• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "Python.h"
2 
3 #ifdef WITH_PYMALLOC
4 
5 #ifdef WITH_VALGRIND
6 #include <valgrind/valgrind.h>
7 
8 /* If we're using GCC, use __builtin_expect() to reduce overhead of
9    the valgrind checks */
10 #if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
11 #  define UNLIKELY(value) __builtin_expect((value), 0)
12 #else
13 #  define UNLIKELY(value) (value)
14 #endif
15 
16 /* -1 indicates that we haven't checked that we're running on valgrind yet. */
17 static int running_on_valgrind = -1;
18 #endif
19 
20 /* An object allocator for Python.
21 
22    Here is an introduction to the layers of the Python memory architecture,
23    showing where the object allocator is actually used (layer +2), It is
24    called for every object allocation and deallocation (PyObject_New/Del),
25    unless the object-specific allocators implement a proprietary allocation
26    scheme (ex.: ints use a simple free list). This is also the place where
27    the cyclic garbage collector operates selectively on container objects.
28 
29 
30     Object-specific allocators
31     _____   ______   ______       ________
32    [ int ] [ dict ] [ list ] ... [ string ]       Python core         |
33 +3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
34     _______________________________       |                           |
35    [   Python's object allocator   ]      |                           |
36 +2 | ####### Object memory ####### | <------ Internal buffers ------> |
37     ______________________________________________________________    |
38    [          Python's raw memory allocator (PyMem_ API)          ]   |
39 +1 | <----- Python memory (under PyMem manager's control) ------> |   |
40     __________________________________________________________________
41    [    Underlying general-purpose allocator (ex: C library malloc)   ]
42  0 | <------ Virtual memory allocated for the python process -------> |
43 
44    =========================================================================
45     _______________________________________________________________________
46    [                OS-specific Virtual Memory Manager (VMM)               ]
47 -1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
48     __________________________________   __________________________________
49    [                                  ] [                                  ]
50 -2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
51 
52 */
53 /*==========================================================================*/
54 
55 /* A fast, special-purpose memory allocator for small blocks, to be used
56    on top of a general-purpose malloc -- heavily based on previous art. */
57 
58 /* Vladimir Marangozov -- August 2000 */
59 
60 /*
61  * "Memory management is where the rubber meets the road -- if we do the wrong
62  * thing at any level, the results will not be good. And if we don't make the
63  * levels work well together, we are in serious trouble." (1)
64  *
65  * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
66  *    "Dynamic Storage Allocation: A Survey and Critical Review",
67  *    in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
68  */
69 
70 /* #undef WITH_MEMORY_LIMITS */         /* disable mem limit checks  */
71 
72 /*==========================================================================*/
73 
74 /*
75  * Allocation strategy abstract:
76  *
77  * For small requests, the allocator sub-allocates <Big> blocks of memory.
78  * Requests greater than 256 bytes are routed to the system's allocator.
79  *
80  * Small requests are grouped in size classes spaced 8 bytes apart, due
81  * to the required valid alignment of the returned address. Requests of
82  * a particular size are serviced from memory pools of 4K (one VMM page).
83  * Pools are fragmented on demand and contain free lists of blocks of one
84  * particular size class. In other words, there is a fixed-size allocator
85  * for each size class. Free pools are shared by the different allocators
86  * thus minimizing the space reserved for a particular size class.
87  *
88  * This allocation strategy is a variant of what is known as "simple
89  * segregated storage based on array of free lists". The main drawback of
90  * simple segregated storage is that we might end up with lot of reserved
91  * memory for the different free lists, which degenerate in time. To avoid
92  * this, we partition each free list in pools and we share dynamically the
93  * reserved space between all free lists. This technique is quite efficient
94  * for memory intensive programs which allocate mainly small-sized blocks.
95  *
96  * For small requests we have the following table:
97  *
98  * Request in bytes     Size of allocated block      Size class idx
99  * ----------------------------------------------------------------
100  *        1-8                     8                       0
101  *        9-16                   16                       1
102  *       17-24                   24                       2
103  *       25-32                   32                       3
104  *       33-40                   40                       4
105  *       41-48                   48                       5
106  *       49-56                   56                       6
107  *       57-64                   64                       7
108  *       65-72                   72                       8
109  *        ...                   ...                     ...
110  *      241-248                 248                      30
111  *      249-256                 256                      31
112  *
113  *      0, 257 and up: routed to the underlying allocator.
114  */
115 
116 /*==========================================================================*/
117 
118 /*
119  * -- Main tunable settings section --
120  */
121 
122 /*
123  * Alignment of addresses returned to the user. 8-bytes alignment works
124  * on most current architectures (with 32-bit or 64-bit address busses).
125  * The alignment value is also used for grouping small requests in size
126  * classes spaced ALIGNMENT bytes apart.
127  *
128  * You shouldn't change this unless you know what you are doing.
129  */
130 #define ALIGNMENT               8               /* must be 2^N */
131 #define ALIGNMENT_SHIFT         3
132 #define ALIGNMENT_MASK          (ALIGNMENT - 1)
133 
134 /* Return the number of bytes in size class I, as a uint. */
135 #define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
136 
137 /*
138  * Max size threshold below which malloc requests are considered to be
139  * small enough in order to use preallocated memory pools. You can tune
140  * this value according to your application behaviour and memory needs.
141  *
142  * The following invariants must hold:
143  *      1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
144  *      2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
145  *
146  * Although not required, for better performance and space efficiency,
147  * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
148  */
149 #define SMALL_REQUEST_THRESHOLD 256
150 #define NB_SMALL_SIZE_CLASSES   (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
151 
152 /*
153  * The system's VMM page size can be obtained on most unices with a
154  * getpagesize() call or deduced from various header files. To make
155  * things simpler, we assume that it is 4K, which is OK for most systems.
156  * It is probably better if this is the native page size, but it doesn't
157  * have to be.  In theory, if SYSTEM_PAGE_SIZE is larger than the native page
158  * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
159  * violation fault.  4K is apparently OK for all the platforms that python
160  * currently targets.
161  */
162 #define SYSTEM_PAGE_SIZE        (4 * 1024)
163 #define SYSTEM_PAGE_SIZE_MASK   (SYSTEM_PAGE_SIZE - 1)
164 
165 /*
166  * Maximum amount of memory managed by the allocator for small requests.
167  */
168 #ifdef WITH_MEMORY_LIMITS
169 #ifndef SMALL_MEMORY_LIMIT
170 #define SMALL_MEMORY_LIMIT      (64 * 1024 * 1024)      /* 64 MB -- more? */
171 #endif
172 #endif
173 
174 /*
175  * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
176  * on a page boundary. This is a reserved virtual address space for the
177  * current process (obtained through a malloc call). In no way this means
178  * that the memory arenas will be used entirely. A malloc(<Big>) is usually
179  * an address range reservation for <Big> bytes, unless all pages within this
180  * space are referenced subsequently. So malloc'ing big blocks and not using
181  * them does not mean "wasting memory". It's an addressable range wastage...
182  *
183  * Therefore, allocating arenas with malloc is not optimal, because there is
184  * some address space wastage, but this is the most portable way to request
185  * memory from the system across various platforms.
186  */
187 #define ARENA_SIZE              (256 << 10)     /* 256KB */
188 
189 #ifdef WITH_MEMORY_LIMITS
190 #define MAX_ARENAS              (SMALL_MEMORY_LIMIT / ARENA_SIZE)
191 #endif
192 
193 /*
194  * Size of the pools used for small blocks. Should be a power of 2,
195  * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
196  */
197 #define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */
198 #define POOL_SIZE_MASK          SYSTEM_PAGE_SIZE_MASK
199 
200 /*
201  * -- End of tunable settings section --
202  */
203 
204 /*==========================================================================*/
205 
206 /*
207  * Locking
208  *
209  * To reduce lock contention, it would probably be better to refine the
210  * crude function locking with per size class locking. I'm not positive
211  * however, whether it's worth switching to such locking policy because
212  * of the performance penalty it might introduce.
213  *
214  * The following macros describe the simplest (should also be the fastest)
215  * lock object on a particular platform and the init/fini/lock/unlock
216  * operations on it. The locks defined here are not expected to be recursive
217  * because it is assumed that they will always be called in the order:
218  * INIT, [LOCK, UNLOCK]*, FINI.
219  */
220 
221 /*
222  * Python's threads are serialized, so object malloc locking is disabled.
