument from call sites?
962 CHECK(thread_running_gc_ != nullptr);
963 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
964 if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
965 if (LIKELY(self == thread_running_gc_)) {
966 // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
967 CHECK(self->GetThreadLocalMarkStack() == nullptr);
968 if (UNLIKELY(gc_mark_stack_->IsFull())) {
969 ExpandGcMarkStack();
970 }
971 gc_mark_stack_->PushBack(to_ref);
972 } else {
973 // Otherwise, use a thread-local mark stack.
974 accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
975 if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
976 MutexLock mu(self, mark_stack_lock_);
977 // Get a new thread local mark stack.
978 accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
979 if (!pooled_mark_stacks_.empty()) {
980 // Use a pooled mark stack.
981 new_tl_mark_stack = pooled_mark_stacks_.back();
982 pooled_mark_stacks_.pop_back();
983 } else {
984 // None pooled. Create a new one.
985 new_tl_mark_stack =
986 accounting::AtomicStack<mirror::Object>::Create(
987 "thread local mark stack", 4 * KB, 4 * KB);
988 }
989 DCHECK(new_tl_mark_stack != nullptr);
990 DCHECK(new_tl_mark_stack->IsEmpty());
991 new_tl_mark_stack->PushBack(to_ref);
992 self->SetThreadLocalMarkStack(new_tl_mark_stack);
993 if (tl_mark_stack != nullptr) {
994 // Store the old full stack into a vector.
995 revoked_mark_stacks_.push_back(tl_mark_stack);
996 }
997 } else {
998 tl_mark_stack->PushBack(to_ref);
999 }
1000 }
1001 } else if (mark_stack_mode == kMarkStackModeShared) {
1002 // Access the shared GC mark stack with a lock.
1003 MutexLock mu(self, mark_stack_lock_);
1004 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1005 ExpandGcMarkStack();
1006 }
1007 gc_mark_stack_->PushBack(to_ref);
1008 } else {
1009 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1010 static_cast<uint32_t>(kMarkStackModeGcExclusive))
1011 << "ref=" << to_ref
1012 << " self->gc_marking=" << self->GetIsGcMarking()
1013 << " cc->is_marking=" << is_marking_;
1014 CHECK(self == thread_running_gc_)
1015 << "Only GC-running thread should access the mark stack "
1016 << "in the GC exclusive mark stack mode";
1017 // Access the GC mark stack without a lock.
1018 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1019 ExpandGcMarkStack();
1020 }
1021 gc_mark_stack_->PushBack(to_ref);
1022 }
1023 }
1024
GetAllocationStack()1025 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
1026 return heap_->allocation_stack_.get();
1027 }
1028
GetLiveStack()1029 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
1030 return heap_->live_stack_.get();
1031 }
1032
1033 // The following visitors are used to verify that there's no references to the from-space left after
1034 // marking.
1035 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
1036 public:
VerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)1037 explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
1038 : collector_(collector) {}
1039
operator ()(mirror::Object * ref,MemberOffset offset=MemberOffset (0),mirror::Object * holder=nullptr) const1040 void operator()(mirror::Object* ref,
1041 MemberOffset offset = MemberOffset(0),
1042 mirror::Object* holder = nullptr) const
1043 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1044 if (ref == nullptr) {
1045 // OK.
1046 return;
1047 }
1048 collector_->AssertToSpaceInvariant(holder, offset, ref);
1049 if (kUseBakerReadBarrier) {
1050 CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::WhiteState())
1051 << "Ref " << ref << " " << ref->PrettyTypeOf()
1052 << " has non-white rb_state ";
1053 }
1054 }
1055
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)1056 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
1057 OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
1058 DCHECK(root != nullptr);
1059 operator()(root);
1060 }
1061
1062 private:
1063 ConcurrentCopying* const collector_;
1064 };
1065
1066 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
1067 public:
VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)1068 explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
1069 : collector_(collector) {}
1070
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1071 void operator()(ObjPtr<mirror::Object> obj,
1072 MemberOffset offset,
1073 bool is_static ATTRIBUTE_UNUSED) const
1074 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1075 mirror::Object* ref =
1076 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1077 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1078 visitor(ref, offset, obj.Ptr());
1079 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1080 void operator()(ObjPtr<mirror::Class> klass,
1081 ObjPtr<mirror::Reference> ref) const
1082 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1083 CHECK(klass->IsTypeOfReferenceClass());
1084 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
1085 }
1086
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1087 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1088 REQUIRES_SHARED(Locks::mutator_lock_) {
1089 if (!root->IsNull()) {
1090 VisitRoot(root);
1091 }
1092 }
1093
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1094 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1095 REQUIRES_SHARED(Locks::mutator_lock_) {
1096 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1097 visitor(root->AsMirrorPtr());
1098 }
1099
1100 private:
1101 ConcurrentCopying* const collector_;
1102 };
1103
1104 class ConcurrentCopying::VerifyNoFromSpaceRefsObjectVisitor {
1105 public:
VerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying * collector)1106 explicit VerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
1107 : collector_(collector) {}
operator ()(mirror::Object * obj) const1108 void operator()(mirror::Object* obj) const
1109 REQUIRES_SHARED(Locks::mutator_lock_) {
1110 ObjectCallback(obj, collector_);
1111 }
ObjectCallback(mirror::Object * obj,void * arg)1112 static void ObjectCallback(mirror::Object* obj, void *arg)
1113 REQUIRES_SHARED(Locks::mutator_lock_) {
1114 CHECK(obj != nullptr);
1115 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
1116 space::RegionSpace* region_space = collector->RegionSpace();
1117 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
1118 VerifyNoFromSpaceRefsFieldVisitor visitor(collector);
1119 obj->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1120 visitor,
1121 visitor);
1122 if (kUseBakerReadBarrier) {
1123 CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::WhiteState())
1124 << "obj=" << obj << " non-white rb_state " << obj->GetReadBarrierState();
1125 }
1126 }
1127
1128 private:
1129 ConcurrentCopying* const collector_;
1130 };
1131
1132 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()1133 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
1134 Thread* self = Thread::Current();
1135 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
1136 // Verify all threads have is_gc_marking to be false
1137 {
1138 MutexLock mu(self, *Locks::thread_list_lock_);
1139 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1140 for (Thread* thread : thread_list) {
1141 CHECK(!thread->GetIsGcMarking());
1142 }
1143 }
1144 VerifyNoFromSpaceRefsObjectVisitor visitor(this);
1145 // Roots.
1146 {
1147 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1148 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
1149 Runtime::Current()->VisitRoots(&ref_visitor);
1150 }
1151 // The to-space.
1152 region_space_->WalkToSpace(VerifyNoFromSpaceRefsObjectVisitor::ObjectCallback, this);
1153 // Non-moving spaces.
1154 {
1155 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1156 heap_->GetMarkBitmap()->Visit(visitor);
1157 }
1158 // The alloc stack.
1159 {
1160 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
1161 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
1162 it < end; ++it) {
1163 mirror::Object* const obj = it->AsMirrorPtr();
1164 if (obj != nullptr && obj->GetClass() != nullptr) {
1165 // TODO: need to call this only if obj is alive?
1166 ref_visitor(obj);
1167 visitor(obj);
1168 }
1169 }
1170 }
1171 // TODO: LOS. But only refs in LOS are classes.
1172 }
1173
1174 // The following visitors are used to assert the to-space invariant.
1175 class ConcurrentCopying::AssertToSpaceInvariantRefsVisitor {
1176 public:
AssertToSpaceInvariantRefsVisitor(ConcurrentCopying * collector)1177 explicit AssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
1178 : collector_(collector) {}
1179
operator ()(mirror::Object * ref) const1180 void operator()(mirror::Object* ref) const
1181 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1182 if (ref == nullptr) {
1183 // OK.
