• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #if !defined(__STDC_FORMAT_MACROS)
16 #define __STDC_FORMAT_MACROS
17 #endif
18 
19 #include <openssl/base.h>
20 
21 #if !defined(OPENSSL_WINDOWS)
22 #include <arpa/inet.h>
23 #include <netinet/in.h>
24 #include <netinet/tcp.h>
25 #include <signal.h>
26 #include <sys/socket.h>
27 #include <sys/time.h>
28 #include <unistd.h>
29 #else
30 #include <io.h>
31 OPENSSL_MSVC_PRAGMA(warning(push, 3))
32 #include <winsock2.h>
33 #include <ws2tcpip.h>
34 OPENSSL_MSVC_PRAGMA(warning(pop))
35 
36 OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib"))
37 #endif
38 
39 #include <assert.h>
40 #include <inttypes.h>
41 #include <string.h>
42 
43 #include <openssl/aead.h>
44 #include <openssl/bio.h>
45 #include <openssl/buf.h>
46 #include <openssl/bytestring.h>
47 #include <openssl/cipher.h>
48 #include <openssl/crypto.h>
49 #include <openssl/dh.h>
50 #include <openssl/digest.h>
51 #include <openssl/err.h>
52 #include <openssl/evp.h>
53 #include <openssl/hmac.h>
54 #include <openssl/nid.h>
55 #include <openssl/rand.h>
56 #include <openssl/ssl.h>
57 #include <openssl/x509.h>
58 
59 #include <memory>
60 #include <string>
61 #include <vector>
62 
63 #include "../../crypto/internal.h"
64 #include "async_bio.h"
65 #include "packeted_bio.h"
66 #include "test_config.h"
67 
68 
69 static CRYPTO_BUFFER_POOL *g_pool = nullptr;
70 
71 #if !defined(OPENSSL_WINDOWS)
closesocket(int sock)72 static int closesocket(int sock) {
73   return close(sock);
74 }
75 
PrintSocketError(const char * func)76 static void PrintSocketError(const char *func) {
77   perror(func);
78 }
79 #else
PrintSocketError(const char * func)80 static void PrintSocketError(const char *func) {
81   fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
82 }
83 #endif
84 
Usage(const char * program)85 static int Usage(const char *program) {
86   fprintf(stderr, "Usage: %s [flags...]\n", program);
87   return 1;
88 }
89 
90 struct TestState {
91   // async_bio is async BIO which pauses reads and writes.
92   BIO *async_bio = nullptr;
93   // packeted_bio is the packeted BIO which simulates read timeouts.
94   BIO *packeted_bio = nullptr;
95   bssl::UniquePtr<EVP_PKEY> channel_id;
96   bool cert_ready = false;
97   bssl::UniquePtr<SSL_SESSION> session;
98   bssl::UniquePtr<SSL_SESSION> pending_session;
99   bool early_callback_called = false;
100   bool handshake_done = false;
101   // private_key is the underlying private key used when testing custom keys.
102   bssl::UniquePtr<EVP_PKEY> private_key;
103   std::vector<uint8_t> private_key_result;
104   // private_key_retries is the number of times an asynchronous private key
105   // operation has been retried.
106   unsigned private_key_retries = 0;
107   bool got_new_session = false;
108   bssl::UniquePtr<SSL_SESSION> new_session;
109   bool ticket_decrypt_done = false;
110   bool alpn_select_done = false;
111   bool is_resume = false;
112   bool early_callback_ready = false;
113 };
114 
TestStateExFree(void * parent,void * ptr,CRYPTO_EX_DATA * ad,int index,long argl,void * argp)115 static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
116                             int index, long argl, void *argp) {
117   delete ((TestState *)ptr);
118 }
119 
120 static int g_config_index = 0;
121 static int g_state_index = 0;
122 
SetTestConfig(SSL * ssl,const TestConfig * config)123 static bool SetTestConfig(SSL *ssl, const TestConfig *config) {
124   return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1;
125 }
126 
GetTestConfig(const SSL * ssl)127 static const TestConfig *GetTestConfig(const SSL *ssl) {
128   return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index);
129 }
130 
SetTestState(SSL * ssl,std::unique_ptr<TestState> state)131 static bool SetTestState(SSL *ssl, std::unique_ptr<TestState> state) {
132   // |SSL_set_ex_data| takes ownership of |state| only on success.
133   if (SSL_set_ex_data(ssl, g_state_index, state.get()) == 1) {
134     state.release();
135     return true;
136   }
137   return false;
138 }
139 
GetTestState(const SSL * ssl)140 static TestState *GetTestState(const SSL *ssl) {
141   return (TestState *)SSL_get_ex_data(ssl, g_state_index);
142 }
143 
LoadCertificate(bssl::UniquePtr<X509> * out_x509,bssl::UniquePtr<STACK_OF (X509)> * out_chain,const std::string & file)144 static bool LoadCertificate(bssl::UniquePtr<X509> *out_x509,
145                             bssl::UniquePtr<STACK_OF(X509)> *out_chain,
146                             const std::string &file) {
147   bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
148   if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
149     return false;
150   }
151 
152   out_x509->reset(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
153   if (!*out_x509) {
154     return false;
155   }
156 
157   out_chain->reset(sk_X509_new_null());
158   if (!*out_chain) {
159     return false;
160   }
161 
162   // Keep reading the certificate chain.
163   for (;;) {
164     bssl::UniquePtr<X509> cert(
165         PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
166     if (!cert) {
167       break;
168     }
169 
170     if (!sk_X509_push(out_chain->get(), cert.get())) {
171       return false;
172     }
173     cert.release();  // sk_X509_push takes ownership.
174   }
175 
176   uint32_t err = ERR_peek_last_error();
177   if (ERR_GET_LIB(err) != ERR_LIB_PEM ||
178       ERR_GET_REASON(err) != PEM_R_NO_START_LINE) {
179     return false;
180 }
181 
182   ERR_clear_error();
183   return true;
184 }
185 
LoadPrivateKey(const std::string & file)186 static bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) {
187   bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
188   if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
189     return nullptr;
190   }
191   return bssl::UniquePtr<EVP_PKEY>(
192       PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
193 }
194 
FromHexDigit(uint8_t * out,char c)195 static bool FromHexDigit(uint8_t *out, char c) {
196   if ('0' <= c && c <= '9') {
197     *out = c - '0';
198     return true;
199   }
200   if ('a' <= c && c <= 'f') {
201     *out = c - 'a' + 10;
202     return true;
203   }
204   if ('A' <= c && c <= 'F') {
205     *out = c - 'A' + 10;
206     return true;
207   }
208   return false;
209 }
210 
HexDecode(std::string * out,const std::string & in)211 static bool HexDecode(std::string *out, const std::string &in) {
212   if ((in.size() & 1) != 0) {
213     return false;
214   }
215 
216   std::unique_ptr<uint8_t[]> buf(new uint8_t[in.size() / 2]);
217   for (size_t i = 0; i < in.size() / 2; i++) {
218     uint8_t high, low;
219     if (!FromHexDigit(&high, in[i*2]) ||
220         !FromHexDigit(&low, in[i*2+1])) {
221       return false;
222     }
223     buf[i] = (high << 4) | low;
224   }
225 
226   out->assign(reinterpret_cast<const char *>(buf.get()), in.size() / 2);
227   return true;
228 }
229 
SplitParts(const std::string & in,const char delim)230 static std::vector<std::string> SplitParts(const std::string &in,
231                                            const char delim) {
232   std::vector<std::string> ret;
233   size_t start = 0;
234 
235   for (size_t i = 0; i < in.size(); i++) {
236     if (in[i] == delim) {
237       ret.push_back(in.substr(start, i - start));
238       start = i + 1;
239     }
240   }
241 
242   ret.push_back(in.substr(start, std::string::npos));
243   return ret;
244 }
245 
DecodeHexStrings(const std::string & hex_strings)246 static std::vector<std::string> DecodeHexStrings(
247     const std::string &hex_strings) {
248   std::vector<std::string> ret;
249   const std::vector<std::string> parts = SplitParts(hex_strings, ',');
250 
251   for (const auto &part : parts) {
252     std::string binary;
253     if (!HexDecode(&binary, part)) {
254       fprintf(stderr, "Bad hex string: %s\n", part.c_str());
255       return ret;
256     }
257 
258     ret.push_back(binary);
259   }
260 
261   return ret;
262 }
263 
DecodeHexX509Names(const std::string & hex_names)264 static bssl::UniquePtr<STACK_OF(X509_NAME)> DecodeHexX509Names(
265     const std::string &hex_names) {
266   const std::vector<std::string> der_names = DecodeHexStrings(hex_names);
267   bssl::UniquePtr<STACK_OF(X509_NAME)> ret(sk_X509_NAME_new_null());
268 
269   for (const auto &der_name : der_names) {
270     const uint8_t *const data =
271         reinterpret_cast<const uint8_t *>(der_name.data());
272     const uint8_t *derp = data;
273     bssl::UniquePtr<X509_NAME> name(
274         d2i_X509_NAME(nullptr, &derp, der_name.size()));
275     if (!name || derp != data + der_name.size()) {
276       fprintf(stderr, "Failed to parse X509_NAME.\n");
277       return nullptr;
278     }
279 
280     if (!sk_X509_NAME_push(ret.get(), name.get())) {
281       return nullptr;
282     }
283     name.release();
284   }
285 
286   return ret;
287 }
288 
AsyncPrivateKeyType(SSL * ssl)289 static int AsyncPrivateKeyType(SSL *ssl) {
290   EVP_PKEY *key = GetTestState(ssl)->private_key.get();
291   switch (EVP_PKEY_id(key)) {
292     case EVP_PKEY_RSA:
293       return NID_rsaEncryption;
294     case EVP_PKEY_EC:
295       return EC_GROUP_get_curve_name(
296           EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(key)));
297     default:
298       return NID_undef;
299   }
300 }
301 
AsyncPrivateKeyMaxSignatureLen(SSL * ssl)302 static size_t AsyncPrivateKeyMaxSignatureLen(SSL *ssl) {
303   return EVP_PKEY_size(GetTestState(ssl)->private_key.get());
304 }
305 
AsyncPrivateKeySign(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out,uint16_t signature_algorithm,const uint8_t * in,size_t in_len)306 static ssl_private_key_result_t AsyncPrivateKeySign(
307     SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
308     uint16_t signature_algorithm, const uint8_t *in, size_t in_len) {
309   TestState *test_state = GetTestState(ssl);
310   if (!test_state->private_key_result.empty()) {
311     fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n");
312     abort();
313   }
314 
315   // Determine the hash.