223  */
224 #define SIMPLELOCK_DECL(lock)   /* simple lock declaration              */
225 #define SIMPLELOCK_INIT(lock)   /* allocate (if needed) and initialize  */
226 #define SIMPLELOCK_FINI(lock)   /* free/destroy an existing lock        */
227 #define SIMPLELOCK_LOCK(lock)   /* acquire released lock */
228 #define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
229 
230 /*
231  * Basic types
232  * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
233  */
234 #undef  uchar
235 #define uchar   unsigned char   /* assuming == 8 bits  */
236 
237 #undef  uint
238 #define uint    unsigned int    /* assuming >= 16 bits */
239 
240 #undef  ulong
241 #define ulong   unsigned long   /* assuming >= 32 bits */
242 
243 #undef uptr
244 #define uptr    Py_uintptr_t
245 
246 /* When you say memory, my mind reasons in terms of (pointers to) blocks */
247 typedef uchar block;
248 
249 /* Pool for small blocks. */
250 struct pool_header {
251     union { block *_padding;
252             uint count; } ref;          /* number of allocated blocks    */
253     block *freeblock;                   /* pool's free list head         */
254     struct pool_header *nextpool;       /* next pool of this size class  */
255     struct pool_header *prevpool;       /* previous pool       ""        */
256     uint arenaindex;                    /* index into arenas of base adr */
257     uint szidx;                         /* block size class index        */
258     uint nextoffset;                    /* bytes to virgin block         */
259     uint maxnextoffset;                 /* largest valid nextoffset      */
260 };
261 
262 typedef struct pool_header *poolp;
263 
264 /* Record keeping for arenas. */
265 struct arena_object {
266     /* The address of the arena, as returned by malloc.  Note that 0
267      * will never be returned by a successful malloc, and is used
268      * here to mark an arena_object that doesn't correspond to an
269      * allocated arena.
270      */
271     uptr address;
272 
273     /* Pool-aligned pointer to the next pool to be carved off. */
274     block* pool_address;
275 
276     /* The number of available pools in the arena:  free pools + never-
277      * allocated pools.
278      */
279     uint nfreepools;
280 
281     /* The total number of pools in the arena, whether or not available. */
282     uint ntotalpools;
283 
284     /* Singly-linked list of available pools. */
285     struct pool_header* freepools;
286 
287     /* Whenever this arena_object is not associated with an allocated
288      * arena, the nextarena member is used to link all unassociated
289      * arena_objects in the singly-linked `unused_arena_objects` list.
290      * The prevarena member is unused in this case.
291      *
292      * When this arena_object is associated with an allocated arena
293      * with at least one available pool, both members are used in the
294      * doubly-linked `usable_arenas` list, which is maintained in
295      * increasing order of `nfreepools` values.
296      *
297      * Else this arena_object is associated with an allocated arena
298      * all of whose pools are in use.  `nextarena` and `prevarena`
299      * are both meaningless in this case.
300      */
301     struct arena_object* nextarena;
302     struct arena_object* prevarena;
303 };
304 
305 #undef  ROUNDUP
306 #define ROUNDUP(x)              (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
307 #define POOL_OVERHEAD           ROUNDUP(sizeof(struct pool_header))
308 
309 #define DUMMY_SIZE_IDX          0xffff  /* size class of newly cached pools */
310 
311 /* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
312 #define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
313 
314 /* Return total number of blocks in pool of size index I, as a uint. */
315 #define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
316 
317 /*==========================================================================*/
318 
319 /*
320  * This malloc lock
321  */
322 SIMPLELOCK_DECL(_malloc_lock)
323 #define LOCK()          SIMPLELOCK_LOCK(_malloc_lock)
324 #define UNLOCK()        SIMPLELOCK_UNLOCK(_malloc_lock)
325 #define LOCK_INIT()     SIMPLELOCK_INIT(_malloc_lock)
326 #define LOCK_FINI()     SIMPLELOCK_FINI(_malloc_lock)
327 
328 /*
329  * Pool table -- headed, circular, doubly-linked lists of partially used pools.
330 
331 This is involved.  For an index i, usedpools[i+i] is the header for a list of
332 all partially used pools holding small blocks with "size class idx" i. So
333 usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
334 16, and so on:  index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
335 
336 Pools are carved off an arena's highwater mark (an arena_object's pool_address
337 member) as needed.  Once carved off, a pool is in one of three states forever
338 after:
339 
340 used == partially used, neither empty nor full
341     At least one block in the pool is currently allocated, and at least one
342     block in the pool is not currently allocated (note this implies a pool
343     has room for at least two blocks).
344     This is a pool's initial state, as a pool is created only when malloc
345     needs space.
346     The pool holds blocks of a fixed size, and is in the circular list headed
347     at usedpools[i] (see above).  It's linked to the other used pools of the
348     same size class via the pool_header's nextpool and prevpool members.
349     If all but one block is currently allocated, a malloc can cause a
350     transition to the full state.  If all but one block is not currently
351     allocated, a free can cause a transition to the empty state.
352 
353 full == all the pool's blocks are currently allocated
354     On transition to full, a pool is unlinked from its usedpools[] list.
355     It's not linked to from anything then anymore, and its nextpool and
356     prevpool members are meaningless until it transitions back to used.
357     A free of a block in a full pool puts the pool back in the used state.
358     Then it's linked in at the front of the appropriate usedpools[] list, so
359     that the next allocation for its size class will reuse the freed block.
360 
361 empty == all the pool's blocks are currently available for allocation
362     On transition to empty, a pool is unlinked from its usedpools[] list,
363     and linked to the front of its arena_object's singly-linked freepools list,
364     via its nextpool member.  The prevpool member has no meaning in this case.
365     Empty pools have no inherent size class:  the next time a malloc finds
366     an empty list in usedpools[], it takes the first pool off of freepools.
367     If the size class needed happens to be the same as the size class the pool
368     last had, some pool initialization can be skipped.
369 
370 
371 Block Management
372 
373 Blocks within pools are again carved out as needed.  pool->freeblock points to
374 the start of a singly-linked list of free blocks within the pool.  When a
375 block is freed, it's inserted at the front of its pool's freeblock list.  Note
376 that the available blocks in a pool are *not* linked all together when a pool
377 is initialized.  Instead only "the first two" (lowest addresses) blocks are
378 set up, returning the first such block, and setting pool->freeblock to a
379 one-block list holding the second such block.  This is consistent with that
380 pymalloc strives at all levels (arena, pool, and block) never to touch a piece
381 of memory until it's actually needed.
382 
383 So long as a pool is in the used state, we're certain there *is* a block
384 available for allocating, and pool->freeblock is not NULL.  If pool->freeblock
385 points to the end of the free list before we've carved the entire pool into
386 blocks, that means we simply haven't yet gotten to one of the higher-address
387 blocks.  The offset from the pool_header to the start of "the next" virgin
388 block is stored in the pool_header nextoffset member, and the largest value
389 of nextoffset that makes sense is stored in the maxnextoffset member when a
390 pool is initialized.  All the blocks in a pool have been passed out at least
391 once when and only when nextoffset > maxnextoffset.
392 
393 
394 Major obscurity:  While the usedpools vector is declared to have poolp
395 entries, it doesn't really.  It really contains two pointers per (conceptual)
396 poolp entry, the nextpool and prevpool members of a pool_header.  The
397 excruciating initialization code below fools C so that
398 
399     usedpool[i+i]
400 
401 "acts like" a genuine poolp, but only so long as you only reference its
402 nextpool and prevpool members.  The "- 2*sizeof(block *)" gibberish is
403 compensating for that a pool_header's nextpool and prevpool members
404 immediately follow a pool_header's first two members:
405 
406     union { block *_padding;
407             uint count; } ref;
408     block *freeblock;
409 
410 each of which consume sizeof(block *) bytes.  So what usedpools[i+i] really
411 contains is a fudged-up pointer p such that *if* C believes it's a poolp
412 pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
413 circular list is empty).
414 
415 It's unclear why the usedpools setup is so convoluted.  It could be to
416 minimize the amount of cache required to hold this heavily-referenced table
417 (which only *needs* the two interpool pointer members of a pool_header). OTOH,
418 referencing code has to remember to "double the index" and doing so isn't
419 free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
420 on that C doesn't insert any padding anywhere in a pool_header at or before
421 the prevpool member.
422 **************************************************************************** */
423 
424 #define PTA(x)  ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
425 #define PT(x)   PTA(x), PTA(x)
426 
427 static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
428     PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
429 #if NB_SMALL_SIZE_CLASSES > 8
430     , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
431 #if NB_SMALL_SIZE_CLASSES > 16
432     , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
433 #if NB_SMALL_SIZE_CLASSES > 24
434     , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
435 #if NB_SMALL_SIZE_CLASSES > 32
436     , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
437 #if NB_SMALL_SIZE_CLASSES > 40
438     , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
439 #if NB_SMALL_SIZE_CLASSES > 48
440     , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
441 #if NB_SMALL_SIZE_CLASSES > 56
442     , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
443 #endif /* NB_SMALL_SIZE_CLASSES > 56 */
444 #endif /* NB_SMALL_SIZE_CLASSES > 48 */
445 #endif /* NB_SMALL_SIZE_CLASSES > 40 */
446 #endif /* NB_SMALL_SIZE_CLASSES > 32 */
447 #endif /* NB_SMALL_SIZE_CLASSES > 24 */
448 #endif /* NB_SMALL_SIZE_CLASSES > 16 */
449 #endif /* NB_SMALL_SIZE_CLASSES >  8 */
450 };
451 
452 /*==========================================================================
453 Arena management.
454 
455 `arenas` is a vector of arena_objects.  It contains maxarenas entries, some of
456 which may not be currently used (== they're arena_objects that aren't
457 currently associated with an allocated arena).  Note that arenas proper are
458 separately malloc'ed.
