• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_CALLBACK_H_
6 #define BASE_CALLBACK_H_
7 
8 #include "base/callback_forward.h"
9 #include "base/callback_internal.h"
10 
11 // NOTE: Header files that do not require the full definition of Callback or
12 // Closure should #include "base/callback_forward.h" instead of this file.
13 
14 // -----------------------------------------------------------------------------
15 // Introduction
16 // -----------------------------------------------------------------------------
17 //
18 // The templated Callback class is a generalized function object. Together
19 // with the Bind() function in bind.h, they provide a type-safe method for
20 // performing partial application of functions.
21 //
22 // Partial application (or "currying") is the process of binding a subset of
23 // a function's arguments to produce another function that takes fewer
24 // arguments. This can be used to pass around a unit of delayed execution,
25 // much like lexical closures are used in other languages. For example, it
26 // is used in Chromium code to schedule tasks on different MessageLoops.
27 //
28 // A callback with no unbound input parameters (base::Callback<void()>)
29 // is called a base::Closure. Note that this is NOT the same as what other
30 // languages refer to as a closure -- it does not retain a reference to its
31 // enclosing environment.
32 //
33 // MEMORY MANAGEMENT AND PASSING
34 //
35 // The Callback objects themselves should be passed by const-reference, and
36 // stored by copy. They internally store their state via a refcounted class
37 // and thus do not need to be deleted.
38 //
39 // The reason to pass via a const-reference is to avoid unnecessary
40 // AddRef/Release pairs to the internal state.
41 //
42 //
43 // -----------------------------------------------------------------------------
44 // Quick reference for basic stuff
45 // -----------------------------------------------------------------------------
46 //
47 // BINDING A BARE FUNCTION
48 //
49 //   int Return5() { return 5; }
50 //   base::Callback<int()> func_cb = base::Bind(&Return5);
51 //   LOG(INFO) << func_cb.Run();  // Prints 5.
52 //
53 // BINDING A CLASS METHOD
54 //
55 //   The first argument to bind is the member function to call, the second is
56 //   the object on which to call it.
57 //
58 //   class Ref : public base::RefCountedThreadSafe<Ref> {
59 //    public:
60 //     int Foo() { return 3; }
61 //     void PrintBye() { LOG(INFO) << "bye."; }
62 //   };
63 //   scoped_refptr<Ref> ref = new Ref();
64 //   base::Callback<void()> ref_cb = base::Bind(&Ref::Foo, ref);
65 //   LOG(INFO) << ref_cb.Run();  // Prints out 3.
66 //
67 //   By default the object must support RefCounted or you will get a compiler
68 //   error. If you're passing between threads, be sure it's
69 //   RefCountedThreadSafe! See "Advanced binding of member functions" below if
70 //   you don't want to use reference counting.
71 //
72 // RUNNING A CALLBACK
73 //
74 //   Callbacks can be run with their "Run" method, which has the same
75 //   signature as the template argument to the callback.
76 //
77 //   void DoSomething(const base::Callback<void(int, std::string)>& callback) {
78 //     callback.Run(5, "hello");
79 //   }
80 //
81 //   Callbacks can be run more than once (they don't get deleted or marked when
82 //   run). However, this precludes using base::Passed (see below).
83 //
84 //   void DoSomething(const base::Callback<double(double)>& callback) {
85 //     double myresult = callback.Run(3.14159);
86 //     myresult += callback.Run(2.71828);
87 //   }
88 //
89 // PASSING UNBOUND INPUT PARAMETERS
90 //
91 //   Unbound parameters are specified at the time a callback is Run(). They are
92 //   specified in the Callback template type:
93 //
94 //   void MyFunc(int i, const std::string& str) {}
95 //   base::Callback<void(int, const std::string&)> cb = base::Bind(&MyFunc);
96 //   cb.Run(23, "hello, world");
97 //
98 // PASSING BOUND INPUT PARAMETERS
99 //
100 //   Bound parameters are specified when you create thee callback as arguments
101 //   to Bind(). They will be passed to the function and the Run()ner of the
102 //   callback doesn't see those values or even know that the function it's
103 //   calling.
