• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_AUTODIFF_SCALAR_H
11 #define EIGEN_AUTODIFF_SCALAR_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 template<typename A, typename B>
18 struct make_coherent_impl {
runmake_coherent_impl19   static void run(A&, B&) {}
20 };
21 
22 // resize a to match b is a.size()==0, and conversely.
23 template<typename A, typename B>
make_coherent(const A & a,const B & b)24 void make_coherent(const A& a, const B&b)
25 {
26   make_coherent_impl<A,B>::run(a.const_cast_derived(), b.const_cast_derived());
27 }
28 
29 template<typename _DerType, bool Enable> struct auto_diff_special_op;
30 
31 } // end namespace internal
32 
33 template<typename _DerType> class AutoDiffScalar;
34 
35 template<typename NewDerType>
MakeAutoDiffScalar(const typename NewDerType::Scalar & value,const NewDerType & der)36 inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType &der) {
37   return AutoDiffScalar<NewDerType>(value,der);
38 }
39 
40 /** \class AutoDiffScalar
41   * \brief A scalar type replacement with automatic differentation capability
42   *
43   * \param _DerType the vector type used to store/represent the derivatives. The base scalar type
44   *                 as well as the number of derivatives to compute are determined from this type.
45   *                 Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf
46   *                 if the number of derivatives is not known at compile time, and/or, the number
47   *                 of derivatives is large.
48   *                 Note that _DerType can also be a reference (e.g., \c VectorXf&) to wrap a
49   *                 existing vector into an AutoDiffScalar.
50   *                 Finally, _DerType can also be any Eigen compatible expression.
51   *
52   * This class represents a scalar value while tracking its respective derivatives using Eigen's expression
53   * template mechanism.
54   *
55   * It supports the following list of global math function:
56   *  - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
57   *  - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
58   *  - internal::conj, internal::real, internal::imag, numext::abs2.
59   *
60   * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
61   * in that case, the expression template mechanism only occurs at the top Matrix level,
62   * while derivatives are computed right away.
63   *
64   */
65 
66 template<typename _DerType>
67 class AutoDiffScalar
68   : public internal::auto_diff_special_op
69             <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
70                                           typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value>
71 {
72   public:
73     typedef internal::auto_diff_special_op
74             <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
75                        typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value> Base;
76     typedef typename internal::remove_all<_DerType>::type DerType;
77     typedef typename internal::traits<DerType>::Scalar Scalar;
78     typedef typename NumTraits<Scalar>::Real Real;
79 
80     using Base::operator+;
81     using Base::operator*;
82 
83     /** Default constructor without any initialization. */
AutoDiffScalar()84     AutoDiffScalar() {}
85 
86     /** Constructs an active scalar from its \a value,
87         and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */
AutoDiffScalar(const Scalar & value,int nbDer,int derNumber)88     AutoDiffScalar(const Scalar& value, int nbDer, int derNumber)
89       : m_value(value), m_derivatives(DerType::Zero(nbDer))
90     {
91       m_derivatives.coeffRef(derNumber) = Scalar(1);
92     }
93 
94     /** Conversion from a scalar constant to an active scalar.