459 
460 Prior to Python 2.5, arenas were never free()'ed.  Starting with Python 2.5,
461 we do try to free() arenas, and use some mild heuristic strategies to increase
462 the likelihood that arenas eventually can be freed.
463 
464 unused_arena_objects
465 
466     This is a singly-linked list of the arena_objects that are currently not
467     being used (no arena is associated with them).  Objects are taken off the
468     head of the list in new_arena(), and are pushed on the head of the list in
469     PyObject_Free() when the arena is empty.  Key invariant:  an arena_object
470     is on this list if and only if its .address member is 0.
471 
472 usable_arenas
473 
474     This is a doubly-linked list of the arena_objects associated with arenas
475     that have pools available.  These pools are either waiting to be reused,
476     or have not been used before.  The list is sorted to have the most-
477     allocated arenas first (ascending order based on the nfreepools member).
478     This means that the next allocation will come from a heavily used arena,
479     which gives the nearly empty arenas a chance to be returned to the system.
480     In my unscientific tests this dramatically improved the number of arenas
481     that could be freed.
482 
483 Note that an arena_object associated with an arena all of whose pools are
484 currently in use isn't on either list.
485 */
486 
487 /* Array of objects used to track chunks of memory (arenas). */
488 static struct arena_object* arenas = NULL;
489 /* Number of slots currently allocated in the `arenas` vector. */
490 static uint maxarenas = 0;
491 
492 /* The head of the singly-linked, NULL-terminated list of available
493  * arena_objects.
494  */
495 static struct arena_object* unused_arena_objects = NULL;
496 
497 /* The head of the doubly-linked, NULL-terminated at each end, list of
498  * arena_objects associated with arenas that have pools available.
499  */
500 static struct arena_object* usable_arenas = NULL;
501 
502 /* How many arena_objects do we initially allocate?
503  * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
504  * `arenas` vector.
505  */
506 #define INITIAL_ARENA_OBJECTS 16
507 
508 /* Number of arenas allocated that haven't been free()'d. */
509 static size_t narenas_currently_allocated = 0;
510 
511 #ifdef PYMALLOC_DEBUG
512 /* Total number of times malloc() called to allocate an arena. */
513 static size_t ntimes_arena_allocated = 0;
514 /* High water mark (max value ever seen) for narenas_currently_allocated. */
515 static size_t narenas_highwater = 0;
516 #endif
517 
518 /* Allocate a new arena.  If we run out of memory, return NULL.  Else
519  * allocate a new arena, and return the address of an arena_object
520  * describing the new arena.  It's expected that the caller will set
521  * `usable_arenas` to the return value.
522  */
523 static struct arena_object*
new_arena(void)524 new_arena(void)
525 {
526     struct arena_object* arenaobj;
527     uint excess;        /* number of bytes above pool alignment */
528 
529 #ifdef PYMALLOC_DEBUG
530     if (Py_GETENV("PYTHONMALLOCSTATS"))
531         _PyObject_DebugMallocStats();
532 #endif
533     if (unused_arena_objects == NULL) {
534         uint i;
535         uint numarenas;
536         size_t nbytes;
537 
538         /* Double the number of arena objects on each allocation.
539          * Note that it's possible for `numarenas` to overflow.
540          */
541         numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
542         if (numarenas <= maxarenas)
543             return NULL;                /* overflow */
544 #if SIZEOF_SIZE_T <= SIZEOF_INT
545         if (numarenas > PY_SIZE_MAX / sizeof(*arenas))
546             return NULL;                /* overflow */
547 #endif
548         nbytes = numarenas * sizeof(*arenas);
549         arenaobj = (struct arena_object *)realloc(arenas, nbytes);
550         if (arenaobj == NULL)
551             return NULL;
552         arenas = arenaobj;
553 
554         /* We might need to fix pointers that were copied.  However,
555          * new_arena only gets called when all the pages in the
556          * previous arenas are full.  Thus, there are *no* pointers
557          * into the old array. Thus, we don't have to worry about
558          * invalid pointers.  Just to be sure, some asserts:
559          */
560         assert(usable_arenas == NULL);
561         assert(unused_arena_objects == NULL);
562 
563         /* Put the new arenas on the unused_arena_objects list. */
564         for (i = maxarenas; i < numarenas; ++i) {
565             arenas[i].address = 0;              /* mark as unassociated */
566             arenas[i].nextarena = i < numarenas - 1 ?
567                                    &arenas[i+1] : NULL;
568         }
569 
570         /* Update globals. */
571         unused_arena_objects = &arenas[maxarenas];
572         maxarenas = numarenas;
573     }
574 
575     /* Take the next available arena object off the head of the list. */
576     assert(unused_arena_objects != NULL);
577     arenaobj = unused_arena_objects;
578     unused_arena_objects = arenaobj->nextarena;
579     assert(arenaobj->address == 0);
580     arenaobj->address = (uptr)malloc(ARENA_SIZE);
581     if (arenaobj->address == 0) {
582         /* The allocation failed: return NULL after putting the
583          * arenaobj back.
584          */
585         arenaobj->nextarena = unused_arena_objects;
586         unused_arena_objects = arenaobj;
587         return NULL;
588     }
589 
590     ++narenas_currently_allocated;
591 #ifdef PYMALLOC_DEBUG
592     ++ntimes_arena_allocated;
593     if (narenas_currently_allocated > narenas_highwater)
594         narenas_highwater = narenas_currently_allocated;
595 #endif
596     arenaobj->freepools = NULL;
597     /* pool_address <- first pool-aligned address in the arena
598        nfreepools <- number of whole pools that fit after alignment */
599     arenaobj->pool_address = (block*)arenaobj->address;
600     arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
601     assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
602     excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
603     if (excess != 0) {
604         --arenaobj->nfreepools;
605         arenaobj->pool_address += POOL_SIZE - excess;
606     }
607     arenaobj->ntotalpools = arenaobj->nfreepools;
608 
609     return arenaobj;
610 }
611 
612 /*
613 Py_ADDRESS_IN_RANGE(P, POOL)
614 
615 Return true if and only if P is an address that was allocated by pymalloc.
616 POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
617 (the caller is asked to compute this because the macro expands POOL more than
618 once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
619 variable and pass the latter to the macro; because Py_ADDRESS_IN_RANGE is
620 called on every alloc/realloc/free, micro-efficiency is important here).
621 
622 Tricky:  Let B be the arena base address associated with the pool, B =
623 arenas[(POOL)->arenaindex].address.  Then P belongs to the arena if and only if
624 
625     B <= P < B + ARENA_SIZE
626 
627 Subtracting B throughout, this is true iff
628 
629     0 <= P-B < ARENA_SIZE
630 
631 By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
632 
633 Obscure:  A PyMem "free memory" function can call the pymalloc free or realloc
634 before the first arena has been allocated.  `arenas` is still NULL in that
635 case.  We're relying on that maxarenas is also 0 in that case, so that
636 (POOL)->arenaindex < maxarenas  must be false, saving us from trying to index
637 into a NULL arenas.
638 
639 Details:  given P and POOL, the arena_object corresponding to P is AO =
640 arenas[(POOL)->arenaindex].  Suppose obmalloc controls P.  Then (barring wild
641 stores, etc), POOL is the correct address of P's pool, AO.address is the
642 correct base address of the pool's arena, and P must be within ARENA_SIZE of
643 AO.address.  In addition, AO.address is not 0 (no arena can start at address 0
644 (NULL)).  Therefore Py_ADDRESS_IN_RANGE correctly reports that obmalloc
645 controls P.
646 
647 Now suppose obmalloc does not control P (e.g., P was obtained via a direct
648 call to the system malloc() or realloc()).  (POOL)->arenaindex may be anything
649 in this case -- it may even be uninitialized trash.  If the trash arenaindex
650 is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
651 control P.
652 
653 Else arenaindex is < maxarena, and AO is read up.  If AO corresponds to an
654 allocated arena, obmalloc controls all the memory in slice AO.address :
655 AO.address+ARENA_SIZE.  By case assumption, P is not controlled by obmalloc,
656 so P doesn't lie in that slice, so the macro correctly reports that P is not
657 controlled by obmalloc.
658 
659 Finally, if P is not controlled by obmalloc and AO corresponds to an unused
660 arena_object (one not currently associated with an allocated arena),
661 AO.address is 0, and the second test in the macro reduces to:
662 
663     P < ARENA_SIZE
664 
665 If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
666 that P is not controlled by obmalloc.  However, if P < ARENA_SIZE, this part
667 of the test still passes, and the third clause (AO.address != 0) is necessary
668 to get the correct result:  AO.address is 0 in this case, so the macro
669 correctly reports that P is not controlled by obmalloc (despite that P lies in
670 slice AO.address : AO.address + ARENA_SIZE).
671 
672 Note:  The third (AO.address != 0) clause was added in Python 2.5.  Before
673 2.5, arenas were never free()'ed, and an arenaindex < maxarena always
674 corresponded to a currently-allocated arena, so the "P is not controlled by
675 obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
676 was impossible.
