1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "calling_convention_mips.h"
18
19 #include "base/logging.h"
20 #include "handle_scope-inl.h"
21 #include "utils/mips/managed_register_mips.h"
22
23 namespace art {
24 namespace mips {
25
26 //
27 // JNI calling convention constants.
28 //
29
30 // Up to how many float-like (float, double) args can be enregistered in floating-point registers.
31 // The rest of the args must go in integer registers or on the stack.
32 constexpr size_t kMaxFloatOrDoubleRegisterArguments = 2u;
33 // Up to how many integer-like (pointers, objects, longs, int, short, bool, etc) args can be
34 // enregistered. The rest of the args must go on the stack.
35 constexpr size_t kMaxIntLikeRegisterArguments = 4u;
36
37 static const Register kJniCoreArgumentRegisters[] = { A0, A1, A2, A3 };
38 static const FRegister kJniFArgumentRegisters[] = { F12, F14 };
39 static const DRegister kJniDArgumentRegisters[] = { D6, D7 };
40
41 //
42 // Managed calling convention constants.
43 //
44
45 static const Register kManagedCoreArgumentRegisters[] = { A0, A1, A2, A3, T0, T1 };
46 static const FRegister kManagedFArgumentRegisters[] = { F8, F10, F12, F14, F16, F18 };
47 static const DRegister kManagedDArgumentRegisters[] = { D4, D5, D6, D7, D8, D9 };
48
49 static constexpr ManagedRegister kCalleeSaveRegisters[] = {
50 // Core registers.
51 MipsManagedRegister::FromCoreRegister(S2),
52 MipsManagedRegister::FromCoreRegister(S3),
53 MipsManagedRegister::FromCoreRegister(S4),
54 MipsManagedRegister::FromCoreRegister(S5),
55 MipsManagedRegister::FromCoreRegister(S6),
56 MipsManagedRegister::FromCoreRegister(S7),
57 MipsManagedRegister::FromCoreRegister(FP),
58 // No hard float callee saves.
59 };
60
CalculateCoreCalleeSpillMask()61 static constexpr uint32_t CalculateCoreCalleeSpillMask() {
62 // RA is a special callee save which is not reported by CalleeSaveRegisters().
63 uint32_t result = 1 << RA;
64 for (auto&& r : kCalleeSaveRegisters) {
65 if (r.AsMips().IsCoreRegister()) {
66 result |= (1 << r.AsMips().AsCoreRegister());
67 }
68 }
69 return result;
70 }
71
72 static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask();
73 static constexpr uint32_t kFpCalleeSpillMask = 0u;
74
75 // Calling convention
InterproceduralScratchRegister()76 ManagedRegister MipsManagedRuntimeCallingConvention::InterproceduralScratchRegister() {
77 return MipsManagedRegister::FromCoreRegister(T9);
78 }
79
InterproceduralScratchRegister()80 ManagedRegister MipsJniCallingConvention::InterproceduralScratchRegister() {
81 return MipsManagedRegister::FromCoreRegister(T9);
82 }
83
ReturnRegisterForShorty(const char * shorty)84 static ManagedRegister ReturnRegisterForShorty(const char* shorty) {
85 if (shorty[0] == 'F') {
86 return MipsManagedRegister::FromFRegister(F0);
87 } else if (shorty[0] == 'D') {
88 return MipsManagedRegister::FromDRegister(D0);
89 } else if (shorty[0] == 'J') {
90 return MipsManagedRegister::FromRegisterPair(V0_V1);
91 } else if (shorty[0] == 'V') {
92 return MipsManagedRegister::NoRegister();
93 } else {
94 return MipsManagedRegister::FromCoreRegister(V0);
95 }
96 }
97
ReturnRegister()98 ManagedRegister MipsManagedRuntimeCallingConvention::ReturnRegister() {
99 return ReturnRegisterForShorty(GetShorty());
100 }
101
ReturnRegister()102 ManagedRegister MipsJniCallingConvention::ReturnRegister() {
103 return ReturnRegisterForShorty(GetShorty());
104 }
105
IntReturnRegister()106 ManagedRegister MipsJniCallingConvention::IntReturnRegister() {
107 return MipsManagedRegister::FromCoreRegister(V0);
108 }
109
110 // Managed runtime calling convention
111
MethodRegister()112 ManagedRegister MipsManagedRuntimeCallingConvention::MethodRegister() {
113 return MipsManagedRegister::FromCoreRegister(A0);
114 }
115
IsCurrentParamInRegister()116 bool MipsManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
117 return false; // Everything moved to stack on entry.
