1 /*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* this implements a sensors hardware library for the Android emulator.
18 * the following code should be built as a shared library that will be
19 * placed into /system/lib/hw/sensors.goldfish.so
20 *
21 * it will be loaded by the code in hardware/libhardware/hardware.c
22 * which is itself called from com_android_server_SensorService.cpp
23 */
24
25
26 /* we connect with the emulator through the "sensors" qemud service
27 */
28 #define SENSORS_SERVICE_NAME "sensors"
29
30 #define LOG_TAG "QemuSensors"
31
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <errno.h>
35 #include <string.h>
36 #include <cutils/log.h>
37 #include <cutils/sockets.h>
38 #include <hardware/sensors.h>
39
40 #if 0
41 #define D(...) ALOGD(__VA_ARGS__)
42 #else
43 #define D(...) ((void)0)
44 #endif
45
46 #define E(...) ALOGE(__VA_ARGS__)
47
48 #include "qemud.h"
49
50 /** SENSOR IDS AND NAMES
51 **/
52
53 #define MAX_NUM_SENSORS 8
54
55 #define SUPPORTED_SENSORS ((1<<MAX_NUM_SENSORS)-1)
56
57 #define ID_BASE SENSORS_HANDLE_BASE
58 #define ID_ACCELERATION (ID_BASE+0)
59 #define ID_MAGNETIC_FIELD (ID_BASE+1)
60 #define ID_ORIENTATION (ID_BASE+2)
61 #define ID_TEMPERATURE (ID_BASE+3)
62 #define ID_PROXIMITY (ID_BASE+4)
63 #define ID_LIGHT (ID_BASE+5)
64 #define ID_PRESSURE (ID_BASE+6)
65 #define ID_HUMIDITY (ID_BASE+7)
66
67 #define SENSORS_ACCELERATION (1 << ID_ACCELERATION)
68 #define SENSORS_MAGNETIC_FIELD (1 << ID_MAGNETIC_FIELD)
69 #define SENSORS_ORIENTATION (1 << ID_ORIENTATION)
70 #define SENSORS_TEMPERATURE (1 << ID_TEMPERATURE)
71 #define SENSORS_PROXIMITY (1 << ID_PROXIMITY)
72 #define SENSORS_LIGHT (1 << ID_LIGHT)
73 #define SENSORS_PRESSURE (1 << ID_PRESSURE)
74 #define SENSORS_HUMIDITY (1 << ID_HUMIDITY)
75
76 #define ID_CHECK(x) ((unsigned)((x) - ID_BASE) < MAX_NUM_SENSORS)
77
78 #define SENSORS_LIST \
79 SENSOR_(ACCELERATION,"acceleration") \
80 SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
81 SENSOR_(ORIENTATION,"orientation") \
82 SENSOR_(TEMPERATURE,"temperature") \
83 SENSOR_(PROXIMITY,"proximity") \
84 SENSOR_(LIGHT, "light") \
85 SENSOR_(PRESSURE, "pressure") \
86 SENSOR_(HUMIDITY, "humidity")
87
88 static const struct {
89 const char* name;
90 int id; } _sensorIds[MAX_NUM_SENSORS] =
91 {
92 #define SENSOR_(x,y) { y, ID_##x },
93 SENSORS_LIST
94 #undef SENSOR_
95 };
96
97 static const char*
_sensorIdToName(int id)98 _sensorIdToName( int id )
99 {
100 int nn;
101 for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
102 if (id == _sensorIds[nn].id)
103 return _sensorIds[nn].name;
104 return "<UNKNOWN>";
105 }
106
107 static int
_sensorIdFromName(const char * name)108 _sensorIdFromName( const char* name )
109 {
110 int nn;
111
112 if (name == NULL)
113 return -1;
114
115 for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
116 if (!strcmp(name, _sensorIds[nn].name))
117 return _sensorIds[nn].id;
118
119 return -1;
120 }
121
122 /* return the current time in nanoseconds */
now_ns(void)123 static int64_t now_ns(void) {
124 struct timespec ts;
125 clock_gettime(CLOCK_MONOTONIC, &ts);
126 return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
127 }
128
129 /** SENSORS POLL DEVICE
130 **
131 ** This one is used to read sensor data from the hardware.
