1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "intrinsics_mips.h"
18
19 #include "arch/mips/instruction_set_features_mips.h"
20 #include "art_method.h"
21 #include "code_generator_mips.h"
22 #include "entrypoints/quick/quick_entrypoints.h"
23 #include "intrinsics.h"
24 #include "mirror/array-inl.h"
25 #include "mirror/string.h"
26 #include "thread.h"
27 #include "utils/mips/assembler_mips.h"
28 #include "utils/mips/constants_mips.h"
29
30 namespace art {
31
32 namespace mips {
33
IntrinsicLocationsBuilderMIPS(CodeGeneratorMIPS * codegen)34 IntrinsicLocationsBuilderMIPS::IntrinsicLocationsBuilderMIPS(CodeGeneratorMIPS* codegen)
35 : arena_(codegen->GetGraph()->GetArena()) {
36 }
37
GetAssembler()38 MipsAssembler* IntrinsicCodeGeneratorMIPS::GetAssembler() {
39 return reinterpret_cast<MipsAssembler*>(codegen_->GetAssembler());
40 }
41
GetAllocator()42 ArenaAllocator* IntrinsicCodeGeneratorMIPS::GetAllocator() {
43 return codegen_->GetGraph()->GetArena();
44 }
45
IsR2OrNewer() const46 inline bool IntrinsicCodeGeneratorMIPS::IsR2OrNewer() const {
47 return codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
48 }
49
IsR6() const50 inline bool IntrinsicCodeGeneratorMIPS::IsR6() const {
51 return codegen_->GetInstructionSetFeatures().IsR6();
52 }
53
Is32BitFPU() const54 inline bool IntrinsicCodeGeneratorMIPS::Is32BitFPU() const {
55 return codegen_->GetInstructionSetFeatures().Is32BitFloatingPoint();
56 }
57
58 #define __ codegen->GetAssembler()->
59
MoveFromReturnRegister(Location trg,Primitive::Type type,CodeGeneratorMIPS * codegen)60 static void MoveFromReturnRegister(Location trg,
61 Primitive::Type type,
62 CodeGeneratorMIPS* codegen) {
63 if (!trg.IsValid()) {
64 DCHECK_EQ(type, Primitive::kPrimVoid);
65 return;
66 }
67
68 DCHECK_NE(type, Primitive::kPrimVoid);
69
70 if (Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) {
71 Register trg_reg = trg.AsRegister<Register>();
72 if (trg_reg != V0) {
73 __ Move(V0, trg_reg);
74 }
75 } else {
76 FRegister trg_reg = trg.AsFpuRegister<FRegister>();
77 if (trg_reg != F0) {
78 if (type == Primitive::kPrimFloat) {
79 __ MovS(F0, trg_reg);
80 } else {
81 __ MovD(F0, trg_reg);
82 }
83 }
84 }
85 }
86
MoveArguments(HInvoke * invoke,CodeGeneratorMIPS * codegen)87 static void MoveArguments(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
88 InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
89 IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
90 }
91
92 // Slow-path for fallback (calling the managed code to handle the
93 // intrinsic) in an intrinsified call. This will copy the arguments
94 // into the positions for a regular call.
95 //
96 // Note: The actual parameters are required to be in the locations
97 // given by the invoke's location summary. If an intrinsic
98 // modifies those locations before a slowpath call, they must be
99 // restored!
100 class IntrinsicSlowPathMIPS : public SlowPathCodeMIPS {
101 public:
IntrinsicSlowPathMIPS(HInvoke * invoke)102 explicit IntrinsicSlowPathMIPS(HInvoke* invoke) : SlowPathCodeMIPS(invoke), invoke_(invoke) { }
103
EmitNativeCode(CodeGenerator * codegen_in)104 void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE {
105 CodeGeneratorMIPS* codegen = down_cast<CodeGeneratorMIPS*>(codegen_in);
106
107 __ Bind(GetEntryLabel());
108
109 SaveLiveRegisters(codegen, invoke_->GetLocations());
110
111 MoveArguments(invoke_, codegen);
112
113 if (invoke_->IsInvokeStaticOrDirect()) {
114 codegen->GenerateStaticOrDirectCall(invoke_->AsInvokeStaticOrDirect(),
115 Location::RegisterLocation(A0));
116 } else {
117 codegen->GenerateVirtualCall(invoke_->AsInvokeVirtual(), Location::RegisterLocation(A0));
118 }
119 codegen->RecordPcInfo(invoke_, invoke_->GetDexPc(), this);
120
121 // Copy the result back to the expected output.
122 Location out = invoke_->GetLocations()->Out();
123 if (out.IsValid()) {
124 DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
125 DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
126 MoveFromReturnRegister(out, invoke_->GetType(), codegen);
127 }
128
129 RestoreLiveRegisters(codegen, invoke_->GetLocations());
130 __ B(GetExitLabel());
131 }
132
GetDescription() const133 const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPathMIPS"; }
134
135 private:
136 // The instruction where this slow path is happening.
137 HInvoke* const invoke_;
138
139 DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathMIPS);
140 };
141
142 #undef __
143
TryDispatch(HInvoke * invoke)144 bool IntrinsicLocationsBuilderMIPS::TryDispatch(HInvoke* invoke) {
145 Dispatch(invoke);
146 LocationSummary* res = invoke->GetLocations();
147 return res != nullptr && res->Intrinsified();
148 }
149
150 #define __ assembler->
151
CreateFPToIntLocations(ArenaAllocator * arena,HInvoke * invoke)152 static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
153 LocationSummary* locations = new (arena) LocationSummary(invoke,
154 LocationSummary::kNoCall,
155 kIntrinsified);
156 locations->SetInAt(0, Location::RequiresFpuRegister());
157 locations->SetOut(Location::RequiresRegister());
158 }
159
MoveFPToInt(LocationSummary * locations,bool is64bit,MipsAssembler * assembler)160 static void MoveFPToInt(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
161 FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
162
163 if (is64bit) {
164 Register out_lo = locations->Out().AsRegisterPairLow<Register>();
165 Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
166
167 __ Mfc1(out_lo, in);
168 __ MoveFromFpuHigh(out_hi, in);
169 } else {
170 Register out = locations->Out().AsRegister<Register>();
171
172 __ Mfc1(out, in);
173 }
174 }
175
176 // long java.lang.Double.doubleToRawLongBits(double)
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)177 void IntrinsicLocationsBuilderMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
178 CreateFPToIntLocations(arena_, invoke);
179 }
180
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)181 void IntrinsicCodeGeneratorMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
182 MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
183 }
184
185 // int java.lang.Float.floatToRawIntBits(float)
VisitFloatFloatToRawIntBits(HInvoke * invoke)186 void IntrinsicLocationsBuilderMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
187 CreateFPToIntLocations(arena_, invoke);
188 }
189
VisitFloatFloatToRawIntBits(HInvoke * invoke)190 void IntrinsicCodeGeneratorMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
191 MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
192 }
193
CreateIntToFPLocations(ArenaAllocator * arena,HInvoke * invoke)194 static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
195 LocationSummary* locations = new (arena) LocationSummary(invoke,
196 LocationSummary::kNoCall,
197 kIntrinsified);
198 locations->SetInAt(0, Location::RequiresRegister());
199 locations->SetOut(Location::RequiresFpuRegister());
200 }
201
MoveIntToFP(LocationSummary * locations,bool is64bit,MipsAssembler * assembler)202 static void MoveIntToFP(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
203 FRegister out = locations->Out().AsFpuRegister<FRegister>();
204
205 if (is64bit) {
206 Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
207 Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
208
209 __ Mtc1(in_lo, out);
210 __ MoveToFpuHigh(in_hi, out);
211 } else {
212 Register in = locations->InAt(0).AsRegister<Register>();
213
214 __ Mtc1(in, out);
215 }
216 }
217
218 // double java.lang.Double.longBitsToDouble(long)
VisitDoubleLongBitsToDouble(HInvoke * invoke)219 void IntrinsicLocationsBuilderMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
220 CreateIntToFPLocations(arena_, invoke);
221 }
222
VisitDoubleLongBitsToDouble(HInvoke * invoke)223 void IntrinsicCodeGeneratorMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
224 MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
225 }
226
227 // float java.lang.Float.intBitsToFloat(int)
VisitFloatIntBitsToFloat(HInvoke * invoke)228 void IntrinsicLocationsBuilderMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) {
229 CreateIntToFPLocations(arena_, invoke);
230 }
231
VisitFloatIntBitsToFloat(HInvoke * invoke)232 void IntrinsicCodeGeneratorMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) {
233 MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
234 }
235
CreateIntToIntLocations(ArenaAllocator * arena,HInvoke * invoke,Location::OutputOverlap overlaps=Location::kNoOutputOverlap)236 static void CreateIntToIntLocations(ArenaAllocator* arena,
237 HInvoke* invoke,
238 Location::OutputOverlap overlaps = Location::kNoOutputOverlap) {
239 LocationSummary* locations = new (arena) LocationSummary(invoke,
240 LocationSummary::kNoCall,
241 kIntrinsified);
242 locations->SetInAt(0, Location::RequiresRegister());
243 locations->SetOut(Location::RequiresRegister(), overlaps);
244 }
245
GenReverse(LocationSummary * locations,Primitive::Type type,bool isR2OrNewer,bool isR6,bool reverseBits,MipsAssembler * assembler)246 static void GenReverse(LocationSummary* locations,
247 Primitive::Type type,
248 bool isR2OrNewer,
249 bool isR6,
250 bool reverseBits,
251 MipsAssembler* assembler) {
252 DCHECK(type == Primitive::kPrimShort ||
253 type == Primitive::kPrimInt ||
254 type == Primitive::kPrimLong);
255 DCHECK(type != Primitive::kPrimShort || !reverseBits);
256
257 if (type == Primitive::kPrimShort) {
258 Register in = locations->InAt(0).AsRegister<Register>();
259 Register out = locations->Out().AsRegister<Register>();
260
261 if (isR2OrNewer) {
262 __ Wsbh(out, in);
263 __ Seh(out, out);
264 } else {
265 __ Sll(TMP, in, 24);
266 __ Sra(TMP, TMP, 16);
267 __ Sll(out, in, 16);
268 __ Srl(out, out, 24);
269 __ Or(out, out, TMP);
270 }
271 } else if (type == Primitive::kPrimInt) {
272 Register in = locations->InAt(0).AsRegister<Register>();
273 Register out = locations->Out().AsRegister<Register>();
274
275 if (isR2OrNewer) {
276 __ Rotr(out, in, 16);
277 __ Wsbh(out, out);
278 } else {
279 // MIPS32r1
280 // __ Rotr(out, in, 16);
281 __ Sll(TMP, in, 16);
282 __ Srl(out, in, 16);
283 __ Or(out, out, TMP);
284 // __ Wsbh(out, out);
285 __ LoadConst32(AT, 0x00FF00FF);
286 __ And(TMP, out, AT);
287 __ Sll(TMP, TMP, 8);
288 __ Srl(out, out, 8);
289 __ And(out, out, AT);
290 __ Or(out, out, TMP);
291 }
292 if (reverseBits) {
293 if (isR6) {
294 __ Bitswap(out, out);
295 } else {
296 __ LoadConst32(AT, 0x0F0F0F0F);
297 __ And(TMP, out, AT);
298 __ Sll(TMP, TMP, 4);
299 __ Srl(out, out, 4);
300 __ And(out, out, AT);
301 __ Or(out, TMP, out);
302 __ LoadConst32(AT, 0x33333333);
303 __ And(TMP, out, AT);
304 __ Sll(TMP, TMP, 2);
305 __ Srl(out, out, 2);
306 __ And(out, out, AT);
307 __ Or(out, TMP, out);
308 __ LoadConst32(AT, 0x55555555);
309 __ And(TMP, out, AT);
310 __ Sll(TMP, TMP, 1);
311 __ Srl(out, out, 1);
312 __ And(out, out, AT);
313 __ Or(out, TMP, out);
314 }
315 }
316 } else if (type == Primitive::kPrimLong) {
317 Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
318 Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
319 Register out_lo = locations->Out().AsRegisterPairLow<Register>();
320 Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
321
322 if (isR2OrNewer) {
323 __ Rotr(AT, in_hi, 16);
324 __ Rotr(TMP, in_lo, 16);
325 __ Wsbh(out_lo, AT);
326 __ Wsbh(out_hi, TMP);
327 } else {
328 // When calling CreateIntToIntLocations() we promised that the
329 // use of the out_lo/out_hi wouldn't overlap with the use of
330 // in_lo/in_hi. Be very careful not to write to out_lo/out_hi
331 // until we're completely done reading from in_lo/in_hi.
332 // __ Rotr(TMP, in_lo, 16);
333 __ Sll(TMP, in_lo, 16);
334 __ Srl(AT, in_lo, 16);
335 __ Or(TMP, TMP, AT); // Hold in TMP until it's safe
336 // to write to out_hi.
337 // __ Rotr(out_lo, in_hi, 16);
338 __ Sll(AT, in_hi, 16);
339 __ Srl(out_lo, in_hi, 16); // Here we are finally done reading
340 // from in_lo/in_hi so it's okay to
341 // write to out_lo/out_hi.
342 __ Or(out_lo, out_lo, AT);
343 // __ Wsbh(out_hi, out_hi);
344 __ LoadConst32(AT, 0x00FF00FF);
345 __ And(out_hi, TMP, AT);
346 __ Sll(out_hi, out_hi, 8);
347 __ Srl(TMP, TMP, 8);
348 __ And(TMP, TMP, AT);
349 __ Or(out_hi, out_hi, TMP);
350 // __ Wsbh(out_lo, out_lo);
351 __ And(TMP, out_lo, AT); // AT already holds the correct mask value
352 __ Sll(TMP, TMP, 8);
353 __ Srl(out_lo, out_lo, 8);
354 __ And(out_lo, out_lo, AT);
355 __ Or(out_lo, out_lo, TMP);
356 }
357 if (reverseBits) {
358 if (isR6) {
359 __ Bitswap(out_hi, out_hi);
360 __ Bitswap(out_lo, out_lo);
361 } else {
362 __ LoadConst32(AT, 0x0F0F0F0F);
363 __ And(TMP, out_hi, AT);
364 __ Sll(TMP, TMP, 4);
365 __ Srl(out_hi, out_hi, 4);
366 __ And(out_hi, out_hi, AT);
367 __ Or(out_hi, TMP, out_hi);
368 __ And(TMP, out_lo, AT);
369 __ Sll(TMP, TMP, 4);
370 __ Srl(out_lo, out_lo, 4);
371 __ And(out_lo, out_lo, AT);
372 __ Or(out_lo, TMP, out_lo);
373 __ LoadConst32(AT, 0x33333333);
374 __ And(TMP, out_hi, AT);
375 __ Sll(TMP, TMP, 2);
376 __ Srl(out_hi, out_hi, 2);
377 __ And(out_hi, out_hi, AT);
378 __ Or(out_hi, TMP, out_hi);
379 __ And(TMP, out_lo, AT);
380 __ Sll(TMP, TMP, 2);
381 __ Srl(out_lo, out_lo, 2);
382 __ And(out_lo, out_lo, AT);
383 __ Or(out_lo, TMP, out_lo);
384 __ LoadConst32(AT, 0x55555555);
385 __ And(TMP, out_hi, AT);
386 __ Sll(TMP, TMP, 1);
387 __ Srl(out_hi, out_hi, 1);
388 __ And(out_hi, out_hi, AT);
389 __ Or(out_hi, TMP, out_hi);
390 __ And(TMP, out_lo, AT);
391 __ Sll(TMP, TMP, 1);
392 __ Srl(out_lo, out_lo, 1);
393 __ And(out_lo, out_lo, AT);
394 __ Or(out_lo, TMP, out_lo);
395 }
396 }
397 }
398 }
399
400 // int java.lang.Integer.reverseBytes(int)
VisitIntegerReverseBytes(HInvoke * invoke)401 void IntrinsicLocationsBuilderMIPS::VisitIntegerReverseBytes(HInvoke* invoke) {
402 CreateIntToIntLocations(arena_, invoke);
403 }
404
VisitIntegerReverseBytes(HInvoke * invoke)405 void IntrinsicCodeGeneratorMIPS::VisitIntegerReverseBytes(HInvoke* invoke) {
406 GenReverse(invoke->GetLocations(),
407 Primitive::kPrimInt,
408 IsR2OrNewer(),
409 IsR6(),
410 /* reverseBits */ false,
411 GetAssembler());
412 }
413
414 // long java.lang.Long.reverseBytes(long)
VisitLongReverseBytes(HInvoke * invoke)415 void IntrinsicLocationsBuilderMIPS::VisitLongReverseBytes(HInvoke* invoke) {
416 CreateIntToIntLocations(arena_, invoke);
417 }
418
VisitLongReverseBytes(HInvoke * invoke)419 void IntrinsicCodeGeneratorMIPS::VisitLongReverseBytes(HInvoke* invoke) {
420 GenReverse(invoke->GetLocations(),
421 Primitive::kPrimLong,
422 IsR2OrNewer(),
423 IsR6(),
424 /* reverseBits */ false,
425 GetAssembler());
426 }
427
428 // short java.lang.Short.reverseBytes(short)
VisitShortReverseBytes(HInvoke * invoke)429 void IntrinsicLocationsBuilderMIPS::VisitShortReverseBytes(HInvoke* invoke) {
430 CreateIntToIntLocations(arena_, invoke);
431 }
432
VisitShortReverseBytes(HInvoke * invoke)433 void IntrinsicCodeGeneratorMIPS::VisitShortReverseBytes(HInvoke* invoke) {
434 GenReverse(invoke->GetLocations(),
435 Primitive::kPrimShort,
436 IsR2OrNewer(),
437 IsR6(),
438 /* reverseBits */ false,
439 GetAssembler());
440 }
441
GenNumberOfLeadingZeroes(LocationSummary * locations,bool is64bit,bool isR6,MipsAssembler * assembler)442 static void GenNumberOfLeadingZeroes(LocationSummary* locations,
443 bool is64bit,
444 bool isR6,
445 MipsAssembler* assembler) {
446 Register out = locations->Out().AsRegister<Register>();
447 if (is64bit) {
448 Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
449 Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
450
451 if (isR6) {
452 __ ClzR6(AT, in_hi);
453 __ ClzR6(TMP, in_lo);
454 __ Seleqz(TMP, TMP, in_hi);
455 } else {
456 __ ClzR2(AT, in_hi);
457 __ ClzR2(TMP, in_lo);
458 __ Movn(TMP, ZERO, in_hi);
459 }
460 __ Addu(out, AT, TMP);
461 } else {
462 Register in = locations->InAt(0).AsRegister<Register>();
463
464 if (isR6) {
465 __ ClzR6(out, in);
466 } else {
467 __ ClzR2(out, in);
468 }
469 }
470 }
471
472 // int java.lang.Integer.numberOfLeadingZeros(int i)
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)473 void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
474 CreateIntToIntLocations(arena_, invoke);
475 }
476
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)477 void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
478 GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ false, IsR6(), GetAssembler());
479 }
480
481 // int java.lang.Long.numberOfLeadingZeros(long i)
VisitLongNumberOfLeadingZeros(HInvoke * invoke)482 void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
483 CreateIntToIntLocations(arena_, invoke);
484 }
485
VisitLongNumberOfLeadingZeros(HInvoke * invoke)486 void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
487 GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ true, IsR6(), GetAssembler());
488 }
489
GenNumberOfTrailingZeroes(LocationSummary * locations,bool is64bit,bool isR6,MipsAssembler * assembler)490 static void GenNumberOfTrailingZeroes(LocationSummary* locations,
491 bool is64bit,
492 bool isR6,
493 MipsAssembler* assembler) {
494 Register out = locations->Out().AsRegister<Register>();
495 Register in_lo;
496 Register in;
497
498 if (is64bit) {
499 Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
500
501 in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
502
503 // If in_lo is zero then count the number of trailing zeroes in in_hi;
504 // otherwise count the number of trailing zeroes in in_lo.