1184 return;
1185 }
1186 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
1187 }
1188
1189 private:
1190 ConcurrentCopying* const collector_;
1191 };
1192
1193 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
1194 public:
AssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)1195 explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
1196 : collector_(collector) {}
1197
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1198 void operator()(ObjPtr<mirror::Object> obj,
1199 MemberOffset offset,
1200 bool is_static ATTRIBUTE_UNUSED) const
1201 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1202 mirror::Object* ref =
1203 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1204 AssertToSpaceInvariantRefsVisitor visitor(collector_);
1205 visitor(ref);
1206 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const1207 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
1208 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1209 CHECK(klass->IsTypeOfReferenceClass());
1210 }
1211
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1212 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1213 REQUIRES_SHARED(Locks::mutator_lock_) {
1214 if (!root->IsNull()) {
1215 VisitRoot(root);
1216 }
1217 }
1218
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1219 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1220 REQUIRES_SHARED(Locks::mutator_lock_) {
1221 AssertToSpaceInvariantRefsVisitor visitor(collector_);
1222 visitor(root->AsMirrorPtr());
1223 }
1224
1225 private:
1226 ConcurrentCopying* const collector_;
1227 };
1228
1229 class ConcurrentCopying::AssertToSpaceInvariantObjectVisitor {
1230 public:
AssertToSpaceInvariantObjectVisitor(ConcurrentCopying * collector)1231 explicit AssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
1232 : collector_(collector) {}
operator ()(mirror::Object * obj) const1233 void operator()(mirror::Object* obj) const
1234 REQUIRES_SHARED(Locks::mutator_lock_) {
1235 ObjectCallback(obj, collector_);
1236 }
ObjectCallback(mirror::Object * obj,void * arg)1237 static void ObjectCallback(mirror::Object* obj, void *arg)
1238 REQUIRES_SHARED(Locks::mutator_lock_) {
1239 CHECK(obj != nullptr);
1240 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
1241 space::RegionSpace* region_space = collector->RegionSpace();
1242 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
1243 collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
1244 AssertToSpaceInvariantFieldVisitor visitor(collector);
1245 obj->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1246 visitor,
1247 visitor);
1248 }
1249
1250 private:
1251 ConcurrentCopying* const collector_;
1252 };
1253
1254 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
1255 public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)1256 RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
1257 bool disable_weak_ref_access)
1258 : concurrent_copying_(concurrent_copying),
1259 disable_weak_ref_access_(disable_weak_ref_access) {
1260 }
1261
Run(Thread * thread)1262 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1263 // Note: self is not necessarily equal to thread since thread may be suspended.
1264 Thread* self = Thread::Current();
1265 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1266 << thread->GetState() << " thread " << thread << " self " << self;
1267 // Revoke thread local mark stacks.
1268 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
1269 if (tl_mark_stack != nullptr) {
1270 MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
1271 concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
1272 thread->SetThreadLocalMarkStack(nullptr);
1273 }
1274 // Disable weak ref access.
1275 if (disable_weak_ref_access_) {
1276 thread->SetWeakRefAccessEnabled(false);
1277 }
1278 // If thread is a running mutator, then act on behalf of the garbage collector.
1279 // See the code in ThreadList::RunCheckpoint.
1280 concurrent_copying_->GetBarrier().Pass(self);
1281 }
1282
1283 private:
1284 ConcurrentCopying* const concurrent_copying_;
1285 const bool disable_weak_ref_access_;
1286 };
1287
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback)1288 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
1289 Closure* checkpoint_callback) {
1290 Thread* self = Thread::Current();
1291 RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
1292 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1293 gc_barrier_->Init(self, 0);
1294 size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
1295 // If there are no threads to wait which implys that all the checkpoint functions are finished,
1296 // then no need to release the mutator lock.
1297 if (barrier_count == 0) {
1298 return;
1299 }
1300 Locks::mutator_lock_->SharedUnlock(self);
1301 {
1302 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1303 gc_barrier_->Increment(self, barrier_count);
1304 }
1305 Locks::mutator_lock_->SharedLock(self);
1306 }
1307
RevokeThreadLocalMarkStack(Thread * thread)1308 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
1309 Thread* self = Thread::Current();
1310 CHECK_EQ(self, thread);
1311 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
1312 if (tl_mark_stack != nullptr) {
1313 CHECK(is_marking_);
1314 MutexLock mu(self, mark_stack_lock_);
1315 revoked_mark_stacks_.push_back(tl_mark_stack);
1316 thread->SetThreadLocalMarkStack(nullptr);
1317 }
1318 }
1319
ProcessMarkStack()1320 void ConcurrentCopying::ProcessMarkStack() {
1321 if (kVerboseMode) {
1322 LOG(INFO) << "ProcessMarkStack. ";
1323 }
1324 bool empty_prev = false;
1325 while (true) {
1326 bool empty = ProcessMarkStackOnce();
1327 if (empty_prev && empty) {
1328 // Saw empty mark stack for a second time, done.
1329 break;
1330 }
1331 empty_prev = empty;
1332 }
1333 }
1334
ProcessMarkStackOnce()1335 bool ConcurrentCopying::ProcessMarkStackOnce() {
1336 Thread* self = Thread::Current();
1337 CHECK(thread_running_gc_ != nullptr);
1338 CHECK(self == thread_running_gc_);
1339 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1340 size_t count = 0;
1341 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1342 if (mark_stack_mode == kMarkStackModeThreadLocal) {
1343 // Process the thread-local mark stacks and the GC mark stack.
1344 count += ProcessThreadLocalMarkStacks(false, nullptr);
1345 while (!gc_mark_stack_->IsEmpty()) {
1346 mirror::Object* to_ref = gc_mark_stack_->PopBack();
1347 ProcessMarkStackRef(to_ref);
1348 ++count;
1349 }
1350 gc_mark_stack_->Reset();
1351 } else if (mark_stack_mode == kMarkStackModeShared) {
1352 // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
1353 // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
1354 // disabled at this point.
1355 IssueEmptyCheckpoint();
1356 // Process the shared GC mark stack with a lock.
1357 {
1358 MutexLock mu(self, mark_stack_lock_);
1359 CHECK(revoked_mark_stacks_.empty());
1360 }
1361 while (true) {
1362 std::vector<mirror::Object*> refs;
1363 {
1364 // Copy refs with lock. Note the number of refs should be small.
1365 MutexLock mu(self, mark_stack_lock_);
1366 if (gc_mark_stack_->IsEmpty()) {
1367 break;
1368 }
1369 for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
1370 p != gc_mark_stack_->End(); ++p) {
1371 refs.push_back(p->AsMirrorPtr());
1372 }
1373 gc_mark_stack_->Reset();
1374 }
1375 for (mirror::Object* ref : refs) {
1376 ProcessMarkStackRef(ref);
1377 ++count;
1378 }
1379 }
1380 } else {
1381 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1382 static_cast<uint32_t>(kMarkStackModeGcExclusive));
1383 {
1384 MutexLock mu(self, mark_stack_lock_);
1385 CHECK(revoked_mark_stacks_.empty());
1386 }
1387 // Process the GC mark stack in the exclusive mode. No need to take the lock.
1388 while (!gc_mark_stack_->IsEmpty()) {
1389 mirror::Object* to_ref = gc_mark_stack_->PopBack();
1390 ProcessMarkStackRef(to_ref);
1391 ++count;
1392 }
1393 gc_mark_stack_->Reset();
1394 }
1395
1396 // Return true if the stack was empty.