132 ** We implement this by simply reading the data from the
133 ** emulator through the QEMUD channel.
134 **/
135
136 typedef struct SensorDevice {
137 struct sensors_poll_device_1 device;
138 sensors_event_t sensors[MAX_NUM_SENSORS];
139 uint32_t pendingSensors;
140 int64_t timeStart;
141 int64_t timeOffset;
142 uint32_t active_sensors;
143 int fd;
144 pthread_mutex_t lock;
145 } SensorDevice;
146
147 /* Grab the file descriptor to the emulator's sensors service pipe.
148 * This function returns a file descriptor on success, or -errno on
149 * failure, and assumes the SensorDevice instance's lock is held.
150 *
151 * This is needed because set_delay(), poll() and activate() can be called
152 * from different threads, and poll() is blocking.
153 *
154 * Note that the emulator's sensors service creates a new client for each
155 * connection through qemud_channel_open(), where each client has its own
156 * delay and set of activated sensors. This precludes calling
157 * qemud_channel_open() on each request, because a typical emulated system
158 * will do something like:
159 *
160 * 1) On a first thread, de-activate() all sensors first, then call poll(),
161 * which results in the thread blocking.
162 *
163 * 2) On a second thread, slightly later, call set_delay() then activate()
164 * to enable the acceleration sensor.
165 *
166 * The system expects this to unblock the first thread which will receive
167 * new sensor events after the activate() call in 2).
168 *
169 * This cannot work if both threads don't use the same connection.
170 *
171 * TODO(digit): This protocol is brittle, implement another control channel
172 * for set_delay()/activate()/batch() when supporting HAL 1.3
173 */
sensor_device_get_fd_locked(SensorDevice * dev)174 static int sensor_device_get_fd_locked(SensorDevice* dev) {
175 /* Create connection to service on first call */
176 if (dev->fd < 0) {
177 dev->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
178 if (dev->fd < 0) {
179 int ret = -errno;
180 E("%s: Could not open connection to service: %s", __FUNCTION__,
181 strerror(-ret));
182 return ret;
183 }
184 }
185 return dev->fd;
186 }
187
188 /* Send a command to the sensors virtual device. |dev| is a device instance and
189 * |cmd| is a zero-terminated command string. Return 0 on success, or -errno
190 * on failure. */
sensor_device_send_command_locked(SensorDevice * dev,const char * cmd)191 static int sensor_device_send_command_locked(SensorDevice* dev,
192 const char* cmd) {
193 int fd = sensor_device_get_fd_locked(dev);
194 if (fd < 0) {
195 return fd;
196 }
197
198 int ret = 0;
199 if (qemud_channel_send(fd, cmd, strlen(cmd)) < 0) {
200 ret = -errno;
201 E("%s(fd=%d): ERROR: %s", __FUNCTION__, fd, strerror(errno));
202 }
203 return ret;
204 }
205
206 /* Pick up one pending sensor event. On success, this returns the sensor
207 * id, and sets |*event| accordingly. On failure, i.e. if there are no
208 * pending events, return -EINVAL.
209 *
210 * Note: The device's lock must be acquired.
211 */
sensor_device_pick_pending_event_locked(SensorDevice * d,sensors_event_t * event)212 static int sensor_device_pick_pending_event_locked(SensorDevice* d,
213 sensors_event_t* event)
214 {
215 uint32_t mask = SUPPORTED_SENSORS & d->pendingSensors;
216 if (mask) {
217 uint32_t i = 31 - __builtin_clz(mask);
218 d->pendingSensors &= ~(1U << i);
219 // Copy the structure
220 *event = d->sensors[i];
221
222 if (d->sensors[i].type == SENSOR_TYPE_META_DATA) {
223 // sensor_device_poll_event_locked() will leave
224 // the meta-data in place until we have it.
225 // Set |type| to something other than META_DATA
226 // so sensor_device_poll_event_locked() can
227 // continue.