677 
678 Note that the logic is excruciating, and reading up possibly uninitialized
679 memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
680 creates problems for some memory debuggers.  The overwhelming advantage is
681 that this test determines whether an arbitrary address is controlled by
682 obmalloc in a small constant time, independent of the number of arenas
683 obmalloc controls.  Since this test is needed at every entry point, it's
684 extremely desirable that it be this fast.
685 
686 Since Py_ADDRESS_IN_RANGE may be reading from memory which was not allocated
687 by Python, it is important that (POOL)->arenaindex is read only once, as
688 another thread may be concurrently modifying the value without holding the
689 GIL.  To accomplish this, the arenaindex_temp variable is used to store
690 (POOL)->arenaindex for the duration of the Py_ADDRESS_IN_RANGE macro's
691 execution.  The caller of the macro is responsible for declaring this
692 variable.
693 */
694 #define Py_ADDRESS_IN_RANGE(P, POOL)                    \
695     ((arenaindex_temp = (POOL)->arenaindex) < maxarenas &&              \
696      (uptr)(P) - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE && \
697      arenas[arenaindex_temp].address != 0)
698 
699 
700 /* This is only useful when running memory debuggers such as
701  * Purify or Valgrind.  Uncomment to use.
702  *
703 #define Py_USING_MEMORY_DEBUGGER
704  */
705 
706 #ifdef Py_USING_MEMORY_DEBUGGER
707 
708 /* Py_ADDRESS_IN_RANGE may access uninitialized memory by design
709  * This leads to thousands of spurious warnings when using
710  * Purify or Valgrind.  By making a function, we can easily
711  * suppress the uninitialized memory reads in this one function.
712  * So we won't ignore real errors elsewhere.
713  *
714  * Disable the macro and use a function.
715  */
716 
717 #undef Py_ADDRESS_IN_RANGE
718 
719 #if defined(__GNUC__) && ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) || \
720                           (__GNUC__ >= 4))
721 #define Py_NO_INLINE __attribute__((__noinline__))
722 #else
723 #define Py_NO_INLINE
724 #endif
725 
726 /* Don't make static, to try to ensure this isn't inlined. */
727 int Py_ADDRESS_IN_RANGE(void *P, poolp pool) Py_NO_INLINE;
728 #undef Py_NO_INLINE
729 #endif
730 
731 /*==========================================================================*/
732 
733 /* malloc.  Note that nbytes==0 tries to return a non-NULL pointer, distinct
734  * from all other currently live pointers.  This may not be possible.
735  */
736 
737 /*
738  * The basic blocks are ordered by decreasing execution frequency,
739  * which minimizes the number of jumps in the most common cases,
740  * improves branching prediction and instruction scheduling (small
741  * block allocations typically result in a couple of instructions).
742  * Unless the optimizer reorders everything, being too smart...
743  */
744 
745 #undef PyObject_Malloc
746 void *
PyObject_Malloc(size_t nbytes)747 PyObject_Malloc(size_t nbytes)
748 {
749     block *bp;
750     poolp pool;
751     poolp next;
752     uint size;
753 
754 #ifdef WITH_VALGRIND
755     if (UNLIKELY(running_on_valgrind == -1))
756         running_on_valgrind = RUNNING_ON_VALGRIND;
757     if (UNLIKELY(running_on_valgrind))
758         goto redirect;
759 #endif
760 
761     /*
762      * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
763      * Most python internals blindly use a signed Py_ssize_t to track
764      * things without checking for overflows or negatives.
765      * As size_t is unsigned, checking for nbytes < 0 is not required.
766      */
767     if (nbytes > PY_SSIZE_T_MAX)
768         return NULL;
769 
770     /*
771      * This implicitly redirects malloc(0).
772      */
773     if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
774         LOCK();
775         /*
776          * Most frequent paths first
777          */
778         size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
779         pool = usedpools[size + size];
780         if (pool != pool->nextpool) {
781             /*
782              * There is a used pool for this size class.
783              * Pick up the head block of its free list.
784              */
785             ++pool->ref.count;
786             bp = pool->freeblock;
787             assert(bp != NULL);
788             if ((pool->freeblock = *(block **)bp) != NULL) {
789                 UNLOCK();
790                 return (void *)bp;
791             }
792             /*
793              * Reached the end of the free list, try to extend it.
794              */
795             if (pool->nextoffset <= pool->maxnextoffset) {
796                 /* There is room for another block. */
797                 pool->freeblock = (block*)pool +
798                                   pool->nextoffset;
799                 pool->nextoffset += INDEX2SIZE(size);
800                 *(block **)(pool->freeblock) = NULL;
801                 UNLOCK();
802                 return (void *)bp;
803             }
804             /* Pool is full, unlink from used pools. */
805             next = pool->nextpool;
806             pool = pool->prevpool;
807             next->prevpool = pool;
808             pool->nextpool = next;
809             UNLOCK();
810             return (void *)bp;
811         }
812 
813         /* There isn't a pool of the right size class immediately
814          * available:  use a free pool.
815          */
816         if (usable_arenas == NULL) {
817             /* No arena has a free pool:  allocate a new arena. */
818 #ifdef WITH_MEMORY_LIMITS
819             if (narenas_currently_allocated >= MAX_ARENAS) {
820                 UNLOCK();
821                 goto redirect;
822             }
823 #endif
824             usable_arenas = new_arena();
825             if (usable_arenas == NULL) {
826                 UNLOCK();
827                 goto redirect;
828             }
829             usable_arenas->nextarena =
830                 usable_arenas->prevarena = NULL;
831         }
832         assert(usable_arenas->address != 0);
833 
834         /* Try to get a cached free pool. */
835         pool = usable_arenas->freepools;
836         if (pool != NULL) {
837             /* Unlink from cached pools. */
838             usable_arenas->freepools = pool->nextpool;
839 
840             /* This arena already had the smallest nfreepools
841              * value, so decreasing nfreepools doesn't change
842              * that, and we don't need to rearrange the
843              * usable_arenas list.  However, if the arena has
844              * become wholly allocated, we need to remove its
845              * arena_object from usable_arenas.
846              */
847             --usable_arenas->nfreepools;
848             if (usable_arenas->nfreepools == 0) {
849                 /* Wholly allocated:  remove. */
850                 assert(usable_arenas->freepools == NULL);
851                 assert(usable_arenas->nextarena == NULL ||
852                        usable_arenas->nextarena->prevarena ==
853                        usable_arenas);
854 
855                 usable_arenas = usable_arenas->nextarena;
856                 if (usable_arenas != NULL) {
857                     usable_arenas->prevarena = NULL;
858                     assert(usable_arenas->address != 0);
859                 }
860             }
861             else {
862                 /* nfreepools > 0:  it must be that freepools
863                  * isn't NULL, or that we haven't yet carved
864                  * off all the arena's pools for the first
865                  * time.
866                  */
867                 assert(usable_arenas->freepools != NULL ||
868                        usable_arenas->pool_address <=
869                        (block*)usable_arenas->address +
870                            ARENA_SIZE - POOL_SIZE);
871             }
872         init_pool:
873             /* Frontlink to used pools. */
874             next = usedpools[size + size]; /* == prev */
875             pool->nextpool = next;
876             pool->prevpool = next;
877             next->nextpool = pool;
878             next->prevpool = pool;
879             pool->ref.count = 1;
880             if (pool->szidx == size) {
881                 /* Luckily, this pool last contained blocks
882                  * of the same size class, so its header
883                  * and free list are already initialized.
884                  */
885                 bp = pool->freeblock;
886                 pool->freeblock = *(block **)bp;
887                 UNLOCK();
888                 return (void *)bp;
889             }
890             /*
891              * Initialize the pool header, set up the free list to
892              * contain just the second block, and return the first
893              * block.
894              */
895             pool->szidx = size;
896             size = INDEX2SIZE(size);
897             bp = (block *)pool + POOL_OVERHEAD;
898             pool->nextoffset = POOL_OVERHEAD + (size << 1);
899             pool->maxnextoffset = POOL_SIZE - size;
900             pool->freeblock = bp + size;
901             *(block **)(pool->freeblock) = NULL;
902             UNLOCK();
903             return (void *)bp;
904         }
905 
906         /* Carve off a new pool. */
907         assert(usable_arenas->nfreepools > 0);
908         assert(usable_arenas->freepools == NULL);
909         pool = (poolp)usable_arenas->pool_address;
910         assert((block*)pool <= (block*)usable_arenas->address +
911                                ARENA_SIZE - POOL_SIZE);
912         pool->arenaindex = usable_arenas - arenas;
913         assert(&arenas[pool->arenaindex] == usable_arenas);
914         pool->szidx = DUMMY_SIZE_IDX;
915         usable_arenas->pool_address += POOL_SIZE;
916         --usable_arenas->nfreepools;
917 
918         if (usable_arenas->nfreepools == 0) {
919             assert(usable_arenas->nextarena == NULL ||
920                    usable_arenas->nextarena->prevarena ==
921                    usable_arenas);
922             /* Unlink the arena:  it is completely allocated. */
923             usable_arenas = usable_arenas->nextarena;
924             if (usable_arenas != NULL) {
925                 usable_arenas->prevarena = NULL;
926                 assert(usable_arenas->address != 0);
927             }
928         }
929 
930         goto init_pool;
931     }
932 
933     /* The small block allocator ends here. */
934 
935 redirect:
936     /* Redirect the original request to the underlying (libc) allocator.