1397 return count == 0;
1398 }
1399
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback)1400 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
1401 Closure* checkpoint_callback) {
1402 // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
1403 RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
1404 size_t count = 0;
1405 std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
1406 {
1407 MutexLock mu(Thread::Current(), mark_stack_lock_);
1408 // Make a copy of the mark stack vector.
1409 mark_stacks = revoked_mark_stacks_;
1410 revoked_mark_stacks_.clear();
1411 }
1412 for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
1413 for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
1414 mirror::Object* to_ref = p->AsMirrorPtr();
1415 ProcessMarkStackRef(to_ref);
1416 ++count;
1417 }
1418 {
1419 MutexLock mu(Thread::Current(), mark_stack_lock_);
1420 if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
1421 // The pool has enough. Delete it.
1422 delete mark_stack;
1423 } else {
1424 // Otherwise, put it into the pool for later reuse.
1425 mark_stack->Reset();
1426 pooled_mark_stacks_.push_back(mark_stack);
1427 }
1428 }
1429 }
1430 return count;
1431 }
1432
ProcessMarkStackRef(mirror::Object * to_ref)1433 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
1434 DCHECK(!region_space_->IsInFromSpace(to_ref));
1435 if (kUseBakerReadBarrier) {
1436 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
1437 << " " << to_ref << " " << to_ref->GetReadBarrierState()
1438 << " is_marked=" << IsMarked(to_ref);
1439 }
1440 bool add_to_live_bytes = false;
1441 if (region_space_->IsInUnevacFromSpace(to_ref)) {
1442 // Mark the bitmap only in the GC thread here so that we don't need a CAS.
1443 if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
1444 // It may be already marked if we accidentally pushed the same object twice due to the racy
1445 // bitmap read in MarkUnevacFromSpaceRegion.
1446 Scan(to_ref);
1447 // Only add to the live bytes if the object was not already marked.
1448 add_to_live_bytes = true;
1449 }
1450 } else {
1451 Scan(to_ref);
1452 }
1453 if (kUseBakerReadBarrier) {
1454 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
1455 << " " << to_ref << " " << to_ref->GetReadBarrierState()
1456 << " is_marked=" << IsMarked(to_ref);
1457 }
1458 #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
1459 mirror::Object* referent = nullptr;
1460 if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
1461 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
1462 !IsInToSpace(referent)))) {
1463 // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
1464 // will change it to white later in ReferenceQueue::DequeuePendingReference().
1465 DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr) << "Left unenqueued ref gray " << to_ref;
1466 } else {
1467 // We may occasionally leave a reference white in the queue if its referent happens to be
1468 // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
1469 // above IsInToSpace() evaluates to true and we change the color from gray to white here in this
1470 // else block.
1471 if (kUseBakerReadBarrier) {
1472 bool success = to_ref->AtomicSetReadBarrierState</*kCasRelease*/true>(
1473 ReadBarrier::GrayState(),
1474 ReadBarrier::WhiteState());
1475 DCHECK(success) << "Must succeed as we won the race.";
1476 }
1477 }
1478 #else
1479 DCHECK(!kUseBakerReadBarrier);
1480 #endif
1481
1482 if (add_to_live_bytes) {
1483 // Add to the live bytes per unevacuated from space. Note this code is always run by the
1484 // GC-running thread (no synchronization required).
1485 DCHECK(region_space_bitmap_->Test(to_ref));
1486 size_t obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
1487 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1488 region_space_->AddLiveBytes(to_ref, alloc_size);
1489 }
1490 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
1491 AssertToSpaceInvariantObjectVisitor visitor(this);
1492 visitor(to_ref);
1493 }
1494 }
1495
1496 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
1497 public:
DisableWeakRefAccessCallback(ConcurrentCopying * concurrent_copying)1498 explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
1499 : concurrent_copying_(concurrent_copying) {
1500 }
1501
Run(Thread * self ATTRIBUTE_UNUSED)1502 void Run(Thread* self ATTRIBUTE_UNUSED) OVERRIDE REQUIRES(Locks::thread_list_lock_) {
1503 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
1504 // to avoid a deadlock b/31500969.
1505 CHECK(concurrent_copying_->weak_ref_access_enabled_);
1506 concurrent_copying_->weak_ref_access_enabled_ = false;
1507 }
1508
1509 private:
1510 ConcurrentCopying* const concurrent_copying_;
1511 };
1512
SwitchToSharedMarkStackMode()1513 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
1514 Thread* self = Thread::Current();
1515 CHECK(thread_running_gc_ != nullptr);
1516 CHECK_EQ(self, thread_running_gc_);
1517 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1518 MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1519 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1520 static_cast<uint32_t>(kMarkStackModeThreadLocal));
1521 mark_stack_mode_.StoreRelaxed(kMarkStackModeShared);
1522 DisableWeakRefAccessCallback dwrac(this);
1523 // Process the thread local mark stacks one last time after switching to the shared mark stack
1524 // mode and disable weak ref accesses.
1525 ProcessThreadLocalMarkStacks(true, &dwrac);
1526 if (kVerboseMode) {
1527 LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
1528 }
1529 }
1530
SwitchToGcExclusiveMarkStackMode()1531 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
1532 Thread* self = Thread::Current();
1533 CHECK(thread_running_gc_ != nullptr);
1534 CHECK_EQ(self, thread_running_gc_);
1535 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1536 MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1537 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1538 static_cast<uint32_t>(kMarkStackModeShared));
1539 mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive);
1540 QuasiAtomic::ThreadFenceForConstructor();
1541 if (kVerboseMode) {
1542 LOG(INFO) << "Switched to GC exclusive mark stack mode";
1543 }
1544 }
1545
CheckEmptyMarkStack()1546 void ConcurrentCopying::CheckEmptyMarkStack() {
1547 Thread* self = Thread::Current();
1548 CHECK(thread_running_gc_ != nullptr);
1549 CHECK_EQ(self, thread_running_gc_);
1550 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1551 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1552 if (mark_stack_mode == kMarkStackModeThreadLocal) {
1553 // Thread-local mark stack mode.
1554 RevokeThreadLocalMarkStacks(false, nullptr);
1555 MutexLock mu(Thread::Current(), mark_stack_lock_);
1556 if (!revoked_mark_stacks_.empty()) {
1557 for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
1558 while (!mark_stack->IsEmpty()) {
1559 mirror::Object* obj = mark_stack->PopBack();
1560 if (kUseBakerReadBarrier) {
1561 uint32_t rb_state = obj->GetReadBarrierState();
1562 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
1563 << rb_state << " is_marked=" << IsMarked(obj);
1564 } else {
1565 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
1566 << " is_marked=" << IsMarked(obj);
1567 }
1568 }
1569 }
1570 LOG(FATAL) << "mark stack is not empty";
1571 }
1572 } else {
1573 // Shared, GC-exclusive, or off.