505 // out = in_lo ? in_lo : in_hi;
506 if (isR6) {
507 __ Seleqz(out, in_hi, in_lo);
508 __ Selnez(TMP, in_lo, in_lo);
509 __ Or(out, out, TMP);
510 } else {
511 __ Movz(out, in_hi, in_lo);
512 __ Movn(out, in_lo, in_lo);
513 }
514
515 in = out;
516 } else {
517 in = locations->InAt(0).AsRegister<Register>();
518 // Give in_lo a dummy value to keep the compiler from complaining.
519 // Since we only get here in the 32-bit case, this value will never
520 // be used.
521 in_lo = in;
522 }
523
524 if (isR6) {
525 // We don't have an instruction to count the number of trailing zeroes.
526 // Start by flipping the bits end-for-end so we can count the number of
527 // leading zeroes instead.
528 __ Rotr(out, in, 16);
529 __ Wsbh(out, out);
530 __ Bitswap(out, out);
531 __ ClzR6(out, out);
532 } else {
533 // Convert trailing zeroes to trailing ones, and bits to their left
534 // to zeroes.
535 __ Addiu(TMP, in, -1);
536 __ Xor(out, TMP, in);
537 __ And(out, out, TMP);
538 // Count number of leading zeroes.
539 __ ClzR2(out, out);
540 // Subtract number of leading zeroes from 32 to get number of trailing ones.
541 // Remember that the trailing ones were formerly trailing zeroes.
542 __ LoadConst32(TMP, 32);
543 __ Subu(out, TMP, out);
544 }
545
546 if (is64bit) {
547 // If in_lo is zero, then we counted the number of trailing zeroes in in_hi so we must add the
548 // number of trailing zeroes in in_lo (32) to get the correct final count
549 __ LoadConst32(TMP, 32);
550 if (isR6) {
551 __ Seleqz(TMP, TMP, in_lo);
552 } else {
553 __ Movn(TMP, ZERO, in_lo);
554 }
555 __ Addu(out, out, TMP);
556 }
557 }
558
559 // int java.lang.Integer.numberOfTrailingZeros(int i)
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)560 void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
561 CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
562 }
563
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)564 void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
565 GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ false, IsR6(), GetAssembler());
566 }
567
568 // int java.lang.Long.numberOfTrailingZeros(long i)
VisitLongNumberOfTrailingZeros(HInvoke * invoke)569 void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
570 CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
571 }
572
VisitLongNumberOfTrailingZeros(HInvoke * invoke)573 void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
574 GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ true, IsR6(), GetAssembler());
575 }
576
577 // int java.lang.Integer.reverse(int)
VisitIntegerReverse(HInvoke * invoke)578 void IntrinsicLocationsBuilderMIPS::VisitIntegerReverse(HInvoke* invoke) {
579 CreateIntToIntLocations(arena_, invoke);
580 }
581
VisitIntegerReverse(HInvoke * invoke)582 void IntrinsicCodeGeneratorMIPS::VisitIntegerReverse(HInvoke* invoke) {
583 GenReverse(invoke->GetLocations(),
584 Primitive::kPrimInt,
585 IsR2OrNewer(),
586 IsR6(),
587 /* reverseBits */ true,
588 GetAssembler());
589 }
590
591 // long java.lang.Long.reverse(long)
VisitLongReverse(HInvoke * invoke)592 void IntrinsicLocationsBuilderMIPS::VisitLongReverse(HInvoke* invoke) {
593 CreateIntToIntLocations(arena_, invoke);
594 }
595
VisitLongReverse(HInvoke * invoke)596 void IntrinsicCodeGeneratorMIPS::VisitLongReverse(HInvoke* invoke) {
597 GenReverse(invoke->GetLocations(),
598 Primitive::kPrimLong,
599 IsR2OrNewer(),
600 IsR6(),
601 /* reverseBits */ true,
602 GetAssembler());
603 }
604
CreateFPToFPLocations(ArenaAllocator * arena,HInvoke * invoke)605 static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
606 LocationSummary* locations = new (arena) LocationSummary(invoke,
607 LocationSummary::kNoCall,
608 kIntrinsified);
609 locations->SetInAt(0, Location::RequiresFpuRegister());
610 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
611 }
612
GenBitCount(LocationSummary * locations,Primitive::Type type,bool isR6,MipsAssembler * assembler)613 static void GenBitCount(LocationSummary* locations,
614 Primitive::Type type,
615 bool isR6,
616 MipsAssembler* assembler) {
617 Register out = locations->Out().AsRegister<Register>();
618
619 // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
620 //
621 // A generalization of the best bit counting method to integers of
622 // bit-widths up to 128 (parameterized by type T) is this:
623 //
624 // v = v - ((v >> 1) & (T)~(T)0/3); // temp
625 // v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp
626 // v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp
627 // c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; // count
628 //
629 // For comparison, for 32-bit quantities, this algorithm can be executed
630 // using 20 MIPS instructions (the calls to LoadConst32() generate two
631 // machine instructions each for the values being used in this algorithm).
632 // A(n unrolled) loop-based algorithm required 25 instructions.
633 //
634 // For 64-bit quantities, this algorithm gets executed twice, (once
635 // for in_lo, and again for in_hi), but saves a few instructions
636 // because the mask values only have to be loaded once. Using this
637 // algorithm the count for a 64-bit operand can be performed in 29
638 // instructions compared to a loop-based algorithm which required 47
639 // instructions.
640
641 if (type == Primitive::kPrimInt) {
642 Register in = locations->InAt(0).AsRegister<Register>();
643
644 __ Srl(TMP, in, 1);
645 __ LoadConst32(AT, 0x55555555);
646 __ And(TMP, TMP, AT);
647 __ Subu(TMP, in, TMP);
648 __ LoadConst32(AT, 0x33333333);
649 __ And(out, TMP, AT);
650 __ Srl(TMP, TMP, 2);
651 __ And(TMP, TMP, AT);
652 __ Addu(TMP, out, TMP);
653 __ Srl(out, TMP, 4);
654 __ Addu(out, out, TMP);
655 __ LoadConst32(AT, 0x0F0F0F0F);
656 __ And(out, out, AT);
657 __ LoadConst32(TMP, 0x01010101);
658 if (isR6) {
659 __ MulR6(out, out, TMP);
660 } else {
661 __ MulR2(out, out, TMP);
662 }
663 __ Srl(out, out, 24);
664 } else {
665 DCHECK_EQ(type, Primitive::kPrimLong);
666 Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
667 Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
668 Register tmp_hi = locations->GetTemp(0).AsRegister<Register>();
669 Register out_hi = locations->GetTemp(1).AsRegister<Register>();
670 Register tmp_lo = TMP;
671 Register out_lo = out;
672
673 __ Srl(tmp_lo, in_lo, 1);
674 __ Srl(tmp_hi, in_hi, 1);
675
676 __ LoadConst32(AT, 0x55555555);
677
678 __ And(tmp_lo, tmp_lo, AT);
679 __ Subu(tmp_lo, in_lo, tmp_lo);
680
681 __ And(tmp_hi, tmp_hi, AT);
682 __ Subu(tmp_hi, in_hi, tmp_hi);
683
684 __ LoadConst32(AT, 0x33333333);
685
686 __ And(out_lo, tmp_lo, AT);
687 __ Srl(tmp_lo, tmp_lo, 2);
688 __ And(tmp_lo, tmp_lo, AT);
689 __ Addu(tmp_lo, out_lo, tmp_lo);
690
691 __ And(out_hi, tmp_hi, AT);
692 __ Srl(tmp_hi, tmp_hi, 2);
693 __ And(tmp_hi, tmp_hi, AT);
694 __ Addu(tmp_hi, out_hi, tmp_hi);
695
696 // Here we deviate from the original algorithm a bit. We've reached
697 // the stage where the bitfields holding the subtotals are large
698 // enough to hold the combined subtotals for both the low word, and
699 // the high word. This means that we can add the subtotals for the
700 // the high, and low words into a single word, and compute the final
701 // result for both the high, and low words using fewer instructions.
702 __ LoadConst32(AT, 0x0F0F0F0F);
703
704 __ Addu(TMP, tmp_hi, tmp_lo);
705
706 __ Srl(out, TMP, 4);
707 __ And(out, out, AT);
708 __ And(TMP, TMP, AT);
709 __ Addu(out, out, TMP);
710
711 __ LoadConst32(AT, 0x01010101);
712
713 if (isR6) {
714 __ MulR6(out, out, AT);
715 } else {
716 __ MulR2(out, out, AT);
717 }
718
719 __ Srl(out, out, 24);
720 }
721 }
722
723 // int java.lang.Integer.bitCount(int)
VisitIntegerBitCount(HInvoke * invoke)724 void IntrinsicLocationsBuilderMIPS::VisitIntegerBitCount(HInvoke* invoke) {
725 CreateIntToIntLocations(arena_, invoke);
726 }
727
VisitIntegerBitCount(HInvoke * invoke)728 void IntrinsicCodeGeneratorMIPS::VisitIntegerBitCount(HInvoke* invoke) {
729 GenBitCount(invoke->GetLocations(), Primitive::kPrimInt, IsR6(), GetAssembler());
730 }
731
732 // int java.lang.Long.bitCount(int)
VisitLongBitCount(HInvoke * invoke)733 void IntrinsicLocationsBuilderMIPS::VisitLongBitCount(HInvoke* invoke) {
734 LocationSummary* locations = new (arena_) LocationSummary(invoke,
735 LocationSummary::kNoCall,
736 kIntrinsified);
737 locations->SetInAt(0, Location::RequiresRegister());
738 locations->SetOut(Location::RequiresRegister());
739 locations->AddTemp(Location::RequiresRegister());
740 locations->AddTemp(Location::RequiresRegister());
741 }
742
VisitLongBitCount(HInvoke * invoke)743 void IntrinsicCodeGeneratorMIPS::VisitLongBitCount(HInvoke* invoke) {
744 GenBitCount(invoke->GetLocations(), Primitive::kPrimLong, IsR6(), GetAssembler());
745 }
746
MathAbsFP(LocationSummary * locations,bool is64bit,bool isR2OrNewer,bool isR6,MipsAssembler * assembler)747 static void MathAbsFP(LocationSummary* locations,
748 bool is64bit,
749 bool isR2OrNewer,
750 bool isR6,
751 MipsAssembler* assembler) {
752 FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
753 FRegister out = locations->Out().AsFpuRegister<FRegister>();
754
755 // Note, as a "quality of implementation", rather than pure "spec compliance", we require that
756 // Math.abs() clears the sign bit (but changes nothing else) for all numbers, including NaN
757 // (signaling NaN may become quiet though).
758 //
759 // The ABS.fmt instructions (abs.s and abs.d) do exactly that when NAN2008=1 (R6). For this case,
760 // both regular floating point numbers and NAN values are treated alike, only the sign bit is
761 // affected by this instruction.
762 // But when NAN2008=0 (R2 and before), the ABS.fmt instructions can't be used. For this case, any
763 // NaN operand signals invalid operation. This means that other bits (not just sign bit) might be
764 // changed when doing abs(NaN). Because of that, we clear sign bit in a different way.
765 if (isR6) {
766 if (is64bit) {
767 __ AbsD(out, in);
768 } else {
769 __ AbsS(out, in);
770 }
771 } else {
772 if (is64bit) {
773 if (in != out) {
774 __ MovD(out, in);
775 }
776 __ MoveFromFpuHigh(TMP, in);
777 // ins instruction is not available for R1.
778 if (isR2OrNewer) {
779 __ Ins(TMP, ZERO, 31, 1);
780 } else {
781 __ Sll(TMP, TMP, 1);
782 __ Srl(TMP, TMP, 1);
783 }
784 __ MoveToFpuHigh(TMP, out);
785 } else {
786 __ Mfc1(TMP, in);
787 // ins instruction is not available for R1.
788 if (isR2OrNewer) {
789 __ Ins(TMP, ZERO, 31, 1);
790 } else {
791 __ Sll(TMP, TMP, 1);
792 __ Srl(TMP, TMP, 1);
793 }
794 __ Mtc1(TMP, out);
795 }
796 }
797 }
798
799 // double java.lang.Math.abs(double)
VisitMathAbsDouble(HInvoke * invoke)800 void IntrinsicLocationsBuilderMIPS::VisitMathAbsDouble(HInvoke* invoke) {
801 CreateFPToFPLocations(arena_, invoke);
802 }
803
VisitMathAbsDouble(HInvoke * invoke)804 void IntrinsicCodeGeneratorMIPS::VisitMathAbsDouble(HInvoke* invoke) {
805 MathAbsFP(invoke->GetLocations(), /* is64bit */ true, IsR2OrNewer(), IsR6(), GetAssembler());
806 }
807
808 // float java.lang.Math.abs(float)
VisitMathAbsFloat(HInvoke * invoke)809 void IntrinsicLocationsBuilderMIPS::VisitMathAbsFloat(HInvoke* invoke) {
810 CreateFPToFPLocations(arena_, invoke);
811 }
812
VisitMathAbsFloat(HInvoke * invoke)813 void IntrinsicCodeGeneratorMIPS::VisitMathAbsFloat(HInvoke* invoke) {
814 MathAbsFP(invoke->GetLocations(), /* is64bit */ false, IsR2OrNewer(), IsR6(), GetAssembler());
815 }
816
GenAbsInteger(LocationSummary * locations,bool is64bit,MipsAssembler * assembler)817 static void GenAbsInteger(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
818 if (is64bit) {
819 Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
820 Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
821 Register out_lo = locations->Out().AsRegisterPairLow<Register>();
822 Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
823
824 // The comments in this section show the analogous operations which would
825 // be performed if we had 64-bit registers "in", and "out".