95       * The derivatives are set to zero. */
AutoDiffScalar(const Real & value)96     /*explicit*/ AutoDiffScalar(const Real& value)
97       : m_value(value)
98     {
99       if(m_derivatives.size()>0)
100         m_derivatives.setZero();
101     }
102 
103     /** Constructs an active scalar from its \a value and derivatives \a der */
AutoDiffScalar(const Scalar & value,const DerType & der)104     AutoDiffScalar(const Scalar& value, const DerType& der)
105       : m_value(value), m_derivatives(der)
106     {}
107 
108     template<typename OtherDerType>
109     AutoDiffScalar(const AutoDiffScalar<OtherDerType>& other
110 #ifndef EIGEN_PARSED_BY_DOXYGEN
111     , typename internal::enable_if<internal::is_same<Scalar, typename internal::traits<typename internal::remove_all<OtherDerType>::type>::Scalar>::value,void*>::type = 0
112 #endif
113     )
114       : m_value(other.value()), m_derivatives(other.derivatives())
115     {}
116 
117     friend  std::ostream & operator << (std::ostream & s, const AutoDiffScalar& a)
118     {
119       return s << a.value();
120     }
121 
AutoDiffScalar(const AutoDiffScalar & other)122     AutoDiffScalar(const AutoDiffScalar& other)
123       : m_value(other.value()), m_derivatives(other.derivatives())
124     {}
125 
126     template<typename OtherDerType>
127     inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other)
128     {
129       m_value = other.value();
130       m_derivatives = other.derivatives();
131       return *this;
132     }
133 
134     inline AutoDiffScalar& operator=(const AutoDiffScalar& other)
135     {
136       m_value = other.value();
137       m_derivatives = other.derivatives();
138       return *this;
139     }
140 
141     inline AutoDiffScalar& operator=(const Scalar& other)
142     {
143       m_value = other;
144       if(m_derivatives.size()>0)
145         m_derivatives.setZero();
146       return *this;
147     }
148 
149 //     inline operator const Scalar& () const { return m_value; }
150 //     inline operator Scalar& () { return m_value; }
151 
value()152     inline const Scalar& value() const { return m_value; }
value()153     inline Scalar& value() { return m_value; }
154 
derivatives()155     inline const DerType& derivatives() const { return m_derivatives; }
derivatives()156     inline DerType& derivatives() { return m_derivatives; }
157 
158     inline bool operator< (const Scalar& other) const  { return m_value <  other; }
159     inline bool operator<=(const Scalar& other) const  { return m_value <= other; }
160     inline bool operator> (const Scalar& other) const  { return m_value >  other; }
161     inline bool operator>=(const Scalar& other) const  { return m_value >= other; }
162     inline bool operator==(const Scalar& other) const  { return m_value == other; }
163     inline bool operator!=(const Scalar& other) const  { return m_value != other; }
164 
165     friend inline bool operator< (const Scalar& a, const AutoDiffScalar& b) { return a <  b.value(); }
166     friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); }
167     friend inline bool operator> (const Scalar& a, const AutoDiffScalar& b) { return a >  b.value(); }
168     friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); }
169     friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); }
170     friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); }
171 
172     template<typename OtherDerType> inline bool operator< (const AutoDiffScalar<OtherDerType>& b) const  { return m_value <  b.value(); }
173     template<typename OtherDerType> inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value <= b.value(); }
174     template<typename OtherDerType> inline bool operator> (const AutoDiffScalar<OtherDerType>& b) const  { return m_value >  b.value(); }
175     template<typename OtherDerType> inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value >= b.value(); }
176     template<typename OtherDerType> inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const  { return m_value == b.value(); }
177     template<typename OtherDerType> inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value != b.value(); }
178 
179     inline const AutoDiffScalar<DerType&> operator+(const Scalar& other) const
180     {
181       return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
182     }
183 
184     friend inline const AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b)
185     {
186       return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
187     }
188 
189 //     inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
190 //     {
191 //       return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
192 //     }
193 
194 //     friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b)
195 //     {
196 //       return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
197 //     }
198 
199     inline AutoDiffScalar& operator+=(const Scalar& other)
200     {
201       value() += other;
202       return *this;
203     }
204 
205     template<typename OtherDerType>
206     inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >
207     operator+(const AutoDiffScalar<OtherDerType>& other) const
208     {
209       internal::make_coherent(m_derivatives, other.derivatives());
210       return AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >(
211         m_value + other.value(),
212         m_derivatives + other.derivatives());
213     }
214 
215     template<typename OtherDerType>
216     inline AutoDiffScalar&
217     operator+=(const AutoDiffScalar<OtherDerType>& other)
218     {
219       (*this) = (*this) + other;
220       return *this;
221     }
222 
223     inline const AutoDiffScalar<DerType&> operator-(const Scalar& b) const
224     {
225       return AutoDiffScalar<DerType&>(m_value - b, m_derivatives);
226     }
227 
228     friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