228 d->sensors[i].type = SENSOR_TYPE_META_DATA + 1;
229 } else {
230 event->sensor = i;
231 event->version = sizeof(*event);
232 }
233
234 D("%s: %d [%f, %f, %f]", __FUNCTION__,
235 i,
236 event->data[0],
237 event->data[1],
238 event->data[2]);
239 return i;
240 }
241 E("No sensor to return!!! pendingSensors=0x%08x", d->pendingSensors);
242 // we may end-up in a busy loop, slow things down, just in case.
243 usleep(1000);
244 return -EINVAL;
245 }
246
247 /* Block until new sensor events are reported by the emulator, or if a
248 * 'wake' command is received through the service. On succes, return 0
249 * and updates the |pendingEvents| and |sensors| fields of |dev|.
250 * On failure, return -errno.
251 *
252 * Note: The device lock must be acquired when calling this function, and
253 * will still be held on return. However, the function releases the
254 * lock temporarily during the blocking wait.
255 */
sensor_device_poll_event_locked(SensorDevice * dev)256 static int sensor_device_poll_event_locked(SensorDevice* dev)
257 {
258 D("%s: dev=%p", __FUNCTION__, dev);
259
260 int fd = sensor_device_get_fd_locked(dev);
261 if (fd < 0) {
262 E("%s: Could not get pipe channel: %s", __FUNCTION__, strerror(-fd));
263 return fd;
264 }
265
266 // Accumulate pending events into |events| and |new_sensors| mask
267 // until a 'sync' or 'wake' command is received. This also simplifies the
268 // code a bit.
269 uint32_t new_sensors = 0U;
270 sensors_event_t* events = dev->sensors;
271
272 int64_t event_time = -1;
273 int ret = 0;
274
275 for (;;) {
276 /* Release the lock since we're going to block on recv() */
277 pthread_mutex_unlock(&dev->lock);
278
279 /* read the next event */
280 char buff[256];
281 int len = qemud_channel_recv(fd, buff, sizeof(buff) - 1U);
282 /* re-acquire the lock to modify the device state. */
283 pthread_mutex_lock(&dev->lock);
284
285 if (len < 0) {
286 ret = -errno;
287 E("%s(fd=%d): Could not receive event data len=%d, errno=%d: %s",
288 __FUNCTION__, fd, len, errno, strerror(errno));
289 break;
290 }
291 buff[len] = 0;
292 D("%s(fd=%d): received [%s]", __FUNCTION__, fd, buff);
293
294
295 /* "wake" is sent from the emulator to exit this loop. */
296 /* TODO(digit): Is it still needed? */
297 if (!strcmp((const char*)buff, "wake")) {
298 ret = 0x7FFFFFFF;
299 break;
300 }
301
302 float params[3];
303
304 // If the existing entry for this sensor is META_DATA,
305 // do not overwrite it. We can resume saving sensor
306 // values after that meta data has been received.
307
308 /* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
309 if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2)
310 == 3) {
311 new_sensors |= SENSORS_ACCELERATION;
312 if (events[ID_ACCELERATION].type == SENSOR_TYPE_META_DATA) continue;
313 events[ID_ACCELERATION].acceleration.x = params[0];
314 events[ID_ACCELERATION].acceleration.y = params[1];
315 events[ID_ACCELERATION].acceleration.z = params[2];
316 events[ID_ACCELERATION].type = SENSOR_TYPE_ACCELEROMETER;
317 continue;
318 }
319
320 /* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation
321 * changes */
322 if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2)
323 == 3) {
324 new_sensors |= SENSORS_ORIENTATION;
325 if (events[ID_ORIENTATION].type == SENSOR_TYPE_META_DATA) continue;
326 events[ID_ORIENTATION].orientation.azimuth = params[0];
327 events[ID_ORIENTATION].orientation.pitch = params[1];
328 events[ID_ORIENTATION].orientation.roll = params[2];
329 events[ID_ORIENTATION].orientation.status =