316   const EVP_MD *md;
317   switch (signature_algorithm) {
318     case SSL_SIGN_RSA_PKCS1_SHA1:
319     case SSL_SIGN_ECDSA_SHA1:
320       md = EVP_sha1();
321       break;
322     case SSL_SIGN_RSA_PKCS1_SHA256:
323     case SSL_SIGN_ECDSA_SECP256R1_SHA256:
324     case SSL_SIGN_RSA_PSS_SHA256:
325       md = EVP_sha256();
326       break;
327     case SSL_SIGN_RSA_PKCS1_SHA384:
328     case SSL_SIGN_ECDSA_SECP384R1_SHA384:
329     case SSL_SIGN_RSA_PSS_SHA384:
330       md = EVP_sha384();
331       break;
332     case SSL_SIGN_RSA_PKCS1_SHA512:
333     case SSL_SIGN_ECDSA_SECP521R1_SHA512:
334     case SSL_SIGN_RSA_PSS_SHA512:
335       md = EVP_sha512();
336       break;
337     case SSL_SIGN_RSA_PKCS1_MD5_SHA1:
338       md = EVP_md5_sha1();
339       break;
340     default:
341       fprintf(stderr, "Unknown signature algorithm %04x.\n",
342               signature_algorithm);
343       return ssl_private_key_failure;
344   }
345 
346   bssl::ScopedEVP_MD_CTX ctx;
347   EVP_PKEY_CTX *pctx;
348   if (!EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr,
349                           test_state->private_key.get())) {
350     return ssl_private_key_failure;
351   }
352 
353   // Configure additional signature parameters.
354   switch (signature_algorithm) {
355     case SSL_SIGN_RSA_PSS_SHA256:
356     case SSL_SIGN_RSA_PSS_SHA384:
357     case SSL_SIGN_RSA_PSS_SHA512:
358       if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
359           !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx,
360                                             -1 /* salt len = hash len */)) {
361         return ssl_private_key_failure;
362       }
363   }
364 
365   // Write the signature into |test_state|.
366   size_t len = 0;
367   if (!EVP_DigestSignUpdate(ctx.get(), in, in_len) ||
368       !EVP_DigestSignFinal(ctx.get(), nullptr, &len)) {
369     return ssl_private_key_failure;
370   }
371   test_state->private_key_result.resize(len);
372   if (!EVP_DigestSignFinal(ctx.get(), test_state->private_key_result.data(),
373                            &len)) {
374     return ssl_private_key_failure;
375   }
376   test_state->private_key_result.resize(len);
377 
378   // The signature will be released asynchronously in |AsyncPrivateKeyComplete|.
379   return ssl_private_key_retry;
380 }
381 
AsyncPrivateKeyDecrypt(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out,const uint8_t * in,size_t in_len)382 static ssl_private_key_result_t AsyncPrivateKeyDecrypt(
383     SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
384     const uint8_t *in, size_t in_len) {
385   TestState *test_state = GetTestState(ssl);
386   if (!test_state->private_key_result.empty()) {
387     fprintf(stderr,
388             "AsyncPrivateKeyDecrypt called with operation pending.\n");
389     abort();
390   }
391 
392   RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get());
393   if (rsa == NULL) {
394     fprintf(stderr,
395             "AsyncPrivateKeyDecrypt called with incorrect key type.\n");
396     abort();
397   }
398   test_state->private_key_result.resize(RSA_size(rsa));
399   if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(),
400                    RSA_size(rsa), in, in_len, RSA_NO_PADDING)) {
401     return ssl_private_key_failure;
402   }
403 
404   test_state->private_key_result.resize(*out_len);
405 
406   // The decryption will be released asynchronously in |AsyncPrivateComplete|.
407   return ssl_private_key_retry;
408 }
409 
AsyncPrivateKeyComplete(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out)410 static ssl_private_key_result_t AsyncPrivateKeyComplete(
411     SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) {
412   TestState *test_state = GetTestState(ssl);
413   if (test_state->private_key_result.empty()) {
414     fprintf(stderr,
415             "AsyncPrivateKeyComplete called without operation pending.\n");
416     abort();
417   }
418 
419   if (test_state->private_key_retries < 2) {
420     // Only return the decryption on the second attempt, to test both incomplete
421     // |decrypt| and |decrypt_complete|.
422     return ssl_private_key_retry;
423   }
424 
425   if (max_out < test_state->private_key_result.size()) {
426     fprintf(stderr, "Output buffer too small.\n");
427     return ssl_private_key_failure;
428   }
429   OPENSSL_memcpy(out, test_state->private_key_result.data(),
430                  test_state->private_key_result.size());
431   *out_len = test_state->private_key_result.size();
432 
433   test_state->private_key_result.clear();
434   test_state->private_key_retries = 0;
435   return ssl_private_key_success;
436 }
437 
438 static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = {
439     AsyncPrivateKeyType,
440     AsyncPrivateKeyMaxSignatureLen,
441     AsyncPrivateKeySign,
442     nullptr /* sign_digest */,
443     AsyncPrivateKeyDecrypt,
444     AsyncPrivateKeyComplete,
445 };
446 
447 template<typename T>
448 struct Free {
operator ()Free449   void operator()(T *buf) {
450     free(buf);
451   }
452 };
453 
GetCertificate(SSL * ssl,bssl::UniquePtr<X509> * out_x509,bssl::UniquePtr<STACK_OF (X509)> * out_chain,bssl::UniquePtr<EVP_PKEY> * out_pkey)454 static bool GetCertificate(SSL *ssl, bssl::UniquePtr<X509> *out_x509,
455                            bssl::UniquePtr<STACK_OF(X509)> *out_chain,
456                            bssl::UniquePtr<EVP_PKEY> *out_pkey) {
457   const TestConfig *config = GetTestConfig(ssl);
458 
459   if (!config->digest_prefs.empty()) {
460     std::unique_ptr<char, Free<char>> digest_prefs(
461         strdup(config->digest_prefs.c_str()));
462     std::vector<int> digest_list;
463 
464     for (;;) {
465       char *token =
466           strtok(digest_list.empty() ? digest_prefs.get() : nullptr, ",");
467       if (token == nullptr) {
468         break;
469       }
470 
471       digest_list.push_back(EVP_MD_type(EVP_get_digestbyname(token)));
472     }
473 
474     if (!SSL_set_private_key_digest_prefs(ssl, digest_list.data(),
475                                           digest_list.size())) {
476       return false;
477     }
478   }
479 
480   if (!config->signing_prefs.empty()) {
481     std::vector<uint16_t> u16s(config->signing_prefs.begin(),
482                                config->signing_prefs.end());
483     if (!SSL_set_signing_algorithm_prefs(ssl, u16s.data(), u16s.size())) {
484       return false;
485     }
486   }
487 
488   if (!config->key_file.empty()) {
489     *out_pkey = LoadPrivateKey(config->key_file.c_str());
490     if (!*out_pkey) {
491       return false;
492     }
493   }
494   if (!config->cert_file.empty() &&
495       !LoadCertificate(out_x509, out_chain, config->cert_file.c_str())) {
496     return false;
497   }
498   if (!config->ocsp_response.empty() &&
499       !SSL_set_ocsp_response(ssl, (const uint8_t *)config->ocsp_response.data(),
500                              config->ocsp_response.size())) {
501     return false;
502   }
503   return true;
504 }
505 
InstallCertificate(SSL * ssl)506 static bool InstallCertificate(SSL *ssl) {
507   bssl::UniquePtr<X509> x509;
508   bssl::UniquePtr<STACK_OF(X509)> chain;
509   bssl::UniquePtr<EVP_PKEY> pkey;
510   if (!GetCertificate(ssl, &x509, &chain, &pkey)) {
511     return false;
512   }
513 
514   if (pkey) {
515     TestState *test_state = GetTestState(ssl);
516     const TestConfig *config = GetTestConfig(ssl);
517     if (config->async) {
518       test_state->private_key = std::move(pkey);
519       SSL_set_private_key_method(ssl, &g_async_private_key_method);
520     } else if (!SSL_use_PrivateKey(ssl, pkey.get())) {
521       return false;
522     }
523   }
524 
525   if (x509 && !SSL_use_certificate(ssl, x509.get())) {
526     return false;
527   }
528 
529   if (sk_X509_num(chain.get()) > 0 &&
530       !SSL_set1_chain(ssl, chain.get())) {
531     return false;
532   }
533 
534   return true;
535 }
536 
SelectCertificateCallback(const SSL_CLIENT_HELLO * client_hello)537 static enum ssl_select_cert_result_t SelectCertificateCallback(
538     const SSL_CLIENT_HELLO *client_hello) {
539   const TestConfig *config = GetTestConfig(client_hello->ssl);
540   GetTestState(client_hello->ssl)->early_callback_called = true;
541 
542   if (!config->expected_server_name.empty()) {
543     const uint8_t *extension_data;
544     size_t extension_len;
545     CBS extension, server_name_list, host_name;
546     uint8_t name_type;
547 
548     if (!SSL_early_callback_ctx_extension_get(
549             client_hello, TLSEXT_TYPE_server_name, &extension_data,
550             &extension_len)) {
551       fprintf(stderr, "Could not find server_name extension.\n");
552       return ssl_select_cert_error;
553     }
554 
555     CBS_init(&extension, extension_data, extension_len);
556     if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) ||
557         CBS_len(&extension) != 0 ||
558         !CBS_get_u8(&server_name_list, &name_type) ||
559         name_type != TLSEXT_NAMETYPE_host_name ||
560         !CBS_get_u16_length_prefixed(&server_name_list, &host_name) ||
561         CBS_len(&server_name_list) != 0) {
562       fprintf(stderr, "Could not decode server_name extension.\n");
563       return ssl_select_cert_error;
564     }
565 
566     if (!CBS_mem_equal(&host_name,
567                        (const uint8_t*)config->expected_server_name.data(),
568                        config->expected_server_name.size())) {
569       fprintf(stderr, "Server name mismatch.\n");
570     }
571   }
572 
573   if (config->fail_early_callback) {
574     return ssl_select_cert_error;
575   }
576 
577   // Install the certificate in the early callback.
