• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_BASIC_PRECONDITIONERS_H
11 #define EIGEN_BASIC_PRECONDITIONERS_H
12 
13 namespace Eigen {
14 
15 /** \ingroup IterativeLinearSolvers_Module
16   * \brief A preconditioner based on the digonal entries
17   *
18   * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
19   * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
20     \code
21     A.diagonal().asDiagonal() . x = b
22     \endcode
23   *
24   * \tparam _Scalar the type of the scalar.
25   *
26   * \implsparsesolverconcept
27   *
28   * This preconditioner is suitable for both selfadjoint and general problems.
29   * The diagonal entries are pre-inverted and stored into a dense vector.
30   *
31   * \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
32   *
33   * \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient
34   */
35 template <typename _Scalar>
36 class DiagonalPreconditioner
37 {
38     typedef _Scalar Scalar;
39     typedef Matrix<Scalar,Dynamic,1> Vector;
40   public:
41     typedef typename Vector::StorageIndex StorageIndex;
42     enum {
43       ColsAtCompileTime = Dynamic,
44       MaxColsAtCompileTime = Dynamic
45     };
46 
DiagonalPreconditioner()47     DiagonalPreconditioner() : m_isInitialized(false) {}
48 
49     template<typename MatType>
DiagonalPreconditioner(const MatType & mat)50     explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
51     {
52       compute(mat);
53     }
54 
rows()55     Index rows() const { return m_invdiag.size(); }
cols()56     Index cols() const { return m_invdiag.size(); }
57 
58     template<typename MatType>
analyzePattern(const MatType &)59     DiagonalPreconditioner& analyzePattern(const MatType& )
60     {
61       return *this;
62     }
63 
64     template<typename MatType>
factorize(const MatType & mat)65     DiagonalPreconditioner& factorize(const MatType& mat)
66     {
67       m_invdiag.resize(mat.cols());
68       for(int j=0; j<mat.outerSize(); ++j)
69       {
70         typename MatType::InnerIterator it(mat,j);
71         while(it && it.index()!=j) ++it;
72         if(it && it.index()==j && it.value()!=Scalar(0))
73           m_invdiag(j) = Scalar(1)/it.value();
74         else
75           m_invdiag(j) = Scalar(1);
76       }
77       m_isInitialized = true;
78       return *this;
79     }
80 
81     template<typename MatType>
compute(const MatType & mat)82     DiagonalPreconditioner& compute(const MatType& mat)
83     {
84       return factorize(mat);
85     }
86 
87     /** \internal */
88     template<typename Rhs, typename Dest>
_solve_impl(const Rhs & b,Dest & x)89     void _solve_impl(const Rhs& b, Dest& x) const
90     {
91       x = m_invdiag.array() * b.array() ;
92     }
93 
94     template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs>
solve(const MatrixBase<Rhs> & b)95     solve(const MatrixBase<Rhs>& b) const
96     {
97       eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
98       eigen_assert(m_invdiag.size()==b.rows()
99                 && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
100       return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived());
101     }
102 
info()103     ComputationInfo info() { return Success; }
104 
105   protected:
106     Vector m_invdiag;
107     bool m_isInitialized;
108 };
109 
110 /** \ingroup IterativeLinearSolvers_Module
111   * \brief Jacobi preconditioner for LeastSquaresConjugateGradient
112   *
113   * This class allows to approximately solve for A' A x  = A' b problems assuming A' A is a diagonal matrix.
114   * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
115     \code
116     (A.adjoint() * A).diagonal().asDiagonal() * x = b
117     \endcode
118   *
119   * \tparam _Scalar the type of the scalar.
120   *
121   * \implsparsesolverconcept
122   *
123   * The diagonal entries are pre-inverted and stored into a dense vector.
124   *
125   * \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner
126   */
127 template <typename _Scalar>
128 class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar>
129 {
130     typedef _Scalar Scalar;
131     typedef typename NumTraits<Scalar>::Real RealScalar;
132     typedef DiagonalPreconditioner<_Scalar> Base;
133     using Base::m_invdiag;
134   public:
135 
LeastSquareDiagonalPreconditioner()136     LeastSquareDiagonalPreconditioner() : Base() {}
137 
138     template<typename MatType>
LeastSquareDiagonalPreconditioner(const MatType & mat)139     explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base()
140     {
141       compute(mat);
142     }
143 
144     template<typename MatType>
analyzePattern(const MatType &)145     LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& )
146     {
147       return *this;
148     }
149 
150     template<typename MatType>
factorize(const MatType & mat)151     LeastSquareDiagonalPreconditioner& factorize(const MatType& mat)
152     {
153       // Compute the inverse squared-norm of each column of mat
154       m_invdiag.resize(mat.cols());
155       for(Index j=0; j<mat.outerSize(); ++j)
156       {
157         RealScalar sum = mat.innerVector(j).squaredNorm();
158         if(sum>0)
159           m_invdiag(j) = RealScalar(1)/sum;
160         else
161           m_invdiag(j) = RealScalar(1);
162       }
163       Base::m_isInitialized = true;
164       return *this;
165     }
166 
167     template<typename MatType>
compute(const MatType & mat)168     LeastSquareDiagonalPreconditioner& compute(const MatType& mat)
169     {
170       return factorize(mat);
171     }
172 
info()173     ComputationInfo info() { return Success; }
174 
175   protected:
176 };
177 
178 /** \ingroup IterativeLinearSolvers_Module
179   * \brief A naive preconditioner which approximates any matrix as the identity matrix
180   *
181   * \implsparsesolverconcept
182   *
183   * \sa class DiagonalPreconditioner
184   */
185 class IdentityPreconditioner
186 {
187   public:
188 
IdentityPreconditioner()189     IdentityPreconditioner() {}
190 
191     template<typename MatrixType>
IdentityPreconditioner(const MatrixType &)192     explicit IdentityPreconditioner(const MatrixType& ) {}
193 
194     template<typename MatrixType>
analyzePattern(const MatrixType &)195     IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
196 
197     template<typename MatrixType>
factorize(const MatrixType &)198     IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }
199 
200     template<typename MatrixType>
compute(const MatrixType &)201     IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
202 
203     template<typename Rhs>
solve(const Rhs & b)204     inline const Rhs& solve(const Rhs& b) const { return b; }
205 
info()206     ComputationInfo info() { return Success; }
207 };
208 
209 } // end namespace Eigen
210 
211 #endif // EIGEN_BASIC_PRECONDITIONERS_H
212