826 // __ Dsra32(AT, in, 31);
827 __ Sra(AT, in_hi, 31);
828 // __ Xor(out, in, AT);
829 __ Xor(TMP, in_lo, AT);
830 __ Xor(out_hi, in_hi, AT);
831 // __ Dsubu(out, out, AT);
832 __ Subu(out_lo, TMP, AT);
833 __ Sltu(TMP, out_lo, TMP);
834 __ Addu(out_hi, out_hi, TMP);
835 } else {
836 Register in = locations->InAt(0).AsRegister<Register>();
837 Register out = locations->Out().AsRegister<Register>();
838
839 __ Sra(AT, in, 31);
840 __ Xor(out, in, AT);
841 __ Subu(out, out, AT);
842 }
843 }
844
845 // int java.lang.Math.abs(int)
VisitMathAbsInt(HInvoke * invoke)846 void IntrinsicLocationsBuilderMIPS::VisitMathAbsInt(HInvoke* invoke) {
847 CreateIntToIntLocations(arena_, invoke);
848 }
849
VisitMathAbsInt(HInvoke * invoke)850 void IntrinsicCodeGeneratorMIPS::VisitMathAbsInt(HInvoke* invoke) {
851 GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
852 }
853
854 // long java.lang.Math.abs(long)
VisitMathAbsLong(HInvoke * invoke)855 void IntrinsicLocationsBuilderMIPS::VisitMathAbsLong(HInvoke* invoke) {
856 CreateIntToIntLocations(arena_, invoke);
857 }
858
VisitMathAbsLong(HInvoke * invoke)859 void IntrinsicCodeGeneratorMIPS::VisitMathAbsLong(HInvoke* invoke) {
860 GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
861 }
862
GenMinMaxFP(LocationSummary * locations,bool is_min,Primitive::Type type,bool is_R6,MipsAssembler * assembler)863 static void GenMinMaxFP(LocationSummary* locations,
864 bool is_min,
865 Primitive::Type type,
866 bool is_R6,
867 MipsAssembler* assembler) {
868 FRegister out = locations->Out().AsFpuRegister<FRegister>();
869 FRegister a = locations->InAt(0).AsFpuRegister<FRegister>();
870 FRegister b = locations->InAt(1).AsFpuRegister<FRegister>();
871
872 if (is_R6) {
873 MipsLabel noNaNs;
874 MipsLabel done;
875 FRegister ftmp = ((out != a) && (out != b)) ? out : FTMP;
876
877 // When Java computes min/max it prefers a NaN to a number; the
878 // behavior of MIPSR6 is to prefer numbers to NaNs, i.e., if one of
879 // the inputs is a NaN and the other is a valid number, the MIPS
880 // instruction will return the number; Java wants the NaN value
881 // returned. This is why there is extra logic preceding the use of
882 // the MIPS min.fmt/max.fmt instructions. If either a, or b holds a
883 // NaN, return the NaN, otherwise return the min/max.
884 if (type == Primitive::kPrimDouble) {
885 __ CmpUnD(FTMP, a, b);
886 __ Bc1eqz(FTMP, &noNaNs);
887
888 // One of the inputs is a NaN
889 __ CmpEqD(ftmp, a, a);
890 // If a == a then b is the NaN, otherwise a is the NaN.
891 __ SelD(ftmp, a, b);
892
893 if (ftmp != out) {
894 __ MovD(out, ftmp);
895 }
896
897 __ B(&done);
898
899 __ Bind(&noNaNs);
900
901 if (is_min) {
902 __ MinD(out, a, b);
903 } else {
904 __ MaxD(out, a, b);
905 }
906 } else {
907 DCHECK_EQ(type, Primitive::kPrimFloat);
908 __ CmpUnS(FTMP, a, b);
909 __ Bc1eqz(FTMP, &noNaNs);
910
911 // One of the inputs is a NaN
912 __ CmpEqS(ftmp, a, a);
913 // If a == a then b is the NaN, otherwise a is the NaN.
914 __ SelS(ftmp, a, b);
915
916 if (ftmp != out) {
917 __ MovS(out, ftmp);
918 }
919
920 __ B(&done);
921
922 __ Bind(&noNaNs);
923
924 if (is_min) {
925 __ MinS(out, a, b);
926 } else {
927 __ MaxS(out, a, b);
928 }
929 }
930
931 __ Bind(&done);
932 } else {
933 MipsLabel ordered;
934 MipsLabel compare;
935 MipsLabel select;
936 MipsLabel done;
937
938 if (type == Primitive::kPrimDouble) {
939 __ CunD(a, b);
940 } else {
941 DCHECK_EQ(type, Primitive::kPrimFloat);
942 __ CunS(a, b);
943 }
944 __ Bc1f(&ordered);
945
946 // a or b (or both) is a NaN. Return one, which is a NaN.
947 if (type == Primitive::kPrimDouble) {
948 __ CeqD(b, b);
949 } else {
950 __ CeqS(b, b);
951 }
952 __ B(&select);
953
954 __ Bind(&ordered);
955
956 // Neither is a NaN.
957 // a == b? (-0.0 compares equal with +0.0)
958 // If equal, handle zeroes, else compare further.
959 if (type == Primitive::kPrimDouble) {
960 __ CeqD(a, b);
961 } else {
962 __ CeqS(a, b);
963 }
964 __ Bc1f(&compare);
965
966 // a == b either bit for bit or one is -0.0 and the other is +0.0.
967 if (type == Primitive::kPrimDouble) {
968 __ MoveFromFpuHigh(TMP, a);
969 __ MoveFromFpuHigh(AT, b);
970 } else {
971 __ Mfc1(TMP, a);
972 __ Mfc1(AT, b);
973 }
974
975 if (is_min) {
976 // -0.0 prevails over +0.0.
977 __ Or(TMP, TMP, AT);
978 } else {
979 // +0.0 prevails over -0.0.
980 __ And(TMP, TMP, AT);
981 }
982
983 if (type == Primitive::kPrimDouble) {
984 __ Mfc1(AT, a);
985 __ Mtc1(AT, out);
986 __ MoveToFpuHigh(TMP, out);
987 } else {
988 __ Mtc1(TMP, out);
989 }
990 __ B(&done);
991
992 __ Bind(&compare);
993
994 if (type == Primitive::kPrimDouble) {
995 if (is_min) {
996 // return (a <= b) ? a : b;
997 __ ColeD(a, b);
998 } else {
999 // return (a >= b) ? a : b;
1000 __ ColeD(b, a); // b <= a
1001 }
1002 } else {
1003 if (is_min) {
1004 // return (a <= b) ? a : b;
1005 __ ColeS(a, b);
1006 } else {
1007 // return (a >= b) ? a : b;
1008 __ ColeS(b, a); // b <= a
1009 }
1010 }
1011
1012 __ Bind(&select);
1013
1014 if (type == Primitive::kPrimDouble) {
1015 __ MovtD(out, a);
1016 __ MovfD(out, b);
1017 } else {
1018 __ MovtS(out, a);
1019 __ MovfS(out, b);
1020 }
1021
1022 __ Bind(&done);
1023 }
1024 }
1025
CreateFPFPToFPLocations(ArenaAllocator * arena,HInvoke * invoke)1026 static void CreateFPFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
1027 LocationSummary* locations = new (arena) LocationSummary(invoke,
1028 LocationSummary::kNoCall,
1029 kIntrinsified);
1030 locations->SetInAt(0, Location::RequiresFpuRegister());
1031 locations->SetInAt(1, Location::RequiresFpuRegister());
1032 locations->SetOut(Location::RequiresFpuRegister(), Location::kOutputOverlap);
1033 }
1034
1035 // double java.lang.Math.min(double, double)
VisitMathMinDoubleDouble(HInvoke * invoke)1036 void IntrinsicLocationsBuilderMIPS::VisitMathMinDoubleDouble(HInvoke* invoke) {
1037 CreateFPFPToFPLocations(arena_, invoke);
1038 }
1039
VisitMathMinDoubleDouble(HInvoke * invoke)1040 void IntrinsicCodeGeneratorMIPS::VisitMathMinDoubleDouble(HInvoke* invoke) {
1041 GenMinMaxFP(invoke->GetLocations(),
1042 /* is_min */ true,
1043 Primitive::kPrimDouble,
1044 IsR6(),
1045 GetAssembler());
1046 }
1047
1048 // float java.lang.Math.min(float, float)
VisitMathMinFloatFloat(HInvoke * invoke)1049 void IntrinsicLocationsBuilderMIPS::VisitMathMinFloatFloat(HInvoke* invoke) {
1050 CreateFPFPToFPLocations(arena_, invoke);
1051 }
1052
VisitMathMinFloatFloat(HInvoke * invoke)1053 void IntrinsicCodeGeneratorMIPS::VisitMathMinFloatFloat(HInvoke* invoke) {
1054 GenMinMaxFP(invoke->GetLocations(),
1055 /* is_min */ true,
1056 Primitive::kPrimFloat,
1057 IsR6(),
1058 GetAssembler());
1059 }
1060
1061 // double java.lang.Math.max(double, double)
VisitMathMaxDoubleDouble(HInvoke * invoke)1062 void IntrinsicLocationsBuilderMIPS::VisitMathMaxDoubleDouble(HInvoke* invoke) {
1063 CreateFPFPToFPLocations(arena_, invoke);
1064 }
1065
VisitMathMaxDoubleDouble(HInvoke * invoke)1066 void IntrinsicCodeGeneratorMIPS::VisitMathMaxDoubleDouble(HInvoke* invoke) {
1067 GenMinMaxFP(invoke->GetLocations(),
1068 /* is_min */ false,
1069 Primitive::kPrimDouble,
1070 IsR6(),
1071 GetAssembler());
1072 }
1073
1074 // float java.lang.Math.max(float, float)
VisitMathMaxFloatFloat(HInvoke * invoke)1075 void IntrinsicLocationsBuilderMIPS::VisitMathMaxFloatFloat(HInvoke* invoke) {
1076 CreateFPFPToFPLocations(arena_, invoke);
1077 }
1078
VisitMathMaxFloatFloat(HInvoke * invoke)1079 void IntrinsicCodeGeneratorMIPS::VisitMathMaxFloatFloat(HInvoke* invoke) {
1080 GenMinMaxFP(invoke->GetLocations(),
1081 /* is_min */ false,
1082 Primitive::kPrimFloat,
1083 IsR6(),
1084 GetAssembler());
1085 }
1086
CreateIntIntToIntLocations(ArenaAllocator * arena,HInvoke * invoke)1087 static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
1088 LocationSummary* locations = new (arena) LocationSummary(invoke,
1089 LocationSummary::kNoCall,
1090 kIntrinsified);
1091 locations->SetInAt(0, Location::RequiresRegister());
1092 locations->SetInAt(1, Location::RequiresRegister());
1093 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1094 }
1095
GenMinMax(LocationSummary * locations,bool is_min,Primitive::Type type,bool is_R6,MipsAssembler * assembler)1096 static void GenMinMax(LocationSummary* locations,
1097 bool is_min,
1098 Primitive::Type type,
1099 bool is_R6,
1100 MipsAssembler* assembler) {
1101 if (is_R6) {
1102 // Some architectures, such as ARM and MIPS (prior to r6), have a
1103 // conditional move instruction which only changes the target
1104 // (output) register if the condition is true (MIPS prior to r6 had
1105 // MOVF, MOVT, MOVN, and MOVZ). The SELEQZ and SELNEZ instructions
1106 // always change the target (output) register. If the condition is
1107 // true the output register gets the contents of the "rs" register;
1108 // otherwise, the output register is set to zero. One consequence
1109 // of this is that to implement something like "rd = c==0 ? rs : rt"
1110 // MIPS64r6 needs to use a pair of SELEQZ/SELNEZ instructions.
1111 // After executing this pair of instructions one of the output
1112 // registers from the pair will necessarily contain zero. Then the
1113 // code ORs the output registers from the SELEQZ/SELNEZ instructions
1114 // to get the final result.
1115 //
1116 // The initial test to see if the output register is same as the
1117 // first input register is needed to make sure that value in the
1118 // first input register isn't clobbered before we've finished
1119 // computing the output value. The logic in the corresponding else
1120 // clause performs the same task but makes sure the second input
1121 // register isn't clobbered in the event that it's the same register
1122 // as the output register; the else clause also handles the case
1123 // where the output register is distinct from both the first, and the
1124 // second input registers.
1125 if (type == Primitive::kPrimLong) {
1126 Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
1127 Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
1128 Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
1129 Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
1130 Register out_lo = locations->Out().AsRegisterPairLow<Register>();
1131 Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
1132
1133 MipsLabel compare_done;
1134
1135 if (a_lo == b_lo) {
1136 if (out_lo != a_lo) {
1137 __ Move(out_lo, a_lo);
1138 __ Move(out_hi, a_hi);
1139 }
1140 } else {
1141 __ Slt(TMP, b_hi, a_hi);
1142 __ Bne(b_hi, a_hi, &compare_done);
1143
1144 __ Sltu(TMP, b_lo, a_lo);
1145
1146 __ Bind(&compare_done);
1147
1148 if (is_min) {
1149 __ Seleqz(AT, a_lo, TMP);
1150 __ Selnez(out_lo, b_lo, TMP); // Safe even if out_lo == a_lo/b_lo
1151 // because at this point we're
1152 // done using a_lo/b_lo.