937      * We jump here on bigger requests, on error in the code above (as a
938      * last chance to serve the request) or when the max memory limit
939      * has been reached.
940      */
941     if (nbytes == 0)
942         nbytes = 1;
943     return (void *)malloc(nbytes);
944 }
945 
946 /* free */
947 
948 #undef PyObject_Free
949 void
PyObject_Free(void * p)950 PyObject_Free(void *p)
951 {
952     poolp pool;
953     block *lastfree;
954     poolp next, prev;
955     uint size;
956 #ifndef Py_USING_MEMORY_DEBUGGER
957     uint arenaindex_temp;
958 #endif
959 
960     if (p == NULL)      /* free(NULL) has no effect */
961         return;
962 
963 #ifdef WITH_VALGRIND
964     if (UNLIKELY(running_on_valgrind > 0))
965         goto redirect;
966 #endif
967 
968     pool = POOL_ADDR(p);
969     if (Py_ADDRESS_IN_RANGE(p, pool)) {
970         /* We allocated this address. */
971         LOCK();
972         /* Link p to the start of the pool's freeblock list.  Since
973          * the pool had at least the p block outstanding, the pool
974          * wasn't empty (so it's already in a usedpools[] list, or
975          * was full and is in no list -- it's not in the freeblocks
976          * list in any case).
977          */
978         assert(pool->ref.count > 0);            /* else it was empty */
979         *(block **)p = lastfree = pool->freeblock;
980         pool->freeblock = (block *)p;
981         if (lastfree) {
982             struct arena_object* ao;
983             uint nf;  /* ao->nfreepools */
984 
985             /* freeblock wasn't NULL, so the pool wasn't full,
986              * and the pool is in a usedpools[] list.
987              */
988             if (--pool->ref.count != 0) {
989                 /* pool isn't empty:  leave it in usedpools */
990                 UNLOCK();
991                 return;
992             }
993             /* Pool is now empty:  unlink from usedpools, and
994              * link to the front of freepools.  This ensures that
995              * previously freed pools will be allocated later
996              * (being not referenced, they are perhaps paged out).
997              */
998             next = pool->nextpool;
999             prev = pool->prevpool;
1000             next->prevpool = prev;
1001             prev->nextpool = next;
1002 
1003             /* Link the pool to freepools.  This is a singly-linked
1004              * list, and pool->prevpool isn't used there.
1005              */
1006             ao = &arenas[pool->arenaindex];
1007             pool->nextpool = ao->freepools;
1008             ao->freepools = pool;
1009             nf = ++ao->nfreepools;
1010 
1011             /* All the rest is arena management.  We just freed
1012              * a pool, and there are 4 cases for arena mgmt:
1013              * 1. If all the pools are free, return the arena to
1014              *    the system free().
1015              * 2. If this is the only free pool in the arena,
1016              *    add the arena back to the `usable_arenas` list.
1017              * 3. If the "next" arena has a smaller count of free
1018              *    pools, we have to "slide this arena right" to
1019              *    restore that usable_arenas is sorted in order of
1020              *    nfreepools.
1021              * 4. Else there's nothing more to do.
1022              */
1023             if (nf == ao->ntotalpools) {
1024                 /* Case 1.  First unlink ao from usable_arenas.
1025                  */
1026                 assert(ao->prevarena == NULL ||
1027                        ao->prevarena->address != 0);
1028                 assert(ao ->nextarena == NULL ||
1029                        ao->nextarena->address != 0);
1030 
1031                 /* Fix the pointer in the prevarena, or the
1032                  * usable_arenas pointer.
1033                  */
1034                 if (ao->prevarena == NULL) {
1035                     usable_arenas = ao->nextarena;
1036                     assert(usable_arenas == NULL ||
1037                            usable_arenas->address != 0);
1038                 }
1039                 else {
1040                     assert(ao->prevarena->nextarena == ao);
1041                     ao->prevarena->nextarena =
1042                         ao->nextarena;
1043                 }
1044                 /* Fix the pointer in the nextarena. */
1045                 if (ao->nextarena != NULL) {
1046                     assert(ao->nextarena->prevarena == ao);
1047                     ao->nextarena->prevarena =
1048                         ao->prevarena;
1049                 }
1050                 /* Record that this arena_object slot is
1051                  * available to be reused.
1052                  */
1053                 ao->nextarena = unused_arena_objects;
1054                 unused_arena_objects = ao;
1055 
1056                 /* Free the entire arena. */
1057                 free((void *)ao->address);
1058                 ao->address = 0;                        /* mark unassociated */
1059                 --narenas_currently_allocated;
1060 
1061                 UNLOCK();
1062                 return;
1063             }
1064             if (nf == 1) {
1065                 /* Case 2.  Put ao at the head of
1066                  * usable_arenas.  Note that because
1067                  * ao->nfreepools was 0 before, ao isn't
1068                  * currently on the usable_arenas list.
1069                  */
1070                 ao->nextarena = usable_arenas;
1071                 ao->prevarena = NULL;
1072                 if (usable_arenas)
1073                     usable_arenas->prevarena = ao;
1074                 usable_arenas = ao;
1075                 assert(usable_arenas->address != 0);
1076 
1077                 UNLOCK();
1078                 return;
1079             }
1080             /* If this arena is now out of order, we need to keep
1081              * the list sorted.  The list is kept sorted so that
1082              * the "most full" arenas are used first, which allows
1083              * the nearly empty arenas to be completely freed.  In
1084              * a few un-scientific tests, it seems like this
1085              * approach allowed a lot more memory to be freed.
1086              */
1087             if (ao->nextarena == NULL ||
1088                          nf <= ao->nextarena->nfreepools) {
1089                 /* Case 4.  Nothing to do. */
1090                 UNLOCK();
1091                 return;
1092             }
1093             /* Case 3:  We have to move the arena towards the end
1094              * of the list, because it has more free pools than
1095              * the arena to its right.
1096              * First unlink ao from usable_arenas.
1097              */
1098             if (ao->prevarena != NULL) {
1099                 /* ao isn't at the head of the list */
1100                 assert(ao->prevarena->nextarena == ao);
1101                 ao->prevarena->nextarena = ao->nextarena;
1102             }
1103             else {
1104                 /* ao is at the head of the list */
1105                 assert(usable_arenas == ao);
1106                 usable_arenas = ao->nextarena;
1107             }
1108             ao->nextarena->prevarena = ao->prevarena;
1109 
1110             /* Locate the new insertion point by iterating over
1111              * the list, using our nextarena pointer.
1112              */
1113             while (ao->nextarena != NULL &&
1114                             nf > ao->nextarena->nfreepools) {
1115                 ao->prevarena = ao->nextarena;
1116                 ao->nextarena = ao->nextarena->nextarena;
1117             }
1118 
1119             /* Insert ao at this point. */
1120             assert(ao->nextarena == NULL ||
1121                 ao->prevarena == ao->nextarena->prevarena);
1122             assert(ao->prevarena->nextarena == ao->nextarena);
1123 
1124             ao->prevarena->nextarena = ao;
1125             if (ao->nextarena != NULL)
1126                 ao->nextarena->prevarena = ao;
1127 
1128             /* Verify that the swaps worked. */
1129             assert(ao->nextarena == NULL ||
1130                       nf <= ao->nextarena->nfreepools);
1131             assert(ao->prevarena == NULL ||
1132                       nf > ao->prevarena->nfreepools);
1133             assert(ao->nextarena == NULL ||
1134                 ao->nextarena->prevarena == ao);
1135             assert((usable_arenas == ao &&
1136                 ao->prevarena == NULL) ||
1137                 ao->prevarena->nextarena == ao);
1138 
1139             UNLOCK();
1140             return;
1141         }
1142         /* Pool was full, so doesn't currently live in any list:
1143          * link it to the front of the appropriate usedpools[] list.
1144          * This mimics LRU pool usage for new allocations and
1145          * targets optimal filling when several pools contain
1146          * blocks of the same size class.
1147          */
1148         --pool->ref.count;
1149         assert(pool->ref.count > 0);            /* else the pool is empty */
1150         size = pool->szidx;
1151         next = usedpools[size + size];
1152         prev = next->prevpool;
1153         /* insert pool before next:   prev <-> pool <-> next */
1154         pool->nextpool = next;
1155         pool->prevpool = prev;
1156         next->prevpool = pool;
1157         prev->nextpool = pool;
1158         UNLOCK();
1159         return;
1160     }
1161 
1162 #ifdef WITH_VALGRIND
1163 redirect:
1164 #endif
1165     /* We didn't allocate this address. */
1166     free(p);
1167 }
1168 
1169 /* realloc.  If p is NULL, this acts like malloc(nbytes).  Else if nbytes==0,
1170  * then as the Python docs promise, we do not treat this like free(p), and
1171  * return a non-NULL result.