578   if (config->use_early_callback) {
579     bool early_callback_ready =
580         GetTestState(client_hello->ssl)->early_callback_ready;
581     if (config->async && !early_callback_ready) {
582       // Install the certificate asynchronously.
583       return ssl_select_cert_retry;
584     }
585     if (!InstallCertificate(client_hello->ssl)) {
586       return ssl_select_cert_error;
587     }
588   }
589   return ssl_select_cert_success;
590 }
591 
CheckCertificateRequest(SSL * ssl)592 static bool CheckCertificateRequest(SSL *ssl) {
593   const TestConfig *config = GetTestConfig(ssl);
594 
595   if (!config->expected_certificate_types.empty()) {
596     const uint8_t *certificate_types;
597     size_t certificate_types_len =
598         SSL_get0_certificate_types(ssl, &certificate_types);
599     if (certificate_types_len != config->expected_certificate_types.size() ||
600         OPENSSL_memcmp(certificate_types,
601                        config->expected_certificate_types.data(),
602                        certificate_types_len) != 0) {
603       fprintf(stderr, "certificate types mismatch\n");
604       return false;
605     }
606   }
607 
608   if (!config->expected_client_ca_list.empty()) {
609     bssl::UniquePtr<STACK_OF(X509_NAME)> expected =
610         DecodeHexX509Names(config->expected_client_ca_list);
611     const size_t num_expected = sk_X509_NAME_num(expected.get());
612 
613     const STACK_OF(X509_NAME) *received = SSL_get_client_CA_list(ssl);
614     const size_t num_received = sk_X509_NAME_num(received);
615 
616     if (num_received != num_expected) {
617       fprintf(stderr, "expected %u names in CertificateRequest but got %u\n",
618               static_cast<unsigned>(num_expected),
619               static_cast<unsigned>(num_received));
620       return false;
621     }
622 
623     for (size_t i = 0; i < num_received; i++) {
624       if (X509_NAME_cmp(sk_X509_NAME_value(received, i),
625                         sk_X509_NAME_value(expected.get(), i)) != 0) {
626         fprintf(stderr, "names in CertificateRequest differ at index #%d\n",
627                 static_cast<unsigned>(i));
628         return false;
629       }
630     }
631 
632     STACK_OF(CRYPTO_BUFFER) *buffers = SSL_get0_server_requested_CAs(ssl);
633     if (sk_CRYPTO_BUFFER_num(buffers) != num_received) {
634       fprintf(stderr,
635               "Mismatch between SSL_get_server_requested_CAs and "
636               "SSL_get_client_CA_list.\n");
637       return false;
638     }
639   }
640 
641   return true;
642 }
643 
ClientCertCallback(SSL * ssl,X509 ** out_x509,EVP_PKEY ** out_pkey)644 static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) {
645   if (!CheckCertificateRequest(ssl)) {
646     return -1;
647   }
648 
649   if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) {
650     return -1;
651   }
652 
653   bssl::UniquePtr<X509> x509;
654   bssl::UniquePtr<STACK_OF(X509)> chain;
655   bssl::UniquePtr<EVP_PKEY> pkey;
656   if (!GetCertificate(ssl, &x509, &chain, &pkey)) {
657     return -1;
658   }
659 
660   // Return zero for no certificate.
661   if (!x509) {
662     return 0;
663   }
664 
665   // Chains and asynchronous private keys are not supported with client_cert_cb.
666   *out_x509 = x509.release();
667   *out_pkey = pkey.release();
668   return 1;
669 }
670 
CertCallback(SSL * ssl,void * arg)671 static int CertCallback(SSL *ssl, void *arg) {
672   const TestConfig *config = GetTestConfig(ssl);
673 
674   // Check the CertificateRequest metadata is as expected.
675   if (!SSL_is_server(ssl) && !CheckCertificateRequest(ssl)) {
676     return -1;
677   }
678 
679   if (config->fail_cert_callback) {
680     return 0;
681   }
682 
683   // The certificate will be installed via other means.
684   if (!config->async || config->use_early_callback) {
685     return 1;
686   }
687 
688   if (!GetTestState(ssl)->cert_ready) {
689     return -1;
690   }
691   if (!InstallCertificate(ssl)) {
692     return 0;
693   }
694   return 1;
695 }
696 
VerifySucceed(X509_STORE_CTX * store_ctx,void * arg)697 static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) {
698   SSL* ssl = (SSL*)X509_STORE_CTX_get_ex_data(store_ctx,
699       SSL_get_ex_data_X509_STORE_CTX_idx());
700   const TestConfig *config = GetTestConfig(ssl);
701 
702   if (!config->expected_ocsp_response.empty()) {
703     const uint8_t *data;
704     size_t len;
705     SSL_get0_ocsp_response(ssl, &data, &len);
706     if (len == 0) {
707       fprintf(stderr, "OCSP response not available in verify callback\n");
708       return 0;
709     }
710   }
711 
712   return 1;
713 }
714 
VerifyFail(X509_STORE_CTX * store_ctx,void * arg)715 static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) {
716   store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION;
717   return 0;
718 }
719 
NextProtosAdvertisedCallback(SSL * ssl,const uint8_t ** out,unsigned int * out_len,void * arg)720 static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
721                                         unsigned int *out_len, void *arg) {
722   const TestConfig *config = GetTestConfig(ssl);
723   if (config->advertise_npn.empty()) {
724     return SSL_TLSEXT_ERR_NOACK;
725   }
726 
727   *out = (const uint8_t*)config->advertise_npn.data();
728   *out_len = config->advertise_npn.size();
729   return SSL_TLSEXT_ERR_OK;
730 }
731 
NextProtoSelectCallback(SSL * ssl,uint8_t ** out,uint8_t * outlen,const uint8_t * in,unsigned inlen,void * arg)732 static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen,
733                                    const uint8_t* in, unsigned inlen, void* arg) {
734   const TestConfig *config = GetTestConfig(ssl);
735   if (config->select_next_proto.empty()) {
736     return SSL_TLSEXT_ERR_NOACK;
737   }
738 
739   *out = (uint8_t*)config->select_next_proto.data();
740   *outlen = config->select_next_proto.size();
741   return SSL_TLSEXT_ERR_OK;
742 }
743 
AlpnSelectCallback(SSL * ssl,const uint8_t ** out,uint8_t * outlen,const uint8_t * in,unsigned inlen,void * arg)744 static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen,
745                               const uint8_t* in, unsigned inlen, void* arg) {
746   if (GetTestState(ssl)->alpn_select_done) {
747     fprintf(stderr, "AlpnSelectCallback called after completion.\n");
748     exit(1);
749   }
750 
751   GetTestState(ssl)->alpn_select_done = true;
752 
753   const TestConfig *config = GetTestConfig(ssl);
754   if (config->decline_alpn) {
755     return SSL_TLSEXT_ERR_NOACK;
756   }
757 
758   if (!config->expected_advertised_alpn.empty() &&
759       (config->expected_advertised_alpn.size() != inlen ||
760        OPENSSL_memcmp(config->expected_advertised_alpn.data(), in, inlen) !=
761            0)) {
762     fprintf(stderr, "bad ALPN select callback inputs\n");
763     exit(1);
764   }
765 
766   *out = (const uint8_t*)config->select_alpn.data();
767   *outlen = config->select_alpn.size();
768   if (GetTestState(ssl)->is_resume && config->select_resume_alpn.size() > 0) {
769     *out = (const uint8_t*)config->select_resume_alpn.data();
770     *outlen = config->select_resume_alpn.size();
771   }
772   return SSL_TLSEXT_ERR_OK;
773 }
774 
PskClientCallback(SSL * ssl,const char * hint,char * out_identity,unsigned max_identity_len,uint8_t * out_psk,unsigned max_psk_len)775 static unsigned PskClientCallback(SSL *ssl, const char *hint,
776                                   char *out_identity,
777                                   unsigned max_identity_len,
778                                   uint8_t *out_psk, unsigned max_psk_len) {
779   const TestConfig *config = GetTestConfig(ssl);
780 
781   if (config->psk_identity.empty()) {
782     if (hint != nullptr) {
783       fprintf(stderr, "Server PSK hint was non-null.\n");
784       return 0;
785     }
786   } else if (hint == nullptr ||
787              strcmp(hint, config->psk_identity.c_str()) != 0) {
788     fprintf(stderr, "Server PSK hint did not match.\n");
789     return 0;
790   }
791 
792   // Account for the trailing '\0' for the identity.
793   if (config->psk_identity.size() >= max_identity_len ||
794       config->psk.size() > max_psk_len) {
795     fprintf(stderr, "PSK buffers too small\n");
796     return 0;
797   }
798 
799   BUF_strlcpy(out_identity, config->psk_identity.c_str(),
800               max_identity_len);
801   OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size());
802   return config->psk.size();
803 }
804 
PskServerCallback(SSL * ssl,const char * identity,uint8_t * out_psk,unsigned max_psk_len)805 static unsigned PskServerCallback(SSL *ssl, const char *identity,
806                                   uint8_t *out_psk, unsigned max_psk_len) {
807   const TestConfig *config = GetTestConfig(ssl);
808 
809   if (strcmp(identity, config->psk_identity.c_str()) != 0) {
810     fprintf(stderr, "Client PSK identity did not match.\n");
811     return 0;
812   }
813 
814   if (config->psk.size() > max_psk_len) {
815     fprintf(stderr, "PSK buffers too small\n");
816     return 0;
817   }
818 
819   OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size());
820   return config->psk.size();
821 }
822 
823 static timeval g_clock;
824 
CurrentTimeCallback(const SSL * ssl,timeval * out_clock)825 static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
826   *out_clock = g_clock;
827 }
828 
ChannelIdCallback(SSL * ssl,EVP_PKEY ** out_pkey)829 static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) {
830   *out_pkey = GetTestState(ssl)->channel_id.release();
831 }
832 
GetSessionCallback(SSL * ssl,uint8_t * data,int len,int * copy)833 static SSL_SESSION *GetSessionCallback(SSL *ssl, uint8_t *data, int len,
834                                        int *copy) {
835   TestState *async_state = GetTestState(ssl);
836   if (async_state->session) {
837     *copy = 0;
838     return async_state->session.release();
839   } else if (async_state->pending_session) {
840     return SSL_magic_pending_session_ptr();
841   } else {
842     return NULL;
843   }
844 }
845 
DDoSCallback(const SSL_CLIENT_HELLO * client_hello)846 static int DDoSCallback(const SSL_CLIENT_HELLO *client_hello) {
847   const TestConfig *config = GetTestConfig(client_hello->ssl);
848   static int callback_num = 0;
849 
850   callback_num++;
851   if (config->fail_ddos_callback ||
852       (config->fail_second_ddos_callback && callback_num == 2)) {
853     return 0;
854   }
855   return 1;
856 }
857 
InfoCallback(const SSL * ssl,int type,int val)858 static void InfoCallback(const SSL *ssl, int type, int val) {
859   if (type == SSL_CB_HANDSHAKE_DONE) {
860     if (GetTestConfig(ssl)->handshake_never_done) {
861       fprintf(stderr, "Handshake unexpectedly completed.\n");
862       // Abort before any expected error code is printed, to ensure the overall
863       // test fails.