1153 } else {
1154 __ Selnez(AT, a_lo, TMP);
1155 __ Seleqz(out_lo, b_lo, TMP); // ditto
1156 }
1157 __ Or(out_lo, out_lo, AT);
1158 if (is_min) {
1159 __ Seleqz(AT, a_hi, TMP);
1160 __ Selnez(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi
1161 } else {
1162 __ Selnez(AT, a_hi, TMP);
1163 __ Seleqz(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi
1164 }
1165 __ Or(out_hi, out_hi, AT);
1166 }
1167 } else {
1168 DCHECK_EQ(type, Primitive::kPrimInt);
1169 Register a = locations->InAt(0).AsRegister<Register>();
1170 Register b = locations->InAt(1).AsRegister<Register>();
1171 Register out = locations->Out().AsRegister<Register>();
1172
1173 if (a == b) {
1174 if (out != a) {
1175 __ Move(out, a);
1176 }
1177 } else {
1178 __ Slt(AT, b, a);
1179 if (is_min) {
1180 __ Seleqz(TMP, a, AT);
1181 __ Selnez(AT, b, AT);
1182 } else {
1183 __ Selnez(TMP, a, AT);
1184 __ Seleqz(AT, b, AT);
1185 }
1186 __ Or(out, TMP, AT);
1187 }
1188 }
1189 } else {
1190 if (type == Primitive::kPrimLong) {
1191 Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
1192 Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
1193 Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
1194 Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
1195 Register out_lo = locations->Out().AsRegisterPairLow<Register>();
1196 Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
1197
1198 MipsLabel compare_done;
1199
1200 if (a_lo == b_lo) {
1201 if (out_lo != a_lo) {
1202 __ Move(out_lo, a_lo);
1203 __ Move(out_hi, a_hi);
1204 }
1205 } else {
1206 __ Slt(TMP, a_hi, b_hi);
1207 __ Bne(a_hi, b_hi, &compare_done);
1208
1209 __ Sltu(TMP, a_lo, b_lo);
1210
1211 __ Bind(&compare_done);
1212
1213 if (is_min) {
1214 if (out_lo != a_lo) {
1215 __ Movn(out_hi, a_hi, TMP);
1216 __ Movn(out_lo, a_lo, TMP);
1217 }
1218 if (out_lo != b_lo) {
1219 __ Movz(out_hi, b_hi, TMP);
1220 __ Movz(out_lo, b_lo, TMP);
1221 }
1222 } else {
1223 if (out_lo != a_lo) {
1224 __ Movz(out_hi, a_hi, TMP);
1225 __ Movz(out_lo, a_lo, TMP);
1226 }
1227 if (out_lo != b_lo) {
1228 __ Movn(out_hi, b_hi, TMP);
1229 __ Movn(out_lo, b_lo, TMP);
1230 }
1231 }
1232 }
1233 } else {
1234 DCHECK_EQ(type, Primitive::kPrimInt);
1235 Register a = locations->InAt(0).AsRegister<Register>();
1236 Register b = locations->InAt(1).AsRegister<Register>();
1237 Register out = locations->Out().AsRegister<Register>();
1238
1239 if (a == b) {
1240 if (out != a) {
1241 __ Move(out, a);
1242 }
1243 } else {
1244 __ Slt(AT, a, b);
1245 if (is_min) {
1246 if (out != a) {
1247 __ Movn(out, a, AT);
1248 }
1249 if (out != b) {
1250 __ Movz(out, b, AT);
1251 }
1252 } else {
1253 if (out != a) {
1254 __ Movz(out, a, AT);
1255 }
1256 if (out != b) {
1257 __ Movn(out, b, AT);
1258 }
1259 }
1260 }
1261 }
1262 }
1263 }
1264
1265 // int java.lang.Math.min(int, int)
VisitMathMinIntInt(HInvoke * invoke)1266 void IntrinsicLocationsBuilderMIPS::VisitMathMinIntInt(HInvoke* invoke) {
1267 CreateIntIntToIntLocations(arena_, invoke);
1268 }
1269
VisitMathMinIntInt(HInvoke * invoke)1270 void IntrinsicCodeGeneratorMIPS::VisitMathMinIntInt(HInvoke* invoke) {
1271 GenMinMax(invoke->GetLocations(),
1272 /* is_min */ true,
1273 Primitive::kPrimInt,
1274 IsR6(),
1275 GetAssembler());
1276 }
1277
1278 // long java.lang.Math.min(long, long)
VisitMathMinLongLong(HInvoke * invoke)1279 void IntrinsicLocationsBuilderMIPS::VisitMathMinLongLong(HInvoke* invoke) {
1280 CreateIntIntToIntLocations(arena_, invoke);
1281 }
1282
VisitMathMinLongLong(HInvoke * invoke)1283 void IntrinsicCodeGeneratorMIPS::VisitMathMinLongLong(HInvoke* invoke) {
1284 GenMinMax(invoke->GetLocations(),
1285 /* is_min */ true,
1286 Primitive::kPrimLong,
1287 IsR6(),
1288 GetAssembler());
1289 }
1290
1291 // int java.lang.Math.max(int, int)
VisitMathMaxIntInt(HInvoke * invoke)1292 void IntrinsicLocationsBuilderMIPS::VisitMathMaxIntInt(HInvoke* invoke) {
1293 CreateIntIntToIntLocations(arena_, invoke);
1294 }
1295
VisitMathMaxIntInt(HInvoke * invoke)1296 void IntrinsicCodeGeneratorMIPS::VisitMathMaxIntInt(HInvoke* invoke) {
1297 GenMinMax(invoke->GetLocations(),
1298 /* is_min */ false,
1299 Primitive::kPrimInt,
1300 IsR6(),
1301 GetAssembler());
1302 }
1303
1304 // long java.lang.Math.max(long, long)
VisitMathMaxLongLong(HInvoke * invoke)1305 void IntrinsicLocationsBuilderMIPS::VisitMathMaxLongLong(HInvoke* invoke) {
1306 CreateIntIntToIntLocations(arena_, invoke);
1307 }
1308
VisitMathMaxLongLong(HInvoke * invoke)1309 void IntrinsicCodeGeneratorMIPS::VisitMathMaxLongLong(HInvoke* invoke) {
1310 GenMinMax(invoke->GetLocations(),
1311 /* is_min */ false,
1312 Primitive::kPrimLong,
1313 IsR6(),
1314 GetAssembler());
1315 }
1316
1317 // double java.lang.Math.sqrt(double)
VisitMathSqrt(HInvoke * invoke)1318 void IntrinsicLocationsBuilderMIPS::VisitMathSqrt(HInvoke* invoke) {
1319 CreateFPToFPLocations(arena_, invoke);
1320 }
1321
VisitMathSqrt(HInvoke * invoke)1322 void IntrinsicCodeGeneratorMIPS::VisitMathSqrt(HInvoke* invoke) {
1323 LocationSummary* locations = invoke->GetLocations();
1324 MipsAssembler* assembler = GetAssembler();
1325 FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
1326 FRegister out = locations->Out().AsFpuRegister<FRegister>();
1327
1328 __ SqrtD(out, in);
1329 }
1330
1331 // byte libcore.io.Memory.peekByte(long address)
VisitMemoryPeekByte(HInvoke * invoke)1332 void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekByte(HInvoke* invoke) {
1333 CreateIntToIntLocations(arena_, invoke);
1334 }
1335
VisitMemoryPeekByte(HInvoke * invoke)1336 void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekByte(HInvoke* invoke) {
1337 MipsAssembler* assembler = GetAssembler();
1338 Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1339 Register out = invoke->GetLocations()->Out().AsRegister<Register>();
1340
1341 __ Lb(out, adr, 0);
1342 }
1343
1344 // short libcore.io.Memory.peekShort(long address)
VisitMemoryPeekShortNative(HInvoke * invoke)1345 void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) {
1346 CreateIntToIntLocations(arena_, invoke);
1347 }
1348
VisitMemoryPeekShortNative(HInvoke * invoke)1349 void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) {
1350 MipsAssembler* assembler = GetAssembler();
1351 Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1352 Register out = invoke->GetLocations()->Out().AsRegister<Register>();
1353
1354 if (IsR6()) {
1355 __ Lh(out, adr, 0);
1356 } else if (IsR2OrNewer()) {
1357 // Unlike for words, there are no lhl/lhr instructions to load
1358 // unaligned halfwords so the code loads individual bytes, in case
1359 // the address isn't halfword-aligned, and assembles them into a
1360 // signed halfword.
1361 __ Lb(AT, adr, 1); // This byte must be sign-extended.
1362 __ Lb(out, adr, 0); // This byte can be either sign-extended, or
1363 // zero-extended because the following
1364 // instruction overwrites the sign bits.
1365 __ Ins(out, AT, 8, 24);
1366 } else {
1367 __ Lbu(AT, adr, 0); // This byte must be zero-extended. If it's not
1368 // the "or" instruction below will destroy the upper
1369 // 24 bits of the final result.
1370 __ Lb(out, adr, 1); // This byte must be sign-extended.
1371 __ Sll(out, out, 8);
1372 __ Or(out, out, AT);
1373 }
1374 }
1375
1376 // int libcore.io.Memory.peekInt(long address)
VisitMemoryPeekIntNative(HInvoke * invoke)1377 void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) {
1378 CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
1379 }
1380
VisitMemoryPeekIntNative(HInvoke * invoke)1381 void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) {
1382 MipsAssembler* assembler = GetAssembler();
1383 Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1384 Register out = invoke->GetLocations()->Out().AsRegister<Register>();
1385
1386 if (IsR6()) {
1387 __ Lw(out, adr, 0);
1388 } else {
1389 __ Lwr(out, adr, 0);
1390 __ Lwl(out, adr, 3);
1391 }
1392 }
1393
1394 // long libcore.io.Memory.peekLong(long address)
VisitMemoryPeekLongNative(HInvoke * invoke)1395 void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) {
1396 CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
1397 }
1398
VisitMemoryPeekLongNative(HInvoke * invoke)1399 void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) {
1400 MipsAssembler* assembler = GetAssembler();
1401 Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1402 Register out_lo = invoke->GetLocations()->Out().AsRegisterPairLow<Register>();
1403 Register out_hi = invoke->GetLocations()->Out().AsRegisterPairHigh<Register>();
1404
1405 if (IsR6()) {
1406 __ Lw(out_lo, adr, 0);
1407 __ Lw(out_hi, adr, 4);
1408 } else {
1409 __ Lwr(out_lo, adr, 0);
1410 __ Lwl(out_lo, adr, 3);
1411 __ Lwr(out_hi, adr, 4);
1412 __ Lwl(out_hi, adr, 7);
1413 }
1414 }
1415
CreateIntIntToVoidLocations(ArenaAllocator * arena,HInvoke * invoke)1416 static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
1417 LocationSummary* locations = new (arena) LocationSummary(invoke,
1418 LocationSummary::kNoCall,
1419 kIntrinsified);
1420 locations->SetInAt(0, Location::RequiresRegister());
1421 locations->SetInAt(1, Location::RequiresRegister());
1422 }
1423
1424 // void libcore.io.Memory.pokeByte(long address, byte value)
VisitMemoryPokeByte(HInvoke * invoke)1425 void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeByte(HInvoke* invoke) {
1426 CreateIntIntToVoidLocations(arena_, invoke);
1427 }
1428
VisitMemoryPokeByte(HInvoke * invoke)1429 void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeByte(HInvoke* invoke) {
1430 MipsAssembler* assembler = GetAssembler();
1431 Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1432 Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
1433
1434 __ Sb(val, adr, 0);
1435 }
1436
1437 // void libcore.io.Memory.pokeShort(long address, short value)
VisitMemoryPokeShortNative(HInvoke * invoke)1438 void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) {
1439 CreateIntIntToVoidLocations(arena_, invoke);
1440 }
1441
VisitMemoryPokeShortNative(HInvoke * invoke)1442 void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) {
1443 MipsAssembler* assembler = GetAssembler();
1444 Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1445 Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
1446
1447 if (IsR6()) {
1448 __ Sh(val, adr, 0);
1449 } else {
1450 // Unlike for words, there are no shl/shr instructions to store
1451 // unaligned halfwords so the code stores individual bytes, in case
1452 // the address isn't halfword-aligned.
1453 __ Sb(val, adr, 0);
1454 __ Srl(AT, val, 8);
1455 __ Sb(AT, adr, 1);
1456 }
1457 }
1458
1459 // void libcore.io.Memory.pokeInt(long address, int value)
VisitMemoryPokeIntNative(HInvoke * invoke)1460 void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) {
1461 CreateIntIntToVoidLocations(arena_, invoke);
1462 }
1463
VisitMemoryPokeIntNative(HInvoke * invoke)1464 void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) {
1465 MipsAssembler* assembler = GetAssembler();
1466 Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1467 Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
1468
1469 if (IsR6()) {
1470 __ Sw(val, adr, 0);
1471 } else {
1472 __ Swr(val, adr, 0);
1473 __ Swl(val, adr, 3);
1474 }
1475 }
1476
1477 // void libcore.io.Memory.pokeLong(long address, long value)
VisitMemoryPokeLongNative(HInvoke * invoke)1478 void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) {
1479 CreateIntIntToVoidLocations(arena_, invoke);
1480 }
1481
VisitMemoryPokeLongNative(HInvoke * invoke)1482 void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) {
1483 MipsAssembler* assembler = GetAssembler();
1484 Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1485 Register val_lo = invoke->GetLocations()->InAt(1).AsRegisterPairLow<Register>();
1486 Register val_hi = invoke->GetLocations()->InAt(1).AsRegisterPairHigh<Register>();
1487
1488 if (IsR6()) {
1489 __ Sw(val_lo, adr, 0);
1490 __ Sw(val_hi, adr, 4);
1491 } else {
1492 __ Swr(val_lo, adr, 0);
1493 __ Swl(val_lo, adr, 3);
1494 __ Swr(val_hi, adr, 4);
1495 __ Swl(val_hi, adr, 7);
1496 }
1497 }
1498
1499 // Thread java.lang.Thread.currentThread()
VisitThreadCurrentThread(HInvoke * invoke)1500 void IntrinsicLocationsBuilderMIPS::VisitThreadCurrentThread(HInvoke* invoke) {
1501 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1502 LocationSummary::kNoCall,
1503 kIntrinsified);
1504 locations->SetOut(Location::RequiresRegister());
1505 }
1506
VisitThreadCurrentThread(HInvoke * invoke)1507 void IntrinsicCodeGeneratorMIPS::VisitThreadCurrentThread(HInvoke* invoke) {
1508 MipsAssembler* assembler = GetAssembler();
1509 Register out = invoke->GetLocations()->Out().AsRegister<Register>();
1510
1511 __ LoadFromOffset(kLoadWord,
1512 out,
1513 TR,
1514 Thread::PeerOffset<kMipsPointerSize>().Int32Value());
1515 }
1516
CreateIntIntIntToIntLocations(ArenaAllocator * arena,HInvoke * invoke,Primitive::Type type)1517 static void CreateIntIntIntToIntLocations(ArenaAllocator* arena,
1518 HInvoke* invoke,
1519 Primitive::Type type) {
1520 bool can_call = kEmitCompilerReadBarrier &&
1521 (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
1522 invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
1523 LocationSummary* locations = new (arena) LocationSummary(invoke,
1524 (can_call
1525 ? LocationSummary::kCallOnSlowPath
1526 : LocationSummary::kNoCall),
1527 kIntrinsified);
1528 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1529 locations->SetInAt(1, Location::RequiresRegister());
1530 locations->SetInAt(2, Location::RequiresRegister());
1531 locations->SetOut(Location::RequiresRegister(),
1532 (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
1533 if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1534 // We need a temporary register for the read barrier marking slow
1535 // path in InstructionCodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier.
1536 locations->AddTemp(Location::RequiresRegister());
1537 }
1538 }
1539
1540 // Note that the caller must supply a properly aligned memory address.
1541 // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
GenUnsafeGet(HInvoke * invoke,Primitive::Type type,bool is_volatile,bool is_R6,CodeGeneratorMIPS * codegen)1542 static void GenUnsafeGet(HInvoke* invoke,
1543 Primitive::Type type,
1544 bool is_volatile,
1545 bool is_R6,
1546 CodeGeneratorMIPS* codegen) {
1547 LocationSummary* locations = invoke->GetLocations();
1548 DCHECK((type == Primitive::kPrimInt) ||
1549 (type == Primitive::kPrimLong) ||
1550 (type == Primitive::kPrimNot)) << type;
1551 MipsAssembler* assembler = codegen->GetAssembler();
1552 // Target register.
1553 Location trg_loc = locations->Out();
1554 // Object pointer.
1555 Location base_loc = locations->InAt(1);
1556 Register base = base_loc.AsRegister<Register>();
1557 // The "offset" argument is passed as a "long". Since this code is for
1558 // a 32-bit processor, we can only use 32-bit addresses, so we only
1559 // need the low 32-bits of offset.
1560 Location offset_loc = locations->InAt(2);
1561 Register offset_lo = offset_loc.AsRegisterPairLow<Register>();
1562
1563 if (!(kEmitCompilerReadBarrier && kUseBakerReadBarrier && (type == Primitive::kPrimNot))) {
1564 __ Addu(TMP, base, offset_lo);
1565 }
1566
1567 switch (type) {
1568 case Primitive::kPrimLong: {
1569 Register trg_lo = trg_loc.AsRegisterPairLow<Register>();
1570 Register trg_hi = trg_loc.AsRegisterPairHigh<Register>();
1571 CHECK(!is_volatile); // TODO: support atomic 8-byte volatile loads.
1572 if (is_R6) {
1573 __ Lw(trg_lo, TMP, 0);
1574 __ Lw(trg_hi, TMP, 4);
1575 } else {
1576 __ Lwr(trg_lo, TMP, 0);
1577 __ Lwl(trg_lo, TMP, 3);
1578 __ Lwr(trg_hi, TMP, 4);
1579 __ Lwl(trg_hi, TMP, 7);
1580 }
1581 break;
1582 }
1583
1584 case Primitive::kPrimInt: {
1585 Register trg = trg_loc.AsRegister<Register>();
1586 if (is_R6) {
1587 __ Lw(trg, TMP, 0);
1588 } else {
1589 __ Lwr(trg, TMP, 0);
1590 __ Lwl(trg, TMP, 3);
1591 }
1592 if (is_volatile) {
1593 __ Sync(0);
1594 }
1595 break;
1596 }
1597
1598 case Primitive::kPrimNot: {
1599 Register trg = trg_loc.AsRegister<Register>();
1600 if (kEmitCompilerReadBarrier) {
1601 if (kUseBakerReadBarrier) {
1602 Location temp = locations->GetTemp(0);
1603 codegen->GenerateReferenceLoadWithBakerReadBarrier(invoke,
1604 trg_loc,
1605 base,
1606 /* offset */ 0U,
1607 /* index */ offset_loc,
1608 TIMES_1,
1609 temp,
1610 /* needs_null_check */ false);
1611 if (is_volatile) {
1612 __ Sync(0);
1613 }
1614 } else {
1615 if (is_R6) {
1616 __ Lw(trg, TMP, 0);
1617 } else {
1618 __ Lwr(trg, TMP, 0);
1619 __ Lwl(trg, TMP, 3);
1620 }
1621 if (is_volatile) {
1622 __ Sync(0);
1623 }
1624 codegen->GenerateReadBarrierSlow(invoke,
1625 trg_loc,
1626 trg_loc,
1627 base_loc,
1628 /* offset */ 0U,
1629 /* index */ offset_loc);
1630 }
1631 } else {
1632 if (is_R6) {
1633 __ Lw(trg, TMP, 0);
1634 } else {
1635 __ Lwr(trg, TMP, 0);
1636 __ Lwl(trg, TMP, 3);
1637 }
1638 if (is_volatile) {
1639 __ Sync(0);
1640 }
1641 __ MaybeUnpoisonHeapReference(trg);
1642 }
1643 break;
1644 }
1645
1646 default:
1647 LOG(FATAL) << "Unexpected type " << type;
1648 UNREACHABLE();
1649 }
1650 }
1651
1652 // int sun.misc.Unsafe.getInt(Object o, long offset)
VisitUnsafeGet(HInvoke * invoke)1653 void IntrinsicLocationsBuilderMIPS::VisitUnsafeGet(HInvoke* invoke) {
1654 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
1655 }
1656
VisitUnsafeGet(HInvoke * invoke)1657 void IntrinsicCodeGeneratorMIPS::VisitUnsafeGet(HInvoke* invoke) {
1658 GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, IsR6(), codegen_);
1659 }
1660
1661 // int sun.misc.Unsafe.getIntVolatile(Object o, long offset)
VisitUnsafeGetVolatile(HInvoke * invoke)1662 void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) {
1663 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
1664 }
1665
VisitUnsafeGetVolatile(HInvoke * invoke)1666 void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) {
1667 GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, IsR6(), codegen_);
1668 }
1669
1670 // long sun.misc.Unsafe.getLong(Object o, long offset)
VisitUnsafeGetLong(HInvoke * invoke)1671 void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetLong(HInvoke* invoke) {
1672 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
1673 }
1674
VisitUnsafeGetLong(HInvoke * invoke)1675 void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetLong(HInvoke* invoke) {
1676 GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, IsR6(), codegen_);
1677 }
1678
1679 // Object sun.misc.Unsafe.getObject(Object o, long offset)
VisitUnsafeGetObject(HInvoke * invoke)1680 void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObject(HInvoke* invoke) {
1681 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
1682 }
1683
VisitUnsafeGetObject(HInvoke * invoke)1684 void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObject(HInvoke* invoke) {
1685 GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, IsR6(), codegen_);
1686 }
1687
1688 // Object sun.misc.Unsafe.getObjectVolatile(Object o, long offset)
VisitUnsafeGetObjectVolatile(HInvoke * invoke)1689 void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
1690 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
1691 }
1692
VisitUnsafeGetObjectVolatile(HInvoke * invoke)1693 void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
1694 GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, IsR6(), codegen_);
1695 }
1696
CreateIntIntIntIntToVoidLocations(ArenaAllocator * arena,HInvoke * invoke)1697 static void CreateIntIntIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
1698 LocationSummary* locations = new (arena) LocationSummary(invoke,
1699 LocationSummary::kNoCall,
1700 kIntrinsified);
1701 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1702 locations->SetInAt(1, Location::RequiresRegister());
1703 locations->SetInAt(2, Location::RequiresRegister());
1704 locations->SetInAt(3, Location::RequiresRegister());
1705 }
1706
1707 // Note that the caller must supply a properly aligned memory address.