1574 MutexLock mu(Thread::Current(), mark_stack_lock_);
1575 CHECK(gc_mark_stack_->IsEmpty());
1576 CHECK(revoked_mark_stacks_.empty());
1577 }
1578 }
1579
SweepSystemWeaks(Thread * self)1580 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
1581 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
1582 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1583 Runtime::Current()->SweepSystemWeaks(this);
1584 }
1585
Sweep(bool swap_bitmaps)1586 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
1587 {
1588 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
1589 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1590 if (kEnableFromSpaceAccountingCheck) {
1591 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
1592 }
1593 heap_->MarkAllocStackAsLive(live_stack);
1594 live_stack->Reset();
1595 }
1596 CheckEmptyMarkStack();
1597 TimingLogger::ScopedTiming split("Sweep", GetTimings());
1598 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1599 if (space->IsContinuousMemMapAllocSpace()) {
1600 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1601 if (space == region_space_ || immune_spaces_.ContainsSpace(space)) {
1602 continue;
1603 }
1604 TimingLogger::ScopedTiming split2(
1605 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
1606 RecordFree(alloc_space->Sweep(swap_bitmaps));
1607 }
1608 }
1609 SweepLargeObjects(swap_bitmaps);
1610 }
1611
MarkZygoteLargeObjects()1612 void ConcurrentCopying::MarkZygoteLargeObjects() {
1613 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1614 Thread* const self = Thread::Current();
1615 WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
1616 space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
1617 if (los != nullptr) {
1618 // Pick the current live bitmap (mark bitmap if swapped).
1619 accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
1620 accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
1621 // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
1622 std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
1623 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
1624 reinterpret_cast<uintptr_t>(range.second),
1625 [mark_bitmap, los, self](mirror::Object* obj)
1626 REQUIRES(Locks::heap_bitmap_lock_)
1627 REQUIRES_SHARED(Locks::mutator_lock_) {
1628 if (los->IsZygoteLargeObject(self, obj)) {
1629 mark_bitmap->Set(obj);
1630 }
1631 });
1632 }
1633 }
1634
SweepLargeObjects(bool swap_bitmaps)1635 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
1636 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
1637 if (heap_->GetLargeObjectsSpace() != nullptr) {
1638 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1639 }
1640 }
1641
ReclaimPhase()1642 void ConcurrentCopying::ReclaimPhase() {
1643 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
1644 if (kVerboseMode) {
1645 LOG(INFO) << "GC ReclaimPhase";
1646 }
1647 Thread* self = Thread::Current();
1648
1649 {
1650 // Double-check that the mark stack is empty.
1651 // Note: need to set this after VerifyNoFromSpaceRef().
1652 is_asserting_to_space_invariant_ = false;
1653 QuasiAtomic::ThreadFenceForConstructor();
1654 if (kVerboseMode) {
1655 LOG(INFO) << "Issue an empty check point. ";
1656 }
1657 IssueEmptyCheckpoint();
1658 // Disable the check.
1659 is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0);
1660 if (kUseBakerReadBarrier) {
1661 updated_all_immune_objects_.StoreSequentiallyConsistent(false);
1662 }
1663 CheckEmptyMarkStack();
1664 }
1665
1666 {
1667 // Record freed objects.
1668 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
1669 // Don't include thread-locals that are in the to-space.
1670 const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
1671 const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
1672 const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
1673 const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
1674 uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
1675 cumulative_bytes_moved_.FetchAndAddRelaxed(to_bytes);
1676 uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
1677 cumulative_objects_moved_.FetchAndAddRelaxed(to_objects);
1678 if (kEnableFromSpaceAccountingCheck) {
1679 CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
1680 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
1681 }
1682 CHECK_LE(to_objects, from_objects);
1683 CHECK_LE(to_bytes, from_bytes);
1684 // cleared_bytes and cleared_objects may be greater than the from space equivalents since
1685 // ClearFromSpace may clear empty unevac regions.
1686 uint64_t cleared_bytes;
1687 uint64_t cleared_objects;
1688 {
1689 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
1690 region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects);
1691 CHECK_GE(cleared_bytes, from_bytes);
1692 CHECK_GE(cleared_objects, from_objects);
1693 }
1694 int64_t freed_bytes = cleared_bytes - to_bytes;
1695 int64_t freed_objects = cleared_objects - to_objects;
1696 if (kVerboseMode) {
1697 LOG(INFO) << "RecordFree:"
1698 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
1699 << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
1700 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
1701 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
1702 << " from_space size=" << region_space_->FromSpaceSize()
1703 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
1704 << " to_space size=" << region_space_->ToSpaceSize();
1705 LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1706 }
1707 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
1708 if (kVerboseMode) {
1709 LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1710 }
1711 }
1712
1713 {
1714 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1715 Sweep(false);
1716 SwapBitmaps();
1717 heap_->UnBindBitmaps();
1718
1719 // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
1720 DCHECK(region_space_bitmap_ != nullptr);
1721 region_space_bitmap_ = nullptr;
1722 }
1723
1724 CheckEmptyMarkStack();
1725
1726 if (kVerboseMode) {
1727 LOG(INFO) << "GC end of ReclaimPhase";
1728 }
1729 }
1730
1731 // Assert the to-space invariant.
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)1732 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
1733 MemberOffset offset,
1734 mirror::Object* ref) {
1735 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC);
1736 if (is_asserting_to_space_invariant_) {
1737 using RegionType = space::RegionSpace::RegionType;
1738 space::RegionSpace::RegionType type = region_space_->GetRegionType(ref);
1739 if (type == RegionType::kRegionTypeToSpace) {
1740 // OK.
1741 return;
1742 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
1743 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
1744 } else if (UNLIKELY(type == RegionType::kRegionTypeFromSpace)) {
1745 // Not OK. Do extra logging.
1746 if (obj != nullptr) {
1747 LogFromSpaceRefHolder(obj, offset);
1748 }
1749 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
1750 CHECK(false) << "Found from-space ref " << ref << " " << ref->PrettyTypeOf();
1751 } else {
1752 AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1753 }
1754 }
1755 }
1756
1757 class RootPrinter {
1758 public:
RootPrinter()1759 RootPrinter() { }
1760
1761 template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)1762 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1763 REQUIRES_SHARED(Locks::mutator_lock_) {
1764 if (!root->IsNull()) {
1765 VisitRoot(root);
1766 }
1767 }
1768
1769 template <class MirrorType>
VisitRoot(mirror::Object ** root)1770 void VisitRoot(mirror::Object** root)
1771 REQUIRES_SHARED(Locks::mutator_lock_) {
1772 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
1773 }
1774
1775 template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)1776 void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1777 REQUIRES_SHARED(Locks::mutator_lock_) {
1778 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
1779 }
1780 };
1781
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)1782 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1783 mirror::Object* ref) {
1784 CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1785 if (is_asserting_to_space_invariant_) {
1786 if (region_space_->IsInToSpace(ref)) {
1787 // OK.
1788 return;
1789 } else if (region_space_->IsInUnevacFromSpace(ref)) {
1790 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
1791 } else if (region_space_->IsInFromSpace(ref)) {
1792 // Not OK. Do extra logging.
1793 if (gc_root_source == nullptr) {
1794 // No info.
1795 } else if (gc_root_source->HasArtField()) {
1796 ArtField* field = gc_root_source->GetArtField();
1797 LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
1798 << ArtField::PrettyField(field);
1799 RootPrinter root_printer;
1800 field->VisitRoots(root_printer);
1801 } else if (gc_root_source->HasArtMethod()) {
1802 ArtMethod* method = gc_root_source->GetArtMethod();
1803 LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
1804 << ArtMethod::PrettyMethod(method);
1805 RootPrinter root_printer;
1806 method->VisitRoots(root_printer, kRuntimePointerSize);
1807 }
1808 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
1809 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
1810 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
1811 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), true);
1812 CHECK(false) << "Found from-space ref " << ref << " " << ref->PrettyTypeOf();
1813 } else {
1814 AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1815 }
1816 }
1817 }
1818
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)1819 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1820 if (kUseBakerReadBarrier) {
1821 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
1822 << " holder rb_state=" << obj->GetReadBarrierState();
1823 } else {
1824 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
1825 }
1826 if (region_space_->IsInFromSpace(obj)) {
1827 LOG(INFO) << "holder is in the from-space.";
1828 } else if (region_space_->IsInToSpace(obj)) {
1829 LOG(INFO) << "holder is in the to-space.";
1830 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1831 LOG(INFO) << "holder is in the unevac from-space.";
1832 if (IsMarkedInUnevacFromSpace(obj)) {
1833 LOG(INFO) << "holder is marked in the region space bitmap.";
1834 } else {
1835 LOG(INFO) << "holder is not marked in the region space bitmap.";
1836 }
1837 } else {
1838 // In a non-moving space.
