• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "common/embedding-network.h"
18 #include "common/embedding-network-params-from-proto.h"
19 #include "common/embedding-network.pb.h"
20 #include "common/simple-adder.h"
21 
22 #include "gmock/gmock.h"
23 #include "gtest/gtest.h"
24 
25 namespace libtextclassifier {
26 namespace nlp_core {
27 namespace {
28 
29 using testing::ElementsAreArray;
30 
31 class TestingEmbeddingNetwork : public EmbeddingNetwork {
32  public:
33   using EmbeddingNetwork::EmbeddingNetwork;
34   using EmbeddingNetwork::FinishComputeFinalScoresInternal;
35 };
36 
DiagonalAndBias3x3(int diagonal_value,int bias_value,MatrixParams * weights,MatrixParams * bias)37 void DiagonalAndBias3x3(int diagonal_value, int bias_value,
38                         MatrixParams* weights, MatrixParams* bias) {
39   weights->set_rows(3);
40   weights->set_cols(3);
41   weights->add_value(diagonal_value);
42   weights->add_value(0);
43   weights->add_value(0);
44   weights->add_value(0);
45   weights->add_value(diagonal_value);
46   weights->add_value(0);
47   weights->add_value(0);
48   weights->add_value(0);
49   weights->add_value(diagonal_value);
50 
51   bias->set_rows(3);
52   bias->set_cols(1);
53   bias->add_value(bias_value);
54   bias->add_value(bias_value);
55   bias->add_value(bias_value);
56 }
57 
TEST(EmbeddingNetworkTest,IdentityThroughMultipleLayers)58 TEST(EmbeddingNetworkTest, IdentityThroughMultipleLayers) {
59   std::unique_ptr<EmbeddingNetworkProto> proto;
60   proto.reset(new EmbeddingNetworkProto);
61 
62   // These layers should be an identity with bias.
63   DiagonalAndBias3x3(/*diagonal_value=*/1, /*bias_value=*/1,
64                      proto->add_hidden(), proto->add_hidden_bias());
65   DiagonalAndBias3x3(/*diagonal_value=*/1, /*bias_value=*/2,
66                      proto->add_hidden(), proto->add_hidden_bias());
67   DiagonalAndBias3x3(/*diagonal_value=*/1, /*bias_value=*/3,
68                      proto->add_hidden(), proto->add_hidden_bias());
69   DiagonalAndBias3x3(/*diagonal_value=*/1, /*bias_value=*/4,
70                      proto->add_hidden(), proto->add_hidden_bias());
71   DiagonalAndBias3x3(/*diagonal_value=*/1, /*bias_value=*/5,
72                      proto->mutable_softmax(), proto->mutable_softmax_bias());
73 
74   EmbeddingNetworkParamsFromProto params(std::move(proto));
75   TestingEmbeddingNetwork network(&params);
76 
77   std::vector<float> input({-2, -1, 0});
78   std::vector<float> output;
79   network.FinishComputeFinalScoresInternal<SimpleAdder>(
80       VectorSpan<float>(input), &output);
81 
82   EXPECT_THAT(output, ElementsAreArray({14, 14, 15}));
83 }
84 
85 }  // namespace
86 }  // namespace nlp_core
87 }  // namespace libtextclassifier
88