1172  */
1173 
1174 #undef PyObject_Realloc
1175 void *
PyObject_Realloc(void * p,size_t nbytes)1176 PyObject_Realloc(void *p, size_t nbytes)
1177 {
1178     void *bp;
1179     poolp pool;
1180     size_t size;
1181 #ifndef Py_USING_MEMORY_DEBUGGER
1182     uint arenaindex_temp;
1183 #endif
1184 
1185     if (p == NULL)
1186         return PyObject_Malloc(nbytes);
1187 
1188     /*
1189      * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
1190      * Most python internals blindly use a signed Py_ssize_t to track
1191      * things without checking for overflows or negatives.
1192      * As size_t is unsigned, checking for nbytes < 0 is not required.
1193      */
1194     if (nbytes > PY_SSIZE_T_MAX)
1195         return NULL;
1196 
1197 #ifdef WITH_VALGRIND
1198     /* Treat running_on_valgrind == -1 the same as 0 */
1199     if (UNLIKELY(running_on_valgrind > 0))
1200         goto redirect;
1201 #endif
1202 
1203     pool = POOL_ADDR(p);
1204     if (Py_ADDRESS_IN_RANGE(p, pool)) {
1205         /* We're in charge of this block */
1206         size = INDEX2SIZE(pool->szidx);
1207         if (nbytes <= size) {
1208             /* The block is staying the same or shrinking.  If
1209              * it's shrinking, there's a tradeoff:  it costs
1210              * cycles to copy the block to a smaller size class,
1211              * but it wastes memory not to copy it.  The
1212              * compromise here is to copy on shrink only if at
1213              * least 25% of size can be shaved off.
1214              */
1215             if (4 * nbytes > 3 * size) {
1216                 /* It's the same,
1217                  * or shrinking and new/old > 3/4.
1218                  */
1219                 return p;
1220             }
1221             size = nbytes;
1222         }
1223         bp = PyObject_Malloc(nbytes);
1224         if (bp != NULL) {
1225             memcpy(bp, p, size);
1226             PyObject_Free(p);
1227         }
1228         return bp;
1229     }
1230 #ifdef WITH_VALGRIND
1231  redirect:
1232 #endif
1233     /* We're not managing this block.  If nbytes <=
1234      * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this
1235      * block.  However, if we do, we need to copy the valid data from
1236      * the C-managed block to one of our blocks, and there's no portable
1237      * way to know how much of the memory space starting at p is valid.
1238      * As bug 1185883 pointed out the hard way, it's possible that the
1239      * C-managed block is "at the end" of allocated VM space, so that
1240      * a memory fault can occur if we try to copy nbytes bytes starting
1241      * at p.  Instead we punt:  let C continue to manage this block.
1242      */
1243     if (nbytes)
1244         return realloc(p, nbytes);
1245     /* C doesn't define the result of realloc(p, 0) (it may or may not
1246      * return NULL then), but Python's docs promise that nbytes==0 never
1247      * returns NULL.  We don't pass 0 to realloc(), to avoid that endcase
1248      * to begin with.  Even then, we can't be sure that realloc() won't
1249      * return NULL.
1250      */
1251     bp = realloc(p, 1);
1252     return bp ? bp : p;
1253 }
1254 
1255 #else   /* ! WITH_PYMALLOC */
1256 
1257 /*==========================================================================*/
1258 /* pymalloc not enabled:  Redirect the entry points to malloc.  These will
1259  * only be used by extensions that are compiled with pymalloc enabled. */
1260 
1261 void *
PyObject_Malloc(size_t n)1262 PyObject_Malloc(size_t n)
1263 {
1264     return PyMem_MALLOC(n);
1265 }
1266 
1267 void *
PyObject_Realloc(void * p,size_t n)1268 PyObject_Realloc(void *p, size_t n)
1269 {
1270     return PyMem_REALLOC(p, n);
1271 }
1272 
1273 void
PyObject_Free(void * p)1274 PyObject_Free(void *p)
1275 {
1276     PyMem_FREE(p);
1277 }
1278 #endif /* WITH_PYMALLOC */
1279 
1280 #ifdef PYMALLOC_DEBUG
1281 /*==========================================================================*/
1282 /* A x-platform debugging allocator.  This doesn't manage memory directly,
1283  * it wraps a real allocator, adding extra debugging info to the memory blocks.
1284  */
1285 
1286 /* Special bytes broadcast into debug memory blocks at appropriate times.
1287  * Strings of these are unlikely to be valid addresses, floats, ints or
1288  * 7-bit ASCII.
1289  */
1290 #undef CLEANBYTE
1291 #undef DEADBYTE
1292 #undef FORBIDDENBYTE
1293 #define CLEANBYTE      0xCB    /* clean (newly allocated) memory */
1294 #define DEADBYTE       0xDB    /* dead (newly freed) memory */
1295 #define FORBIDDENBYTE  0xFB    /* untouchable bytes at each end of a block */
1296 
1297 /* We tag each block with an API ID in order to tag API violations */
1298 #define _PYMALLOC_MEM_ID 'm'   /* the PyMem_Malloc() API */
1299 #define _PYMALLOC_OBJ_ID 'o'   /* The PyObject_Malloc() API */
1300 
1301 static size_t serialno = 0;     /* incremented on each debug {m,re}alloc */
1302 
1303 /* serialno is always incremented via calling this routine.  The point is
1304  * to supply a single place to set a breakpoint.
1305  */
1306 static void
bumpserialno(void)1307 bumpserialno(void)
1308 {
1309     ++serialno;
1310 }
1311 
1312 #define SST SIZEOF_SIZE_T
1313 
1314 /* Read sizeof(size_t) bytes at p as a big-endian size_t. */
1315 static size_t
read_size_t(const void * p)1316 read_size_t(const void *p)
1317 {
1318     const uchar *q = (const uchar *)p;
1319     size_t result = *q++;
1320     int i;
1321 
1322     for (i = SST; --i > 0; ++q)
1323         result = (result << 8) | *q;
1324     return result;
1325 }
1326 
1327 /* Write n as a big-endian size_t, MSB at address p, LSB at
1328  * p + sizeof(size_t) - 1.
1329  */
1330 static void
write_size_t(void * p,size_t n)1331 write_size_t(void *p, size_t n)
1332 {
1333     uchar *q = (uchar *)p + SST - 1;
1334     int i;
1335 
1336     for (i = SST; --i >= 0; --q) {
1337         *q = (uchar)(n & 0xff);
1338         n >>= 8;
1339     }
1340 }
1341 
1342 #ifdef Py_DEBUG
1343 /* Is target in the list?  The list is traversed via the nextpool pointers.
1344  * The list may be NULL-terminated, or circular.  Return 1 if target is in
1345  * list, else 0.
1346  */
1347 static int
pool_is_in_list(const poolp target,poolp list)1348 pool_is_in_list(const poolp target, poolp list)
1349 {
1350     poolp origlist = list;
1351     assert(target != NULL);
1352     if (list == NULL)
1353         return 0;
1354     do {
1355         if (target == list)
1356             return 1;
1357         list = list->nextpool;
1358     } while (list != NULL && list != origlist);
1359     return 0;
1360 }
1361 
1362 #else
1363 #define pool_is_in_list(X, Y) 1
1364 
1365 #endif  /* Py_DEBUG */
1366 
1367 /* Let S = sizeof(size_t).  The debug malloc asks for 4*S extra bytes and
1368    fills them with useful stuff, here calling the underlying malloc's result p:
1369 
1370 p[0: S]
1371     Number of bytes originally asked for.  This is a size_t, big-endian (easier
1372     to read in a memory dump).
1373 p[S: 2*S]
1374     Copies of FORBIDDENBYTE.  Used to catch under- writes and reads.
1375 p[2*S: 2*S+n]
1376     The requested memory, filled with copies of CLEANBYTE.
1377     Used to catch reference to uninitialized memory.
1378     &p[2*S] is returned.  Note that this is 8-byte aligned if pymalloc
1379     handled the request itself.
1380 p[2*S+n: 2*S+n+S]
1381     Copies of FORBIDDENBYTE.  Used to catch over- writes and reads.
1382 p[2*S+n+S: 2*S+n+2*S]
1383     A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
1384     and _PyObject_DebugRealloc.
1385     This is a big-endian size_t.
1386     If "bad memory" is detected later, the serial number gives an
1387     excellent way to set a breakpoint on the next run, to capture the
1388     instant at which this block was passed out.