1839 if (immune_spaces_.ContainsObject(obj)) {
1840 LOG(INFO) << "holder is in an immune image or the zygote space.";
1841 } else {
1842 LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
1843 accounting::ContinuousSpaceBitmap* mark_bitmap =
1844 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1845 accounting::LargeObjectBitmap* los_bitmap =
1846 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1847 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1848 bool is_los = mark_bitmap == nullptr;
1849 if (!is_los && mark_bitmap->Test(obj)) {
1850 LOG(INFO) << "holder is marked in the mark bit map.";
1851 } else if (is_los && los_bitmap->Test(obj)) {
1852 LOG(INFO) << "holder is marked in the los bit map.";
1853 } else {
1854 // If ref is on the allocation stack, then it is considered
1855 // mark/alive (but not necessarily on the live stack.)
1856 if (IsOnAllocStack(obj)) {
1857 LOG(INFO) << "holder is on the alloc stack.";
1858 } else {
1859 LOG(INFO) << "holder is not marked or on the alloc stack.";
1860 }
1861 }
1862 }
1863 }
1864 LOG(INFO) << "offset=" << offset.SizeValue();
1865 }
1866
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)1867 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1868 mirror::Object* ref) {
1869 // In a non-moving spaces. Check that the ref is marked.
1870 if (immune_spaces_.ContainsObject(ref)) {
1871 if (kUseBakerReadBarrier) {
1872 // Immune object may not be gray if called from the GC.
1873 if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
1874 return;
1875 }
1876 bool updated_all_immune_objects = updated_all_immune_objects_.LoadSequentiallyConsistent();
1877 CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
1878 << "Unmarked immune space ref. obj=" << obj << " rb_state="
1879 << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
1880 << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
1881 << " updated_all_immune_objects=" << updated_all_immune_objects;
1882 }
1883 } else {
1884 accounting::ContinuousSpaceBitmap* mark_bitmap =
1885 heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1886 accounting::LargeObjectBitmap* los_bitmap =
1887 heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1888 bool is_los = mark_bitmap == nullptr;
1889 if ((!is_los && mark_bitmap->Test(ref)) ||
1890 (is_los && los_bitmap->Test(ref))) {
1891 // OK.
1892 } else {
1893 // If ref is on the allocation stack, then it may not be
1894 // marked live, but considered marked/alive (but not
1895 // necessarily on the live stack).
1896 CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1897 << "obj=" << obj << " ref=" << ref;
1898 }
1899 }
1900 }
1901
1902 // Used to scan ref fields of an object.
1903 class ConcurrentCopying::RefFieldsVisitor {
1904 public:
RefFieldsVisitor(ConcurrentCopying * collector)1905 explicit RefFieldsVisitor(ConcurrentCopying* collector)
1906 : collector_(collector) {}
1907
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1908 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1909 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
1910 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
1911 collector_->Process(obj, offset);
1912 }
1913
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1914 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1915 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1916 CHECK(klass->IsTypeOfReferenceClass());
1917 collector_->DelayReferenceReferent(klass, ref);
1918 }
1919
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1920 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1921 ALWAYS_INLINE
1922 REQUIRES_SHARED(Locks::mutator_lock_) {
1923 if (!root->IsNull()) {
1924 VisitRoot(root);
1925 }
1926 }
1927
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1928 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1929 ALWAYS_INLINE
1930 REQUIRES_SHARED(Locks::mutator_lock_) {
1931 collector_->MarkRoot</*kGrayImmuneObject*/false>(root);
1932 }
1933
1934 private:
1935 ConcurrentCopying* const collector_;
1936 };
1937
1938 // Scan ref fields of an object.
Scan(mirror::Object * to_ref)1939 inline void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1940 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
1941 // Avoid all read barriers during visit references to help performance.
1942 // Don't do this in transaction mode because we may read the old value of an field which may
1943 // trigger read barriers.
1944 Thread::Current()->ModifyDebugDisallowReadBarrier(1);
1945 }
1946 DCHECK(!region_space_->IsInFromSpace(to_ref));
1947 DCHECK_EQ(Thread::Current(), thread_running_gc_);
1948 RefFieldsVisitor visitor(this);
1949 // Disable the read barrier for a performance reason.
1950 to_ref->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1951 visitor, visitor);
1952 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
1953 Thread::Current()->ModifyDebugDisallowReadBarrier(-1);
1954 }
1955 }
1956
1957 // Process a field.
Process(mirror::Object * obj,MemberOffset offset)1958 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1959 DCHECK_EQ(Thread::Current(), thread_running_gc_);
1960 mirror::Object* ref = obj->GetFieldObject<
1961 mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1962 mirror::Object* to_ref = Mark</*kGrayImmuneObject*/false, /*kFromGCThread*/true>(
1963 ref,
1964 /*holder*/ obj,
1965 offset);
1966 if (to_ref == ref) {
1967 return;
1968 }
1969 // This may fail if the mutator writes to the field at the same time. But it's ok.
1970 mirror::Object* expected_ref = ref;
1971 mirror::Object* new_ref = to_ref;
1972 do {
1973 if (expected_ref !=
1974 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1975 // It was updated by the mutator.
1976 break;
1977 }
1978 // Use release cas to make sure threads reading the reference see contents of copied objects.
1979 } while (!obj->CasFieldWeakReleaseObjectWithoutWriteBarrier<false, false, kVerifyNone>(
1980 offset,
1981 expected_ref,
1982 new_ref));
1983 }
1984
1985 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1986 inline void ConcurrentCopying::VisitRoots(
1987 mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1988 for (size_t i = 0; i < count; ++i) {
1989 mirror::Object** root = roots[i];
1990 mirror::Object* ref = *root;
1991 mirror::Object* to_ref = Mark(ref);
1992 if (to_ref == ref) {
1993 continue;
1994 }
1995 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1996 mirror::Object* expected_ref = ref;
1997 mirror::Object* new_ref = to_ref;
1998 do {
1999 if (expected_ref != addr->LoadRelaxed()) {
2000 // It was updated by the mutator.
2001 break;
2002 }
2003 } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
2004 }
2005 }
2006
2007 template<bool kGrayImmuneObject>
MarkRoot(mirror::CompressedReference<mirror::Object> * root)2008 inline void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) {
2009 DCHECK(!root->IsNull());
2010 mirror::Object* const ref = root->AsMirrorPtr();
2011 mirror::Object* to_ref = Mark<kGrayImmuneObject>(ref);
2012 if (to_ref != ref) {
2013 auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
2014 auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
2015 auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
2016 // If the cas fails, then it was updated by the mutator.
2017 do {
2018 if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
2019 // It was updated by the mutator.
2020 break;
2021 }
2022 } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
2023 }
2024 }
2025
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2026 inline void ConcurrentCopying::VisitRoots(
2027 mirror::CompressedReference<mirror::Object>** roots, size_t count,
2028 const RootInfo& info ATTRIBUTE_UNUSED) {
2029 for (size_t i = 0; i < count; ++i) {
2030 mirror::CompressedReference<mirror::Object>* const root = roots[i];
2031 if (!root->IsNull()) {
2032 // kGrayImmuneObject is true because this is used for the thread flip.