104 //
105 //   void MyFunc(int i, const std::string& str) {}
106 //   base::Callback<void()> cb = base::Bind(&MyFunc, 23, "hello world");
107 //   cb.Run();
108 //
109 //   A callback with no unbound input parameters (base::Callback<void()>)
110 //   is called a base::Closure. So we could have also written:
111 //
112 //   base::Closure cb = base::Bind(&MyFunc, 23, "hello world");
113 //
114 //   When calling member functions, bound parameters just go after the object
115 //   pointer.
116 //
117 //   base::Closure cb = base::Bind(&MyClass::MyFunc, this, 23, "hello world");
118 //
119 // PARTIAL BINDING OF PARAMETERS
120 //
121 //   You can specify some parameters when you create the callback, and specify
122 //   the rest when you execute the callback.
123 //
124 //   void MyFunc(int i, const std::string& str) {}
125 //   base::Callback<void(const std::string&)> cb = base::Bind(&MyFunc, 23);
126 //   cb.Run("hello world");
127 //
128 //   When calling a function bound parameters are first, followed by unbound
129 //   parameters.
130 //
131 //
132 // -----------------------------------------------------------------------------
133 // Quick reference for advanced binding
134 // -----------------------------------------------------------------------------
135 //
136 // BINDING A CLASS METHOD WITH WEAK POINTERS
137 //
138 //   base::Bind(&MyClass::Foo, GetWeakPtr());
139 //
140 //   The callback will not be run if the object has already been destroyed.
141 //   DANGER: weak pointers are not threadsafe, so don't use this
142 //   when passing between threads!
143 //
144 // BINDING A CLASS METHOD WITH MANUAL LIFETIME MANAGEMENT
145 //
146 //   base::Bind(&MyClass::Foo, base::Unretained(this));
147 //
148 //   This disables all lifetime management on the object. You're responsible
149 //   for making sure the object is alive at the time of the call. You break it,
150 //   you own it!
151 //
152 // BINDING A CLASS METHOD AND HAVING THE CALLBACK OWN THE CLASS
153 //
154 //   MyClass* myclass = new MyClass;
155 //   base::Bind(&MyClass::Foo, base::Owned(myclass));
156 //
157 //   The object will be deleted when the callback is destroyed, even if it's
158 //   not run (like if you post a task during shutdown). Potentially useful for
159 //   "fire and forget" cases.
160 //
161 // IGNORING RETURN VALUES
162 //
163 //   Sometimes you want to call a function that returns a value in a callback
164 //   that doesn't expect a return value.
165 //
166 //   int DoSomething(int arg) { cout << arg << endl; }
167 //   base::Callback<void(int)> cb =
168 //       base::Bind(base::IgnoreResult(&DoSomething));
169 //
170 //
171 // -----------------------------------------------------------------------------
172 // Quick reference for binding parameters to Bind()
173 // -----------------------------------------------------------------------------
174 //
175 // Bound parameters are specified as arguments to Bind() and are passed to the
176 // function. A callback with no parameters or no unbound parameters is called a
177 // Closure (base::Callback<void()> and base::Closure are the same thing).
178 //
179 // PASSING PARAMETERS OWNED BY THE CALLBACK
180 //
181 //   void Foo(int* arg) { cout << *arg << endl; }
182 //   int* pn = new int(1);
183 //   base::Closure foo_callback = base::Bind(&foo, base::Owned(pn));
184 //
185 //   The parameter will be deleted when the callback is destroyed, even if it's
186 //   not run (like if you post a task during shutdown).
187 //
188 // PASSING PARAMETERS AS A scoped_ptr
189 //
190 //   void TakesOwnership(std::unique_ptr<Foo> arg) {}
191 //   std::unique_ptr<Foo> f(new Foo);
192 //   // f becomes null during the following call.
193 //   base::Closure cb = base::Bind(&TakesOwnership, base::Passed(&f));
194 //
195 //   Ownership of the parameter will be with the callback until the it is run,
196 //   when ownership is passed to the callback function. This means the callback
197 //   can only be run once. If the callback is never run, it will delete the
198 //   object when it's destroyed.
199 //
200 // PASSING PARAMETERS AS A scoped_refptr
201 //
202 //   void TakesOneRef(scoped_refptr<Foo> arg) {}
203 //   scoped_refptr<Foo> f(new Foo)
204 //   base::Closure cb = base::Bind(&TakesOneRef, f);
205 //
206 //   This should "just work." The closure will take a reference as long as it
207 //   is alive, and another reference will be taken for the called function.