1708 // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
GenUnsafePut(LocationSummary * locations,Primitive::Type type,bool is_volatile,bool is_ordered,bool is_R6,CodeGeneratorMIPS * codegen)1709 static void GenUnsafePut(LocationSummary* locations,
1710 Primitive::Type type,
1711 bool is_volatile,
1712 bool is_ordered,
1713 bool is_R6,
1714 CodeGeneratorMIPS* codegen) {
1715 DCHECK((type == Primitive::kPrimInt) ||
1716 (type == Primitive::kPrimLong) ||
1717 (type == Primitive::kPrimNot)) << type;
1718 MipsAssembler* assembler = codegen->GetAssembler();
1719 // Object pointer.
1720 Register base = locations->InAt(1).AsRegister<Register>();
1721 // The "offset" argument is passed as a "long", i.e., it's 64-bits in
1722 // size. Since this code is for a 32-bit processor, we can only use
1723 // 32-bit addresses, so we only need the low 32-bits of offset.
1724 Register offset_lo = locations->InAt(2).AsRegisterPairLow<Register>();
1725
1726 __ Addu(TMP, base, offset_lo);
1727 if (is_volatile || is_ordered) {
1728 __ Sync(0);
1729 }
1730 if ((type == Primitive::kPrimInt) || (type == Primitive::kPrimNot)) {
1731 Register value = locations->InAt(3).AsRegister<Register>();
1732
1733 if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
1734 __ PoisonHeapReference(AT, value);
1735 value = AT;
1736 }
1737
1738 if (is_R6) {
1739 __ Sw(value, TMP, 0);
1740 } else {
1741 __ Swr(value, TMP, 0);
1742 __ Swl(value, TMP, 3);
1743 }
1744 } else {
1745 Register value_lo = locations->InAt(3).AsRegisterPairLow<Register>();
1746 Register value_hi = locations->InAt(3).AsRegisterPairHigh<Register>();
1747 CHECK(!is_volatile); // TODO: support atomic 8-byte volatile stores.
1748 if (is_R6) {
1749 __ Sw(value_lo, TMP, 0);
1750 __ Sw(value_hi, TMP, 4);
1751 } else {
1752 __ Swr(value_lo, TMP, 0);
1753 __ Swl(value_lo, TMP, 3);
1754 __ Swr(value_hi, TMP, 4);
1755 __ Swl(value_hi, TMP, 7);
1756 }
1757 }
1758
1759 if (is_volatile) {
1760 __ Sync(0);
1761 }
1762
1763 if (type == Primitive::kPrimNot) {
1764 bool value_can_be_null = true; // TODO: Worth finding out this information?
1765 codegen->MarkGCCard(base, locations->InAt(3).AsRegister<Register>(), value_can_be_null);
1766 }
1767 }
1768
1769 // void sun.misc.Unsafe.putInt(Object o, long offset, int x)
VisitUnsafePut(HInvoke * invoke)1770 void IntrinsicLocationsBuilderMIPS::VisitUnsafePut(HInvoke* invoke) {
1771 CreateIntIntIntIntToVoidLocations(arena_, invoke);
1772 }
1773
VisitUnsafePut(HInvoke * invoke)1774 void IntrinsicCodeGeneratorMIPS::VisitUnsafePut(HInvoke* invoke) {
1775 GenUnsafePut(invoke->GetLocations(),
1776 Primitive::kPrimInt,
1777 /* is_volatile */ false,
1778 /* is_ordered */ false,
1779 IsR6(),
1780 codegen_);
1781 }
1782
1783 // void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x)
VisitUnsafePutOrdered(HInvoke * invoke)1784 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutOrdered(HInvoke* invoke) {
1785 CreateIntIntIntIntToVoidLocations(arena_, invoke);
1786 }
1787
VisitUnsafePutOrdered(HInvoke * invoke)1788 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutOrdered(HInvoke* invoke) {
1789 GenUnsafePut(invoke->GetLocations(),
1790 Primitive::kPrimInt,
1791 /* is_volatile */ false,
1792 /* is_ordered */ true,
1793 IsR6(),
1794 codegen_);
1795 }
1796
1797 // void sun.misc.Unsafe.putIntVolatile(Object o, long offset, int x)
VisitUnsafePutVolatile(HInvoke * invoke)1798 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutVolatile(HInvoke* invoke) {
1799 CreateIntIntIntIntToVoidLocations(arena_, invoke);
1800 }
1801
VisitUnsafePutVolatile(HInvoke * invoke)1802 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutVolatile(HInvoke* invoke) {
1803 GenUnsafePut(invoke->GetLocations(),
1804 Primitive::kPrimInt,
1805 /* is_volatile */ true,
1806 /* is_ordered */ false,
1807 IsR6(),
1808 codegen_);
1809 }
1810
1811 // void sun.misc.Unsafe.putObject(Object o, long offset, Object x)
VisitUnsafePutObject(HInvoke * invoke)1812 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObject(HInvoke* invoke) {
1813 CreateIntIntIntIntToVoidLocations(arena_, invoke);
1814 }
1815
VisitUnsafePutObject(HInvoke * invoke)1816 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObject(HInvoke* invoke) {
1817 GenUnsafePut(invoke->GetLocations(),
1818 Primitive::kPrimNot,
1819 /* is_volatile */ false,
1820 /* is_ordered */ false,
1821 IsR6(),
1822 codegen_);
1823 }
1824
1825 // void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x)
VisitUnsafePutObjectOrdered(HInvoke * invoke)1826 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
1827 CreateIntIntIntIntToVoidLocations(arena_, invoke);
1828 }
1829
VisitUnsafePutObjectOrdered(HInvoke * invoke)1830 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
1831 GenUnsafePut(invoke->GetLocations(),
1832 Primitive::kPrimNot,
1833 /* is_volatile */ false,
1834 /* is_ordered */ true,
1835 IsR6(),
1836 codegen_);
1837 }
1838
1839 // void sun.misc.Unsafe.putObjectVolatile(Object o, long offset, Object x)
VisitUnsafePutObjectVolatile(HInvoke * invoke)1840 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
1841 CreateIntIntIntIntToVoidLocations(arena_, invoke);
1842 }
1843
VisitUnsafePutObjectVolatile(HInvoke * invoke)1844 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
1845 GenUnsafePut(invoke->GetLocations(),
1846 Primitive::kPrimNot,
1847 /* is_volatile */ true,
1848 /* is_ordered */ false,
1849 IsR6(),
1850 codegen_);
1851 }
1852
1853 // void sun.misc.Unsafe.putLong(Object o, long offset, long x)
VisitUnsafePutLong(HInvoke * invoke)1854 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLong(HInvoke* invoke) {
1855 CreateIntIntIntIntToVoidLocations(arena_, invoke);
1856 }
1857
VisitUnsafePutLong(HInvoke * invoke)1858 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLong(HInvoke* invoke) {
1859 GenUnsafePut(invoke->GetLocations(),
1860 Primitive::kPrimLong,
1861 /* is_volatile */ false,
1862 /* is_ordered */ false,
1863 IsR6(),
1864 codegen_);
1865 }
1866
1867 // void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x)
VisitUnsafePutLongOrdered(HInvoke * invoke)1868 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) {
1869 CreateIntIntIntIntToVoidLocations(arena_, invoke);
1870 }
1871
VisitUnsafePutLongOrdered(HInvoke * invoke)1872 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) {
1873 GenUnsafePut(invoke->GetLocations(),
1874 Primitive::kPrimLong,
1875 /* is_volatile */ false,
1876 /* is_ordered */ true,
1877 IsR6(),
1878 codegen_);
1879 }
1880
CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator * arena,HInvoke * invoke)1881 static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* arena, HInvoke* invoke) {
1882 bool can_call = kEmitCompilerReadBarrier &&
1883 kUseBakerReadBarrier &&
1884 (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
1885 LocationSummary* locations = new (arena) LocationSummary(invoke,
1886 (can_call
1887 ? LocationSummary::kCallOnSlowPath
1888 : LocationSummary::kNoCall),
1889 kIntrinsified);
1890 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1891 locations->SetInAt(1, Location::RequiresRegister());
1892 locations->SetInAt(2, Location::RequiresRegister());
1893 locations->SetInAt(3, Location::RequiresRegister());
1894 locations->SetInAt(4, Location::RequiresRegister());
1895 locations->SetOut(Location::RequiresRegister());
1896
1897 // Temporary register used in CAS by (Baker) read barrier.
1898 if (can_call) {
1899 locations->AddTemp(Location::RequiresRegister());
1900 }
1901 }
1902
1903 // Note that the caller must supply a properly aligned memory address.
1904 // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
GenCas(HInvoke * invoke,Primitive::Type type,CodeGeneratorMIPS * codegen)1905 static void GenCas(HInvoke* invoke, Primitive::Type type, CodeGeneratorMIPS* codegen) {
1906 MipsAssembler* assembler = codegen->GetAssembler();
1907 LocationSummary* locations = invoke->GetLocations();
1908 bool isR6 = codegen->GetInstructionSetFeatures().IsR6();
1909 Register base = locations->InAt(1).AsRegister<Register>();
1910 Location offset_loc = locations->InAt(2);
1911 Register offset_lo = offset_loc.AsRegisterPairLow<Register>();
1912 Register expected = locations->InAt(3).AsRegister<Register>();
1913 Register value = locations->InAt(4).AsRegister<Register>();
1914 Location out_loc = locations->Out();
1915 Register out = out_loc.AsRegister<Register>();
1916
1917 DCHECK_NE(base, out);
1918 DCHECK_NE(offset_lo, out);
1919 DCHECK_NE(expected, out);
1920
1921 if (type == Primitive::kPrimNot) {
1922 // The only read barrier implementation supporting the
1923 // UnsafeCASObject intrinsic is the Baker-style read barriers.
1924 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
1925
1926 // Mark card for object assuming new value is stored. Worst case we will mark an unchanged
1927 // object and scan the receiver at the next GC for nothing.
1928 bool value_can_be_null = true; // TODO: Worth finding out this information?
1929 codegen->MarkGCCard(base, value, value_can_be_null);
1930
1931 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1932 Location temp = locations->GetTemp(0);
1933 // Need to make sure the reference stored in the field is a to-space
1934 // one before attempting the CAS or the CAS could fail incorrectly.
1935 codegen->GenerateReferenceLoadWithBakerReadBarrier(
1936 invoke,
1937 out_loc, // Unused, used only as a "temporary" within the read barrier.
1938 base,
1939 /* offset */ 0u,
1940 /* index */ offset_loc,
1941 ScaleFactor::TIMES_1,
1942 temp,
1943 /* needs_null_check */ false,
1944 /* always_update_field */ true);
1945 }
1946 }
1947
1948 MipsLabel loop_head, exit_loop;
1949 __ Addu(TMP, base, offset_lo);
1950
1951 if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
1952 __ PoisonHeapReference(expected);
1953 // Do not poison `value`, if it is the same register as
1954 // `expected`, which has just been poisoned.
1955 if (value != expected) {
1956 __ PoisonHeapReference(value);
1957 }
1958 }
1959
1960 // do {
1961 // tmp_value = [tmp_ptr] - expected;
1962 // } while (tmp_value == 0 && failure([tmp_ptr] <- r_new_value));
1963 // result = tmp_value != 0;
1964
1965 __ Sync(0);
1966 __ Bind(&loop_head);
1967 if ((type == Primitive::kPrimInt) || (type == Primitive::kPrimNot)) {
1968 if (isR6) {
1969 __ LlR6(out, TMP);
1970 } else {
1971 __ LlR2(out, TMP);
1972 }
1973 } else {
1974 LOG(FATAL) << "Unsupported op size " << type;
1975 UNREACHABLE();
1976 }
1977 __ Subu(out, out, expected); // If we didn't get the 'expected'
1978 __ Sltiu(out, out, 1); // value, set 'out' to false, and
1979 __ Beqz(out, &exit_loop); // return.
1980 __ Move(out, value); // Use 'out' for the 'store conditional' instruction.
1981 // If we use 'value' directly, we would lose 'value'
1982 // in the case that the store fails. Whether the
1983 // store succeeds, or fails, it will load the
1984 // correct Boolean value into the 'out' register.
1985 // This test isn't really necessary. We only support Primitive::kPrimInt,
1986 // Primitive::kPrimNot, and we already verified that we're working on one
1987 // of those two types. It's left here in case the code needs to support
1988 // other types in the future.
1989 if ((type == Primitive::kPrimInt) || (type == Primitive::kPrimNot)) {
1990 if (isR6) {
1991 __ ScR6(out, TMP);
1992 } else {
1993 __ ScR2(out, TMP);
1994 }
1995 }
1996 __ Beqz(out, &loop_head); // If we couldn't do the read-modify-write
1997 // cycle atomically then retry.
1998 __ Bind(&exit_loop);
1999 __ Sync(0);
2000
2001 if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
2002 __ UnpoisonHeapReference(expected);
2003 // Do not unpoison `value`, if it is the same register as
2004 // `expected`, which has just been unpoisoned.
2005 if (value != expected) {
2006 __ UnpoisonHeapReference(value);
2007 }
2008 }
2009 }
2010
2011 // boolean sun.misc.Unsafe.compareAndSwapInt(Object o, long offset, int expected, int x)
VisitUnsafeCASInt(HInvoke * invoke)2012 void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASInt(HInvoke* invoke) {
2013 CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke);
2014 }
2015
VisitUnsafeCASInt(HInvoke * invoke)2016 void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASInt(HInvoke* invoke) {
2017 GenCas(invoke, Primitive::kPrimInt, codegen_);
2018 }
2019
2020 // boolean sun.misc.Unsafe.compareAndSwapObject(Object o, long offset, Object expected, Object x)
VisitUnsafeCASObject(HInvoke * invoke)2021 void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASObject(HInvoke* invoke) {
2022 // The only read barrier implementation supporting the
2023 // UnsafeCASObject intrinsic is the Baker-style read barriers.
2024 if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
2025 return;
2026 }
2027
2028 CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke);
2029 }
2030
VisitUnsafeCASObject(HInvoke * invoke)2031 void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASObject(HInvoke* invoke) {
2032 // The only read barrier implementation supporting the
2033 // UnsafeCASObject intrinsic is the Baker-style read barriers.
2034 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
2035
2036 GenCas(invoke, Primitive::kPrimNot, codegen_);
2037 }
2038
2039 // int java.lang.String.compareTo(String anotherString)
VisitStringCompareTo(HInvoke * invoke)2040 void IntrinsicLocationsBuilderMIPS::VisitStringCompareTo(HInvoke* invoke) {
2041 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2042 LocationSummary::kCallOnMainAndSlowPath,
2043 kIntrinsified);
2044 InvokeRuntimeCallingConvention calling_convention;
2045 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2046 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2047 Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
2048 locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2049 }
2050
VisitStringCompareTo(HInvoke * invoke)2051 void IntrinsicCodeGeneratorMIPS::VisitStringCompareTo(HInvoke* invoke) {
2052 MipsAssembler* assembler = GetAssembler();
2053 LocationSummary* locations = invoke->GetLocations();
2054
2055 // Note that the null check must have been done earlier.