1389 */
1390 
1391 /* debug replacements for the PyMem_* memory API */
1392 void *
_PyMem_DebugMalloc(size_t nbytes)1393 _PyMem_DebugMalloc(size_t nbytes)
1394 {
1395     return _PyObject_DebugMallocApi(_PYMALLOC_MEM_ID, nbytes);
1396 }
1397 void *
_PyMem_DebugRealloc(void * p,size_t nbytes)1398 _PyMem_DebugRealloc(void *p, size_t nbytes)
1399 {
1400     return _PyObject_DebugReallocApi(_PYMALLOC_MEM_ID, p, nbytes);
1401 }
1402 void
_PyMem_DebugFree(void * p)1403 _PyMem_DebugFree(void *p)
1404 {
1405     _PyObject_DebugFreeApi(_PYMALLOC_MEM_ID, p);
1406 }
1407 
1408 /* debug replacements for the PyObject_* memory API */
1409 void *
_PyObject_DebugMalloc(size_t nbytes)1410 _PyObject_DebugMalloc(size_t nbytes)
1411 {
1412     return _PyObject_DebugMallocApi(_PYMALLOC_OBJ_ID, nbytes);
1413 }
1414 void *
_PyObject_DebugRealloc(void * p,size_t nbytes)1415 _PyObject_DebugRealloc(void *p, size_t nbytes)
1416 {
1417     return _PyObject_DebugReallocApi(_PYMALLOC_OBJ_ID, p, nbytes);
1418 }
1419 void
_PyObject_DebugFree(void * p)1420 _PyObject_DebugFree(void *p)
1421 {
1422     _PyObject_DebugFreeApi(_PYMALLOC_OBJ_ID, p);
1423 }
1424 void
_PyObject_DebugCheckAddress(const void * p)1425 _PyObject_DebugCheckAddress(const void *p)
1426 {
1427     _PyObject_DebugCheckAddressApi(_PYMALLOC_OBJ_ID, p);
1428 }
1429 
1430 
1431 /* generic debug memory api, with an "id" to identify the API in use */
1432 void *
_PyObject_DebugMallocApi(char id,size_t nbytes)1433 _PyObject_DebugMallocApi(char id, size_t nbytes)
1434 {
1435     uchar *p;           /* base address of malloc'ed block */
1436     uchar *tail;        /* p + 2*SST + nbytes == pointer to tail pad bytes */
1437     size_t total;       /* nbytes + 4*SST */
1438 
1439     bumpserialno();
1440     total = nbytes + 4*SST;
1441     if (total < nbytes)
1442         /* overflow:  can't represent total as a size_t */
1443         return NULL;
1444 
1445     p = (uchar *)PyObject_Malloc(total);
1446     if (p == NULL)
1447         return NULL;
1448 
1449     /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
1450     write_size_t(p, nbytes);
1451     p[SST] = (uchar)id;
1452     memset(p + SST + 1 , FORBIDDENBYTE, SST-1);
1453 
1454     if (nbytes > 0)
1455         memset(p + 2*SST, CLEANBYTE, nbytes);
1456 
1457     /* at tail, write pad (SST bytes) and serialno (SST bytes) */
1458     tail = p + 2*SST + nbytes;
1459     memset(tail, FORBIDDENBYTE, SST);
1460     write_size_t(tail + SST, serialno);
1461 
1462     return p + 2*SST;
1463 }
1464 
1465 /* The debug free first checks the 2*SST bytes on each end for sanity (in
1466    particular, that the FORBIDDENBYTEs with the api ID are still intact).
1467    Then fills the original bytes with DEADBYTE.
1468    Then calls the underlying free.
1469 */
1470 void
_PyObject_DebugFreeApi(char api,void * p)1471 _PyObject_DebugFreeApi(char api, void *p)
1472 {
1473     uchar *q = (uchar *)p - 2*SST;  /* address returned from malloc */
1474     size_t nbytes;
1475 
1476     if (p == NULL)
1477         return;
1478     _PyObject_DebugCheckAddressApi(api, p);
1479     nbytes = read_size_t(q);
1480     nbytes += 4*SST;
1481     if (nbytes > 0)
1482         memset(q, DEADBYTE, nbytes);
1483     PyObject_Free(q);
1484 }
1485 
1486 void *
_PyObject_DebugReallocApi(char api,void * p,size_t nbytes)1487 _PyObject_DebugReallocApi(char api, void *p, size_t nbytes)
1488 {
1489     uchar *q = (uchar *)p;
1490     uchar *tail;
1491     size_t total;       /* nbytes + 4*SST */
1492     size_t original_nbytes;
1493     int i;
1494 
1495     if (p == NULL)
1496         return _PyObject_DebugMallocApi(api, nbytes);
1497 
1498     _PyObject_DebugCheckAddressApi(api, p);
1499     bumpserialno();
1500     original_nbytes = read_size_t(q - 2*SST);
1501     total = nbytes + 4*SST;
1502     if (total < nbytes)
1503         /* overflow:  can't represent total as a size_t */
1504         return NULL;
1505 
1506     if (nbytes < original_nbytes) {
1507         /* shrinking:  mark old extra memory dead */
1508         memset(q + nbytes, DEADBYTE, original_nbytes - nbytes + 2*SST);
1509     }
1510 
1511     /* Resize and add decorations. We may get a new pointer here, in which
1512      * case we didn't get the chance to mark the old memory with DEADBYTE,
1513      * but we live with that.
1514      */
1515     q = (uchar *)PyObject_Realloc(q - 2*SST, total);
1516     if (q == NULL)
1517         return NULL;
1518 
1519     write_size_t(q, nbytes);
1520     assert(q[SST] == (uchar)api);
1521     for (i = 1; i < SST; ++i)
1522         assert(q[SST + i] == FORBIDDENBYTE);
1523     q += 2*SST;
1524     tail = q + nbytes;
1525     memset(tail, FORBIDDENBYTE, SST);
1526     write_size_t(tail + SST, serialno);
1527 
1528     if (nbytes > original_nbytes) {
1529         /* growing:  mark new extra memory clean */
1530         memset(q + original_nbytes, CLEANBYTE,
1531                nbytes - original_nbytes);
1532     }
1533 
1534     return q;
1535 }
1536 
1537 /* Check the forbidden bytes on both ends of the memory allocated for p.
1538  * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
1539  * and call Py_FatalError to kill the program.
1540  * The API id, is also checked.
1541  */
1542  void
_PyObject_DebugCheckAddressApi(char api,const void * p)1543 _PyObject_DebugCheckAddressApi(char api, const void *p)
1544 {
1545     const uchar *q = (const uchar *)p;
1546     char msgbuf[64];
1547     char *msg;
1548     size_t nbytes;
1549     const uchar *tail;
1550     int i;
1551     char id;
1552 
1553     if (p == NULL) {
1554         msg = "didn't expect a NULL pointer";
1555         goto error;
1556     }
1557 
1558     /* Check the API id */
1559     id = (char)q[-SST];
1560     if (id != api) {
1561         msg = msgbuf;
1562         snprintf(msg, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api);
1563         msgbuf[sizeof(msgbuf)-1] = 0;
1564         goto error;
1565     }
1566 
1567     /* Check the stuff at the start of p first:  if there's underwrite
1568      * corruption, the number-of-bytes field may be nuts, and checking
1569      * the tail could lead to a segfault then.