330 SENSOR_STATUS_ACCURACY_HIGH;
331 events[ID_ORIENTATION].type = SENSOR_TYPE_ORIENTATION;
332 continue;
333 }
334
335 /* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic
336 * field */
337 if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2)
338 == 3) {
339 new_sensors |= SENSORS_MAGNETIC_FIELD;
340 if (events[ID_MAGNETIC_FIELD].type == SENSOR_TYPE_META_DATA) continue;
341 events[ID_MAGNETIC_FIELD].magnetic.x = params[0];
342 events[ID_MAGNETIC_FIELD].magnetic.y = params[1];
343 events[ID_MAGNETIC_FIELD].magnetic.z = params[2];
344 events[ID_MAGNETIC_FIELD].magnetic.status =
345 SENSOR_STATUS_ACCURACY_HIGH;
346 events[ID_MAGNETIC_FIELD].type = SENSOR_TYPE_MAGNETIC_FIELD;
347 continue;
348 }
349
350 /* "temperature:<celsius>" */
351 if (sscanf(buff, "temperature:%g", params+0) == 1) {
352 new_sensors |= SENSORS_TEMPERATURE;
353 if (events[ID_TEMPERATURE].type == SENSOR_TYPE_META_DATA) continue;
354 events[ID_TEMPERATURE].temperature = params[0];
355 events[ID_TEMPERATURE].type = SENSOR_TYPE_AMBIENT_TEMPERATURE;
356 continue;
357 }
358
359 /* "proximity:<value>" */
360 if (sscanf(buff, "proximity:%g", params+0) == 1) {
361 new_sensors |= SENSORS_PROXIMITY;
362 if (events[ID_PROXIMITY].type == SENSOR_TYPE_META_DATA) continue;
363 events[ID_PROXIMITY].distance = params[0];
364 events[ID_PROXIMITY].type = SENSOR_TYPE_PROXIMITY;
365 continue;
366 }
367 /* "light:<lux>" */
368 if (sscanf(buff, "light:%g", params+0) == 1) {
369 new_sensors |= SENSORS_LIGHT;
370 if (events[ID_LIGHT].type == SENSOR_TYPE_META_DATA) continue;
371 events[ID_LIGHT].light = params[0];
372 events[ID_LIGHT].type = SENSOR_TYPE_LIGHT;
373 continue;
374 }
375
376 /* "pressure:<hpa>" */
377 if (sscanf(buff, "pressure:%g", params+0) == 1) {
378 new_sensors |= SENSORS_PRESSURE;
379 if (events[ID_PRESSURE].type == SENSOR_TYPE_META_DATA) continue;
380 events[ID_PRESSURE].pressure = params[0];
381 events[ID_PRESSURE].type = SENSOR_TYPE_PRESSURE;
382 continue;
383 }
384
385 /* "humidity:<percent>" */
386 if (sscanf(buff, "humidity:%g", params+0) == 1) {
387 new_sensors |= SENSORS_HUMIDITY;
388 if (events[ID_HUMIDITY].type == SENSOR_TYPE_META_DATA) continue;
389 events[ID_HUMIDITY].relative_humidity = params[0];
390 events[ID_HUMIDITY].type = SENSOR_TYPE_RELATIVE_HUMIDITY;
391 continue;
392 }
393
394 /* "sync:<time>" is sent after a series of sensor events.
395 * where 'time' is expressed in micro-seconds and corresponds
396 * to the VM time when the real poll occured.
397 */
398 if (sscanf(buff, "sync:%lld", &event_time) == 1) {
399 if (new_sensors) {
400 goto out;
401 }
402 D("huh ? sync without any sensor data ?");
403 continue;
404 }
405 D("huh ? unsupported command");
406 }
407 out:
408 if (new_sensors) {
409 /* update the time of each new sensor event. */
410 dev->pendingSensors |= new_sensors;
411 int64_t t = (event_time < 0) ? 0 : event_time * 1000LL;
412
413 /* Use the time at the first "sync:" as the base for later
414 * time values.
415 * CTS tests require sensors to return an event timestamp (sync) that is
416 * strictly before the time of the event arrival. We don't actually have
417 * a time syncronization protocol here, and the only data point is the
418 * "sync:" timestamp - which is an emulator's timestamp of a clock that
419 * is synced with the guest clock, and it only the timestamp after all
420 * events were sent.
421 * To make it work, let's compare the calculated timestamp with current
422 * time and take the lower value - we don't believe in events from the
423 * future anyway.