864       abort();
865     }
866     GetTestState(ssl)->handshake_done = true;
867 
868     // Callbacks may be called again on a new handshake.
869     GetTestState(ssl)->ticket_decrypt_done = false;
870     GetTestState(ssl)->alpn_select_done = false;
871   }
872 }
873 
NewSessionCallback(SSL * ssl,SSL_SESSION * session)874 static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) {
875   GetTestState(ssl)->got_new_session = true;
876   GetTestState(ssl)->new_session.reset(session);
877   return 1;
878 }
879 
TicketKeyCallback(SSL * ssl,uint8_t * key_name,uint8_t * iv,EVP_CIPHER_CTX * ctx,HMAC_CTX * hmac_ctx,int encrypt)880 static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
881                              EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
882                              int encrypt) {
883   if (!encrypt) {
884     if (GetTestState(ssl)->ticket_decrypt_done) {
885       fprintf(stderr, "TicketKeyCallback called after completion.\n");
886       return -1;
887     }
888 
889     GetTestState(ssl)->ticket_decrypt_done = true;
890   }
891 
892   // This is just test code, so use the all-zeros key.
893   static const uint8_t kZeros[16] = {0};
894 
895   if (encrypt) {
896     OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros));
897     RAND_bytes(iv, 16);
898   } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) {
899     return 0;
900   }
901 
902   if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
903       !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
904     return -1;
905   }
906 
907   if (!encrypt) {
908     return GetTestConfig(ssl)->renew_ticket ? 2 : 1;
909   }
910   return 1;
911 }
912 
913 // kCustomExtensionValue is the extension value that the custom extension
914 // callbacks will add.
915 static const uint16_t kCustomExtensionValue = 1234;
916 static void *const kCustomExtensionAddArg =
917     reinterpret_cast<void *>(kCustomExtensionValue);
918 static void *const kCustomExtensionParseArg =
919     reinterpret_cast<void *>(kCustomExtensionValue + 1);
920 static const char kCustomExtensionContents[] = "custom extension";
921 
CustomExtensionAddCallback(SSL * ssl,unsigned extension_value,const uint8_t ** out,size_t * out_len,int * out_alert_value,void * add_arg)922 static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value,
923                                       const uint8_t **out, size_t *out_len,
924                                       int *out_alert_value, void *add_arg) {
925   if (extension_value != kCustomExtensionValue ||
926       add_arg != kCustomExtensionAddArg) {
927     abort();
928   }
929 
930   if (GetTestConfig(ssl)->custom_extension_skip) {
931     return 0;
932   }
933   if (GetTestConfig(ssl)->custom_extension_fail_add) {
934     return -1;
935   }
936 
937   *out = reinterpret_cast<const uint8_t*>(kCustomExtensionContents);
938   *out_len = sizeof(kCustomExtensionContents) - 1;
939 
940   return 1;
941 }
942 
CustomExtensionFreeCallback(SSL * ssl,unsigned extension_value,const uint8_t * out,void * add_arg)943 static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value,
944                                         const uint8_t *out, void *add_arg) {
945   if (extension_value != kCustomExtensionValue ||
946       add_arg != kCustomExtensionAddArg ||
947       out != reinterpret_cast<const uint8_t *>(kCustomExtensionContents)) {
948     abort();
949   }
950 }
951 
CustomExtensionParseCallback(SSL * ssl,unsigned extension_value,const uint8_t * contents,size_t contents_len,int * out_alert_value,void * parse_arg)952 static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value,
953                                         const uint8_t *contents,
954                                         size_t contents_len,
955                                         int *out_alert_value, void *parse_arg) {
956   if (extension_value != kCustomExtensionValue ||
957       parse_arg != kCustomExtensionParseArg) {
958     abort();
959   }
960 
961   if (contents_len != sizeof(kCustomExtensionContents) - 1 ||
962       OPENSSL_memcmp(contents, kCustomExtensionContents, contents_len) != 0) {
963     *out_alert_value = SSL_AD_DECODE_ERROR;
964     return 0;
965   }
966 
967   return 1;
968 }
969 
ServerNameCallback(SSL * ssl,int * out_alert,void * arg)970 static int ServerNameCallback(SSL *ssl, int *out_alert, void *arg) {
971   // SNI must be accessible from the SNI callback.
972   const TestConfig *config = GetTestConfig(ssl);
973   const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
974   if (server_name == nullptr ||
975       std::string(server_name) != config->expected_server_name) {
976     fprintf(stderr, "servername mismatch (got %s; want %s)\n", server_name,
977             config->expected_server_name.c_str());
978     return SSL_TLSEXT_ERR_ALERT_FATAL;
979   }
980 
981   return SSL_TLSEXT_ERR_OK;
982 }
983 
984 // Connect returns a new socket connected to localhost on |port| or -1 on
985 // error.
Connect(uint16_t port)986 static int Connect(uint16_t port) {
987   int sock = socket(AF_INET, SOCK_STREAM, 0);
988   if (sock == -1) {
989     PrintSocketError("socket");
990     return -1;
991   }
992   int nodelay = 1;
993   if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
994           reinterpret_cast<const char*>(&nodelay), sizeof(nodelay)) != 0) {
995     PrintSocketError("setsockopt");
996     closesocket(sock);
997     return -1;
998   }
999   sockaddr_in sin;
1000   OPENSSL_memset(&sin, 0, sizeof(sin));
1001   sin.sin_family = AF_INET;
1002   sin.sin_port = htons(port);
1003   if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) {
1004     PrintSocketError("inet_pton");
1005     closesocket(sock);
1006     return -1;
1007   }
1008   if (connect(sock, reinterpret_cast<const sockaddr*>(&sin),
1009               sizeof(sin)) != 0) {
1010     PrintSocketError("connect");
1011     closesocket(sock);
1012     return -1;
1013   }
1014   return sock;
1015 }
1016 
1017 class SocketCloser {
1018  public:
SocketCloser(int sock)1019   explicit SocketCloser(int sock) : sock_(sock) {}
~SocketCloser()1020   ~SocketCloser() {
1021     // Half-close and drain the socket before releasing it. This seems to be
1022     // necessary for graceful shutdown on Windows. It will also avoid write
1023     // failures in the test runner.
1024 #if defined(OPENSSL_WINDOWS)
1025     shutdown(sock_, SD_SEND);
1026 #else
1027     shutdown(sock_, SHUT_WR);
1028 #endif
1029     while (true) {
1030       char buf[1024];
1031       if (recv(sock_, buf, sizeof(buf), 0) <= 0) {
1032         break;
1033       }
1034     }
1035     closesocket(sock_);
1036   }
1037 
1038  private:
1039   const int sock_;
1040 };
1041 
SetupCtx(const TestConfig * config)1042 static bssl::UniquePtr<SSL_CTX> SetupCtx(const TestConfig *config) {
1043   bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(
1044       config->is_dtls ? DTLS_method() : TLS_method()));
1045   if (!ssl_ctx) {
1046     return nullptr;
1047   }
1048 
1049   SSL_CTX_set0_buffer_pool(ssl_ctx.get(), g_pool);
1050 
1051   // Enable TLS 1.3 for tests.
1052   if (!config->is_dtls &&
1053       !SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_3_VERSION)) {
1054     return nullptr;
1055   }
1056 
1057   std::string cipher_list = "ALL";
1058   if (!config->cipher.empty()) {
1059     cipher_list = config->cipher;
1060     SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE);
1061   }
1062   if (!SSL_CTX_set_strict_cipher_list(ssl_ctx.get(), cipher_list.c_str())) {
1063     return nullptr;
1064   }
1065 
1066   bssl::UniquePtr<DH> dh(DH_get_2048_256(NULL));
1067   if (!dh) {
1068     return nullptr;
1069   }
1070 
1071   if (config->use_sparse_dh_prime) {
1072     // This prime number is 2^1024 + 643 – a value just above a power of two.
1073     // Because of its form, values modulo it are essentially certain to be one
1074     // byte shorter. This is used to test padding of these values.
1075     if (BN_hex2bn(
1076             &dh->p,
1077             "1000000000000000000000000000000000000000000000000000000000000000"
1078             "0000000000000000000000000000000000000000000000000000000000000000"
1079             "0000000000000000000000000000000000000000000000000000000000000000"
1080             "0000000000000000000000000000000000000000000000000000000000000028"
1081             "3") == 0 ||
1082         !BN_set_word(dh->g, 2)) {
1083       return nullptr;
1084     }
1085     BN_free(dh->q);
1086     dh->q = NULL;
1087     dh->priv_length = 0;
1088   }
1089 
1090   if (!SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) {
1091     return nullptr;
1092   }
1093 
1094   if (config->async && config->is_server) {
1095     // Disable the internal session cache. To test asynchronous session lookup,
1096     // we use an external session cache.