118 }
119
IsCurrentParamOnStack()120 bool MipsManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
121 return true;
122 }
123
CurrentParamRegister()124 ManagedRegister MipsManagedRuntimeCallingConvention::CurrentParamRegister() {
125 LOG(FATAL) << "Should not reach here";
126 return ManagedRegister::NoRegister();
127 }
128
CurrentParamStackOffset()129 FrameOffset MipsManagedRuntimeCallingConvention::CurrentParamStackOffset() {
130 CHECK(IsCurrentParamOnStack());
131 FrameOffset result =
132 FrameOffset(displacement_.Int32Value() + // displacement
133 kFramePointerSize + // Method*
134 (itr_slots_ * kFramePointerSize)); // offset into in args
135 return result;
136 }
137
EntrySpills()138 const ManagedRegisterEntrySpills& MipsManagedRuntimeCallingConvention::EntrySpills() {
139 // We spill the argument registers on MIPS to free them up for scratch use, we then assume
140 // all arguments are on the stack.
141 if ((entry_spills_.size() == 0) && (NumArgs() > 0)) {
142 uint32_t gpr_index = 1; // Skip A0, it is used for ArtMethod*.
143 uint32_t fpr_index = 0;
144
145 for (ResetIterator(FrameOffset(0)); HasNext(); Next()) {
146 if (IsCurrentParamAFloatOrDouble()) {
147 if (IsCurrentParamADouble()) {
148 if (fpr_index < arraysize(kManagedDArgumentRegisters)) {
149 entry_spills_.push_back(
150 MipsManagedRegister::FromDRegister(kManagedDArgumentRegisters[fpr_index++]));
151 } else {
152 entry_spills_.push_back(ManagedRegister::NoRegister(), 8);
153 }
154 } else {
155 if (fpr_index < arraysize(kManagedFArgumentRegisters)) {
156 entry_spills_.push_back(
157 MipsManagedRegister::FromFRegister(kManagedFArgumentRegisters[fpr_index++]));
158 } else {
159 entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
160 }
161 }
162 } else {
163 if (IsCurrentParamALong() && !IsCurrentParamAReference()) {
164 if (gpr_index == 1 || gpr_index == 3) {
165 // Don't use A1-A2(A3-T0) as a register pair, move to A2-A3(T0-T1) instead.
166 gpr_index++;
167 }
168 if (gpr_index < arraysize(kManagedCoreArgumentRegisters) - 1) {
169 entry_spills_.push_back(
170 MipsManagedRegister::FromCoreRegister(kManagedCoreArgumentRegisters[gpr_index++]));
171 } else if (gpr_index == arraysize(kManagedCoreArgumentRegisters) - 1) {
172 gpr_index++;
173 entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
174 } else {
175 entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
176 }
177 }
178
179 if (gpr_index < arraysize(kManagedCoreArgumentRegisters)) {
180 entry_spills_.push_back(
181 MipsManagedRegister::FromCoreRegister(kManagedCoreArgumentRegisters[gpr_index++]));
182 } else {
183 entry_spills_.push_back(ManagedRegister::NoRegister(), 4);
184 }
185 }
186 }
187 }
188 return entry_spills_;
189 }
190
191 // JNI calling convention
192
MipsJniCallingConvention(bool is_static,bool is_synchronized,bool is_critical_native,const char * shorty)193 MipsJniCallingConvention::MipsJniCallingConvention(bool is_static,
194 bool is_synchronized,
195 bool is_critical_native,
196 const char* shorty)
197 : JniCallingConvention(is_static,
198 is_synchronized,
199 is_critical_native,
200 shorty,
201 kMipsPointerSize) {
202 // SYSTEM V - Application Binary Interface (MIPS RISC Processor):
203 // Data Representation - Fundamental Types (3-4) specifies fundamental alignments for each type.