2033 MarkRoot</*kGrayImmuneObject*/true>(root);
2034 }
2035 }
2036 }
2037
2038 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
2039 class ConcurrentCopying::ScopedGcGraysImmuneObjects {
2040 public:
ScopedGcGraysImmuneObjects(ConcurrentCopying * collector)2041 explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
2042 : collector_(collector), enabled_(false) {
2043 if (kUseBakerReadBarrier &&
2044 collector_->thread_running_gc_ == Thread::Current() &&
2045 !collector_->gc_grays_immune_objects_) {
2046 collector_->gc_grays_immune_objects_ = true;
2047 enabled_ = true;
2048 }
2049 }
2050
~ScopedGcGraysImmuneObjects()2051 ~ScopedGcGraysImmuneObjects() {
2052 if (kUseBakerReadBarrier &&
2053 collector_->thread_running_gc_ == Thread::Current() &&
2054 enabled_) {
2055 DCHECK(collector_->gc_grays_immune_objects_);
2056 collector_->gc_grays_immune_objects_ = false;
2057 }
2058 }
2059
2060 private:
2061 ConcurrentCopying* const collector_;
2062 bool enabled_;
2063 };
2064
2065 // Fill the given memory block with a dummy object. Used to fill in a
2066 // copy of objects that was lost in race.
FillWithDummyObject(mirror::Object * dummy_obj,size_t byte_size)2067 void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
2068 // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
2069 // barriers here because we need the updated reference to the int array class, etc. Temporary set
2070 // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
2071 ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
2072 CHECK_ALIGNED(byte_size, kObjectAlignment);
2073 memset(dummy_obj, 0, byte_size);
2074 // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
2075 // Explicitly mark to make sure to get an object in the to-space.
2076 mirror::Class* int_array_class = down_cast<mirror::Class*>(
2077 Mark(mirror::IntArray::GetArrayClass<kWithoutReadBarrier>()));
2078 CHECK(int_array_class != nullptr);
2079 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
2080 size_t component_size = int_array_class->GetComponentSize<kWithoutReadBarrier>();
2081 CHECK_EQ(component_size, sizeof(int32_t));
2082 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
2083 if (data_offset > byte_size) {
2084 // An int array is too big. Use java.lang.Object.
2085 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
2086 CHECK_EQ(byte_size, (java_lang_Object_->GetObjectSize<kVerifyNone, kWithoutReadBarrier>()));
2087 dummy_obj->SetClass(java_lang_Object_);
2088 CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()));
2089 } else {
2090 // Use an int array.
2091 dummy_obj->SetClass(int_array_class);
2092 CHECK((dummy_obj->IsArrayInstance<kVerifyNone, kWithoutReadBarrier>()));
2093 int32_t length = (byte_size - data_offset) / component_size;
2094 mirror::Array* dummy_arr = dummy_obj->AsArray<kVerifyNone, kWithoutReadBarrier>();
2095 dummy_arr->SetLength(length);
2096 CHECK_EQ(dummy_arr->GetLength(), length)
2097 << "byte_size=" << byte_size << " length=" << length
2098 << " component_size=" << component_size << " data_offset=" << data_offset;
2099 CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()))
2100 << "byte_size=" << byte_size << " length=" << length
2101 << " component_size=" << component_size << " data_offset=" << data_offset;
2102 }
2103 }
2104
2105 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(size_t alloc_size)2106 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
2107 // Try to reuse the blocks that were unused due to CAS failures.
2108 CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
2109 Thread* self = Thread::Current();
2110 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
2111 size_t byte_size;
2112 uint8_t* addr;
2113 {
2114 MutexLock mu(self, skipped_blocks_lock_);
2115 auto it = skipped_blocks_map_.lower_bound(alloc_size);
2116 if (it == skipped_blocks_map_.end()) {
2117 // Not found.
2118 return nullptr;
2119 }
2120 byte_size = it->first;
2121 CHECK_GE(byte_size, alloc_size);
2122 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
2123 // If remainder would be too small for a dummy object, retry with a larger request size.
2124 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
2125 if (it == skipped_blocks_map_.end()) {
2126 // Not found.
2127 return nullptr;
2128 }
2129 CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
2130 CHECK_GE(it->first - alloc_size, min_object_size)
2131 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
2132 }
2133 // Found a block.
2134 CHECK(it != skipped_blocks_map_.end());
2135 byte_size = it->first;
2136 addr = it->second;
2137 CHECK_GE(byte_size, alloc_size);
2138 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
2139 CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
2140 if (kVerboseMode) {
2141 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
2142 }
2143 skipped_blocks_map_.erase(it);
2144 }
2145 memset(addr, 0, byte_size);
2146 if (byte_size > alloc_size) {
2147 // Return the remainder to the map.
2148 CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
2149 CHECK_GE(byte_size - alloc_size, min_object_size);
2150 // FillWithDummyObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
2151 // violation and possible deadlock. The deadlock case is a recursive case:
2152 // FillWithDummyObject -> IntArray::GetArrayClass -> Mark -> Copy -> AllocateInSkippedBlock.
2153 FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
2154 byte_size - alloc_size);
2155 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
2156 {
2157 MutexLock mu(self, skipped_blocks_lock_);
2158 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
2159 }
2160 }
2161 return reinterpret_cast<mirror::Object*>(addr);
2162 }
2163
Copy(mirror::Object * from_ref,mirror::Object * holder,MemberOffset offset)2164 mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref,
2165 mirror::Object* holder,
2166 MemberOffset offset) {
2167 DCHECK(region_space_->IsInFromSpace(from_ref));
2168 // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
2169 // from a previous GC that is either inside or outside the allocated region.
2170 mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
2171 if (UNLIKELY(klass == nullptr)) {
2172 heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal */ true);
2173 }
2174 // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
2175 // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
2176 // objects, but it's ok and necessary.
2177 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
2178 size_t region_space_alloc_size = (obj_size <= space::RegionSpace::kRegionSize)
2179 ? RoundUp(obj_size, space::RegionSpace::kAlignment)
2180 : RoundUp(obj_size, space::RegionSpace::kRegionSize);
2181 size_t region_space_bytes_allocated = 0U;
2182 size_t non_moving_space_bytes_allocated = 0U;
2183 size_t bytes_allocated = 0U;
2184 size_t dummy;
2185 mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
2186 region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &dummy);
2187 bytes_allocated = region_space_bytes_allocated;
2188 if (to_ref != nullptr) {
2189 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
2190 }
2191 bool fall_back_to_non_moving = false;
2192 if (UNLIKELY(to_ref == nullptr)) {
2193 // Failed to allocate in the region space. Try the skipped blocks.
2194 to_ref = AllocateInSkippedBlock(region_space_alloc_size);
2195 if (to_ref != nullptr) {
2196 // Succeeded to allocate in a skipped block.
2197 if (heap_->use_tlab_) {
2198 // This is necessary for the tlab case as it's not accounted in the space.
2199 region_space_->RecordAlloc(to_ref);
2200 }
2201 bytes_allocated = region_space_alloc_size;
2202 } else {
2203 // Fall back to the non-moving space.
2204 fall_back_to_non_moving = true;
2205 if (kVerboseMode) {
2206 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
2207 << to_space_bytes_skipped_.LoadSequentiallyConsistent()
2208 << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
2209 }
2210 fall_back_to_non_moving = true;
2211 to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
2212 &non_moving_space_bytes_allocated, nullptr, &dummy);
2213 if (UNLIKELY(to_ref == nullptr)) {
2214 LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
2215 << obj_size << " byte object in region type "
2216 << region_space_->GetRegionType(from_ref);
2217 LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
2218 }
2219 bytes_allocated = non_moving_space_bytes_allocated;
2220 // Mark it in the mark bitmap.