1097     SSL_CTX_set_session_cache_mode(
1098         ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL);
1099     SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback);
1100   } else {
1101     SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH);
1102   }
1103 
1104   SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback);
1105 
1106   if (config->use_old_client_cert_callback) {
1107     SSL_CTX_set_client_cert_cb(ssl_ctx.get(), ClientCertCallback);
1108   }
1109 
1110   SSL_CTX_set_next_protos_advertised_cb(
1111       ssl_ctx.get(), NextProtosAdvertisedCallback, NULL);
1112   if (!config->select_next_proto.empty()) {
1113     SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback,
1114                                      NULL);
1115   }
1116 
1117   if (!config->select_alpn.empty() || !config->select_resume_alpn.empty() ||
1118       config->decline_alpn) {
1119     SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL);
1120   }
1121 
1122   SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback);
1123 
1124   SSL_CTX_set_current_time_cb(ssl_ctx.get(), CurrentTimeCallback);
1125 
1126   SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback);
1127   SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback);
1128 
1129   if (config->use_ticket_callback) {
1130     SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback);
1131   }
1132 
1133   if (config->enable_client_custom_extension &&
1134       !SSL_CTX_add_client_custom_ext(
1135           ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
1136           CustomExtensionFreeCallback, kCustomExtensionAddArg,
1137           CustomExtensionParseCallback, kCustomExtensionParseArg)) {
1138     return nullptr;
1139   }
1140 
1141   if (config->enable_server_custom_extension &&
1142       !SSL_CTX_add_server_custom_ext(
1143           ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
1144           CustomExtensionFreeCallback, kCustomExtensionAddArg,
1145           CustomExtensionParseCallback, kCustomExtensionParseArg)) {
1146     return nullptr;
1147   }
1148 
1149   if (config->verify_fail) {
1150     SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifyFail, NULL);
1151   } else {
1152     SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifySucceed, NULL);
1153   }
1154 
1155   if (!config->signed_cert_timestamps.empty() &&
1156       !SSL_CTX_set_signed_cert_timestamp_list(
1157           ssl_ctx.get(), (const uint8_t *)config->signed_cert_timestamps.data(),
1158           config->signed_cert_timestamps.size())) {
1159     return nullptr;
1160   }
1161 
1162   if (!config->use_client_ca_list.empty()) {
1163     if (config->use_client_ca_list == "<NULL>") {
1164       SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr);
1165     } else {
1166       bssl::UniquePtr<STACK_OF(X509_NAME)> names =
1167           DecodeHexX509Names(config->use_client_ca_list);
1168       SSL_CTX_set_client_CA_list(ssl_ctx.get(), names.release());
1169     }
1170   }
1171 
1172   if (config->enable_grease) {
1173     SSL_CTX_set_grease_enabled(ssl_ctx.get(), 1);
1174   }
1175 
1176   if (!config->expected_server_name.empty()) {
1177     SSL_CTX_set_tlsext_servername_callback(ssl_ctx.get(), ServerNameCallback);
1178   }
1179 
1180   if (!config->ticket_key.empty() &&
1181       !SSL_CTX_set_tlsext_ticket_keys(ssl_ctx.get(), config->ticket_key.data(),
1182                                       config->ticket_key.size())) {
1183     return nullptr;
1184   }
1185 
1186   if (config->enable_early_data) {
1187     SSL_CTX_set_early_data_enabled(ssl_ctx.get(), 1);
1188   }
1189 
1190   return ssl_ctx;
1191 }
1192 
1193 // RetryAsync is called after a failed operation on |ssl| with return code
1194 // |ret|. If the operation should be retried, it simulates one asynchronous
1195 // event and returns true. Otherwise it returns false.
RetryAsync(SSL * ssl,int ret)1196 static bool RetryAsync(SSL *ssl, int ret) {
1197   // No error; don't retry.
1198   if (ret >= 0) {
1199     return false;
1200   }
1201 
1202   TestState *test_state = GetTestState(ssl);
1203   assert(GetTestConfig(ssl)->async);
1204 
1205   if (test_state->packeted_bio != nullptr &&
1206       PacketedBioAdvanceClock(test_state->packeted_bio)) {
1207     // The DTLS retransmit logic silently ignores write failures. So the test
1208     // may progress, allow writes through synchronously.
1209     AsyncBioEnforceWriteQuota(test_state->async_bio, false);
1210     int timeout_ret = DTLSv1_handle_timeout(ssl);
1211     AsyncBioEnforceWriteQuota(test_state->async_bio, true);
1212 
1213     if (timeout_ret < 0) {
1214       fprintf(stderr, "Error retransmitting.\n");
1215       return false;
1216     }
1217     return true;
1218   }
1219 
1220   // See if we needed to read or write more. If so, allow one byte through on
1221   // the appropriate end to maximally stress the state machine.
1222   switch (SSL_get_error(ssl, ret)) {
1223     case SSL_ERROR_WANT_READ:
1224       AsyncBioAllowRead(test_state->async_bio, 1);
1225       return true;
1226     case SSL_ERROR_WANT_WRITE:
1227       AsyncBioAllowWrite(test_state->async_bio, 1);
1228       return true;
1229     case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: {
1230       bssl::UniquePtr<EVP_PKEY> pkey =
1231           LoadPrivateKey(GetTestConfig(ssl)->send_channel_id);
1232       if (!pkey) {
1233         return false;
1234       }
1235       test_state->channel_id = std::move(pkey);
1236       return true;
1237     }
1238     case SSL_ERROR_WANT_X509_LOOKUP:
1239       test_state->cert_ready = true;
1240       return true;
1241     case SSL_ERROR_PENDING_SESSION:
1242       test_state->session = std::move(test_state->pending_session);
1243       return true;
1244     case SSL_ERROR_PENDING_CERTIFICATE:
1245       test_state->early_callback_ready = true;
1246       return true;
1247     case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION:
1248       test_state->private_key_retries++;
1249       return true;
1250     default:
1251       return false;
1252   }
1253 }
1254 
1255 // DoRead reads from |ssl|, resolving any asynchronous operations. It returns
1256 // the result value of the final |SSL_read| call.
DoRead(SSL * ssl,uint8_t * out,size_t max_out)1257 static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) {
1258   const TestConfig *config = GetTestConfig(ssl);
1259   TestState *test_state = GetTestState(ssl);
1260   int ret;
1261   do {
1262     if (config->async) {
1263       // The DTLS retransmit logic silently ignores write failures. So the test
1264       // may progress, allow writes through synchronously. |SSL_read| may
1265       // trigger a retransmit, so disconnect the write quota.
1266       AsyncBioEnforceWriteQuota(test_state->async_bio, false);
1267     }
1268     ret = config->peek_then_read ? SSL_peek(ssl, out, max_out)
1269                                  : SSL_read(ssl, out, max_out);
1270     if (config->async) {
1271       AsyncBioEnforceWriteQuota(test_state->async_bio, true);
1272     }
1273 
1274     // Run the exporter after each read. This is to test that the exporter fails
1275     // during a renegotiation.
1276     if (config->use_exporter_between_reads) {
1277       uint8_t buf;
1278       if (!SSL_export_keying_material(ssl, &buf, 1, NULL, 0, NULL, 0, 0)) {
1279         fprintf(stderr, "failed to export keying material\n");
1280         return -1;
1281       }
1282     }
1283   } while (config->async && RetryAsync(ssl, ret));
1284 
1285   if (config->peek_then_read && ret > 0) {
1286     std::unique_ptr<uint8_t[]> buf(new uint8_t[static_cast<size_t>(ret)]);
1287 
1288     // SSL_peek should synchronously return the same data.
1289     int ret2 = SSL_peek(ssl, buf.get(), ret);
1290     if (ret2 != ret ||
1291         OPENSSL_memcmp(buf.get(), out, ret) != 0) {
1292       fprintf(stderr, "First and second SSL_peek did not match.\n");
1293       return -1;
1294     }
1295 
1296     // SSL_read should synchronously return the same data and consume it.
1297     ret2 = SSL_read(ssl, buf.get(), ret);
1298     if (ret2 != ret ||
1299         OPENSSL_memcmp(buf.get(), out, ret) != 0) {
1300       fprintf(stderr, "SSL_peek and SSL_read did not match.\n");
1301       return -1;
1302     }
1303   }
1304 
1305   return ret;
1306 }
1307 
1308 // WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous
1309 // operations. It returns the result of the final |SSL_write| call.
WriteAll(SSL * ssl,const uint8_t * in,size_t in_len)1310 static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) {
1311   const TestConfig *config = GetTestConfig(ssl);
1312   int ret;
1313   do {
1314     ret = SSL_write(ssl, in, in_len);
1315     if (ret > 0) {
1316       in += ret;
1317       in_len -= ret;
1318     }
1319   } while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0));
1320   return ret;
1321 }
1322 
1323 // DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It
1324 // returns the result of the final |SSL_shutdown| call.
DoShutdown(SSL * ssl)1325 static int DoShutdown(SSL *ssl) {
1326   const TestConfig *config = GetTestConfig(ssl);
1327   int ret;
1328   do {
1329     ret = SSL_shutdown(ssl);
1330   } while (config->async && RetryAsync(ssl, ret));
1331   return ret;
1332 }
1333 
1334 // DoSendFatalAlert calls |SSL_send_fatal_alert|, resolving any asynchronous
1335 // operations. It returns the result of the final |SSL_send_fatal_alert| call.
DoSendFatalAlert(SSL * ssl,uint8_t alert)1336 static int DoSendFatalAlert(SSL *ssl, uint8_t alert) {
1337   const TestConfig *config = GetTestConfig(ssl);
1338   int ret;
1339   do {
1340     ret = SSL_send_fatal_alert(ssl, alert);
1341   } while (config->async && RetryAsync(ssl, ret));
1342   return ret;
1343 }
1344 
GetProtocolVersion(const SSL * ssl)1345 static uint16_t GetProtocolVersion(const SSL *ssl) {
1346   uint16_t version = SSL_version(ssl);
1347   if (!SSL_is_dtls(ssl)) {
1348     return version;
1349   }
1350   return 0x0201 + ~version;
1351 }
1352 
1353 // CheckHandshakeProperties checks, immediately after |ssl| completes its
1354 // initial handshake (or False Starts), whether all the properties are
1355 // consistent with the test configuration and invariants.