204 // "Each member is assigned to the lowest available offset with the appropriate alignment. This
205 // may require internal padding, depending on the previous member."
206 //
207 // All of our stack arguments are usually 4-byte aligned, however longs and doubles must be 8
208 // bytes aligned. Add padding to maintain 8-byte alignment invariant.
209 //
210 // Compute padding to ensure longs and doubles are not split in o32.
211 size_t padding = 0;
212 size_t cur_arg, cur_reg;
213 if (LIKELY(HasExtraArgumentsForJni())) {
214 // Ignore the 'this' jobject or jclass for static methods and the JNIEnv.
215 // We start at the aligned register A2.
216 //
217 // Ignore the first 2 parameters because they are guaranteed to be aligned.
218 cur_arg = NumImplicitArgs(); // Skip the "this" argument.
219 cur_reg = 2; // Skip {A0=JNIEnv, A1=jobject} / {A0=JNIEnv, A1=jclass} parameters (start at A2).
220 } else {
221 // Check every parameter.
222 cur_arg = 0;
223 cur_reg = 0;
224 }
225
226 // Shift across a logical register mapping that looks like:
227 //
228 // | A0 | A1 | A2 | A3 | SP+16 | SP+20 | SP+24 | ... | SP+n | SP+n+4 |
229 //
230 // or some of variants with floating-point registers (F12 and F14), for example
231 //
232 // | F12 | F14 | A3 | SP+16 | SP+20 | SP+24 | ... | SP+n | SP+n+4 |
233 //
234 // (where SP is the stack pointer at the start of called function).
235 //
236 // Any time there would normally be a long/double in an odd logical register,
237 // we have to push out the rest of the mappings by 4 bytes to maintain an 8-byte alignment.
238 //
239 // This works for both physical register pairs {A0, A1}, {A2, A3},
240 // floating-point registers F12, F14 and for when the value is on the stack.
241 //
242 // For example:
243 // (a) long would normally go into A1, but we shift it into A2
244 // | INT | (PAD) | LONG |
245 // | A0 | A1 | A2 | A3 |
246 //
247 // (b) long would normally go into A3, but we shift it into SP
248 // | INT | INT | INT | (PAD) | LONG |
249 // | A0 | A1 | A2 | A3 | SP+16 SP+20 |
250 //
251 // where INT is any <=4 byte arg, and LONG is any 8-byte arg.
252 for (; cur_arg < NumArgs(); cur_arg++) {
253 if (IsParamALongOrDouble(cur_arg)) {
254 if ((cur_reg & 1) != 0) {
255 padding += 4;
256 cur_reg++; // Additional bump to ensure alignment.
257 }
258 cur_reg += 2; // Bump the iterator twice for every long argument.
259 } else {
260 cur_reg++; // Bump the iterator for every argument.
261 }
262 }
263 if (cur_reg < kMaxIntLikeRegisterArguments) {
264 // As a special case when, as a result of shifting (or not) there are no arguments on the stack,
265 // we actually have 0 stack padding.
266 //
267 // For example with @CriticalNative and:
268 // (int, long) -> shifts the long but doesn't need to pad the stack
269 //
270 // shift
271 // \/
272 // | INT | (PAD) | LONG | (EMPTY) ...
273 // | r0 | r1 | r2 | r3 | SP ...
274 // /\
275 // no stack padding
276 padding_ = 0;
277 } else {
278 padding_ = padding;
279 }
280
281 // Argument Passing (3-17):
282 // "When the first argument is integral, the remaining arguments are passed in the integer
283 // registers."
284 //
285 // "The rules that determine which arguments go into registers and which ones must be passed on
286 // the stack are most easily explained by considering the list of arguments as a structure,
287 // aligned according to normal structure rules. Mapping of this structure into the combination of
288 // stack and registers is as follows: up to two leading floating-point arguments can be passed in
289 // $f12 and $f14; everything else with a structure offset greater than or equal to 16 is passed on
290 // the stack. The remainder of the arguments are passed in $4..$7 based on their structure offset.