2056 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
2057
2058 Register argument = locations->InAt(1).AsRegister<Register>();
2059 SlowPathCodeMIPS* slow_path = new (GetAllocator()) IntrinsicSlowPathMIPS(invoke);
2060 codegen_->AddSlowPath(slow_path);
2061 __ Beqz(argument, slow_path->GetEntryLabel());
2062 codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path);
2063 __ Bind(slow_path->GetExitLabel());
2064 }
2065
2066 // boolean java.lang.String.equals(Object anObject)
VisitStringEquals(HInvoke * invoke)2067 void IntrinsicLocationsBuilderMIPS::VisitStringEquals(HInvoke* invoke) {
2068 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2069 LocationSummary::kNoCall,
2070 kIntrinsified);
2071 locations->SetInAt(0, Location::RequiresRegister());
2072 locations->SetInAt(1, Location::RequiresRegister());
2073 locations->SetOut(Location::RequiresRegister());
2074
2075 // Temporary registers to store lengths of strings and for calculations.
2076 locations->AddTemp(Location::RequiresRegister());
2077 locations->AddTemp(Location::RequiresRegister());
2078 locations->AddTemp(Location::RequiresRegister());
2079 }
2080
VisitStringEquals(HInvoke * invoke)2081 void IntrinsicCodeGeneratorMIPS::VisitStringEquals(HInvoke* invoke) {
2082 MipsAssembler* assembler = GetAssembler();
2083 LocationSummary* locations = invoke->GetLocations();
2084
2085 Register str = locations->InAt(0).AsRegister<Register>();
2086 Register arg = locations->InAt(1).AsRegister<Register>();
2087 Register out = locations->Out().AsRegister<Register>();
2088
2089 Register temp1 = locations->GetTemp(0).AsRegister<Register>();
2090 Register temp2 = locations->GetTemp(1).AsRegister<Register>();
2091 Register temp3 = locations->GetTemp(2).AsRegister<Register>();
2092
2093 MipsLabel loop;
2094 MipsLabel end;
2095 MipsLabel return_true;
2096 MipsLabel return_false;
2097
2098 // Get offsets of count, value, and class fields within a string object.
2099 const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2100 const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
2101 const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
2102
2103 // Note that the null check must have been done earlier.
2104 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
2105
2106 // If the register containing the pointer to "this", and the register
2107 // containing the pointer to "anObject" are the same register then
2108 // "this", and "anObject" are the same object and we can
2109 // short-circuit the logic to a true result.
2110 if (str == arg) {
2111 __ LoadConst32(out, 1);
2112 return;
2113 }
2114 StringEqualsOptimizations optimizations(invoke);
2115 if (!optimizations.GetArgumentNotNull()) {
2116 // Check if input is null, return false if it is.
2117 __ Beqz(arg, &return_false);
2118 }
2119
2120 // Reference equality check, return true if same reference.
2121 __ Beq(str, arg, &return_true);
2122
2123 if (!optimizations.GetArgumentIsString()) {
2124 // Instanceof check for the argument by comparing class fields.
2125 // All string objects must have the same type since String cannot be subclassed.
2126 // Receiver must be a string object, so its class field is equal to all strings' class fields.
2127 // If the argument is a string object, its class field must be equal to receiver's class field.
2128 __ Lw(temp1, str, class_offset);
2129 __ Lw(temp2, arg, class_offset);
2130 __ Bne(temp1, temp2, &return_false);
2131 }
2132
2133 // Load `count` fields of this and argument strings.
2134 __ Lw(temp1, str, count_offset);
2135 __ Lw(temp2, arg, count_offset);
2136 // Check if `count` fields are equal, return false if they're not.
2137 // Also compares the compression style, if differs return false.
2138 __ Bne(temp1, temp2, &return_false);
2139 // Return true if both strings are empty. Even with string compression `count == 0` means empty.
2140 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2141 "Expecting 0=compressed, 1=uncompressed");
2142 __ Beqz(temp1, &return_true);
2143
2144 // Don't overwrite input registers
2145 __ Move(TMP, str);
2146 __ Move(temp3, arg);
2147
2148 // Assertions that must hold in order to compare strings 4 bytes at a time.
2149 DCHECK_ALIGNED(value_offset, 4);
2150 static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded");
2151
2152 // For string compression, calculate the number of bytes to compare (not chars).
2153 if (mirror::kUseStringCompression) {
2154 // Extract compression flag.
2155 if (IsR2OrNewer()) {
2156 __ Ext(temp2, temp1, 0, 1);
2157 } else {
2158 __ Sll(temp2, temp1, 31);
2159 __ Srl(temp2, temp2, 31);
2160 }
2161 __ Srl(temp1, temp1, 1); // Extract length.
2162 __ Sllv(temp1, temp1, temp2); // Double the byte count if uncompressed.
2163 }
2164
2165 // Loop to compare strings 4 bytes at a time starting at the beginning of the string.
2166 // Ok to do this because strings are zero-padded to kObjectAlignment.
2167 __ Bind(&loop);
2168 __ Lw(out, TMP, value_offset);
2169 __ Lw(temp2, temp3, value_offset);
2170 __ Bne(out, temp2, &return_false);
2171 __ Addiu(TMP, TMP, 4);
2172 __ Addiu(temp3, temp3, 4);
2173 // With string compression, we have compared 4 bytes, otherwise 2 chars.
2174 __ Addiu(temp1, temp1, mirror::kUseStringCompression ? -4 : -2);
2175 __ Bgtz(temp1, &loop);
2176
2177 // Return true and exit the function.
2178 // If loop does not result in returning false, we return true.
2179 __ Bind(&return_true);
2180 __ LoadConst32(out, 1);
2181 __ B(&end);
2182
2183 // Return false and exit the function.
2184 __ Bind(&return_false);
2185 __ LoadConst32(out, 0);
2186 __ Bind(&end);
2187 }
2188
GenerateStringIndexOf(HInvoke * invoke,bool start_at_zero,MipsAssembler * assembler,CodeGeneratorMIPS * codegen,ArenaAllocator * allocator)2189 static void GenerateStringIndexOf(HInvoke* invoke,
2190 bool start_at_zero,
2191 MipsAssembler* assembler,
2192 CodeGeneratorMIPS* codegen,
2193 ArenaAllocator* allocator) {
2194 LocationSummary* locations = invoke->GetLocations();
2195 Register tmp_reg = start_at_zero ? locations->GetTemp(0).AsRegister<Register>() : TMP;
2196
2197 // Note that the null check must have been done earlier.
2198 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
2199
2200 // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
2201 // or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
2202 SlowPathCodeMIPS* slow_path = nullptr;
2203 HInstruction* code_point = invoke->InputAt(1);
2204 if (code_point->IsIntConstant()) {
2205 if (!IsUint<16>(code_point->AsIntConstant()->GetValue())) {
2206 // Always needs the slow-path. We could directly dispatch to it,
2207 // but this case should be rare, so for simplicity just put the
2208 // full slow-path down and branch unconditionally.
2209 slow_path = new (allocator) IntrinsicSlowPathMIPS(invoke);
2210 codegen->AddSlowPath(slow_path);
2211 __ B(slow_path->GetEntryLabel());
2212 __ Bind(slow_path->GetExitLabel());
2213 return;
2214 }
2215 } else if (code_point->GetType() != Primitive::kPrimChar) {
2216 Register char_reg = locations->InAt(1).AsRegister<Register>();
2217 // The "bltu" conditional branch tests to see if the character value
2218 // fits in a valid 16-bit (MIPS halfword) value. If it doesn't then
2219 // the character being searched for, if it exists in the string, is
2220 // encoded using UTF-16 and stored in the string as two (16-bit)
2221 // halfwords. Currently the assembly code used to implement this
2222 // intrinsic doesn't support searching for a character stored as
2223 // two halfwords so we fallback to using the generic implementation
2224 // of indexOf().
2225 __ LoadConst32(tmp_reg, std::numeric_limits<uint16_t>::max());
2226 slow_path = new (allocator) IntrinsicSlowPathMIPS(invoke);
2227 codegen->AddSlowPath(slow_path);
2228 __ Bltu(tmp_reg, char_reg, slow_path->GetEntryLabel());
2229 }
2230
2231 if (start_at_zero) {
2232 DCHECK_EQ(tmp_reg, A2);
2233 // Start-index = 0.
2234 __ Clear(tmp_reg);
2235 }
2236
2237 codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
2238 if (slow_path != nullptr) {
2239 __ Bind(slow_path->GetExitLabel());
2240 }
2241 }
2242
2243 // int java.lang.String.indexOf(int ch)
VisitStringIndexOf(HInvoke * invoke)2244 void IntrinsicLocationsBuilderMIPS::VisitStringIndexOf(HInvoke* invoke) {
2245 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2246 LocationSummary::kCallOnMainAndSlowPath,
2247 kIntrinsified);
2248 // We have a hand-crafted assembly stub that follows the runtime
2249 // calling convention. So it's best to align the inputs accordingly.
2250 InvokeRuntimeCallingConvention calling_convention;
2251 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2252 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2253 Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
2254 locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2255
2256 // Need a temp for slow-path codepoint compare, and need to send start-index=0.
2257 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
2258 }
2259
VisitStringIndexOf(HInvoke * invoke)2260 void IntrinsicCodeGeneratorMIPS::VisitStringIndexOf(HInvoke* invoke) {
2261 GenerateStringIndexOf(invoke,
2262 /* start_at_zero */ true,
2263 GetAssembler(),
2264 codegen_,
2265 GetAllocator());
2266 }
2267
2268 // int java.lang.String.indexOf(int ch, int fromIndex)
VisitStringIndexOfAfter(HInvoke * invoke)2269 void IntrinsicLocationsBuilderMIPS::VisitStringIndexOfAfter(HInvoke* invoke) {
2270 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2271 LocationSummary::kCallOnMainAndSlowPath,
2272 kIntrinsified);
2273 // We have a hand-crafted assembly stub that follows the runtime
2274 // calling convention. So it's best to align the inputs accordingly.
2275 InvokeRuntimeCallingConvention calling_convention;
2276 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2277 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2278 locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
2279 Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
2280 locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2281
2282 // Need a temp for slow-path codepoint compare.
2283 locations->AddTemp(Location::RequiresRegister());
2284 }
2285
VisitStringIndexOfAfter(HInvoke * invoke)2286 void IntrinsicCodeGeneratorMIPS::VisitStringIndexOfAfter(HInvoke* invoke) {
2287 GenerateStringIndexOf(invoke,
2288 /* start_at_zero */ false,
2289 GetAssembler(),
2290 codegen_,
2291 GetAllocator());
2292 }
2293
2294 // java.lang.StringFactory.newStringFromBytes(byte[] data, int high, int offset, int byteCount)
VisitStringNewStringFromBytes(HInvoke * invoke)2295 void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) {
2296 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2297 LocationSummary::kCallOnMainAndSlowPath,
2298 kIntrinsified);
2299 InvokeRuntimeCallingConvention calling_convention;
2300 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2301 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2302 locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
2303 locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
2304 Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
2305 locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2306 }
2307
VisitStringNewStringFromBytes(HInvoke * invoke)2308 void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) {
2309 MipsAssembler* assembler = GetAssembler();
2310 LocationSummary* locations = invoke->GetLocations();
2311
2312 Register byte_array = locations->InAt(0).AsRegister<Register>();
2313 SlowPathCodeMIPS* slow_path = new (GetAllocator()) IntrinsicSlowPathMIPS(invoke);
2314 codegen_->AddSlowPath(slow_path);
2315 __ Beqz(byte_array, slow_path->GetEntryLabel());
2316 codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
2317 __ Bind(slow_path->GetExitLabel());
2318 }
2319
2320 // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
VisitStringNewStringFromChars(HInvoke * invoke)2321 void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromChars(HInvoke* invoke) {
2322 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2323 LocationSummary::kCallOnMainOnly,
2324 kIntrinsified);
2325 InvokeRuntimeCallingConvention calling_convention;
2326 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2327 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2328 locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
2329 Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
2330 locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2331 }
2332
VisitStringNewStringFromChars(HInvoke * invoke)2333 void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromChars(HInvoke* invoke) {
2334 // No need to emit code checking whether `locations->InAt(2)` is a null
2335 // pointer, as callers of the native method
2336 //
2337 // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
2338 //
2339 // all include a null check on `data` before calling that method.
2340 codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
2341 }
2342
2343 // java.lang.StringFactory.newStringFromString(String toCopy)
VisitStringNewStringFromString(HInvoke * invoke)2344 void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromString(HInvoke* invoke) {
2345 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2346 LocationSummary::kCallOnMainAndSlowPath,
2347 kIntrinsified);
2348 InvokeRuntimeCallingConvention calling_convention;
2349 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2350 Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
2351 locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2352 }
2353
VisitStringNewStringFromString(HInvoke * invoke)2354 void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromString(HInvoke* invoke) {
2355 MipsAssembler* assembler = GetAssembler();
2356 LocationSummary* locations = invoke->GetLocations();
2357
2358 Register string_to_copy = locations->InAt(0).AsRegister<Register>();
2359 SlowPathCodeMIPS* slow_path = new (GetAllocator()) IntrinsicSlowPathMIPS(invoke);
2360 codegen_->AddSlowPath(slow_path);
2361 __ Beqz(string_to_copy, slow_path->GetEntryLabel());
2362 codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc());
2363 __ Bind(slow_path->GetExitLabel());
2364 }
2365
GenIsInfinite(LocationSummary * locations,const Primitive::Type type,const bool isR6,MipsAssembler * assembler)2366 static void GenIsInfinite(LocationSummary* locations,
2367 const Primitive::Type type,
2368 const bool isR6,
2369 MipsAssembler* assembler) {
2370 FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
2371 Register out = locations->Out().AsRegister<Register>();
2372
2373 DCHECK(type == Primitive::kPrimFloat || type == Primitive::kPrimDouble);
2374
2375 if (isR6) {
2376 if (type == Primitive::kPrimDouble) {
2377 __ ClassD(FTMP, in);
2378 } else {
2379 __ ClassS(FTMP, in);
2380 }
2381 __ Mfc1(out, FTMP);
2382 __ Andi(out, out, kPositiveInfinity | kNegativeInfinity);
2383 __ Sltu(out, ZERO, out);
2384 } else {
2385 // If one, or more, of the exponent bits is zero, then the number can't be infinite.
2386 if (type == Primitive::kPrimDouble) {
2387 __ MoveFromFpuHigh(TMP, in);
2388 __ LoadConst32(AT, High32Bits(kPositiveInfinityDouble));
2389 } else {
2390 __ Mfc1(TMP, in);
2391 __ LoadConst32(AT, kPositiveInfinityFloat);
2392 }
2393 __ Xor(TMP, TMP, AT);
2394
2395 __ Sll(TMP, TMP, 1);
2396
2397 if (type == Primitive::kPrimDouble) {
2398 __ Mfc1(AT, in);
2399 __ Or(TMP, TMP, AT);
2400 }
2401 // If any of the significand bits are one, then the number is not infinite.
2402 __ Sltiu(out, TMP, 1);
2403 }
2404 }
2405
2406 // boolean java.lang.Float.isInfinite(float)
VisitFloatIsInfinite(HInvoke * invoke)2407 void IntrinsicLocationsBuilderMIPS::VisitFloatIsInfinite(HInvoke* invoke) {
2408 CreateFPToIntLocations(arena_, invoke);
2409 }
2410
VisitFloatIsInfinite(HInvoke * invoke)2411 void IntrinsicCodeGeneratorMIPS::VisitFloatIsInfinite(HInvoke* invoke) {
2412 GenIsInfinite(invoke->GetLocations(), Primitive::kPrimFloat, IsR6(), GetAssembler());
2413 }
2414
2415 // boolean java.lang.Double.isInfinite(double)
VisitDoubleIsInfinite(HInvoke * invoke)2416 void IntrinsicLocationsBuilderMIPS::VisitDoubleIsInfinite(HInvoke* invoke) {
2417 CreateFPToIntLocations(arena_, invoke);
2418 }
2419
VisitDoubleIsInfinite(HInvoke * invoke)2420 void IntrinsicCodeGeneratorMIPS::VisitDoubleIsInfinite(HInvoke* invoke) {
2421 GenIsInfinite(invoke->GetLocations(), Primitive::kPrimDouble, IsR6(), GetAssembler());
2422 }
2423
GenHighestOneBit(LocationSummary * locations,const Primitive::Type type,bool isR6,MipsAssembler * assembler)2424 static void GenHighestOneBit(LocationSummary* locations,
2425 const Primitive::Type type,
2426 bool isR6,
2427 MipsAssembler* assembler) {
2428 DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
2429
2430 if (type == Primitive::kPrimLong) {
2431 Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
2432 Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
2433 Register out_lo = locations->Out().AsRegisterPairLow<Register>();
2434 Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
2435
2436 if (isR6) {
2437 __ ClzR6(TMP, in_hi);
2438 } else {
2439 __ ClzR2(TMP, in_hi);
2440 }
2441 __ LoadConst32(AT, 0x80000000);
2442 __ Srlv(out_hi, AT, TMP);
2443 __ And(out_hi, out_hi, in_hi);
2444 if (isR6) {
2445 __ ClzR6(TMP, in_lo);
2446 } else {
2447 __ ClzR2(TMP, in_lo);
2448 }
2449 __ Srlv(out_lo, AT, TMP);
2450 __ And(out_lo, out_lo, in_lo);
2451 if (isR6) {
2452 __ Seleqz(out_lo, out_lo, out_hi);
2453 } else {
2454 __ Movn(out_lo, ZERO, out_hi);
2455 }
2456 } else {
2457 Register in = locations->InAt(0).AsRegister<Register>();
2458 Register out = locations->Out().AsRegister<Register>();
2459
2460 if (isR6) {
2461 __ ClzR6(TMP, in);
2462 } else {
2463 __ ClzR2(TMP, in);
2464 }
2465 __ LoadConst32(AT, 0x80000000);
2466 __ Srlv(AT, AT, TMP); // Srlv shifts in the range of [0;31] bits (lower 5 bits of arg).