1570      */
1571     for (i = SST-1; i >= 1; --i) {
1572         if (*(q-i) != FORBIDDENBYTE) {
1573             msg = "bad leading pad byte";
1574             goto error;
1575         }
1576     }
1577 
1578     nbytes = read_size_t(q - 2*SST);
1579     tail = q + nbytes;
1580     for (i = 0; i < SST; ++i) {
1581         if (tail[i] != FORBIDDENBYTE) {
1582             msg = "bad trailing pad byte";
1583             goto error;
1584         }
1585     }
1586 
1587     return;
1588 
1589 error:
1590     _PyObject_DebugDumpAddress(p);
1591     Py_FatalError(msg);
1592 }
1593 
1594 /* Display info to stderr about the memory block at p. */
1595 void
_PyObject_DebugDumpAddress(const void * p)1596 _PyObject_DebugDumpAddress(const void *p)
1597 {
1598     const uchar *q = (const uchar *)p;
1599     const uchar *tail;
1600     size_t nbytes, serial;
1601     int i;
1602     int ok;
1603     char id;
1604 
1605     fprintf(stderr, "Debug memory block at address p=%p:", p);
1606     if (p == NULL) {
1607         fprintf(stderr, "\n");
1608         return;
1609     }
1610     id = (char)q[-SST];
1611     fprintf(stderr, " API '%c'\n", id);
1612 
1613     nbytes = read_size_t(q - 2*SST);
1614     fprintf(stderr, "    %" PY_FORMAT_SIZE_T "u bytes originally "
1615                     "requested\n", nbytes);
1616 
1617     /* In case this is nuts, check the leading pad bytes first. */
1618     fprintf(stderr, "    The %d pad bytes at p-%d are ", SST-1, SST-1);
1619     ok = 1;
1620     for (i = 1; i <= SST-1; ++i) {
1621         if (*(q-i) != FORBIDDENBYTE) {
1622             ok = 0;
1623             break;
1624         }
1625     }
1626     if (ok)
1627         fputs("FORBIDDENBYTE, as expected.\n", stderr);
1628     else {
1629         fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1630             FORBIDDENBYTE);
1631         for (i = SST-1; i >= 1; --i) {
1632             const uchar byte = *(q-i);
1633             fprintf(stderr, "        at p-%d: 0x%02x", i, byte);
1634             if (byte != FORBIDDENBYTE)
1635                 fputs(" *** OUCH", stderr);
1636             fputc('\n', stderr);
1637         }
1638 
1639         fputs("    Because memory is corrupted at the start, the "
1640               "count of bytes requested\n"
1641               "       may be bogus, and checking the trailing pad "
1642               "bytes may segfault.\n", stderr);
1643     }
1644 
1645     tail = q + nbytes;
1646     fprintf(stderr, "    The %d pad bytes at tail=%p are ", SST, tail);
1647     ok = 1;
1648     for (i = 0; i < SST; ++i) {
1649         if (tail[i] != FORBIDDENBYTE) {
1650             ok = 0;
1651             break;
1652         }
1653     }
1654     if (ok)
1655         fputs("FORBIDDENBYTE, as expected.\n", stderr);
1656     else {
1657         fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1658                 FORBIDDENBYTE);
1659         for (i = 0; i < SST; ++i) {
1660             const uchar byte = tail[i];
1661             fprintf(stderr, "        at tail+%d: 0x%02x",
1662                     i, byte);
1663             if (byte != FORBIDDENBYTE)
1664                 fputs(" *** OUCH", stderr);
1665             fputc('\n', stderr);
1666         }
1667     }
1668 
1669     serial = read_size_t(tail + SST);
1670     fprintf(stderr, "    The block was made by call #%" PY_FORMAT_SIZE_T
1671                     "u to debug malloc/realloc.\n", serial);
1672 
1673     if (nbytes > 0) {
1674         i = 0;
1675         fputs("    Data at p:", stderr);
1676         /* print up to 8 bytes at the start */
1677         while (q < tail && i < 8) {
1678             fprintf(stderr, " %02x", *q);
1679             ++i;
1680             ++q;
1681         }
1682         /* and up to 8 at the end */
1683         if (q < tail) {
1684             if (tail - q > 8) {
1685                 fputs(" ...", stderr);
1686                 q = tail - 8;
1687             }
1688             while (q < tail) {
1689                 fprintf(stderr, " %02x", *q);
1690                 ++q;
1691             }
1692         }
1693         fputc('\n', stderr);
1694     }
1695 }
1696 
1697 static size_t
printone(const char * msg,size_t value)1698 printone(const char* msg, size_t value)
1699 {
1700     int i, k;
1701     char buf[100];
1702     size_t origvalue = value;
1703 
1704     fputs(msg, stderr);
1705     for (i = (int)strlen(msg); i < 35; ++i)
1706         fputc(' ', stderr);
1707     fputc('=', stderr);
1708 
1709     /* Write the value with commas. */
1710     i = 22;
1711     buf[i--] = '\0';
1712     buf[i--] = '\n';
1713     k = 3;
1714     do {
1715         size_t nextvalue = value / 10;
1716         uint digit = (uint)(value - nextvalue * 10);
1717         value = nextvalue;
1718         buf[i--] = (char)(digit + '0');
1719         --k;
1720         if (k == 0 && value && i >= 0) {
1721             k = 3;
1722             buf[i--] = ',';
1723         }
1724     } while (value && i >= 0);
1725 
1726     while (i >= 0)
1727         buf[i--] = ' ';
1728     fputs(buf, stderr);
1729 
1730     return origvalue;
1731 }
1732 
1733 /* Print summary info to stderr about the state of pymalloc's structures.
1734  * In Py_DEBUG mode, also perform some expensive internal consistency
1735  * checks.
1736  */
1737 void
_PyObject_DebugMallocStats(void)1738 _PyObject_DebugMallocStats(void)
1739 {
1740     uint i;
1741     const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
1742     /* # of pools, allocated blocks, and free blocks per class index */
1743     size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1744     size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1745     size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
1746     /* total # of allocated bytes in used and full pools */
1747     size_t allocated_bytes = 0;
1748     /* total # of available bytes in used pools */
1749     size_t available_bytes = 0;
1750     /* # of free pools + pools not yet carved out of current arena */
1751     uint numfreepools = 0;
1752     /* # of bytes for arena alignment padding */
1753     size_t arena_alignment = 0;
1754     /* # of bytes in used and full pools used for pool_headers */
1755     size_t pool_header_bytes = 0;
1756     /* # of bytes in used and full pools wasted due to quantization,
1757      * i.e. the necessarily leftover space at the ends of used and
1758      * full pools.
1759      */
1760     size_t quantization = 0;
1761     /* # of arenas actually allocated. */
1762     size_t narenas = 0;
1763     /* running total -- should equal narenas * ARENA_SIZE */
1764     size_t total;
1765     char buf[128];
1766 
1767     fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
1768             SMALL_REQUEST_THRESHOLD, numclasses);
1769 
1770     for (i = 0; i < numclasses; ++i)
1771         numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
1772 
1773     /* Because full pools aren't linked to from anything, it's easiest
1774      * to march over all the arenas.  If we're lucky, most of the memory
1775      * will be living in full pools -- would be a shame to miss them.
1776      */
1777     for (i = 0; i < maxarenas; ++i) {
1778         uint j;
1779         uptr base = arenas[i].address;
1780 
1781         /* Skip arenas which are not allocated. */
1782         if (arenas[i].address == (uptr)NULL)
1783             continue;
1784         narenas += 1;
1785 
1786         numfreepools += arenas[i].nfreepools;
1787 
1788         /* round up to pool alignment */
1789         if (base & (uptr)POOL_SIZE_MASK) {
1790             arena_alignment += POOL_SIZE;
1791             base &= ~(uptr)POOL_SIZE_MASK;
1792             base += POOL_SIZE;
1793         }
1794 
1795         /* visit every pool in the arena */
1796         assert(base <= (uptr) arenas[i].pool_address);
1797         for (j = 0;
1798                     base < (uptr) arenas[i].pool_address;
1799                     ++j, base += POOL_SIZE) {
1800             poolp p = (poolp)base;
1801             const uint sz = p->szidx;
1802             uint freeblocks;
1803 
1804             if (p->ref.count == 0) {
1805                 /* currently unused */
1806                 assert(pool_is_in_list(p, arenas[i].freepools));
1807                 continue;
1808             }
1809             ++numpools[sz];
1810             numblocks[sz] += p->ref.count;
1811             freeblocks = NUMBLOCKS(sz) - p->ref.count;
1812             numfreeblocks[sz] += freeblocks;
1813 #ifdef Py_DEBUG
1814             if (freeblocks > 0)
1815                 assert(pool_is_in_list(p, usedpools[sz + sz]));
1816 #endif
1817         }
1818     }
1819     assert(narenas == narenas_currently_allocated);
1820 
1821     fputc('\n', stderr);
1822     fputs("class   size   num pools   blocks in use  avail blocks\n"
1823           "-----   ----   ---------   -------------  ------------\n",
1824           stderr);
1825 
1826     for (i = 0; i < numclasses; ++i) {
1827         size_t p = numpools[i];
1828         size_t b = numblocks[i];
1829         size_t f = numfreeblocks[i];
1830         uint size = INDEX2SIZE(i);
1831         if (p == 0) {
1832             assert(b == 0 && f == 0);
1833             continue;
1834         }
1835         fprintf(stderr, "%5u %6u "
1836                         "%11" PY_FORMAT_SIZE_T "u "
1837                         "%15" PY_FORMAT_SIZE_T "u "
1838                         "%13" PY_FORMAT_SIZE_T "u\n",
1839                 i, size, p, b, f);
1840         allocated_bytes += b * size;
1841         available_bytes += f * size;
1842         pool_header_bytes += p * POOL_OVERHEAD;
1843         quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
1844     }
1845     fputc('\n', stderr);
1846     (void)printone("# times object malloc called", serialno);
1847 
1848     (void)printone("# arenas allocated total", ntimes_arena_allocated);
1849     (void)printone("# arenas reclaimed", ntimes_arena_allocated - narenas);
1850     (void)printone("# arenas highwater mark", narenas_highwater);
1851     (void)printone("# arenas allocated current", narenas);
1852 
1853     PyOS_snprintf(buf, sizeof(buf),
1854         "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
1855         narenas, ARENA_SIZE);
1856     (void)printone(buf, narenas * ARENA_SIZE);
1857 
1858     fputc('\n', stderr);
1859 
1860     total = printone("# bytes in allocated blocks", allocated_bytes);
1861     total += printone("# bytes in available blocks", available_bytes);
1862 
1863     PyOS_snprintf(buf, sizeof(buf),
1864         "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
1865     total += printone(buf, (size_t)numfreepools * POOL_SIZE);
1866 
1867     total += printone("# bytes lost to pool headers", pool_header_bytes);
1868     total += printone("# bytes lost to quantization", quantization);
1869     total += printone("# bytes lost to arena alignment", arena_alignment);
1870     (void)printone("Total", total);
1871 }
1872 
1873 #endif  /* PYMALLOC_DEBUG */
1874 
1875 #ifdef Py_USING_MEMORY_DEBUGGER
1876 /* Make this function last so gcc won't inline it since the definition is
1877  * after the reference.
1878  */
1879 int
Py_ADDRESS_IN_RANGE(void * P,poolp pool)1880 Py_ADDRESS_IN_RANGE(void *P, poolp pool)
1881 {
1882     uint arenaindex_temp = pool->arenaindex;
1883 
1884     return arenaindex_temp < maxarenas &&
1885            (uptr)P - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE &&
1886            arenas[arenaindex_temp].address != 0;
1887 }
1888 #endif
1889