424 */
425 const int64_t now = now_ns();
426
427 if (dev->timeStart == 0) {
428 dev->timeStart = now;
429 dev->timeOffset = dev->timeStart - t;
430 }
431 t += dev->timeOffset;
432 if (t > now) {
433 t = now;
434 }
435
436 while (new_sensors) {
437 uint32_t i = 31 - __builtin_clz(new_sensors);
438 new_sensors &= ~(1U << i);
439 dev->sensors[i].timestamp = t;
440 }
441 }
442 return ret;
443 }
444
445 /** SENSORS POLL DEVICE FUNCTIONS **/
446
sensor_device_close(struct hw_device_t * dev0)447 static int sensor_device_close(struct hw_device_t* dev0)
448 {
449 SensorDevice* dev = (void*)dev0;
450 // Assume that there are no other threads blocked on poll()
451 if (dev->fd >= 0) {
452 close(dev->fd);
453 dev->fd = -1;
454 }
455 pthread_mutex_destroy(&dev->lock);
456 free(dev);
457 return 0;
458 }
459
460 /* Return an array of sensor data. This function blocks until there is sensor
461 * related events to report. On success, it will write the events into the
462 * |data| array, which contains |count| items. The function returns the number
463 * of events written into the array, which shall never be greater than |count|.
464 * On error, return -errno code.
465 *
466 * Note that according to the sensor HAL [1], it shall never return 0!
467 *
468 * [1] http://source.android.com/devices/sensors/hal-interface.html
469 */
sensor_device_poll(struct sensors_poll_device_t * dev0,sensors_event_t * data,int count)470 static int sensor_device_poll(struct sensors_poll_device_t *dev0,
471 sensors_event_t* data, int count)
472 {
473 SensorDevice* dev = (void*)dev0;
474 D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);
475
476 if (count <= 0) {
477 return -EINVAL;
478 }
479
480 int result = 0;
481 pthread_mutex_lock(&dev->lock);
482 if (!dev->pendingSensors) {
483 /* Block until there are pending events. Note that this releases
484 * the lock during the blocking call, then re-acquires it before
485 * returning. */
486 int ret = sensor_device_poll_event_locked(dev);
487 if (ret < 0) {
488 result = ret;
489 goto out;
490 }
491 if (!dev->pendingSensors) {
492 /* 'wake' event received before any sensor data. */
493 result = -EIO;
494 goto out;
495 }
496 }
497 /* Now read as many pending events as needed. */
498 int i;
499 for (i = 0; i < count; i++) {
500 if (!dev->pendingSensors) {
501 break;
502 }
503 int ret = sensor_device_pick_pending_event_locked(dev, data);
504 if (ret < 0) {
505 if (!result) {
506 result = ret;
507 }
508 break;
509 }
510 data++;
511 result++;
512 }
513 out:
514 pthread_mutex_unlock(&dev->lock);
515 D("%s: result=%d", __FUNCTION__, result);
516 return result;
517 }
518
sensor_device_activate(struct sensors_poll_device_t * dev0,int handle,int enabled)519 static int sensor_device_activate(struct sensors_poll_device_t *dev0,
520 int handle,
521 int enabled)
522 {
523 SensorDevice* dev = (void*)dev0;
524
525 D("%s: handle=%s (%d) enabled=%d", __FUNCTION__,
526 _sensorIdToName(handle), handle, enabled);
527
528 /* Sanity check */
529 if (!ID_CHECK(handle)) {
530 E("%s: bad handle ID", __FUNCTION__);
531 return -EINVAL;
532 }