291 // Holes left in the structure for alignment are unused, whether in registers or in the stack."
292 //
293 // For example with @CriticalNative and:
294 // (a) first argument is not floating-point, so all go into integer registers
295 // | INT | FLOAT | DOUBLE |
296 // | A0 | A1 | A2 | A3 |
297 // (b) first argument is floating-point, but 2nd is integer
298 // | FLOAT | INT | DOUBLE |
299 // | F12 | A1 | A2 | A3 |
300 // (c) first two arguments are floating-point (float, double)
301 // | FLOAT | (PAD) | DOUBLE | INT |
302 // | F12 | | F14 | SP+16 |
303 // (d) first two arguments are floating-point (double, float)
304 // | DOUBLE | FLOAT | INT |
305 // | F12 | F14 | A3 |
306 // (e) first three arguments are floating-point, but just first two will go into fp registers
307 // | DOUBLE | FLOAT | FLOAT |
308 // | F12 | F14 | A3 |
309 //
310 // Find out if the first argument is a floating-point. In that case, floating-point registers will
311 // be used for up to two leading floating-point arguments. Otherwise, all arguments will be passed
312 // using integer registers.
313 use_fp_arg_registers_ = false;
314 if (is_critical_native) {
315 if (NumArgs() > 0) {
316 if (IsParamAFloatOrDouble(0)) {
317 use_fp_arg_registers_ = true;
318 }
319 }
320 }
321 }
322
CoreSpillMask() const323 uint32_t MipsJniCallingConvention::CoreSpillMask() const {
324 return kCoreCalleeSpillMask;
325 }
326
FpSpillMask() const327 uint32_t MipsJniCallingConvention::FpSpillMask() const {
328 return kFpCalleeSpillMask;
329 }
330
ReturnScratchRegister() const331 ManagedRegister MipsJniCallingConvention::ReturnScratchRegister() const {
332 return MipsManagedRegister::FromCoreRegister(AT);
333 }
334
FrameSize()335 size_t MipsJniCallingConvention::FrameSize() {
336 // ArtMethod*, RA and callee save area size, local reference segment state.
337 const size_t method_ptr_size = static_cast<size_t>(kMipsPointerSize);
338 const size_t ra_return_addr_size = kFramePointerSize;
339 const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
340
341 size_t frame_data_size = method_ptr_size + ra_return_addr_size + callee_save_area_size;
342
343 if (LIKELY(HasLocalReferenceSegmentState())) {
344 // Local reference segment state.
345 frame_data_size += kFramePointerSize;
346 }
347
348 // References plus 2 words for HandleScope header.
349 const size_t handle_scope_size = HandleScope::SizeOf(kMipsPointerSize, ReferenceCount());
350
351 size_t total_size = frame_data_size;
352 if (LIKELY(HasHandleScope())) {
353 // HandleScope is sometimes excluded.
354 total_size += handle_scope_size; // Handle scope size.
355 }
356
357 // Plus return value spill area size.
358 total_size += SizeOfReturnValue();
359
360 return RoundUp(total_size, kStackAlignment);
361 }
362
OutArgSize()363 size_t MipsJniCallingConvention::OutArgSize() {
364 // Argument Passing (3-17):
365 // "Despite the fact that some or all of the arguments to a function are passed in registers,
366 // always allocate space on the stack for all arguments. This stack space should be a structure
367 // large enough to contain all the arguments, aligned according to normal structure rules (after
368 // promotion and structure return pointer insertion). The locations within the stack frame used
369 // for arguments are called the home locations."
370 //
371 // Allocate 16 bytes for home locations + space needed for stack arguments.
372 return RoundUp(
373 (kMaxIntLikeRegisterArguments + NumberOfOutgoingStackArgs()) * kFramePointerSize + padding_,
374 kStackAlignment);
375 }
376
CalleeSaveRegisters() const377 ArrayRef<const ManagedRegister> MipsJniCallingConvention::CalleeSaveRegisters() const {
378 return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
379 }
380
381 // JniCallingConvention ABI follows o32 where longs and doubles must occur
382 // in even register numbers and stack slots.