CheckHandshakeProperties(SSL * ssl,bool is_resume)1356 static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
1357   const TestConfig *config = GetTestConfig(ssl);
1358 
1359   if (SSL_get_current_cipher(ssl) == nullptr) {
1360     fprintf(stderr, "null cipher after handshake\n");
1361     return false;
1362   }
1363 
1364   if (is_resume &&
1365       (!!SSL_session_reused(ssl) == config->expect_session_miss)) {
1366     fprintf(stderr, "session was%s reused\n",
1367             SSL_session_reused(ssl) ? "" : " not");
1368     return false;
1369   }
1370 
1371   bool expect_handshake_done =
1372       (is_resume || !config->false_start) &&
1373       !(config->is_server && SSL_early_data_accepted(ssl));
1374   if (expect_handshake_done != GetTestState(ssl)->handshake_done) {
1375     fprintf(stderr, "handshake was%s completed\n",
1376             GetTestState(ssl)->handshake_done ? "" : " not");
1377     return false;
1378   }
1379 
1380   if (expect_handshake_done && !config->is_server) {
1381     bool expect_new_session =
1382         !config->expect_no_session &&
1383         (!SSL_session_reused(ssl) || config->expect_ticket_renewal) &&
1384         // Session tickets are sent post-handshake in TLS 1.3.
1385         GetProtocolVersion(ssl) < TLS1_3_VERSION;
1386     if (expect_new_session != GetTestState(ssl)->got_new_session) {
1387       fprintf(stderr,
1388               "new session was%s cached, but we expected the opposite\n",
1389               GetTestState(ssl)->got_new_session ? "" : " not");
1390       return false;
1391     }
1392   }
1393 
1394   if (!is_resume) {
1395     if (config->expect_session_id && !GetTestState(ssl)->got_new_session) {
1396       fprintf(stderr, "session was not cached on the server.\n");
1397       return false;
1398     }
1399     if (config->expect_no_session_id && GetTestState(ssl)->got_new_session) {
1400       fprintf(stderr, "session was unexpectedly cached on the server.\n");
1401       return false;
1402     }
1403   }
1404 
1405   if (config->is_server && !GetTestState(ssl)->early_callback_called) {
1406     fprintf(stderr, "early callback not called\n");
1407     return false;
1408   }
1409 
1410   if (!config->expected_server_name.empty()) {
1411     const char *server_name =
1412         SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
1413     if (server_name == nullptr ||
1414         server_name != config->expected_server_name) {
1415       fprintf(stderr, "servername mismatch (got %s; want %s)\n",
1416               server_name, config->expected_server_name.c_str());
1417       return false;
1418     }
1419   }
1420 
1421   if (!config->expected_next_proto.empty()) {
1422     const uint8_t *next_proto;
1423     unsigned next_proto_len;
1424     SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len);
1425     if (next_proto_len != config->expected_next_proto.size() ||
1426         OPENSSL_memcmp(next_proto, config->expected_next_proto.data(),
1427                        next_proto_len) != 0) {
1428       fprintf(stderr, "negotiated next proto mismatch\n");
1429       return false;
1430     }
1431   }
1432 
1433   std::string expected_alpn = config->expected_alpn;
1434   if (is_resume && !config->expected_resume_alpn.empty()) {
1435     expected_alpn = config->expected_resume_alpn;
1436   }
1437   bool expect_no_alpn = (!is_resume && config->expect_no_alpn) ||
1438       (is_resume && config->expect_no_resume_alpn);
1439   if (expect_no_alpn) {
1440     expected_alpn.clear();
1441   }
1442 
1443   if (!expected_alpn.empty() || expect_no_alpn) {
1444     const uint8_t *alpn_proto;
1445     unsigned alpn_proto_len;
1446     SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len);
1447     if (alpn_proto_len != expected_alpn.size() ||
1448         OPENSSL_memcmp(alpn_proto, expected_alpn.data(), alpn_proto_len) != 0) {
1449       fprintf(stderr, "negotiated alpn proto mismatch\n");
1450       return false;
1451     }
1452   }
1453 
1454   if (!config->expected_channel_id.empty()) {
1455     uint8_t channel_id[64];
1456     if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) {
1457       fprintf(stderr, "no channel id negotiated\n");
1458       return false;
1459     }
1460     if (config->expected_channel_id.size() != 64 ||
1461         OPENSSL_memcmp(config->expected_channel_id.data(), channel_id, 64) !=
1462             0) {
1463       fprintf(stderr, "channel id mismatch\n");
1464       return false;
1465     }
1466   }
1467 
1468   if (config->expect_extended_master_secret && !SSL_get_extms_support(ssl)) {
1469     fprintf(stderr, "No EMS for connection when expected\n");
1470     return false;
1471   }
1472 
1473   if (config->expect_secure_renegotiation &&
1474       !SSL_get_secure_renegotiation_support(ssl)) {
1475     fprintf(stderr, "No secure renegotiation for connection when expected\n");
1476     return false;
1477   }
1478 
1479   if (config->expect_no_secure_renegotiation &&
1480       SSL_get_secure_renegotiation_support(ssl)) {
1481     fprintf(stderr,
1482             "Secure renegotiation unexpectedly negotiated for connection\n");
1483     return false;
1484   }
1485 
1486   if (!config->expected_ocsp_response.empty()) {
1487     const uint8_t *data;
1488     size_t len;
1489     SSL_get0_ocsp_response(ssl, &data, &len);
1490     if (config->expected_ocsp_response.size() != len ||
1491         OPENSSL_memcmp(config->expected_ocsp_response.data(), data, len) != 0) {
1492       fprintf(stderr, "OCSP response mismatch\n");
1493       return false;
1494     }
1495   }
1496 
1497   if (!config->expected_signed_cert_timestamps.empty()) {
1498     const uint8_t *data;
1499     size_t len;
1500     SSL_get0_signed_cert_timestamp_list(ssl, &data, &len);
1501     if (config->expected_signed_cert_timestamps.size() != len ||
1502         OPENSSL_memcmp(config->expected_signed_cert_timestamps.data(), data,
1503                        len) != 0) {
1504       fprintf(stderr, "SCT list mismatch\n");
1505       return false;
1506     }
1507   }
1508 
1509   if (config->expect_verify_result) {
1510     int expected_verify_result = config->verify_fail ?
1511       X509_V_ERR_APPLICATION_VERIFICATION :
1512       X509_V_OK;
1513 
1514     if (SSL_get_verify_result(ssl) != expected_verify_result) {
1515       fprintf(stderr, "Wrong certificate verification result\n");
1516       return false;
1517     }
1518   }
1519 
1520   if (config->expect_peer_signature_algorithm != 0 &&
1521       config->expect_peer_signature_algorithm !=
1522           SSL_get_peer_signature_algorithm(ssl)) {
1523     fprintf(stderr, "Peer signature algorithm was %04x, wanted %04x.\n",
1524             SSL_get_peer_signature_algorithm(ssl),
1525             config->expect_peer_signature_algorithm);
1526     return false;
1527   }
1528 
1529   int expect_curve_id = config->expect_curve_id;
1530   if (is_resume && config->expect_resume_curve_id != 0) {
1531     expect_curve_id = config->expect_resume_curve_id;
1532   }
1533   if (expect_curve_id != 0) {
1534     uint16_t curve_id = SSL_get_curve_id(ssl);
1535     if (static_cast<uint16_t>(expect_curve_id) != curve_id) {
1536       fprintf(stderr, "curve_id was %04x, wanted %04x\n", curve_id,
1537               static_cast<uint16_t>(expect_curve_id));
1538       return false;
1539     }
1540   }
1541 
1542   uint16_t cipher_id =
1543       static_cast<uint16_t>(SSL_CIPHER_get_id(SSL_get_current_cipher(ssl)));
1544   if (config->expect_cipher_aes != 0 &&
1545       EVP_has_aes_hardware() &&
1546       static_cast<uint16_t>(config->expect_cipher_aes) != cipher_id) {
1547     fprintf(stderr, "Cipher ID was %04x, wanted %04x (has AES hardware)\n",
1548             cipher_id, static_cast<uint16_t>(config->expect_cipher_aes));
1549     return false;
1550   }
1551 
1552   if (config->expect_cipher_no_aes != 0 &&
1553       !EVP_has_aes_hardware() &&
1554       static_cast<uint16_t>(config->expect_cipher_no_aes) != cipher_id) {
1555     fprintf(stderr, "Cipher ID was %04x, wanted %04x (no AES hardware)\n",
1556             cipher_id, static_cast<uint16_t>(config->expect_cipher_no_aes));
1557     return false;
1558   }
1559 
1560   if (is_resume) {
1561     if ((config->expect_accept_early_data && !SSL_early_data_accepted(ssl)) ||
1562         (config->expect_reject_early_data && SSL_early_data_accepted(ssl))) {
1563       fprintf(stderr,
1564               "Early data was%s accepted, but we expected the opposite\n",
1565               SSL_early_data_accepted(ssl) ? "" : " not");
1566       return false;
1567     }
1568   }
1569 
1570   if (!config->psk.empty()) {
1571     if (SSL_get_peer_cert_chain(ssl) != nullptr) {
1572       fprintf(stderr, "Received peer certificate on a PSK cipher.\n");
1573       return false;
1574     }
1575   } else if (!config->is_server || config->require_any_client_certificate) {
1576     if (SSL_get_peer_cert_chain(ssl) == nullptr) {
1577       fprintf(stderr, "Received no peer certificate but expected one.\n");
1578       return false;
1579     }
1580   }
1581 
1582   if (!config->expect_peer_cert_file.empty()) {
1583     bssl::UniquePtr<X509> expect_leaf;
1584     bssl::UniquePtr<STACK_OF(X509)> expect_chain;
1585     if (!LoadCertificate(&expect_leaf, &expect_chain,
1586                          config->expect_peer_cert_file)) {
1587       return false;
1588     }
1589 
1590     // For historical reasons, clients report a chain with a leaf and servers
1591     // without.