533
534 /* Exit early if sensor is already enabled/disabled. */
535 uint32_t mask = (1U << handle);
536 uint32_t sensors = enabled ? mask : 0;
537
538 pthread_mutex_lock(&dev->lock);
539
540 uint32_t active = dev->active_sensors;
541 uint32_t new_sensors = (active & ~mask) | (sensors & mask);
542 uint32_t changed = active ^ new_sensors;
543
544 int ret = 0;
545 if (changed) {
546 /* Send command to the emulator. */
547 char command[64];
548 snprintf(command,
549 sizeof command,
550 "set:%s:%d",
551 _sensorIdToName(handle),
552 enabled != 0);
553
554 ret = sensor_device_send_command_locked(dev, command);
555 if (ret < 0) {
556 E("%s: when sending command errno=%d: %s", __FUNCTION__, -ret,
557 strerror(-ret));
558 } else {
559 dev->active_sensors = new_sensors;
560 }
561 }
562 pthread_mutex_unlock(&dev->lock);
563 return ret;
564 }
565
sensor_device_default_flush(struct sensors_poll_device_1 * dev0,int handle)566 static int sensor_device_default_flush(
567 struct sensors_poll_device_1* dev0,
568 int handle) {
569
570 SensorDevice* dev = (void*)dev0;
571
572 D("%s: handle=%s (%d)", __FUNCTION__,
573 _sensorIdToName(handle), handle);
574
575 /* Sanity check */
576 if (!ID_CHECK(handle)) {
577 E("%s: bad handle ID", __FUNCTION__);
578 return -EINVAL;
579 }
580
581 pthread_mutex_lock(&dev->lock);
582 dev->sensors[handle].version = META_DATA_VERSION;
583 dev->sensors[handle].type = SENSOR_TYPE_META_DATA;
584 dev->sensors[handle].sensor = 0;
585 dev->sensors[handle].timestamp = 0;
586 dev->sensors[handle].meta_data.sensor = handle;
587 dev->sensors[handle].meta_data.what = META_DATA_FLUSH_COMPLETE;
588 dev->pendingSensors |= (1U << handle);
589 pthread_mutex_unlock(&dev->lock);
590
591 return 0;
592 }
593
sensor_device_set_delay(struct sensors_poll_device_t * dev0,int handle __unused,int64_t ns)594 static int sensor_device_set_delay(struct sensors_poll_device_t *dev0,
595 int handle __unused,
596 int64_t ns)
597 {
598 SensorDevice* dev = (void*)dev0;
599
600 int ms = (int)(ns / 1000000);
601 D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);
602
603 char command[64];
604 snprintf(command, sizeof command, "set-delay:%d", ms);
605
606 pthread_mutex_lock(&dev->lock);
607 int ret = sensor_device_send_command_locked(dev, command);
608 pthread_mutex_unlock(&dev->lock);
609 if (ret < 0) {
610 E("%s: Could not send command: %s", __FUNCTION__, strerror(-ret));
611 }
612 return ret;
613 }
614
sensor_device_default_batch(struct sensors_poll_device_1 * dev,int sensor_handle,int flags,int64_t sampling_period_ns,int64_t max_report_latency_ns)615 static int sensor_device_default_batch(
616 struct sensors_poll_device_1* dev,
617 int sensor_handle,
618 int flags,
619 int64_t sampling_period_ns,
620 int64_t max_report_latency_ns) {
621 return sensor_device_set_delay(dev, sensor_handle, sampling_period_ns);
622 }
623
624 /** MODULE REGISTRATION SUPPORT
625 **
626 ** This is required so that hardware/libhardware/hardware.c
627 ** will dlopen() this library appropriately.
628 **/
629
630 /*
631 * the following is the list of all supported sensors.