Next()383 void MipsJniCallingConvention::Next() {
384 JniCallingConvention::Next();
385
386 if (LIKELY(HasNext())) { // Avoid CHECK failure for IsCurrentParam
387 // Ensure slot is 8-byte aligned for longs/doubles (o32).
388 if (IsCurrentParamALongOrDouble() && ((itr_slots_ & 0x1u) != 0)) {
389 // itr_slots_ needs to be an even number, according to o32.
390 itr_slots_++;
391 }
392 }
393 }
394
IsCurrentParamInRegister()395 bool MipsJniCallingConvention::IsCurrentParamInRegister() {
396 // Argument Passing (3-17):
397 // "The rules that determine which arguments go into registers and which ones must be passed on
398 // the stack are most easily explained by considering the list of arguments as a structure,
399 // aligned according to normal structure rules. Mapping of this structure into the combination of
400 // stack and registers is as follows: up to two leading floating-point arguments can be passed in
401 // $f12 and $f14; everything else with a structure offset greater than or equal to 16 is passed on
402 // the stack. The remainder of the arguments are passed in $4..$7 based on their structure offset.
403 // Holes left in the structure for alignment are unused, whether in registers or in the stack."
404 //
405 // Even when floating-point registers are used, there can be up to 4 arguments passed in
406 // registers.
407 return itr_slots_ < kMaxIntLikeRegisterArguments;
408 }
409
IsCurrentParamOnStack()410 bool MipsJniCallingConvention::IsCurrentParamOnStack() {
411 return !IsCurrentParamInRegister();
412 }
413
CurrentParamRegister()414 ManagedRegister MipsJniCallingConvention::CurrentParamRegister() {
415 CHECK_LT(itr_slots_, kMaxIntLikeRegisterArguments);
416 // Up to two leading floating-point arguments can be passed in floating-point registers.
417 if (use_fp_arg_registers_ && (itr_args_ < kMaxFloatOrDoubleRegisterArguments)) {
418 if (IsCurrentParamAFloatOrDouble()) {
419 if (IsCurrentParamADouble()) {
420 return MipsManagedRegister::FromDRegister(kJniDArgumentRegisters[itr_args_]);
421 } else {
422 return MipsManagedRegister::FromFRegister(kJniFArgumentRegisters[itr_args_]);
423 }
424 }
425 }
426 // All other arguments (including other floating-point arguments) will be passed in integer
427 // registers.
428 if (IsCurrentParamALongOrDouble()) {
429 if (itr_slots_ == 0u) {
430 return MipsManagedRegister::FromRegisterPair(A0_A1);
431 } else {
432 CHECK_EQ(itr_slots_, 2u);
433 return MipsManagedRegister::FromRegisterPair(A2_A3);
434 }
435 } else {
436 return MipsManagedRegister::FromCoreRegister(kJniCoreArgumentRegisters[itr_slots_]);
437 }
438 }
439
CurrentParamStackOffset()440 FrameOffset MipsJniCallingConvention::CurrentParamStackOffset() {
441 CHECK_GE(itr_slots_, kMaxIntLikeRegisterArguments);
442 size_t offset = displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize);
443 CHECK_LT(offset, OutArgSize());
444 return FrameOffset(offset);
445 }
446
NumberOfOutgoingStackArgs()447 size_t MipsJniCallingConvention::NumberOfOutgoingStackArgs() {
448 size_t static_args = HasSelfClass() ? 1 : 0; // Count jclass.
449 // Regular argument parameters and this.
450 size_t param_args = NumArgs() + NumLongOrDoubleArgs(); // Twice count 8-byte args.
451 // Count JNIEnv* less arguments in registers.
452 size_t internal_args = (HasJniEnv() ? 1 : 0);
453 size_t total_args = static_args + param_args + internal_args;
454
455 return total_args - std::min(kMaxIntLikeRegisterArguments, static_cast<size_t>(total_args));
456 }
457
458 } // namespace mips
459 } // namespace art
460