229     operator-(const Scalar& a, const AutoDiffScalar& b)
230     {
231       return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
232             (a - b.value(), -b.derivatives());
233     }
234 
235     inline AutoDiffScalar& operator-=(const Scalar& other)
236     {
237       value() -= other;
238       return *this;
239     }
240 
241     template<typename OtherDerType>
242     inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >
243     operator-(const AutoDiffScalar<OtherDerType>& other) const
244     {
245       internal::make_coherent(m_derivatives, other.derivatives());
246       return AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >(
247         m_value - other.value(),
248         m_derivatives - other.derivatives());
249     }
250 
251     template<typename OtherDerType>
252     inline AutoDiffScalar&
253     operator-=(const AutoDiffScalar<OtherDerType>& other)
254     {
255       *this = *this - other;
256       return *this;
257     }
258 
259     inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
260     operator-() const
261     {
262       return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >(
263         -m_value,
264         -m_derivatives);
265     }
266 
267     inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
268     operator*(const Scalar& other) const
269     {
270       return MakeAutoDiffScalar(m_value * other, m_derivatives * other);
271     }
272 
273     friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
274     operator*(const Scalar& other, const AutoDiffScalar& a)
275     {
276       return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other);
277     }
278 
279 //     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
280 //     operator*(const Real& other) const
281 //     {
282 //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
283 //         m_value * other,
284 //         (m_derivatives * other));
285 //     }
286 //
287 //     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
288 //     operator*(const Real& other, const AutoDiffScalar& a)
289 //     {
290 //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
291 //         a.value() * other,
292 //         a.derivatives() * other);
293 //     }
294 
295     inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
296     operator/(const Scalar& other) const
297     {
298       return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1)/other)));
299     }
300 
301     friend inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) >
302     operator/(const Scalar& other, const AutoDiffScalar& a)
303     {
304       return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value()*a.value())));
305     }
306 
307 //     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
308 //     operator/(const Real& other) const
309 //     {
310 //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
311 //         m_value / other,
312 //         (m_derivatives * (Real(1)/other)));
313 //     }
314 //
315 //     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
316 //     operator/(const Real& other, const AutoDiffScalar& a)
317 //     {
318 //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
319 //         other / a.value(),
320 //         a.derivatives() * (-Real(1)/other));
321 //     }
322 
323     template<typename OtherDerType>
324     inline const AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(
325         CwiseBinaryOp<internal::scalar_difference_op<Scalar> EIGEN_COMMA
326           const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product) EIGEN_COMMA
327           const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) >,Scalar,product) >
328     operator/(const AutoDiffScalar<OtherDerType>& other) const
329     {
330       internal::make_coherent(m_derivatives, other.derivatives());
331       return MakeAutoDiffScalar(
332         m_value / other.value(),
333           ((m_derivatives * other.value()) - (other.derivatives() * m_value))
334         * (Scalar(1)/(other.value()*other.value())));
335     }
336 
337     template<typename OtherDerType>
338     inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
339         const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DerType,Scalar,product),
340         const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<OtherDerType>::type,Scalar,product) > >
341     operator*(const AutoDiffScalar<OtherDerType>& other) const
342     {
343       internal::make_coherent(m_derivatives, other.derivatives());
344       return MakeAutoDiffScalar(
345         m_value * other.value(),
346         (m_derivatives * other.value()) + (other.derivatives() * m_value));
347     }
348 
349     inline AutoDiffScalar& operator*=(const Scalar& other)
350     {
351       *this = *this * other;
352       return *this;
353     }
354 
355     template<typename OtherDerType>
356     inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other)
357     {
358       *this = *this * other;
359       return *this;
360     }
361 
362     inline AutoDiffScalar& operator/=(const Scalar& other)
363     {
364       *this = *this / other;
365       return *this;
366     }
367 
368     template<typename OtherDerType>
369     inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other)
370     {
371       *this = *this / other;
372       return *this;
373     }
374 
375   protected:
376     Scalar m_value;
377     DerType m_derivatives;
378 
379 };
380 
381 namespace internal {
382 
383 template<typename _DerType>
384 struct auto_diff_special_op<_DerType, true>
385 //   : auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
386 //                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value>
387 {
388   typedef typename remove_all<_DerType>::type DerType;
389   typedef typename traits<DerType>::Scalar Scalar;
390   typedef typename NumTraits<Scalar>::Real Real;