632 * this table is used to build sSensorList declared below
633 * according to which hardware sensors are reported as
634 * available from the emulator (see get_sensors_list below)
635 *
636 * note: numerical values for maxRange/resolution/power for
637 * all sensors but light, pressure and humidity were
638 * taken from the reference AK8976A implementation
639 */
640 static const struct sensor_t sSensorListInit[] = {
641 { .name = "Goldfish 3-axis Accelerometer",
642 .vendor = "The Android Open Source Project",
643 .version = 1,
644 .handle = ID_ACCELERATION,
645 .type = SENSOR_TYPE_ACCELEROMETER,
646 .maxRange = 2.8f,
647 .resolution = 1.0f/4032.0f,
648 .power = 3.0f,
649 .minDelay = 10000,
650 .maxDelay = 60 * 1000 * 1000,
651 .fifoReservedEventCount = 0,
652 .fifoMaxEventCount = 0,
653 .stringType = 0,
654 .requiredPermission = 0,
655 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
656 .reserved = {}
657 },
658
659 { .name = "Goldfish 3-axis Magnetic field sensor",
660 .vendor = "The Android Open Source Project",
661 .version = 1,
662 .handle = ID_MAGNETIC_FIELD,
663 .type = SENSOR_TYPE_MAGNETIC_FIELD,
664 .maxRange = 2000.0f,
665 .resolution = 1.0f,
666 .power = 6.7f,
667 .minDelay = 10000,
668 .maxDelay = 60 * 1000 * 1000,
669 .fifoReservedEventCount = 0,
670 .fifoMaxEventCount = 0,
671 .stringType = 0,
672 .requiredPermission = 0,
673 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
674 .reserved = {}
675 },
676
677 { .name = "Goldfish Orientation sensor",
678 .vendor = "The Android Open Source Project",
679 .version = 1,
680 .handle = ID_ORIENTATION,
681 .type = SENSOR_TYPE_ORIENTATION,
682 .maxRange = 360.0f,
683 .resolution = 1.0f,
684 .power = 9.7f,
685 .minDelay = 10000,
686 .maxDelay = 60 * 1000 * 1000,
687 .fifoReservedEventCount = 0,
688 .fifoMaxEventCount = 0,
689 .stringType = 0,
690 .requiredPermission = 0,
691 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
692 .reserved = {}
693 },
694
695 { .name = "Goldfish Temperature sensor",
696 .vendor = "The Android Open Source Project",
697 .version = 1,
698 .handle = ID_TEMPERATURE,
699 .type = SENSOR_TYPE_AMBIENT_TEMPERATURE,
700 .maxRange = 80.0f,
701 .resolution = 1.0f,
702 .power = 0.0f,
703 .minDelay = 10000,
704 .maxDelay = 60 * 1000 * 1000,
705 .fifoReservedEventCount = 0,
706 .fifoMaxEventCount = 0,
707 .stringType = 0,
708 .requiredPermission = 0,
709 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
710 .reserved = {}
711 },
712
713 { .name = "Goldfish Proximity sensor",
714 .vendor = "The Android Open Source Project",
715 .version = 1,
716 .handle = ID_PROXIMITY,
717 .type = SENSOR_TYPE_PROXIMITY,
718 .maxRange = 1.0f,
719 .resolution = 1.0f,
720 .power = 20.0f,
721 .minDelay = 10000,
722 .maxDelay = 60 * 1000 * 1000,
723 .fifoReservedEventCount = 0,
724 .fifoMaxEventCount = 0,
725 .stringType = 0,
726 .requiredPermission = 0,
727 .flags = SENSOR_FLAG_WAKE_UP | SENSOR_FLAG_ON_CHANGE_MODE,
728 .reserved = {}
729 },
730
731 { .name = "Goldfish Light sensor",
732 .vendor = "The Android Open Source Project",
733 .version = 1,
734 .handle = ID_LIGHT,
735 .type = SENSOR_TYPE_LIGHT,
736 .maxRange = 40000.0f,
737 .resolution = 1.0f,
738 .power = 20.0f,
739 .minDelay = 10000,
740 .maxDelay = 60 * 1000 * 1000,
741 .fifoReservedEventCount = 0,
742 .fifoMaxEventCount = 0,
743 .stringType = 0,
744 .requiredPermission = 0,
745 .flags = SENSOR_FLAG_ON_CHANGE_MODE,
746 .reserved = {}
747 },
748
749 { .name = "Goldfish Pressure sensor",
750 .vendor = "The Android Open Source Project",
751 .version = 1,
752 .handle = ID_PRESSURE,
753 .type = SENSOR_TYPE_PRESSURE,
754 .maxRange = 800.0f,
755 .resolution = 1.0f,
756 .power = 20.0f,
757 .minDelay = 10000,
758 .maxDelay = 60 * 1000 * 1000,
759 .fifoReservedEventCount = 0,
760 .fifoMaxEventCount = 0,