208 //
209 // PASSING PARAMETERS BY REFERENCE
210 //
211 //   Const references are *copied* unless ConstRef is used. Example:
212 //
213 //   void foo(const int& arg) { printf("%d %p\n", arg, &arg); }
214 //   int n = 1;
215 //   base::Closure has_copy = base::Bind(&foo, n);
216 //   base::Closure has_ref = base::Bind(&foo, base::ConstRef(n));
217 //   n = 2;
218 //   foo(n);                        // Prints "2 0xaaaaaaaaaaaa"
219 //   has_copy.Run();                // Prints "1 0xbbbbbbbbbbbb"
220 //   has_ref.Run();                 // Prints "2 0xaaaaaaaaaaaa"
221 //
222 //   Normally parameters are copied in the closure. DANGER: ConstRef stores a
223 //   const reference instead, referencing the original parameter. This means
224 //   that you must ensure the object outlives the callback!
225 //
226 //
227 // -----------------------------------------------------------------------------
228 // Implementation notes
229 // -----------------------------------------------------------------------------
230 //
231 // WHERE IS THIS DESIGN FROM:
232 //
233 // The design Callback and Bind is heavily influenced by C++'s
234 // tr1::function/tr1::bind, and by the "Google Callback" system used inside
235 // Google.
236 //
237 //
238 // HOW THE IMPLEMENTATION WORKS:
239 //
240 // There are three main components to the system:
241 //   1) The Callback classes.
242 //   2) The Bind() functions.
243 //   3) The arguments wrappers (e.g., Unretained() and ConstRef()).
244 //
245 // The Callback classes represent a generic function pointer. Internally,
246 // it stores a refcounted piece of state that represents the target function
247 // and all its bound parameters.  Each Callback specialization has a templated
248 // constructor that takes an BindState<>*.  In the context of the constructor,
249 // the static type of this BindState<> pointer uniquely identifies the
250 // function it is representing, all its bound parameters, and a Run() method
251 // that is capable of invoking the target.
252 //
253 // Callback's constructor takes the BindState<>* that has the full static type
254 // and erases the target function type as well as the types of the bound
255 // parameters.  It does this by storing a pointer to the specific Run()
256 // function, and upcasting the state of BindState<>* to a
257 // BindStateBase*. This is safe as long as this BindStateBase pointer
258 // is only used with the stored Run() pointer.
259 //
260 // To BindState<> objects are created inside the Bind() functions.
261 // These functions, along with a set of internal templates, are responsible for
262 //
263 //  - Unwrapping the function signature into return type, and parameters
264 //  - Determining the number of parameters that are bound
265 //  - Creating the BindState storing the bound parameters
266 //  - Performing compile-time asserts to avoid error-prone behavior
267 //  - Returning an Callback<> with an arity matching the number of unbound
268 //    parameters and that knows the correct refcounting semantics for the
269 //    target object if we are binding a method.
270 //
271 // The Bind functions do the above using type-inference, and template
272 // specializations.
273 //
274 // By default Bind() will store copies of all bound parameters, and attempt
275 // to refcount a target object if the function being bound is a class method.
276 // These copies are created even if the function takes parameters as const
277 // references. (Binding to non-const references is forbidden, see bind.h.)
278 //
279 // To change this behavior, we introduce a set of argument wrappers
280 // (e.g., Unretained(), and ConstRef()).  These are simple container templates
281 // that are passed by value, and wrap a pointer to argument.  See the
282 // file-level comment in base/bind_helpers.h for more info.
283 //
284 // These types are passed to the Unwrap() functions, and the MaybeRefcount()
285 // functions respectively to modify the behavior of Bind().  The Unwrap()
286 // and MaybeRefcount() functions change behavior by doing partial
287 // specialization based on whether or not a parameter is a wrapper type.
288 //
289 // ConstRef() is similar to tr1::cref.  Unretained() is specific to Chromium.
290 //
291 //
292 // WHY NOT TR1 FUNCTION/BIND?
293 //
294 // Direct use of tr1::function and tr1::bind was considered, but ultimately
295 // rejected because of the number of copy constructors invocations involved
296 // in the binding of arguments during construction, and the forwarding of
297 // arguments during invocation.  These copies will no longer be an issue in
298 // C++0x because C++0x will support rvalue reference allowing for the compiler
299 // to avoid these copies.  However, waiting for C++0x is not an option.