2221 accounting::ContinuousSpaceBitmap* mark_bitmap =
2222 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
2223 CHECK(mark_bitmap != nullptr);
2224 CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
2225 }
2226 }
2227 DCHECK(to_ref != nullptr);
2228
2229 // Copy the object excluding the lock word since that is handled in the loop.
2230 to_ref->SetClass(klass);
2231 const size_t kObjectHeaderSize = sizeof(mirror::Object);
2232 DCHECK_GE(obj_size, kObjectHeaderSize);
2233 static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
2234 sizeof(LockWord),
2235 "Object header size does not match");
2236 // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
2237 // object in the from space is immutable other than the lock word. b/31423258
2238 memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
2239 reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
2240 obj_size - kObjectHeaderSize);
2241
2242 // Attempt to install the forward pointer. This is in a loop as the
2243 // lock word atomic write can fail.
2244 while (true) {
2245 LockWord old_lock_word = from_ref->GetLockWord(false);
2246
2247 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
2248 // Lost the race. Another thread (either GC or mutator) stored
2249 // the forwarding pointer first. Make the lost copy (to_ref)
2250 // look like a valid but dead (dummy) object and keep it for
2251 // future reuse.
2252 FillWithDummyObject(to_ref, bytes_allocated);
2253 if (!fall_back_to_non_moving) {
2254 DCHECK(region_space_->IsInToSpace(to_ref));
2255 if (bytes_allocated > space::RegionSpace::kRegionSize) {
2256 // Free the large alloc.
2257 region_space_->FreeLarge(to_ref, bytes_allocated);
2258 } else {
2259 // Record the lost copy for later reuse.
2260 heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
2261 to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
2262 to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
2263 MutexLock mu(Thread::Current(), skipped_blocks_lock_);
2264 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
2265 reinterpret_cast<uint8_t*>(to_ref)));
2266 }
2267 } else {
2268 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
2269 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
2270 // Free the non-moving-space chunk.
2271 accounting::ContinuousSpaceBitmap* mark_bitmap =
2272 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
2273 CHECK(mark_bitmap != nullptr);
2274 CHECK(mark_bitmap->Clear(to_ref));
2275 heap_->non_moving_space_->Free(Thread::Current(), to_ref);
2276 }
2277
2278 // Get the winner's forward ptr.
2279 mirror::Object* lost_fwd_ptr = to_ref;
2280 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
2281 CHECK(to_ref != nullptr);
2282 CHECK_NE(to_ref, lost_fwd_ptr);
2283 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
2284 << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
2285 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
2286 return to_ref;
2287 }
2288
2289 // Copy the old lock word over since we did not copy it yet.
2290 to_ref->SetLockWord(old_lock_word, false);
2291 // Set the gray ptr.
2292 if (kUseBakerReadBarrier) {
2293 to_ref->SetReadBarrierState(ReadBarrier::GrayState());
2294 }
2295
2296 // Do a fence to prevent the field CAS in ConcurrentCopying::Process from possibly reordering
2297 // before the object copy.
2298 QuasiAtomic::ThreadFenceRelease();
2299
2300 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
2301
2302 // Try to atomically write the fwd ptr.
2303 bool success = from_ref->CasLockWordWeakRelaxed(old_lock_word, new_lock_word);
2304 if (LIKELY(success)) {
2305 // The CAS succeeded.
2306 objects_moved_.FetchAndAddRelaxed(1);
2307 bytes_moved_.FetchAndAddRelaxed(region_space_alloc_size);
2308 if (LIKELY(!fall_back_to_non_moving)) {
2309 DCHECK(region_space_->IsInToSpace(to_ref));
2310 } else {
2311 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
2312 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
2313 }
2314 if (kUseBakerReadBarrier) {
2315 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
2316 }
2317 DCHECK(GetFwdPtr(from_ref) == to_ref);
2318 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
2319 PushOntoMarkStack(to_ref);
2320 return to_ref;
2321 } else {
2322 // The CAS failed. It may have lost the race or may have failed
2323 // due to monitor/hashcode ops. Either way, retry.
2324 }
2325 }
2326 }
2327
IsMarked(mirror::Object * from_ref)2328 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
2329 DCHECK(from_ref != nullptr);
2330 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
2331 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
2332 // It's already marked.
2333 return from_ref;
2334 }
2335 mirror::Object* to_ref;
2336 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
2337 to_ref = GetFwdPtr(from_ref);
2338 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
2339 heap_->non_moving_space_->HasAddress(to_ref))
2340 << "from_ref=" << from_ref << " to_ref=" << to_ref;
2341 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
2342 if (IsMarkedInUnevacFromSpace(from_ref)) {
2343 to_ref = from_ref;
2344 } else {
2345 to_ref = nullptr;
2346 }
2347 } else {
2348 // from_ref is in a non-moving space.
2349 if (immune_spaces_.ContainsObject(from_ref)) {
2350 // An immune object is alive.
2351 to_ref = from_ref;
2352 } else {
2353 // Non-immune non-moving space. Use the mark bitmap.
2354 accounting::ContinuousSpaceBitmap* mark_bitmap =
2355 heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
2356 accounting::LargeObjectBitmap* los_bitmap =
2357 heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
2358 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
2359 bool is_los = mark_bitmap == nullptr;
2360 if (!is_los && mark_bitmap->Test(from_ref)) {
2361 // Already marked.
2362 to_ref = from_ref;
2363 } else if (is_los && los_bitmap->Test(from_ref)) {
2364 // Already marked in LOS.
2365 to_ref = from_ref;
2366 } else {
2367 // Not marked.
2368 if (IsOnAllocStack(from_ref)) {
2369 // If on the allocation stack, it's considered marked.
2370 to_ref = from_ref;
2371 } else {
2372 // Not marked.
2373 to_ref = nullptr;
2374 }
2375 }
2376 }
2377 }
2378 return to_ref;
2379 }
2380
IsOnAllocStack(mirror::Object * ref)2381 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
2382 QuasiAtomic::ThreadFenceAcquire();
2383 accounting::ObjectStack* alloc_stack = GetAllocationStack();
2384 return alloc_stack->Contains(ref);
2385 }
2386
MarkNonMoving(mirror::Object * ref,mirror::Object * holder,MemberOffset offset)2387 mirror::Object* ConcurrentCopying::MarkNonMoving(mirror::Object* ref,
2388 mirror::Object* holder,
2389 MemberOffset offset) {
2390 // ref is in a non-moving space (from_ref == to_ref).
2391 DCHECK(!region_space_->HasAddress(ref)) << ref;
2392 DCHECK(!immune_spaces_.ContainsObject(ref));
2393 // Use the mark bitmap.
2394 accounting::ContinuousSpaceBitmap* mark_bitmap =
2395 heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
2396 accounting::LargeObjectBitmap* los_bitmap =
2397 heap_mark_bitmap_->GetLargeObjectBitmap(ref);
2398 bool is_los = mark_bitmap == nullptr;
2399 if (!is_los && mark_bitmap->Test(ref)) {
2400 // Already marked.
2401 if (kUseBakerReadBarrier) {
2402 DCHECK(ref->GetReadBarrierState() == ReadBarrier::GrayState() ||
2403 ref->GetReadBarrierState() == ReadBarrier::WhiteState());
2404 }
2405 } else if (is_los && los_bitmap->Test(ref)) {
2406 // Already marked in LOS.