761 .stringType = 0,
762 .requiredPermission = 0,
763 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
764 .reserved = {}
765 },
766
767 { .name = "Goldfish Humidity sensor",
768 .vendor = "The Android Open Source Project",
769 .version = 1,
770 .handle = ID_HUMIDITY,
771 .type = SENSOR_TYPE_RELATIVE_HUMIDITY,
772 .maxRange = 100.0f,
773 .resolution = 1.0f,
774 .power = 20.0f,
775 .minDelay = 10000,
776 .maxDelay = 60 * 1000 * 1000,
777 .fifoReservedEventCount = 0,
778 .fifoMaxEventCount = 0,
779 .stringType = 0,
780 .requiredPermission = 0,
781 .flags = SENSOR_FLAG_CONTINUOUS_MODE,
782 .reserved = {}
783 }
784 };
785
786 static struct sensor_t sSensorList[MAX_NUM_SENSORS];
787
sensors__get_sensors_list(struct sensors_module_t * module __unused,struct sensor_t const ** list)788 static int sensors__get_sensors_list(struct sensors_module_t* module __unused,
789 struct sensor_t const** list)
790 {
791 int fd = qemud_channel_open(SENSORS_SERVICE_NAME);
792 char buffer[12];
793 int mask, nn, count;
794 int ret = 0;
795
796 if (fd < 0) {
797 E("%s: no qemud connection", __FUNCTION__);
798 goto out;
799 }
800 ret = qemud_channel_send(fd, "list-sensors", -1);
801 if (ret < 0) {
802 E("%s: could not query sensor list: %s", __FUNCTION__,
803 strerror(errno));
804 goto out;
805 }
806 ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
807 if (ret < 0) {
808 E("%s: could not receive sensor list: %s", __FUNCTION__,
809 strerror(errno));
810 goto out;
811 }
812 buffer[ret] = 0;
813
814 /* the result is a integer used as a mask for available sensors */
815 mask = atoi(buffer);
816 count = 0;
817 for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
818 if (((1 << nn) & mask) == 0)
819 continue;
820 sSensorList[count++] = sSensorListInit[nn];
821 }
822 D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
823 *list = sSensorList;
824
825 ret = count;
826 out:
827 if (fd >= 0) {
828 close(fd);
829 }
830 return ret;
831 }
832
833
834 static int
open_sensors(const struct hw_module_t * module,const char * name,struct hw_device_t ** device)835 open_sensors(const struct hw_module_t* module,
836 const char* name,
837 struct hw_device_t* *device)
838 {
839 int status = -EINVAL;
840
841 D("%s: name=%s", __FUNCTION__, name);
842
843 if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
844 SensorDevice *dev = malloc(sizeof(*dev));
845
846 memset(dev, 0, sizeof(*dev));
847
848 dev->device.common.tag = HARDWARE_DEVICE_TAG;
849 dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_3;
850 dev->device.common.module = (struct hw_module_t*) module;
851 dev->device.common.close = sensor_device_close;
852 dev->device.poll = sensor_device_poll;
853 dev->device.activate = sensor_device_activate;
854 dev->device.setDelay = sensor_device_set_delay;
855
856 // (dev->sensors[i].type == SENSOR_TYPE_META_DATA) is
857 // sticky. Don't start off with that setting.
858 for (int idx = 0; idx < MAX_NUM_SENSORS; idx++) {
859 dev->sensors[idx].type = SENSOR_TYPE_META_DATA + 1;
860 }
861
862 // Version 1.3-specific functions
863 dev->device.batch = sensor_device_default_batch;
864 dev->device.flush = sensor_device_default_flush;
865
866 dev->fd = -1;
867 pthread_mutex_init(&dev->lock, NULL);
868
869 *device = &dev->device.common;
870 status = 0;
871 }
872 return status;
873 }
874
875
876 static struct hw_module_methods_t sensors_module_methods = {
877 .open = open_sensors
878 };
879
880 struct sensors_module_t HAL_MODULE_INFO_SYM = {
881 .common = {
882 .tag = HARDWARE_MODULE_TAG,
883 .version_major = 1,
884 .version_minor = 3,
885 .id = SENSORS_HARDWARE_MODULE_ID,
886 .name = "Goldfish SENSORS Module",
887 .author = "The Android Open Source Project",
888 .methods = &sensors_module_methods,
889 },
890 .get_sensors_list = sensors__get_sensors_list
891 };
892