• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_NO_STATIC_ASSERT
11 
12 #include "main.h"
13 
basicStuff(const MatrixType & m)14 template<typename MatrixType> void basicStuff(const MatrixType& m)
15 {
16   typedef typename MatrixType::Index Index;
17   typedef typename MatrixType::Scalar Scalar;
18   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
19   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
20 
21   Index rows = m.rows();
22   Index cols = m.cols();
23 
24   // this test relies a lot on Random.h, and there's not much more that we can do
25   // to test it, hence I consider that we will have tested Random.h
26   MatrixType m1 = MatrixType::Random(rows, cols),
27              m2 = MatrixType::Random(rows, cols),
28              m3(rows, cols),
29              mzero = MatrixType::Zero(rows, cols),
30              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
31   VectorType v1 = VectorType::Random(rows),
32              vzero = VectorType::Zero(rows);
33   SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
34 
35   Scalar x = 0;
36   while(x == Scalar(0)) x = internal::random<Scalar>();
37 
38   Index r = internal::random<Index>(0, rows-1),
39         c = internal::random<Index>(0, cols-1);
40 
41   m1.coeffRef(r,c) = x;
42   VERIFY_IS_APPROX(x, m1.coeff(r,c));
43   m1(r,c) = x;
44   VERIFY_IS_APPROX(x, m1(r,c));
45   v1.coeffRef(r) = x;
46   VERIFY_IS_APPROX(x, v1.coeff(r));
47   v1(r) = x;
48   VERIFY_IS_APPROX(x, v1(r));
49   v1[r] = x;
50   VERIFY_IS_APPROX(x, v1[r]);
51 
52   VERIFY_IS_APPROX(               v1,    v1);
53   VERIFY_IS_NOT_APPROX(           v1,    2*v1);
54   VERIFY_IS_MUCH_SMALLER_THAN(    vzero, v1);
55   VERIFY_IS_MUCH_SMALLER_THAN(  vzero, v1.squaredNorm());
56   VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1,    v1);
57   VERIFY_IS_APPROX(               vzero, v1-v1);
58   VERIFY_IS_APPROX(               m1,    m1);
59   VERIFY_IS_NOT_APPROX(           m1,    2*m1);
60   VERIFY_IS_MUCH_SMALLER_THAN(    mzero, m1);
61   VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1,    m1);
62   VERIFY_IS_APPROX(               mzero, m1-m1);
63 
64   // always test operator() on each read-only expression class,
65   // in order to check const-qualifiers.
66   // indeed, if an expression class (here Zero) is meant to be read-only,
67   // hence has no _write() method, the corresponding MatrixBase method (here zero())
68   // should return a const-qualified object so that it is the const-qualified
69   // operator() that gets called, which in turn calls _read().
70   VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
71 
72   // now test copying a row-vector into a (column-)vector and conversely.
73   square.col(r) = square.row(r).eval();
74   Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
75   Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
76   rv = square.row(r);
77   cv = square.col(r);
78 
79   VERIFY_IS_APPROX(rv, cv.transpose());
80 
81   if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
82   {
83     VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
84   }
85 
86   if(cols!=1 && rows!=1)
87   {
88     VERIFY_RAISES_ASSERT(m1[0]);
89     VERIFY_RAISES_ASSERT((m1+m1)[0]);
90   }
91 
92   VERIFY_IS_APPROX(m3 = m1,m1);
93   MatrixType m4;
94   VERIFY_IS_APPROX(m4 = m1,m1);
95 
96   m3.real() = m1.real();
97   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
98   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
99 
100   // check == / != operators
101   VERIFY(m1==m1);
102   VERIFY(m1!=m2);
103   VERIFY(!(m1==m2));
104   VERIFY(!(m1!=m1));
105   m1 = m2;
106   VERIFY(m1==m2);
107   VERIFY(!(m1!=m2));
108 
109   // check automatic transposition
110   sm2.setZero();
111   for(typename MatrixType::Index i=0;i<rows;++i)
112     sm2.col(i) = sm1.row(i);
113   VERIFY_IS_APPROX(sm2,sm1.transpose());
114 
115   sm2.setZero();
116   for(typename MatrixType::Index i=0;i<rows;++i)
117     sm2.col(i).noalias() = sm1.row(i);
118   VERIFY_IS_APPROX(sm2,sm1.transpose());
119 
120   sm2.setZero();
121   for(typename MatrixType::Index i=0;i<rows;++i)
122     sm2.col(i).noalias() += sm1.row(i);
123   VERIFY_IS_APPROX(sm2,sm1.transpose());
124 
125   sm2.setZero();
126   for(typename MatrixType::Index i=0;i<rows;++i)
127     sm2.col(i).noalias() -= sm1.row(i);
128   VERIFY_IS_APPROX(sm2,-sm1.transpose());
129 
130   // check ternary usage
131   {
132     bool b = internal::random<int>(0,10)>5;
133     m3 = b ? m1 : m2;
134     if(b) VERIFY_IS_APPROX(m3,m1);
135     else  VERIFY_IS_APPROX(m3,m2);
136     m3 = b ? -m1 : m2;
137     if(b) VERIFY_IS_APPROX(m3,-m1);
138     else  VERIFY_IS_APPROX(m3,m2);
139     m3 = b ? m1 : -m2;
140     if(b) VERIFY_IS_APPROX(m3,m1);
141     else  VERIFY_IS_APPROX(m3,-m2);
142   }
143 }
144 
basicStuffComplex(const MatrixType & m)145 template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
146 {
147   typedef typename MatrixType::Index Index;
148   typedef typename MatrixType::Scalar Scalar;
149   typedef typename NumTraits<Scalar>::Real RealScalar;
150   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
151 
152   Index rows = m.rows();
153   Index cols = m.cols();
154 
155   Scalar s1 = internal::random<Scalar>(),
156          s2 = internal::random<Scalar>();
157 
158   VERIFY(numext::real(s1)==numext::real_ref(s1));