2407 if (kUseBakerReadBarrier) {
2408 DCHECK(ref->GetReadBarrierState() == ReadBarrier::GrayState() ||
2409 ref->GetReadBarrierState() == ReadBarrier::WhiteState());
2410 }
2411 } else {
2412 // Not marked.
2413 if (IsOnAllocStack(ref)) {
2414 // If it's on the allocation stack, it's considered marked. Keep it white.
2415 // Objects on the allocation stack need not be marked.
2416 if (!is_los) {
2417 DCHECK(!mark_bitmap->Test(ref));
2418 } else {
2419 DCHECK(!los_bitmap->Test(ref));
2420 }
2421 if (kUseBakerReadBarrier) {
2422 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::WhiteState());
2423 }
2424 } else {
2425 // For the baker-style RB, we need to handle 'false-gray' cases. See the
2426 // kRegionTypeUnevacFromSpace-case comment in Mark().
2427 if (kUseBakerReadBarrier) {
2428 // Test the bitmap first to reduce the chance of false gray cases.
2429 if ((!is_los && mark_bitmap->Test(ref)) ||
2430 (is_los && los_bitmap->Test(ref))) {
2431 return ref;
2432 }
2433 }
2434 if (is_los && !IsAligned<kPageSize>(ref)) {
2435 // Ref is a large object that is not aligned, it must be heap corruption. Dump data before
2436 // AtomicSetReadBarrierState since it will fault if the address is not valid.
2437 heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal */ true);
2438 }
2439 // Not marked or on the allocation stack. Try to mark it.
2440 // This may or may not succeed, which is ok.
2441 bool cas_success = false;
2442 if (kUseBakerReadBarrier) {
2443 cas_success = ref->AtomicSetReadBarrierState(ReadBarrier::WhiteState(),
2444 ReadBarrier::GrayState());
2445 }
2446 if (!is_los && mark_bitmap->AtomicTestAndSet(ref)) {
2447 // Already marked.
2448 if (kUseBakerReadBarrier && cas_success &&
2449 ref->GetReadBarrierState() == ReadBarrier::GrayState()) {
2450 PushOntoFalseGrayStack(ref);
2451 }
2452 } else if (is_los && los_bitmap->AtomicTestAndSet(ref)) {
2453 // Already marked in LOS.
2454 if (kUseBakerReadBarrier && cas_success &&
2455 ref->GetReadBarrierState() == ReadBarrier::GrayState()) {
2456 PushOntoFalseGrayStack(ref);
2457 }
2458 } else {
2459 // Newly marked.
2460 if (kUseBakerReadBarrier) {
2461 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
2462 }
2463 PushOntoMarkStack(ref);
2464 }
2465 }
2466 }
2467 return ref;
2468 }
2469
FinishPhase()2470 void ConcurrentCopying::FinishPhase() {
2471 Thread* const self = Thread::Current();
2472 {
2473 MutexLock mu(self, mark_stack_lock_);
2474 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2475 }
2476 // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
2477 // positives.
2478 if (!kVerifyNoMissingCardMarks) {
2479 TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
2480 // We do not currently use the region space cards at all, madvise them away to save ram.
2481 heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
2482 }
2483 {
2484 MutexLock mu(self, skipped_blocks_lock_);
2485 skipped_blocks_map_.clear();
2486 }
2487 {
2488 ReaderMutexLock mu(self, *Locks::mutator_lock_);
2489 {
2490 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2491 heap_->ClearMarkedObjects();
2492 }
2493 if (kUseBakerReadBarrier && kFilterModUnionCards) {
2494 TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
2495 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2496 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
2497 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
2498 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
2499 // Filter out cards that don't need to be set.
2500 if (table != nullptr) {
2501 table->FilterCards();
2502 }
2503 }
2504 }
2505 if (kUseBakerReadBarrier) {
2506 TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
2507 DCHECK(rb_mark_bit_stack_ != nullptr);
2508 const auto* limit = rb_mark_bit_stack_->End();
2509 for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
2510 CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0));
2511 }
2512 rb_mark_bit_stack_->Reset();
2513 }
2514 }
2515 if (measure_read_barrier_slow_path_) {
2516 MutexLock mu(self, rb_slow_path_histogram_lock_);
2517 rb_slow_path_time_histogram_.AdjustAndAddValue(rb_slow_path_ns_.LoadRelaxed());
2518 rb_slow_path_count_total_ += rb_slow_path_count_.LoadRelaxed();
2519 rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.LoadRelaxed();
2520 }
2521 }
2522
IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)2523 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
2524 bool do_atomic_update) {
2525 mirror::Object* from_ref = field->AsMirrorPtr();
2526 if (from_ref == nullptr) {
2527 return true;
2528 }
2529 mirror::Object* to_ref = IsMarked(from_ref);
2530 if (to_ref == nullptr) {
2531 return false;
2532 }
2533 if (from_ref != to_ref) {
2534 if (do_atomic_update) {
2535 do {
2536 if (field->AsMirrorPtr() != from_ref) {
2537 // Concurrently overwritten by a mutator.
2538 break;
2539 }
2540 } while (!field->CasWeakRelaxed(from_ref, to_ref));
2541 } else {
2542 QuasiAtomic::ThreadFenceRelease();
2543 field->Assign(to_ref);
2544 QuasiAtomic::ThreadFenceSequentiallyConsistent();
2545 }
2546 }
2547 return true;
2548 }
2549
MarkObject(mirror::Object * from_ref)2550 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
2551 return Mark(from_ref);
2552 }
2553
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> reference)2554 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
2555 ObjPtr<mirror::Reference> reference) {
2556 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
2557 }
2558
ProcessReferences(Thread * self)2559 void ConcurrentCopying::ProcessReferences(Thread* self) {
2560 TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
2561 // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
2562 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2563 GetHeap()->GetReferenceProcessor()->ProcessReferences(
2564 true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
2565 }
2566
RevokeAllThreadLocalBuffers()2567 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
2568 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
2569 region_space_->RevokeAllThreadLocalBuffers();
2570 }
2571
MarkFromReadBarrierWithMeasurements(mirror::Object * from_ref)2572 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(mirror::Object* from_ref) {
2573 if (Thread::Current() != thread_running_gc_) {
2574 rb_slow_path_count_.FetchAndAddRelaxed(1u);
2575 } else {
2576 rb_slow_path_count_gc_.FetchAndAddRelaxed(1u);
2577 }
2578 ScopedTrace tr(__FUNCTION__);
2579 const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
2580 mirror::Object* ret = Mark(from_ref);
2581 if (measure_read_barrier_slow_path_) {
2582 rb_slow_path_ns_.FetchAndAddRelaxed(NanoTime() - start_time);
2583 }
2584 return ret;
2585 }
2586
DumpPerformanceInfo(std::ostream & os)2587 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
2588 GarbageCollector::DumpPerformanceInfo(os);
2589 MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
2590 if (rb_slow_path_time_histogram_.SampleSize() > 0) {
2591 Histogram<uint64_t>::CumulativeData cumulative_data;
2592 rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
2593 rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
2594 }
2595 if (rb_slow_path_count_total_ > 0) {
2596 os << "Slow path count " << rb_slow_path_count_total_ << "\n";
2597 }
2598 if (rb_slow_path_count_gc_total_ > 0) {
2599 os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
2600 }
2601 os << "Cumulative bytes moved " << cumulative_bytes_moved_.LoadRelaxed() << "\n";
2602 os << "Cumulative objects moved " << cumulative_objects_moved_.LoadRelaxed() << "\n";
2603 }
2604
2605 } // namespace collector
2606 } // namespace gc
2607 } // namespace art
2608