391 
392 //   typedef auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
393 //                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base;
394 
395 //   using Base::operator+;
396 //   using Base::operator+=;
397 //   using Base::operator-;
398 //   using Base::operator-=;
399 //   using Base::operator*;
400 //   using Base::operator*=;
401 
402   const AutoDiffScalar<_DerType>& derived() const { return *static_cast<const AutoDiffScalar<_DerType>*>(this); }
403   AutoDiffScalar<_DerType>& derived() { return *static_cast<AutoDiffScalar<_DerType>*>(this); }
404 
405 
406   inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
407   {
408     return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives());
409   }
410 
411   friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<_DerType>& b)
412   {
413     return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
414   }
415 
416   inline AutoDiffScalar<_DerType>& operator+=(const Real& other)
417   {
418     derived().value() += other;
419     return derived();
420   }
421 
422 
423   inline const AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >
424   operator*(const Real& other) const
425   {
426     return AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar,Real> >, DerType>::Type >(
427       derived().value() * other,
428       derived().derivatives() * other);
429   }
430 
431   friend inline const AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >
432   operator*(const Real& other, const AutoDiffScalar<_DerType>& a)
433   {
434     return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real,Scalar> >, DerType>::Type >(
435       a.value() * other,
436       a.derivatives() * other);
437   }
438 
439   inline AutoDiffScalar<_DerType>& operator*=(const Scalar& other)
440   {
441     *this = *this * other;
442     return derived();
443   }
444 };
445 
446 template<typename _DerType>
447 struct auto_diff_special_op<_DerType, false>
448 {
449   void operator*() const;
450   void operator-() const;
451   void operator+() const;
452 };
453 
454 template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B>
455 struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> {
456   typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
457   static void run(A& a, B& b) {
458     if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
459     {
460       a.resize(b.size());
461       a.setZero();
462     }
463   }
464 };
465 
466 template<typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
467 struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
468   typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
469   static void run(A& a, B& b) {
470     if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
471     {
472       b.resize(a.size());
473       b.setZero();
474     }
475   }
476 };
477 
478 template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols,
479          typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
480 struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>,
481                              Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
482   typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
483   typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
484   static void run(A& a, B& b) {
485     if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
486     {
487       a.resize(b.size());
488       a.setZero();
489     }
490     else if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
491     {
492       b.resize(a.size());
493       b.setZero();
494     }
495   }
496 };
497 
498 } // end namespace internal
499 
500 template<typename DerType, typename BinOp>
501 struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,typename DerType::Scalar,BinOp>
502 {
503   typedef AutoDiffScalar<DerType> ReturnType;
504 };
505 
506 template<typename DerType, typename BinOp>
507 struct ScalarBinaryOpTraits<typename DerType::Scalar,AutoDiffScalar<DerType>, BinOp>
508 {
509   typedef AutoDiffScalar<DerType> ReturnType;
510 };
511 
512 
513 // The following is an attempt to let Eigen's known about expression template, but that's more tricky!
514 
515 // template<typename DerType, typename BinOp>
516 // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp>
517 // {
518 //   enum { Defined = 1 };
519 //   typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType;
520 // };
521 //
522 // template<typename DerType1,typename DerType2, typename BinOp>
523 // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp>
524 // {
525 //   enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value };
526 //   typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType;
527 // };
528 
529 #define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \
530   template<typename DerType> \
531   inline const Eigen::AutoDiffScalar< \
532   EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename Eigen::internal::remove_all<DerType>::type, typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar, product) > \
533   FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
534     using namespace Eigen; \
535     EIGEN_UNUSED typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \
536     CODE; \
537   }
538 
539 template<typename DerType>
540 inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x)  { return x; }
541 template<typename DerType>
542 inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x)  { return x; }
543 template<typename DerType>
544 inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&)    { return 0.; }
545 template<typename DerType, typename T>
546 inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const T& y) {
547   typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
548   return (x <= y ? ADS(x) : ADS(y));
549 }
550 template<typename DerType, typename T>