159   VERIFY(numext::imag(s1)==numext::imag_ref(s1));
160   numext::real_ref(s1) = numext::real(s2);
161   numext::imag_ref(s1) = numext::imag(s2);
162   VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
163   // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
164 
165   RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
166                  rm2 = RealMatrixType::Random(rows,cols);
167   MatrixType cm(rows,cols);
168   cm.real() = rm1;
169   cm.imag() = rm2;
170   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
171   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
172   rm1.setZero();
173   rm2.setZero();
174   rm1 = cm.real();
175   rm2 = cm.imag();
176   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
177   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
178   cm.real().setZero();
179   VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
180   VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
181 }
182 
183 #ifdef EIGEN_TEST_PART_2
casting()184 void casting()
185 {
186   Matrix4f m = Matrix4f::Random(), m2;
187   Matrix4d n = m.cast<double>();
188   VERIFY(m.isApprox(n.cast<float>()));
189   m2 = m.cast<float>(); // check the specialization when NewType == Type
190   VERIFY(m.isApprox(m2));
191 }
192 #endif
193 
194 template <typename Scalar>
fixedSizeMatrixConstruction()195 void fixedSizeMatrixConstruction()
196 {
197   Scalar raw[4];
198   for(int k=0; k<4; ++k)
199     raw[k] = internal::random<Scalar>();
200 
201   {
202     Matrix<Scalar,4,1> m(raw);
203     Array<Scalar,4,1> a(raw);
204     for(int k=0; k<4; ++k) VERIFY(m(k) == raw[k]);
205     for(int k=0; k<4; ++k) VERIFY(a(k) == raw[k]);
206     VERIFY_IS_EQUAL(m,(Matrix<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3])));
207     VERIFY((a==(Array<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))).all());
208   }
209   {
210     Matrix<Scalar,3,1> m(raw);
211     Array<Scalar,3,1> a(raw);
212     for(int k=0; k<3; ++k) VERIFY(m(k) == raw[k]);
213     for(int k=0; k<3; ++k) VERIFY(a(k) == raw[k]);
214     VERIFY_IS_EQUAL(m,(Matrix<Scalar,3,1>(raw[0],raw[1],raw[2])));
215     VERIFY((a==Array<Scalar,3,1>(raw[0],raw[1],raw[2])).all());
216   }
217   {
218     Matrix<Scalar,2,1> m(raw), m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
219     Array<Scalar,2,1> a(raw),  a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
220     for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
221     for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
222     VERIFY_IS_EQUAL(m,(Matrix<Scalar,2,1>(raw[0],raw[1])));
223     VERIFY((a==Array<Scalar,2,1>(raw[0],raw[1])).all());
224     for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
225     for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
226   }
227   {
228     Matrix<Scalar,1,2> m(raw),
229                        m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ),
230                        m3( (int(raw[0])), (int(raw[1])) ),
231                        m4( (float(raw[0])), (float(raw[1])) );
232     Array<Scalar,1,2> a(raw),  a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
233     for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
234     for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
235     VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,2>(raw[0],raw[1])));
236     VERIFY((a==Array<Scalar,1,2>(raw[0],raw[1])).all());
237     for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
238     for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
239     for(int k=0; k<2; ++k) VERIFY(m3(k) == int(raw[k]));
240     for(int k=0; k<2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k])));
241   }
242   {
243     Matrix<Scalar,1,1> m(raw), m1(raw[0]), m2( (DenseIndex(raw[0])) ), m3( (int(raw[0])) );
244     Array<Scalar,1,1> a(raw), a1(raw[0]), a2( (DenseIndex(raw[0])) );
245     VERIFY(m(0) == raw[0]);
246     VERIFY(a(0) == raw[0]);
247     VERIFY(m1(0) == raw[0]);
248     VERIFY(a1(0) == raw[0]);
249     VERIFY(m2(0) == DenseIndex(raw[0]));
250     VERIFY(a2(0) == DenseIndex(raw[0]));
251     VERIFY(m3(0) == int(raw[0]));
252     VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,1>(raw[0])));
253     VERIFY((a==Array<Scalar,1,1>(raw[0])).all());
254   }
255 }
256 
test_basicstuff()257 void test_basicstuff()
258 {
259   for(int i = 0; i < g_repeat; i++) {
260     CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
261     CALL_SUBTEST_2( basicStuff(Matrix4d()) );
262     CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
263     CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
264     CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
265     CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
266     CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
267 
268     CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
269     CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
270   }
271 
272   CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
273   CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>());
274   CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
275   CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>());
276   CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>());
277   CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>());
278 
279   CALL_SUBTEST_2(casting());
280 }
281