2467 __ And(out, AT, in); // So this is required for 0 (=shift by 32).
2468 }
2469 }
2470
2471 // int java.lang.Integer.highestOneBit(int)
VisitIntegerHighestOneBit(HInvoke * invoke)2472 void IntrinsicLocationsBuilderMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) {
2473 CreateIntToIntLocations(arena_, invoke);
2474 }
2475
VisitIntegerHighestOneBit(HInvoke * invoke)2476 void IntrinsicCodeGeneratorMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) {
2477 GenHighestOneBit(invoke->GetLocations(), Primitive::kPrimInt, IsR6(), GetAssembler());
2478 }
2479
2480 // long java.lang.Long.highestOneBit(long)
VisitLongHighestOneBit(HInvoke * invoke)2481 void IntrinsicLocationsBuilderMIPS::VisitLongHighestOneBit(HInvoke* invoke) {
2482 CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
2483 }
2484
VisitLongHighestOneBit(HInvoke * invoke)2485 void IntrinsicCodeGeneratorMIPS::VisitLongHighestOneBit(HInvoke* invoke) {
2486 GenHighestOneBit(invoke->GetLocations(), Primitive::kPrimLong, IsR6(), GetAssembler());
2487 }
2488
GenLowestOneBit(LocationSummary * locations,const Primitive::Type type,bool isR6,MipsAssembler * assembler)2489 static void GenLowestOneBit(LocationSummary* locations,
2490 const Primitive::Type type,
2491 bool isR6,
2492 MipsAssembler* assembler) {
2493 DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
2494
2495 if (type == Primitive::kPrimLong) {
2496 Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
2497 Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
2498 Register out_lo = locations->Out().AsRegisterPairLow<Register>();
2499 Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
2500
2501 __ Subu(TMP, ZERO, in_lo);
2502 __ And(out_lo, TMP, in_lo);
2503 __ Subu(TMP, ZERO, in_hi);
2504 __ And(out_hi, TMP, in_hi);
2505 if (isR6) {
2506 __ Seleqz(out_hi, out_hi, out_lo);
2507 } else {
2508 __ Movn(out_hi, ZERO, out_lo);
2509 }
2510 } else {
2511 Register in = locations->InAt(0).AsRegister<Register>();
2512 Register out = locations->Out().AsRegister<Register>();
2513
2514 __ Subu(TMP, ZERO, in);
2515 __ And(out, TMP, in);
2516 }
2517 }
2518
2519 // int java.lang.Integer.lowestOneBit(int)
VisitIntegerLowestOneBit(HInvoke * invoke)2520 void IntrinsicLocationsBuilderMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) {
2521 CreateIntToIntLocations(arena_, invoke);
2522 }
2523
VisitIntegerLowestOneBit(HInvoke * invoke)2524 void IntrinsicCodeGeneratorMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) {
2525 GenLowestOneBit(invoke->GetLocations(), Primitive::kPrimInt, IsR6(), GetAssembler());
2526 }
2527
2528 // long java.lang.Long.lowestOneBit(long)
VisitLongLowestOneBit(HInvoke * invoke)2529 void IntrinsicLocationsBuilderMIPS::VisitLongLowestOneBit(HInvoke* invoke) {
2530 CreateIntToIntLocations(arena_, invoke);
2531 }
2532
VisitLongLowestOneBit(HInvoke * invoke)2533 void IntrinsicCodeGeneratorMIPS::VisitLongLowestOneBit(HInvoke* invoke) {
2534 GenLowestOneBit(invoke->GetLocations(), Primitive::kPrimLong, IsR6(), GetAssembler());
2535 }
2536
2537 // int java.lang.Math.round(float)
VisitMathRoundFloat(HInvoke * invoke)2538 void IntrinsicLocationsBuilderMIPS::VisitMathRoundFloat(HInvoke* invoke) {
2539 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2540 LocationSummary::kNoCall,
2541 kIntrinsified);
2542 locations->SetInAt(0, Location::RequiresFpuRegister());
2543 locations->AddTemp(Location::RequiresFpuRegister());
2544 locations->SetOut(Location::RequiresRegister());
2545 }
2546
VisitMathRoundFloat(HInvoke * invoke)2547 void IntrinsicCodeGeneratorMIPS::VisitMathRoundFloat(HInvoke* invoke) {
2548 LocationSummary* locations = invoke->GetLocations();
2549 MipsAssembler* assembler = GetAssembler();
2550 FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
2551 FRegister half = locations->GetTemp(0).AsFpuRegister<FRegister>();
2552 Register out = locations->Out().AsRegister<Register>();
2553
2554 MipsLabel done;
2555 MipsLabel finite;
2556 MipsLabel add;
2557
2558 // if (in.isNaN) {
2559 // return 0;
2560 // }
2561 //
2562 // out = floor.w.s(in);
2563 //
2564 // /*
2565 // * This "if" statement is only needed for the pre-R6 version of floor.w.s
2566 // * which outputs Integer.MAX_VALUE for negative numbers with magnitudes
2567 // * too large to fit in a 32-bit integer.
2568 // *
2569 // * Starting with MIPSR6, which always sets FCSR.NAN2008=1, negative
2570 // * numbers which are too large to be represented in a 32-bit signed
2571 // * integer will be processed by floor.w.s to output Integer.MIN_VALUE,
2572 // * and will no longer be processed by this "if" statement.
2573 // */
2574 // if (out == Integer.MAX_VALUE) {
2575 // TMP = (in < 0.0f) ? 1 : 0;
2576 // /*
2577 // * If TMP is 1, then adding it to out will wrap its value from
2578 // * Integer.MAX_VALUE to Integer.MIN_VALUE.
2579 // */
2580 // return out += TMP;
2581 // }
2582 //
2583 // /*
2584 // * For negative values not handled by the previous "if" statement the
2585 // * test here will correctly set the value of TMP.
2586 // */
2587 // TMP = ((in - out) >= 0.5f) ? 1 : 0;
2588 // return out += TMP;
2589
2590 // Test for NaN.
2591 if (IsR6()) {
2592 __ CmpUnS(FTMP, in, in);
2593 } else {
2594 __ CunS(in, in);
2595 }
2596
2597 // Return zero for NaN.
2598 __ Move(out, ZERO);
2599 if (IsR6()) {
2600 __ Bc1nez(FTMP, &done);
2601 } else {
2602 __ Bc1t(&done);
2603 }
2604
2605 // out = floor(in);
2606 __ FloorWS(FTMP, in);
2607 __ Mfc1(out, FTMP);
2608
2609 if (!IsR6()) {
2610 __ LoadConst32(TMP, -1);
2611 }
2612
2613 // TMP = (out = java.lang.Integer.MAX_VALUE) ? -1 : 0;
2614 __ LoadConst32(AT, std::numeric_limits<int32_t>::max());
2615 __ Bne(AT, out, &finite);
2616
2617 __ Mtc1(ZERO, FTMP);
2618 if (IsR6()) {
2619 __ CmpLtS(FTMP, in, FTMP);
2620 __ Mfc1(TMP, FTMP);
2621 } else {
2622 __ ColtS(in, FTMP);
2623 }
2624
2625 __ B(&add);
2626
2627 __ Bind(&finite);
2628
2629 // TMP = (0.5f <= (in - out)) ? -1 : 0;
2630 __ Cvtsw(FTMP, FTMP); // Convert output of floor.w.s back to "float".
2631 __ LoadConst32(AT, bit_cast<int32_t, float>(0.5f));
2632 __ SubS(FTMP, in, FTMP);
2633 __ Mtc1(AT, half);
2634 if (IsR6()) {
2635 __ CmpLeS(FTMP, half, FTMP);
2636 __ Mfc1(TMP, FTMP);
2637 } else {
2638 __ ColeS(half, FTMP);
2639 }
2640
2641 __ Bind(&add);
2642
2643 if (!IsR6()) {
2644 __ Movf(TMP, ZERO);
2645 }
2646
2647 // Return out -= TMP.
2648 __ Subu(out, out, TMP);
2649
2650 __ Bind(&done);
2651 }
2652
2653 // void java.lang.String.getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
VisitStringGetCharsNoCheck(HInvoke * invoke)2654 void IntrinsicLocationsBuilderMIPS::VisitStringGetCharsNoCheck(HInvoke* invoke) {
2655 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2656 LocationSummary::kNoCall,
2657 kIntrinsified);
2658 locations->SetInAt(0, Location::RequiresRegister());
2659 locations->SetInAt(1, Location::RequiresRegister());
2660 locations->SetInAt(2, Location::RequiresRegister());
2661 locations->SetInAt(3, Location::RequiresRegister());
2662 locations->SetInAt(4, Location::RequiresRegister());
2663
2664 locations->AddTemp(Location::RequiresRegister());
2665 locations->AddTemp(Location::RequiresRegister());
2666 locations->AddTemp(Location::RequiresRegister());
2667 }
2668
VisitStringGetCharsNoCheck(HInvoke * invoke)2669 void IntrinsicCodeGeneratorMIPS::VisitStringGetCharsNoCheck(HInvoke* invoke) {
2670 MipsAssembler* assembler = GetAssembler();
2671 LocationSummary* locations = invoke->GetLocations();
2672
2673 // Check assumption that sizeof(Char) is 2 (used in scaling below).
2674 const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
2675 DCHECK_EQ(char_size, 2u);
2676 const size_t char_shift = Primitive::ComponentSizeShift(Primitive::kPrimChar);
2677
2678 Register srcObj = locations->InAt(0).AsRegister<Register>();
2679 Register srcBegin = locations->InAt(1).AsRegister<Register>();
2680 Register srcEnd = locations->InAt(2).AsRegister<Register>();
2681 Register dstObj = locations->InAt(3).AsRegister<Register>();
2682 Register dstBegin = locations->InAt(4).AsRegister<Register>();
2683
2684 Register dstPtr = locations->GetTemp(0).AsRegister<Register>();
2685 Register srcPtr = locations->GetTemp(1).AsRegister<Register>();
2686 Register numChrs = locations->GetTemp(2).AsRegister<Register>();
2687
2688 MipsLabel done;
2689 MipsLabel loop;
2690
2691 // Location of data in char array buffer.
2692 const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
2693
2694 // Get offset of value field within a string object.
2695 const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
2696
2697 __ Beq(srcEnd, srcBegin, &done); // No characters to move.
2698
2699 // Calculate number of characters to be copied.
2700 __ Subu(numChrs, srcEnd, srcBegin);
2701
2702 // Calculate destination address.
2703 __ Addiu(dstPtr, dstObj, data_offset);
2704 __ ShiftAndAdd(dstPtr, dstBegin, dstPtr, char_shift);
2705
2706 if (mirror::kUseStringCompression) {
2707 MipsLabel uncompressed_copy, compressed_loop;
2708 const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2709 // Load count field and extract compression flag.
2710 __ LoadFromOffset(kLoadWord, TMP, srcObj, count_offset);
2711 __ Sll(TMP, TMP, 31);
2712
2713 // If string is uncompressed, use uncompressed path.
2714 __ Bnez(TMP, &uncompressed_copy);
2715
2716 // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
2717 __ Addu(srcPtr, srcObj, srcBegin);
2718 __ Bind(&compressed_loop);
2719 __ LoadFromOffset(kLoadUnsignedByte, TMP, srcPtr, value_offset);
2720 __ StoreToOffset(kStoreHalfword, TMP, dstPtr, 0);
2721 __ Addiu(numChrs, numChrs, -1);
2722 __ Addiu(srcPtr, srcPtr, 1);
2723 __ Addiu(dstPtr, dstPtr, 2);
2724 __ Bnez(numChrs, &compressed_loop);
2725
2726 __ B(&done);
2727 __ Bind(&uncompressed_copy);
2728 }
2729
2730 // Calculate source address.