551 inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const T& y) {
552   typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
553   return (x >= y ? ADS(x) : ADS(y));
554 }
555 template<typename DerType, typename T>
556 inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const T& x, const AutoDiffScalar<DerType>& y) {
557   typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
558   return (x < y ? ADS(x) : ADS(y));
559 }
560 template<typename DerType, typename T>
561 inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const T& x, const AutoDiffScalar<DerType>& y) {
562   typedef AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> ADS;
563   return (x > y ? ADS(x) : ADS(y));
564 }
565 template<typename DerType>
566 inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (min)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
567   return (x.value() < y.value() ? x : y);
568 }
569 template<typename DerType>
570 inline AutoDiffScalar<typename Eigen::internal::remove_all<DerType>::type::PlainObject> (max)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) {
571   return (x.value() >= y.value() ? x : y);
572 }
573 
574 
575 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs,
576   using std::abs;
577   return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );)
578 
579 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2,
580   using numext::abs2;
581   return Eigen::MakeAutoDiffScalar(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));)
582 
583 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt,
584   using std::sqrt;
585   Scalar sqrtx = sqrt(x.value());
586   return Eigen::MakeAutoDiffScalar(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));)
587 
588 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos,
589   using std::cos;
590   using std::sin;
591   return Eigen::MakeAutoDiffScalar(cos(x.value()), x.derivatives() * (-sin(x.value())));)
592 
593 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin,
594   using std::sin;
595   using std::cos;
596   return Eigen::MakeAutoDiffScalar(sin(x.value()),x.derivatives() * cos(x.value()));)
597 
598 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp,
599   using std::exp;
600   Scalar expx = exp(x.value());
601   return Eigen::MakeAutoDiffScalar(expx,x.derivatives() * expx);)
602 
603 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log,
604   using std::log;
605   return Eigen::MakeAutoDiffScalar(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));)
606 
607 template<typename DerType>
608 inline const Eigen::AutoDiffScalar<
609 EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(typename internal::remove_all<DerType>::type,typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar,product) >
610 pow(const Eigen::AutoDiffScalar<DerType> &x, const typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar &y)
611 {
612   using namespace Eigen;
613   using std::pow;
614   return Eigen::MakeAutoDiffScalar(pow(x.value(),y), x.derivatives() * (y * pow(x.value(),y-1)));
615 }
616 
617 
618 template<typename DerTypeA,typename DerTypeB>
619 inline const AutoDiffScalar<Matrix<typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar,Dynamic,1> >
620 atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b)
621 {
622   using std::atan2;
623   typedef typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar Scalar;
624   typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS;
625   PlainADS ret;
626   ret.value() = atan2(a.value(), b.value());
627 
628   Scalar squared_hypot = a.value() * a.value() + b.value() * b.value();
629 
630   // if (squared_hypot==0) the derivation is undefined and the following results in a NaN:
631   ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot;
632 
633   return ret;
634 }
635 
636 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan,
637   using std::tan;
638   using std::cos;
639   return Eigen::MakeAutoDiffScalar(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));)
640 
641 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin,
642   using std::sqrt;
643   using std::asin;
644   return Eigen::MakeAutoDiffScalar(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));)
645 
646 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos,
647   using std::sqrt;
648   using std::acos;
649   return Eigen::MakeAutoDiffScalar(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));)
650 
651 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh,
652   using std::cosh;
653   using std::tanh;
654   return Eigen::MakeAutoDiffScalar(tanh(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cosh(x.value()))));)
655 
656 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh,
657   using std::sinh;
658   using std::cosh;
659   return Eigen::MakeAutoDiffScalar(sinh(x.value()),x.derivatives() * cosh(x.value()));)
660 
661 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh,
662   using std::sinh;
663   using std::cosh;
664   return Eigen::MakeAutoDiffScalar(cosh(x.value()),x.derivatives() * sinh(x.value()));)
665 
666 #undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY
667 
668 template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> >
669   : NumTraits< typename NumTraits<typename internal::remove_all<DerType>::type::Scalar>::Real >
670 {
671   typedef typename internal::remove_all<DerType>::type DerTypeCleaned;
672   typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real,DerTypeCleaned::RowsAtCompileTime,DerTypeCleaned::ColsAtCompileTime,
673                                 0, DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime> > Real;
674   typedef AutoDiffScalar<DerType> NonInteger;
675   typedef AutoDiffScalar<DerType> Nested;
676   typedef typename NumTraits<typename DerTypeCleaned::Scalar>::Literal Literal;
677   enum{
678     RequireInitialization = 1
679   };
680 };
681 
682 }
683 
684 #endif // EIGEN_AUTODIFF_SCALAR_H
685