1592     if (!config->is_server) {
1593       if (!sk_X509_insert(expect_chain.get(), expect_leaf.get(), 0)) {
1594         return false;
1595       }
1596       X509_up_ref(expect_leaf.get());  // sk_X509_push takes ownership.
1597     }
1598 
1599     bssl::UniquePtr<X509> leaf(SSL_get_peer_certificate(ssl));
1600     STACK_OF(X509) *chain = SSL_get_peer_cert_chain(ssl);
1601     if (X509_cmp(leaf.get(), expect_leaf.get()) != 0) {
1602       fprintf(stderr, "Received a different leaf certificate than expected.\n");
1603       return false;
1604     }
1605 
1606     if (sk_X509_num(chain) != sk_X509_num(expect_chain.get())) {
1607       fprintf(stderr, "Received a chain of length %zu instead of %zu.\n",
1608               sk_X509_num(chain), sk_X509_num(expect_chain.get()));
1609       return false;
1610     }
1611 
1612     for (size_t i = 0; i < sk_X509_num(chain); i++) {
1613       if (X509_cmp(sk_X509_value(chain, i),
1614                    sk_X509_value(expect_chain.get(), i)) != 0) {
1615         fprintf(stderr, "Chain certificate %zu did not match.\n",
1616                 i + 1);
1617         return false;
1618       }
1619     }
1620   }
1621 
1622   bool expected_sha256_client_cert = config->expect_sha256_client_cert_initial;
1623   if (is_resume) {
1624     expected_sha256_client_cert = config->expect_sha256_client_cert_resume;
1625   }
1626 
1627   if (SSL_get_session(ssl)->peer_sha256_valid != expected_sha256_client_cert) {
1628     fprintf(stderr,
1629             "Unexpected SHA-256 client cert state: expected:%d is_resume:%d.\n",
1630             expected_sha256_client_cert, is_resume);
1631     return false;
1632   }
1633 
1634   if (expected_sha256_client_cert &&
1635       SSL_get_session(ssl)->certs != nullptr) {
1636     fprintf(stderr, "Have both client cert and SHA-256 hash: is_resume:%d.\n",
1637             is_resume);
1638     return false;
1639   }
1640 
1641   if (is_resume && config->expect_ticket_age_skew != 0 &&
1642       SSL_get_ticket_age_skew(ssl) != config->expect_ticket_age_skew) {
1643     fprintf(stderr, "Ticket age skew was %" PRId32 ", wanted %d\n",
1644             SSL_get_ticket_age_skew(ssl), config->expect_ticket_age_skew);
1645     return false;
1646   }
1647 
1648   return true;
1649 }
1650 
1651 // DoExchange runs a test SSL exchange against the peer. On success, it returns
1652 // true and sets |*out_session| to the negotiated SSL session. If the test is a
1653 // resumption attempt, |is_resume| is true and |session| is the session from the
1654 // previous exchange.
DoExchange(bssl::UniquePtr<SSL_SESSION> * out_session,SSL_CTX * ssl_ctx,const TestConfig * config,bool is_resume,SSL_SESSION * session)1655 static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session,
1656                        SSL_CTX *ssl_ctx, const TestConfig *config,
1657                        bool is_resume, SSL_SESSION *session) {
1658   if (is_resume && config->enable_resume_early_data) {
1659     SSL_CTX_set_early_data_enabled(ssl_ctx, 1);
1660   }
1661 
1662   bssl::UniquePtr<SSL> ssl(SSL_new(ssl_ctx));
1663   if (!ssl) {
1664     return false;
1665   }
1666 
1667   if (!SetTestConfig(ssl.get(), config) ||
1668       !SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) {
1669     return false;
1670   }
1671 
1672   GetTestState(ssl.get())->is_resume = is_resume;
1673 
1674   if (config->fallback_scsv &&
1675       !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) {
1676     return false;
1677   }
1678   // Install the certificate synchronously if nothing else will handle it.
1679   if (!config->use_early_callback &&
1680       !config->use_old_client_cert_callback &&
1681       !config->async &&
1682       !InstallCertificate(ssl.get())) {
1683     return false;
1684   }
1685   if (!config->use_old_client_cert_callback) {
1686     SSL_set_cert_cb(ssl.get(), CertCallback, nullptr);
1687   }
1688   if (config->require_any_client_certificate) {
1689     SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
1690                    NULL);
1691   }
1692   if (config->verify_peer) {
1693     SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, NULL);
1694   }
1695   if (config->false_start) {
1696     SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START);
1697   }
1698   if (config->cbc_record_splitting) {
1699     SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING);
1700   }
1701   if (config->partial_write) {
1702     SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
1703   }
1704   if (config->no_tls13) {
1705     SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3);
1706   }
1707   if (config->no_tls12) {
1708     SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2);
1709   }
1710   if (config->no_tls11) {
1711     SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1);
1712   }
1713   if (config->no_tls1) {
1714     SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1);
1715   }
1716   if (config->no_ssl3) {
1717     SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3);
1718   }
1719   if (!config->expected_channel_id.empty() ||
1720       config->enable_channel_id) {
1721     SSL_set_tls_channel_id_enabled(ssl.get(), 1);
1722   }
1723   if (!config->send_channel_id.empty()) {
1724     SSL_set_tls_channel_id_enabled(ssl.get(), 1);
1725     if (!config->async) {
1726       // The async case will be supplied by |ChannelIdCallback|.
1727       bssl::UniquePtr<EVP_PKEY> pkey = LoadPrivateKey(config->send_channel_id);
1728       if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) {
1729         return false;
1730       }
1731     }
1732   }
1733   if (!config->host_name.empty() &&
1734       !SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) {
1735     return false;
1736   }
1737   if (!config->advertise_alpn.empty() &&
1738       SSL_set_alpn_protos(ssl.get(),
1739                           (const uint8_t *)config->advertise_alpn.data(),
1740                           config->advertise_alpn.size()) != 0) {
1741     return false;
1742   }
1743   if (!config->psk.empty()) {
1744     SSL_set_psk_client_callback(ssl.get(), PskClientCallback);
1745     SSL_set_psk_server_callback(ssl.get(), PskServerCallback);
1746   }
1747   if (!config->psk_identity.empty() &&
1748       !SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) {
1749     return false;
1750   }
1751   if (!config->srtp_profiles.empty() &&
1752       !SSL_set_srtp_profiles(ssl.get(), config->srtp_profiles.c_str())) {
1753     return false;
1754   }
1755   if (config->enable_ocsp_stapling) {
1756     SSL_enable_ocsp_stapling(ssl.get());
1757   }
1758   if (config->enable_signed_cert_timestamps) {
1759     SSL_enable_signed_cert_timestamps(ssl.get());
1760   }
1761   if (config->min_version != 0 &&
1762       !SSL_set_min_proto_version(ssl.get(), (uint16_t)config->min_version)) {
1763     return false;
1764   }
1765   if (config->max_version != 0 &&
1766       !SSL_set_max_proto_version(ssl.get(), (uint16_t)config->max_version)) {
1767     return false;
1768   }
1769   if (config->mtu != 0) {
1770     SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU);
1771     SSL_set_mtu(ssl.get(), config->mtu);
1772   }
1773   if (config->install_ddos_callback) {
1774     SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback);
1775   }
1776   if (config->renegotiate_once) {
1777     SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once);
1778   }
1779   if (config->renegotiate_freely) {
1780     SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely);
1781   }
1782   if (config->renegotiate_ignore) {
1783     SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore);
1784   }
1785   if (!config->check_close_notify) {
1786     SSL_set_quiet_shutdown(ssl.get(), 1);
1787   }
1788   if (config->p384_only) {
1789     int nid = NID_secp384r1;
1790     if (!SSL_set1_curves(ssl.get(), &nid, 1)) {
1791       return false;
1792     }
1793   }
1794   if (config->enable_all_curves) {
1795     static const int kAllCurves[] = {
1796       NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, NID_X25519,
1797     };
1798     if (!SSL_set1_curves(ssl.get(), kAllCurves,
1799                          OPENSSL_ARRAY_SIZE(kAllCurves))) {
1800       return false;
1801     }
1802   }
1803   if (config->initial_timeout_duration_ms > 0) {
1804     DTLSv1_set_initial_timeout_duration(ssl.get(),
1805                                         config->initial_timeout_duration_ms);
1806   }
1807   if (config->max_cert_list > 0) {
1808     SSL_set_max_cert_list(ssl.get(), config->max_cert_list);
1809   }
1810   if (!is_resume && config->retain_only_sha256_client_cert_initial) {
1811     SSL_set_retain_only_sha256_of_client_certs(ssl.get(), 1);
1812   }
1813   if (is_resume && config->retain_only_sha256_client_cert_resume) {
1814     SSL_set_retain_only_sha256_of_client_certs(ssl.get(), 1);
1815   }
1816   if (config->max_send_fragment > 0) {
1817     SSL_set_max_send_fragment(ssl.get(), config->max_send_fragment);
1818   }
1819 
1820   int sock = Connect(config->port);
1821   if (sock == -1) {
1822     return false;
1823   }
1824   SocketCloser closer(sock);
1825 
1826   bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_NOCLOSE));
1827   if (!bio) {
1828     return false;
1829   }
1830   if (config->is_dtls) {
1831     bssl::UniquePtr<BIO> packeted = PacketedBioCreate(&g_clock);
1832     if (!packeted) {
1833       return false;
1834     }
1835     GetTestState(ssl.get())->packeted_bio = packeted.get();
1836     BIO_push(packeted.get(), bio.release());
1837     bio = std::move(packeted);
1838   }
1839   if (config->async) {
1840     bssl::UniquePtr<BIO> async_scoped =
1841         config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate();
1842     if (!async_scoped) {
1843       return false;
1844     }
1845     BIO_push(async_scoped.get(), bio.release());
1846     GetTestState(ssl.get())->async_bio = async_scoped.get();
1847     bio = std::move(async_scoped);
1848   }
1849   SSL_set_bio(ssl.get(), bio.get(), bio.get());
1850   bio.release();  // SSL_set_bio takes ownership.
1851 
1852   if (session != NULL) {
1853     if (!config->is_server) {
1854       if (SSL_set_session(ssl.get(), session) != 1) {
1855         return false;
1856       }
1857     } else if (config->async) {
1858       // The internal session cache is disabled, so install the session
1859       // manually.
1860       SSL_SESSION_up_ref(session);
1861       GetTestState(ssl.get())->pending_session.reset(session);
1862     }
1863   }
1864 
1865   if (SSL_get_current_cipher(ssl.get()) != nullptr) {
1866     fprintf(stderr, "non-null cipher before handshake\n");
1867     return false;
1868   }
1869 
1870   if (config->is_server) {
1871     SSL_set_accept_state(ssl.get());
1872   } else {
1873     SSL_set_connect_state(ssl.get());
1874   }
1875 
1876   int ret;
1877   if (!config->implicit_handshake) {
1878     do {
1879       ret = SSL_do_handshake(ssl.get());
1880     } while (config->async && RetryAsync(ssl.get(), ret));
1881     if (ret != 1 ||
1882         !CheckHandshakeProperties(ssl.get(), is_resume)) {
1883       return false;
1884     }
1885 
1886     // Reset the state to assert later that the callback isn't called in
1887     // renegotations.