2731 __ Addiu(srcPtr, srcObj, value_offset);
2732 __ ShiftAndAdd(srcPtr, srcBegin, srcPtr, char_shift);
2733
2734 __ Bind(&loop);
2735 __ Lh(AT, srcPtr, 0);
2736 __ Addiu(numChrs, numChrs, -1);
2737 __ Addiu(srcPtr, srcPtr, char_size);
2738 __ Sh(AT, dstPtr, 0);
2739 __ Addiu(dstPtr, dstPtr, char_size);
2740 __ Bnez(numChrs, &loop);
2741
2742 __ Bind(&done);
2743 }
2744
CreateFPToFPCallLocations(ArenaAllocator * arena,HInvoke * invoke)2745 static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
2746 LocationSummary* locations = new (arena) LocationSummary(invoke,
2747 LocationSummary::kCallOnMainOnly,
2748 kIntrinsified);
2749 InvokeRuntimeCallingConvention calling_convention;
2750
2751 locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
2752 locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimDouble));
2753 }
2754
CreateFPFPToFPCallLocations(ArenaAllocator * arena,HInvoke * invoke)2755 static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
2756 LocationSummary* locations = new (arena) LocationSummary(invoke,
2757 LocationSummary::kCallOnMainOnly,
2758 kIntrinsified);
2759 InvokeRuntimeCallingConvention calling_convention;
2760
2761 locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
2762 locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
2763 locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimDouble));
2764 }
2765
GenFPToFPCall(HInvoke * invoke,CodeGeneratorMIPS * codegen,QuickEntrypointEnum entry)2766 static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorMIPS* codegen, QuickEntrypointEnum entry) {
2767 LocationSummary* locations = invoke->GetLocations();
2768 FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
2769 DCHECK_EQ(in, F12);
2770 FRegister out = locations->Out().AsFpuRegister<FRegister>();
2771 DCHECK_EQ(out, F0);
2772
2773 codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
2774 }
2775
GenFPFPToFPCall(HInvoke * invoke,CodeGeneratorMIPS * codegen,QuickEntrypointEnum entry)2776 static void GenFPFPToFPCall(HInvoke* invoke,
2777 CodeGeneratorMIPS* codegen,
2778 QuickEntrypointEnum entry) {
2779 LocationSummary* locations = invoke->GetLocations();
2780 FRegister in0 = locations->InAt(0).AsFpuRegister<FRegister>();
2781 DCHECK_EQ(in0, F12);
2782 FRegister in1 = locations->InAt(1).AsFpuRegister<FRegister>();
2783 DCHECK_EQ(in1, F14);
2784 FRegister out = locations->Out().AsFpuRegister<FRegister>();
2785 DCHECK_EQ(out, F0);
2786
2787 codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
2788 }
2789
2790 // static double java.lang.Math.cos(double a)
VisitMathCos(HInvoke * invoke)2791 void IntrinsicLocationsBuilderMIPS::VisitMathCos(HInvoke* invoke) {
2792 CreateFPToFPCallLocations(arena_, invoke);
2793 }
2794
VisitMathCos(HInvoke * invoke)2795 void IntrinsicCodeGeneratorMIPS::VisitMathCos(HInvoke* invoke) {
2796 GenFPToFPCall(invoke, codegen_, kQuickCos);
2797 }
2798
2799 // static double java.lang.Math.sin(double a)
VisitMathSin(HInvoke * invoke)2800 void IntrinsicLocationsBuilderMIPS::VisitMathSin(HInvoke* invoke) {
2801 CreateFPToFPCallLocations(arena_, invoke);
2802 }
2803
VisitMathSin(HInvoke * invoke)2804 void IntrinsicCodeGeneratorMIPS::VisitMathSin(HInvoke* invoke) {
2805 GenFPToFPCall(invoke, codegen_, kQuickSin);
2806 }
2807
2808 // static double java.lang.Math.acos(double a)
VisitMathAcos(HInvoke * invoke)2809 void IntrinsicLocationsBuilderMIPS::VisitMathAcos(HInvoke* invoke) {
2810 CreateFPToFPCallLocations(arena_, invoke);
2811 }
2812
VisitMathAcos(HInvoke * invoke)2813 void IntrinsicCodeGeneratorMIPS::VisitMathAcos(HInvoke* invoke) {
2814 GenFPToFPCall(invoke, codegen_, kQuickAcos);
2815 }
2816
2817 // static double java.lang.Math.asin(double a)
VisitMathAsin(HInvoke * invoke)2818 void IntrinsicLocationsBuilderMIPS::VisitMathAsin(HInvoke* invoke) {
2819 CreateFPToFPCallLocations(arena_, invoke);
2820 }
2821
VisitMathAsin(HInvoke * invoke)2822 void IntrinsicCodeGeneratorMIPS::VisitMathAsin(HInvoke* invoke) {
2823 GenFPToFPCall(invoke, codegen_, kQuickAsin);
2824 }
2825
2826 // static double java.lang.Math.atan(double a)
VisitMathAtan(HInvoke * invoke)2827 void IntrinsicLocationsBuilderMIPS::VisitMathAtan(HInvoke* invoke) {
2828 CreateFPToFPCallLocations(arena_, invoke);
2829 }
2830
VisitMathAtan(HInvoke * invoke)2831 void IntrinsicCodeGeneratorMIPS::VisitMathAtan(HInvoke* invoke) {
2832 GenFPToFPCall(invoke, codegen_, kQuickAtan);
2833 }
2834
2835 // static double java.lang.Math.atan2(double y, double x)
VisitMathAtan2(HInvoke * invoke)2836 void IntrinsicLocationsBuilderMIPS::VisitMathAtan2(HInvoke* invoke) {
2837 CreateFPFPToFPCallLocations(arena_, invoke);
2838 }
2839
VisitMathAtan2(HInvoke * invoke)2840 void IntrinsicCodeGeneratorMIPS::VisitMathAtan2(HInvoke* invoke) {
2841 GenFPFPToFPCall(invoke, codegen_, kQuickAtan2);
2842 }
2843
2844 // static double java.lang.Math.cbrt(double a)
VisitMathCbrt(HInvoke * invoke)2845 void IntrinsicLocationsBuilderMIPS::VisitMathCbrt(HInvoke* invoke) {
2846 CreateFPToFPCallLocations(arena_, invoke);
2847 }
2848
VisitMathCbrt(HInvoke * invoke)2849 void IntrinsicCodeGeneratorMIPS::VisitMathCbrt(HInvoke* invoke) {
2850 GenFPToFPCall(invoke, codegen_, kQuickCbrt);
2851 }
2852
2853 // static double java.lang.Math.cosh(double x)
VisitMathCosh(HInvoke * invoke)2854 void IntrinsicLocationsBuilderMIPS::VisitMathCosh(HInvoke* invoke) {
2855 CreateFPToFPCallLocations(arena_, invoke);
2856 }
2857
VisitMathCosh(HInvoke * invoke)2858 void IntrinsicCodeGeneratorMIPS::VisitMathCosh(HInvoke* invoke) {
2859 GenFPToFPCall(invoke, codegen_, kQuickCosh);
2860 }
2861
2862 // static double java.lang.Math.exp(double a)
VisitMathExp(HInvoke * invoke)2863 void IntrinsicLocationsBuilderMIPS::VisitMathExp(HInvoke* invoke) {
2864 CreateFPToFPCallLocations(arena_, invoke);
2865 }
2866
VisitMathExp(HInvoke * invoke)2867 void IntrinsicCodeGeneratorMIPS::VisitMathExp(HInvoke* invoke) {
2868 GenFPToFPCall(invoke, codegen_, kQuickExp);
2869 }
2870
2871 // static double java.lang.Math.expm1(double x)
VisitMathExpm1(HInvoke * invoke)2872 void IntrinsicLocationsBuilderMIPS::VisitMathExpm1(HInvoke* invoke) {
2873 CreateFPToFPCallLocations(arena_, invoke);
2874 }
2875
VisitMathExpm1(HInvoke * invoke)2876 void IntrinsicCodeGeneratorMIPS::VisitMathExpm1(HInvoke* invoke) {
2877 GenFPToFPCall(invoke, codegen_, kQuickExpm1);
2878 }
2879
2880 // static double java.lang.Math.hypot(double x, double y)
VisitMathHypot(HInvoke * invoke)2881 void IntrinsicLocationsBuilderMIPS::VisitMathHypot(HInvoke* invoke) {
2882 CreateFPFPToFPCallLocations(arena_, invoke);
2883 }
2884
VisitMathHypot(HInvoke * invoke)2885 void IntrinsicCodeGeneratorMIPS::VisitMathHypot(HInvoke* invoke) {
2886 GenFPFPToFPCall(invoke, codegen_, kQuickHypot);
2887 }
2888
2889 // static double java.lang.Math.log(double a)
VisitMathLog(HInvoke * invoke)2890 void IntrinsicLocationsBuilderMIPS::VisitMathLog(HInvoke* invoke) {
2891 CreateFPToFPCallLocations(arena_, invoke);
2892 }
2893
VisitMathLog(HInvoke * invoke)2894 void IntrinsicCodeGeneratorMIPS::VisitMathLog(HInvoke* invoke) {
2895 GenFPToFPCall(invoke, codegen_, kQuickLog);
2896 }
2897
2898 // static double java.lang.Math.log10(double x)
VisitMathLog10(HInvoke * invoke)2899 void IntrinsicLocationsBuilderMIPS::VisitMathLog10(HInvoke* invoke) {
2900 CreateFPToFPCallLocations(arena_, invoke);
2901 }
2902
VisitMathLog10(HInvoke * invoke)2903 void IntrinsicCodeGeneratorMIPS::VisitMathLog10(HInvoke* invoke) {
2904 GenFPToFPCall(invoke, codegen_, kQuickLog10);
2905 }
2906
2907 // static double java.lang.Math.nextAfter(double start, double direction)
VisitMathNextAfter(HInvoke * invoke)2908 void IntrinsicLocationsBuilderMIPS::VisitMathNextAfter(HInvoke* invoke) {
2909 CreateFPFPToFPCallLocations(arena_, invoke);
2910 }
2911
VisitMathNextAfter(HInvoke * invoke)2912 void IntrinsicCodeGeneratorMIPS::VisitMathNextAfter(HInvoke* invoke) {
2913 GenFPFPToFPCall(invoke, codegen_, kQuickNextAfter);
2914 }
2915
2916 // static double java.lang.Math.sinh(double x)
VisitMathSinh(HInvoke * invoke)2917 void IntrinsicLocationsBuilderMIPS::VisitMathSinh(HInvoke* invoke) {
2918 CreateFPToFPCallLocations(arena_, invoke);
2919 }
2920
VisitMathSinh(HInvoke * invoke)2921 void IntrinsicCodeGeneratorMIPS::VisitMathSinh(HInvoke* invoke) {
2922 GenFPToFPCall(invoke, codegen_, kQuickSinh);
2923 }
2924
2925 // static double java.lang.Math.tan(double a)
VisitMathTan(HInvoke * invoke)2926 void IntrinsicLocationsBuilderMIPS::VisitMathTan(HInvoke* invoke) {
2927 CreateFPToFPCallLocations(arena_, invoke);
2928 }
2929
VisitMathTan(HInvoke * invoke)2930 void IntrinsicCodeGeneratorMIPS::VisitMathTan(HInvoke* invoke) {
2931 GenFPToFPCall(invoke, codegen_, kQuickTan);
2932 }
2933
2934 // static double java.lang.Math.tanh(double x)
VisitMathTanh(HInvoke * invoke)2935 void IntrinsicLocationsBuilderMIPS::VisitMathTanh(HInvoke* invoke) {
2936 CreateFPToFPCallLocations(arena_, invoke);
2937 }
2938
VisitMathTanh(HInvoke * invoke)2939 void IntrinsicCodeGeneratorMIPS::VisitMathTanh(HInvoke* invoke) {
2940 GenFPToFPCall(invoke, codegen_, kQuickTanh);
2941 }
2942
2943 // static void java.lang.System.arraycopy(Object src, int srcPos,
2944 // Object dest, int destPos,
2945 // int length)
VisitSystemArrayCopyChar(HInvoke * invoke)2946 void IntrinsicLocationsBuilderMIPS::VisitSystemArrayCopyChar(HInvoke* invoke) {
2947 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
2948 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
2949 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
2950
2951 // As long as we are checking, we might as well check to see if the src and dest
2952 // positions are >= 0.
2953 if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
2954 (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
2955 // We will have to fail anyways.
2956 return;
2957 }
2958
2959 // And since we are already checking, check the length too.
2960 if (length != nullptr) {
2961 int32_t len = length->GetValue();
2962 if (len < 0) {
2963 // Just call as normal.
2964 return;
2965 }
2966 }
2967
2968 // Okay, it is safe to generate inline code.
2969 LocationSummary* locations =
2970 new (arena_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
2971 // arraycopy(Object src, int srcPos, Object dest, int destPos, int length).
2972 locations->SetInAt(0, Location::RequiresRegister());
2973 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
2974 locations->SetInAt(2, Location::RequiresRegister());
2975 locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
2976 locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
2977
2978 locations->AddTemp(Location::RequiresRegister());
2979 locations->AddTemp(Location::RequiresRegister());
2980 locations->AddTemp(Location::RequiresRegister());
2981 }
2982
2983 // Utility routine to verify that "length(input) - pos >= length"
EnoughItems(MipsAssembler * assembler,Register length_input_minus_pos,Location length,SlowPathCodeMIPS * slow_path)2984 static void EnoughItems(MipsAssembler* assembler,
2985 Register length_input_minus_pos,
2986 Location length,
2987 SlowPathCodeMIPS* slow_path) {
2988 if (length.IsConstant()) {
2989 int32_t length_constant = length.GetConstant()->AsIntConstant()->GetValue();
2990
2991 if (IsInt<16>(length_constant)) {
2992 __ Slti(TMP, length_input_minus_pos, length_constant);
2993 __ Bnez(TMP, slow_path->GetEntryLabel());
2994 } else {
2995 __ LoadConst32(TMP, length_constant);
2996 __ Blt(length_input_minus_pos, TMP, slow_path->GetEntryLabel());
2997 }
2998 } else {
2999 __ Blt(length_input_minus_pos, length.AsRegister<Register>(), slow_path->GetEntryLabel());
3000 }
3001 }
3002
CheckPosition(MipsAssembler * assembler,Location pos,Register input,Location length,SlowPathCodeMIPS * slow_path,bool length_is_input_length=false)3003 static void CheckPosition(MipsAssembler* assembler,
3004 Location pos,
3005 Register input,
3006 Location length,
3007 SlowPathCodeMIPS* slow_path,
3008 bool length_is_input_length = false) {
3009 // Where is the length in the Array?
3010 const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
3011
3012 // Calculate length(input) - pos.
3013 if (pos.IsConstant()) {
3014 int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
3015 if (pos_const == 0) {
3016 if (!length_is_input_length) {
3017 // Check that length(input) >= length.
3018 __ LoadFromOffset(kLoadWord, AT, input, length_offset);
3019 EnoughItems(assembler, AT, length, slow_path);
3020 }
3021 } else {
3022 // Check that (length(input) - pos) >= zero.
3023 __ LoadFromOffset(kLoadWord, AT, input, length_offset);
3024 DCHECK_GT(pos_const, 0);
3025 __ Addiu32(AT, AT, -pos_const, TMP);
3026 __ Bltz(AT, slow_path->GetEntryLabel());
3027
3028 // Verify that (length(input) - pos) >= length.
3029 EnoughItems(assembler, AT, length, slow_path);
3030 }
3031 } else if (length_is_input_length) {
3032 // The only way the copy can succeed is if pos is zero.
3033 Register pos_reg = pos.AsRegister<Register>();
3034 __ Bnez(pos_reg, slow_path->GetEntryLabel());
3035 } else {
3036 // Verify that pos >= 0.
3037 Register pos_reg = pos.AsRegister<Register>();
3038 __ Bltz(pos_reg, slow_path->GetEntryLabel());
3039
3040 // Check that (length(input) - pos) >= zero.
3041 __ LoadFromOffset(kLoadWord, AT, input, length_offset);
3042 __ Subu(AT, AT, pos_reg);
3043 __ Bltz(AT, slow_path->GetEntryLabel());
3044
3045 // Verify that (length(input) - pos) >= length.
3046 EnoughItems(assembler, AT, length, slow_path);
3047 }
3048 }
3049
VisitSystemArrayCopyChar(HInvoke * invoke)3050 void IntrinsicCodeGeneratorMIPS::VisitSystemArrayCopyChar(HInvoke* invoke) {
3051 MipsAssembler* assembler = GetAssembler();
3052 LocationSummary* locations = invoke->GetLocations();
3053
3054 Register src = locations->InAt(0).AsRegister<Register>();
3055 Location src_pos = locations->InAt(1);
3056 Register dest = locations->InAt(2).AsRegister<Register>();
3057 Location dest_pos = locations->InAt(3);
3058 Location length = locations->InAt(4);
3059
3060 MipsLabel loop;
3061
3062 Register dest_base = locations->GetTemp(0).AsRegister<Register>();
3063 Register src_base = locations->GetTemp(1).AsRegister<Register>();
3064 Register count = locations->GetTemp(2).AsRegister<Register>();
3065
3066 SlowPathCodeMIPS* slow_path = new (GetAllocator()) IntrinsicSlowPathMIPS(invoke);
3067 codegen_->AddSlowPath(slow_path);
3068
3069 // Bail out if the source and destination are the same (to handle overlap).
3070 __ Beq(src, dest, slow_path->GetEntryLabel());
3071
3072 // Bail out if the source is null.
3073 __ Beqz(src, slow_path->GetEntryLabel());
3074
3075 // Bail out if the destination is null.
3076 __ Beqz(dest, slow_path->GetEntryLabel());
3077
3078 // Load length into register for count.
3079 if (length.IsConstant()) {
3080 __ LoadConst32(count, length.GetConstant()->AsIntConstant()->GetValue());
3081 } else {
3082 // If the length is negative, bail out.
3083 // We have already checked in the LocationsBuilder for the constant case.
3084 __ Bltz(length.AsRegister<Register>(), slow_path->GetEntryLabel());
3085
3086 __ Move(count, length.AsRegister<Register>());
3087 }
3088
3089 // Validity checks: source.
3090 CheckPosition(assembler, src_pos, src, Location::RegisterLocation(count), slow_path);
3091
3092 // Validity checks: dest.
3093 CheckPosition(assembler, dest_pos, dest, Location::RegisterLocation(count), slow_path);
3094
3095 // If count is zero, we're done.
3096 __ Beqz(count, slow_path->GetExitLabel());
3097
3098 // Okay, everything checks out. Finally time to do the copy.
3099 // Check assumption that sizeof(Char) is 2 (used in scaling below).
3100 const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
3101 DCHECK_EQ(char_size, 2u);
3102
3103 const size_t char_shift = Primitive::ComponentSizeShift(Primitive::kPrimChar);
3104
3105 const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
3106
3107 // Calculate source and destination addresses.
3108 if (src_pos.IsConstant()) {
3109 int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue();
3110
3111 __ Addiu32(src_base, src, data_offset + char_size * src_pos_const, TMP);
3112 } else {
3113 __ Addiu32(src_base, src, data_offset, TMP);
3114 __ ShiftAndAdd(src_base, src_pos.AsRegister<Register>(), src_base, char_shift);
3115 }
3116 if (dest_pos.IsConstant()) {
3117 int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue();
3118
3119 __ Addiu32(dest_base, dest, data_offset + char_size * dest_pos_const, TMP);
3120 } else {
3121 __ Addiu32(dest_base, dest, data_offset, TMP);
3122 __ ShiftAndAdd(dest_base, dest_pos.AsRegister<Register>(), dest_base, char_shift);
3123 }
3124
3125 __ Bind(&loop);
3126 __ Lh(TMP, src_base, 0);
3127 __ Addiu(src_base, src_base, char_size);
3128 __ Addiu(count, count, -1);
3129 __ Sh(TMP, dest_base, 0);
3130 __ Addiu(dest_base, dest_base, char_size);
3131 __ Bnez(count, &loop);
3132
3133 __ Bind(slow_path->GetExitLabel());
3134 }
3135
3136 // Unimplemented intrinsics.
3137
3138 UNIMPLEMENTED_INTRINSIC(MIPS, MathCeil)
3139 UNIMPLEMENTED_INTRINSIC(MIPS, MathFloor)
3140 UNIMPLEMENTED_INTRINSIC(MIPS, MathRint)
3141 UNIMPLEMENTED_INTRINSIC(MIPS, MathRoundDouble)
3142 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetLongVolatile);
3143 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafePutLongVolatile);
3144 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeCASLong)
3145
3146 UNIMPLEMENTED_INTRINSIC(MIPS, ReferenceGetReferent)
3147 UNIMPLEMENTED_INTRINSIC(MIPS, SystemArrayCopy)
3148
3149 UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOf);
3150 UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOfAfter);
3151 UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferAppend);
3152 UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferLength);
3153 UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferToString);
3154 UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderAppend);
3155 UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderLength);
3156 UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderToString);
3157
3158 // 1.8.
3159 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddInt)
3160 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddLong)
3161 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetInt)
3162 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetLong)
3163 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetObject)
3164
3165 UNIMPLEMENTED_INTRINSIC(MIPS, IntegerValueOf)
3166
3167 UNREACHABLE_INTRINSICS(MIPS)
3168
3169 #undef __
3170
3171 } // namespace mips
3172 } // namespace art
3173