300 //
301 // Measured with valgrind on gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5), the
302 // tr1::bind call itself will invoke a non-trivial copy constructor three times
303 // for each bound parameter.  Also, each when passing a tr1::function, each
304 // bound argument will be copied again.
305 //
306 // In addition to the copies taken at binding and invocation, copying a
307 // tr1::function causes a copy to be made of all the bound parameters and
308 // state.
309 //
310 // Furthermore, in Chromium, it is desirable for the Callback to take a
311 // reference on a target object when representing a class method call.  This
312 // is not supported by tr1.
313 //
314 // Lastly, tr1::function and tr1::bind has a more general and flexible API.
315 // This includes things like argument reordering by use of
316 // tr1::bind::placeholder, support for non-const reference parameters, and some
317 // limited amount of subtyping of the tr1::function object (e.g.,
318 // tr1::function<int(int)> is convertible to tr1::function<void(int)>).
319 //
320 // These are not features that are required in Chromium. Some of them, such as
321 // allowing for reference parameters, and subtyping of functions, may actually
322 // become a source of errors. Removing support for these features actually
323 // allows for a simpler implementation, and a terser Currying API.
324 //
325 //
326 // WHY NOT GOOGLE CALLBACKS?
327 //
328 // The Google callback system also does not support refcounting.  Furthermore,
329 // its implementation has a number of strange edge cases with respect to type
330 // conversion of its arguments.  In particular, the argument's constness must
331 // at times match exactly the function signature, or the type-inference might
332 // break.  Given the above, writing a custom solution was easier.
333 //
334 //
335 // MISSING FUNCTIONALITY
336 //  - Invoking the return of Bind.  Bind(&foo).Run() does not work;
337 //  - Binding arrays to functions that take a non-const pointer.
338 //    Example:
339 //      void Foo(const char* ptr);
340 //      void Bar(char* ptr);
341 //      Bind(&Foo, "test");
342 //      Bind(&Bar, "test");  // This fails because ptr is not const.
343 //
344 // If you are thinking of forward declaring Callback in your own header file,
345 // please include "base/callback_forward.h" instead.
346 
347 namespace base {
348 
349 template <typename R, typename... Args, internal::CopyMode copy_mode>
350 class Callback<R(Args...), copy_mode>
351     : public internal::CallbackBase<copy_mode> {
352  private:
353   using PolymorphicInvoke = R (*)(internal::BindStateBase*, Args&&...);
354 
355  public:
356   // MSVC 2013 doesn't support Type Alias of function types.
357   // Revisit this after we update it to newer version.
358   typedef R RunType(Args...);
359 
Callback()360   Callback() : internal::CallbackBase<copy_mode>(nullptr) {}
361 
Callback(internal::BindStateBase * bind_state,PolymorphicInvoke invoke_func)362   Callback(internal::BindStateBase* bind_state,
363            PolymorphicInvoke invoke_func)
364       : internal::CallbackBase<copy_mode>(bind_state) {
365     using InvokeFuncStorage =
366         typename internal::CallbackBase<copy_mode>::InvokeFuncStorage;
367     this->polymorphic_invoke_ =
368         reinterpret_cast<InvokeFuncStorage>(invoke_func);
369   }
370 
Equals(const Callback & other)371   bool Equals(const Callback& other) const {
372     return this->EqualsInternal(other);
373   }
374 
375   // Run() makes an extra copy compared to directly calling the bound function
376   // if an argument is passed-by-value and is copyable-but-not-movable:
377   // i.e. below copies CopyableNonMovableType twice.
378   //   void F(CopyableNonMovableType) {}
379   //   Bind(&F).Run(CopyableNonMovableType());
380   //
381   // We can not fully apply Perfect Forwarding idiom to the callchain from
382   // Callback::Run() to the target function. Perfect Forwarding requires
383   // knowing how the caller will pass the arguments. However, the signature of
384   // InvokerType::Run() needs to be fixed in the callback constructor, so Run()
385   // cannot template its arguments based on how it's called.
Run(Args...args)386   R Run(Args... args) const {
387     PolymorphicInvoke f =
388         reinterpret_cast<PolymorphicInvoke>(this->polymorphic_invoke_);
389     return f(this->bind_state_.get(), std::forward<Args>(args)...);
390   }
391 };
392 
393 }  // namespace base
394 
395 #endif  // BASE_CALLBACK_H_
396