1888     GetTestState(ssl.get())->got_new_session = false;
1889   }
1890 
1891   if (config->export_keying_material > 0) {
1892     std::vector<uint8_t> result(
1893         static_cast<size_t>(config->export_keying_material));
1894     if (!SSL_export_keying_material(
1895             ssl.get(), result.data(), result.size(),
1896             config->export_label.data(), config->export_label.size(),
1897             reinterpret_cast<const uint8_t*>(config->export_context.data()),
1898             config->export_context.size(), config->use_export_context)) {
1899       fprintf(stderr, "failed to export keying material\n");
1900       return false;
1901     }
1902     if (WriteAll(ssl.get(), result.data(), result.size()) < 0) {
1903       return false;
1904     }
1905   }
1906 
1907   if (config->tls_unique) {
1908     uint8_t tls_unique[16];
1909     size_t tls_unique_len;
1910     if (!SSL_get_tls_unique(ssl.get(), tls_unique, &tls_unique_len,
1911                             sizeof(tls_unique))) {
1912       fprintf(stderr, "failed to get tls-unique\n");
1913       return false;
1914     }
1915 
1916     if (tls_unique_len != 12) {
1917       fprintf(stderr, "expected 12 bytes of tls-unique but got %u",
1918               static_cast<unsigned>(tls_unique_len));
1919       return false;
1920     }
1921 
1922     if (WriteAll(ssl.get(), tls_unique, tls_unique_len) < 0) {
1923       return false;
1924     }
1925   }
1926 
1927   if (config->send_alert) {
1928     if (DoSendFatalAlert(ssl.get(), SSL_AD_DECOMPRESSION_FAILURE) < 0) {
1929       return false;
1930     }
1931     return true;
1932   }
1933 
1934   if (config->write_different_record_sizes) {
1935     if (config->is_dtls) {
1936       fprintf(stderr, "write_different_record_sizes not supported for DTLS\n");
1937       return false;
1938     }
1939     // This mode writes a number of different record sizes in an attempt to
1940     // trip up the CBC record splitting code.
1941     static const size_t kBufLen = 32769;
1942     std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);
1943     OPENSSL_memset(buf.get(), 0x42, kBufLen);
1944     static const size_t kRecordSizes[] = {
1945         0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769};
1946     for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) {
1947       const size_t len = kRecordSizes[i];
1948       if (len > kBufLen) {
1949         fprintf(stderr, "Bad kRecordSizes value.\n");
1950         return false;
1951       }
1952       if (WriteAll(ssl.get(), buf.get(), len) < 0) {
1953         return false;
1954       }
1955     }
1956   } else {
1957     if (config->read_with_unfinished_write) {
1958       if (!config->async) {
1959         fprintf(stderr, "-read-with-unfinished-write requires -async.\n");
1960         return false;
1961       }
1962 
1963       int write_ret = SSL_write(ssl.get(),
1964                           reinterpret_cast<const uint8_t *>("unfinished"), 10);
1965       if (SSL_get_error(ssl.get(), write_ret) != SSL_ERROR_WANT_WRITE) {
1966         fprintf(stderr, "Failed to leave unfinished write.\n");
1967         return false;
1968       }
1969     }
1970     if (config->shim_writes_first) {
1971       if (WriteAll(ssl.get(), reinterpret_cast<const uint8_t *>("hello"),
1972                    5) < 0) {
1973         return false;
1974       }
1975     }
1976     if (!config->shim_shuts_down) {
1977       for (;;) {
1978         // Read only 512 bytes at a time in TLS to ensure records may be
1979         // returned in multiple reads.
1980         size_t read_size = config->is_dtls ? 16384 : 512;
1981         if (config->read_size > 0) {
1982           read_size = config->read_size;
1983         }
1984         std::unique_ptr<uint8_t[]> buf(new uint8_t[read_size]);
1985 
1986         int n = DoRead(ssl.get(), buf.get(), read_size);
1987         int err = SSL_get_error(ssl.get(), n);
1988         if (err == SSL_ERROR_ZERO_RETURN ||
1989             (n == 0 && err == SSL_ERROR_SYSCALL)) {
1990           if (n != 0) {
1991             fprintf(stderr, "Invalid SSL_get_error output\n");
1992             return false;
1993           }
1994           // Stop on either clean or unclean shutdown.
1995           break;
1996         } else if (err != SSL_ERROR_NONE) {
1997           if (n > 0) {
1998             fprintf(stderr, "Invalid SSL_get_error output\n");
1999             return false;
2000           }
2001           return false;
2002         }
2003         // Successfully read data.
2004         if (n <= 0) {
2005           fprintf(stderr, "Invalid SSL_get_error output\n");
2006           return false;
2007         }
2008 
2009         // After a successful read, with or without False Start, the handshake
2010         // must be complete unless we are doing early data.
2011         if (!GetTestState(ssl.get())->handshake_done &&
2012             !SSL_early_data_accepted(ssl.get())) {
2013           fprintf(stderr, "handshake was not completed after SSL_read\n");
2014           return false;
2015         }
2016 
2017         for (int i = 0; i < n; i++) {
2018           buf[i] ^= 0xff;
2019         }
2020         if (WriteAll(ssl.get(), buf.get(), n) < 0) {
2021           return false;
2022         }
2023       }
2024     }
2025   }
2026 
2027   if (!config->is_server && !config->false_start &&
2028       !config->implicit_handshake &&
2029       // Session tickets are sent post-handshake in TLS 1.3.
2030       GetProtocolVersion(ssl.get()) < TLS1_3_VERSION &&
2031       GetTestState(ssl.get())->got_new_session) {
2032     fprintf(stderr, "new session was established after the handshake\n");
2033     return false;
2034   }
2035 
2036   if (GetProtocolVersion(ssl.get()) >= TLS1_3_VERSION && !config->is_server) {
2037     bool expect_new_session =
2038         !config->expect_no_session && !config->shim_shuts_down;
2039     if (expect_new_session != GetTestState(ssl.get())->got_new_session) {
2040       fprintf(stderr,
2041               "new session was%s cached, but we expected the opposite\n",
2042               GetTestState(ssl.get())->got_new_session ? "" : " not");
2043       return false;
2044     }
2045 
2046     if (expect_new_session) {
2047       bool got_early_data_info =
2048           GetTestState(ssl.get())->new_session->ticket_max_early_data != 0;
2049       if (config->expect_early_data_info != got_early_data_info) {
2050         fprintf(
2051             stderr,
2052             "new session did%s include ticket_early_data_info, but we expected "
2053             "the opposite\n",
2054             got_early_data_info ? "" : " not");
2055         return false;
2056       }
2057     }
2058   }
2059 
2060   if (out_session) {
2061     *out_session = std::move(GetTestState(ssl.get())->new_session);
2062   }
2063 
2064   ret = DoShutdown(ssl.get());
2065 
2066   if (config->shim_shuts_down && config->check_close_notify) {
2067     // We initiate shutdown, so |SSL_shutdown| will return in two stages. First
2068     // it returns zero when our close_notify is sent, then one when the peer's
2069     // is received.
2070     if (ret != 0) {
2071       fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret);
2072       return false;
2073     }
2074     ret = DoShutdown(ssl.get());
2075   }
2076 
2077   if (ret != 1) {
2078     fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret);
2079     return false;
2080   }
2081 
2082   if (SSL_total_renegotiations(ssl.get()) !=
2083       config->expect_total_renegotiations) {
2084     fprintf(stderr, "Expected %d renegotiations, got %d\n",
2085             config->expect_total_renegotiations,
2086             SSL_total_renegotiations(ssl.get()));
2087     return false;
2088   }
2089 
2090   return true;
2091 }
2092 
2093 class StderrDelimiter {
2094  public:
~StderrDelimiter()2095   ~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); }
2096 };
2097 
main(int argc,char ** argv)2098 int main(int argc, char **argv) {
2099   // To distinguish ASan's output from ours, add a trailing message to stderr.
2100   // Anything following this line will be considered an error.
2101   StderrDelimiter delimiter;
2102 
2103 #if defined(OPENSSL_WINDOWS)
2104   /* Initialize Winsock. */
2105   WORD wsa_version = MAKEWORD(2, 2);
2106   WSADATA wsa_data;
2107   int wsa_err = WSAStartup(wsa_version, &wsa_data);
2108   if (wsa_err != 0) {
2109     fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
2110     return 1;
2111   }
2112   if (wsa_data.wVersion != wsa_version) {
2113     fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
2114     return 1;
2115   }
2116 #else
2117   signal(SIGPIPE, SIG_IGN);
2118 #endif
2119 
2120   CRYPTO_library_init();
2121   g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
2122   g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree);
2123   if (g_config_index < 0 || g_state_index < 0) {
2124     return 1;
2125   }
2126 
2127   TestConfig config;
2128   if (!ParseConfig(argc - 1, argv + 1, &config)) {
2129     return Usage(argv[0]);
2130   }
2131 
2132   g_pool = CRYPTO_BUFFER_POOL_new();
2133 
2134   // Some code treats the zero time special, so initialize the clock to a
2135   // non-zero time.
2136   g_clock.tv_sec = 1234;
2137   g_clock.tv_usec = 1234;
2138 
2139   bssl::UniquePtr<SSL_CTX> ssl_ctx = SetupCtx(&config);
2140   if (!ssl_ctx) {
2141     ERR_print_errors_fp(stderr);
2142     return 1;
2143   }
2144 
2145   bssl::UniquePtr<SSL_SESSION> session;
2146   for (int i = 0; i < config.resume_count + 1; i++) {
2147     bool is_resume = i > 0;
2148     if (is_resume && !config.is_server && !session) {
2149       fprintf(stderr, "No session to offer.\n");
2150       return 1;
2151     }
2152 
2153     bssl::UniquePtr<SSL_SESSION> offer_session = std::move(session);
2154     if (!DoExchange(&session, ssl_ctx.get(), &config, is_resume,
2155                     offer_session.get())) {
2156       fprintf(stderr, "Connection %d failed.\n", i + 1);
2157       ERR_print_errors_fp(stderr);
2158       return 1;
2159     }
2160 
2161     if (config.resumption_delay != 0) {
2162       g_clock.tv_sec += config.resumption_delay;
2163     }
2164   }
2165 
2166   return 0;
2167 }
2168