• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief
12 /// This file declares a class to represent arbitrary precision floating point
13 /// values and provide a variety of arithmetic operations on them.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_APFLOAT_H
18 #define LLVM_ADT_APFLOAT_H
19 
20 #include "llvm/ADT/APInt.h"
21 
22 namespace llvm {
23 
24 struct fltSemantics;
25 class APSInt;
26 class StringRef;
27 
28 template <typename T> class SmallVectorImpl;
29 
30 /// Enum that represents what fraction of the LSB truncated bits of an fp number
31 /// represent.
32 ///
33 /// This essentially combines the roles of guard and sticky bits.
34 enum lostFraction { // Example of truncated bits:
35   lfExactlyZero,    // 000000
36   lfLessThanHalf,   // 0xxxxx  x's not all zero
37   lfExactlyHalf,    // 100000
38   lfMoreThanHalf    // 1xxxxx  x's not all zero
39 };
40 
41 /// \brief A self-contained host- and target-independent arbitrary-precision
42 /// floating-point software implementation.
43 ///
44 /// APFloat uses bignum integer arithmetic as provided by static functions in
45 /// the APInt class.  The library will work with bignum integers whose parts are
46 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
47 ///
48 /// Written for clarity rather than speed, in particular with a view to use in
49 /// the front-end of a cross compiler so that target arithmetic can be correctly
50 /// performed on the host.  Performance should nonetheless be reasonable,
51 /// particularly for its intended use.  It may be useful as a base
52 /// implementation for a run-time library during development of a faster
53 /// target-specific one.
54 ///
55 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
56 /// implemented operations.  Currently implemented operations are add, subtract,
57 /// multiply, divide, fused-multiply-add, conversion-to-float,
58 /// conversion-to-integer and conversion-from-integer.  New rounding modes
59 /// (e.g. away from zero) can be added with three or four lines of code.
60 ///
61 /// Four formats are built-in: IEEE single precision, double precision,
62 /// quadruple precision, and x87 80-bit extended double (when operating with
63 /// full extended precision).  Adding a new format that obeys IEEE semantics
64 /// only requires adding two lines of code: a declaration and definition of the
65 /// format.
66 ///
67 /// All operations return the status of that operation as an exception bit-mask,
68 /// so multiple operations can be done consecutively with their results or-ed
69 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
70 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
71 /// and compiler optimizers can determine what exceptions would be raised by
72 /// folding operations and optimize, or perhaps not optimize, accordingly.
73 ///
74 /// At present, underflow tininess is detected after rounding; it should be
75 /// straight forward to add support for the before-rounding case too.
76 ///
77 /// The library reads hexadecimal floating point numbers as per C99, and
78 /// correctly rounds if necessary according to the specified rounding mode.
79 /// Syntax is required to have been validated by the caller.  It also converts
80 /// floating point numbers to hexadecimal text as per the C99 %a and %A
81 /// conversions.  The output precision (or alternatively the natural minimal
82 /// precision) can be specified; if the requested precision is less than the
83 /// natural precision the output is correctly rounded for the specified rounding
84 /// mode.
85 ///
86 /// It also reads decimal floating point numbers and correctly rounds according
87 /// to the specified rounding mode.
88 ///
89 /// Conversion to decimal text is not currently implemented.
90 ///
91 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
92 /// signed exponent, and the significand as an array of integer parts.  After
93 /// normalization of a number of precision P the exponent is within the range of
94 /// the format, and if the number is not denormal the P-th bit of the
95 /// significand is set as an explicit integer bit.  For denormals the most
96 /// significant bit is shifted right so that the exponent is maintained at the
97 /// format's minimum, so that the smallest denormal has just the least
98 /// significant bit of the significand set.  The sign of zeroes and infinities
99 /// is significant; the exponent and significand of such numbers is not stored,
100 /// but has a known implicit (deterministic) value: 0 for the significands, 0
101 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
102 /// significand are deterministic, although not really meaningful, and preserved
103 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
104 ///
105 /// APFloat does not provide any exception handling beyond default exception
106 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
107 /// by encoding Signaling NaNs with the first bit of its trailing significand as
108 /// 0.
109 ///
110 /// TODO
111 /// ====
112 ///
113 /// Some features that may or may not be worth adding:
114 ///
115 /// Binary to decimal conversion (hard).
116 ///
117 /// Optional ability to detect underflow tininess before rounding.
118 ///
119 /// New formats: x87 in single and double precision mode (IEEE apart from
120 /// extended exponent range) (hard).
121 ///
122 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
123 ///
124 class APFloat {
125 public:
126 
127   /// A signed type to represent a floating point numbers unbiased exponent.
128   typedef signed short ExponentType;
129 
130   /// \name Floating Point Semantics.
131   /// @{
132 
133   static const fltSemantics IEEEhalf;
134   static const fltSemantics IEEEsingle;
135   static const fltSemantics IEEEdouble;
136   static const fltSemantics IEEEquad;
137   static const fltSemantics PPCDoubleDouble;
138   static const fltSemantics x87DoubleExtended;
139 
140   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
141   /// anything real.
142   static const fltSemantics Bogus;
143 
144   /// @}
145 
146   static unsigned int semanticsPrecision(const fltSemantics &);
147   static ExponentType semanticsMinExponent(const fltSemantics &);
148   static ExponentType semanticsMaxExponent(const fltSemantics &);
149   static unsigned int semanticsSizeInBits(const fltSemantics &);
150 
151   /// IEEE-754R 5.11: Floating Point Comparison Relations.
152   enum cmpResult {
153     cmpLessThan,
154     cmpEqual,
155     cmpGreaterThan,
156     cmpUnordered
157   };
158 
159   /// IEEE-754R 4.3: Rounding-direction attributes.
160   enum roundingMode {
161     rmNearestTiesToEven,
162     rmTowardPositive,
163     rmTowardNegative,
164     rmTowardZero,
165     rmNearestTiesToAway
166   };
167 
168   /// IEEE-754R 7: Default exception handling.
169   ///
170   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
171   enum opStatus {
172     opOK = 0x00,
173     opInvalidOp = 0x01,
174     opDivByZero = 0x02,
175     opOverflow = 0x04,
176     opUnderflow = 0x08,
177     opInexact = 0x10
178   };
179 
180   /// Category of internally-represented number.
181   enum fltCategory {
182     fcInfinity,
183     fcNaN,
184     fcNormal,
185     fcZero
186   };
187 
188   /// Convenience enum used to construct an uninitialized APFloat.
189   enum uninitializedTag {
190     uninitialized
191   };
192 
193   /// \name Constructors
194   /// @{
195 
196   APFloat(const fltSemantics &); // Default construct to 0.0
197   APFloat(const fltSemantics &, StringRef);
198   APFloat(const fltSemantics &, integerPart);
199   APFloat(const fltSemantics &, uninitializedTag);
200   APFloat(const fltSemantics &, const APInt &);
201   explicit APFloat(double d);
202   explicit APFloat(float f);
203   APFloat(const APFloat &);
204   APFloat(APFloat &&);
205   ~APFloat();
206 
207   /// @}
208 
209   /// \brief Returns whether this instance allocated memory.
needsCleanup()210   bool needsCleanup() const { return partCount() > 1; }
211 
212   /// \name Convenience "constructors"
213   /// @{
214 
215   /// Factory for Positive and Negative Zero.
216   ///
217   /// \param Negative True iff the number should be negative.
218   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
219     APFloat Val(Sem, uninitialized);
220     Val.makeZero(Negative);
221     return Val;
222   }
223 
224   /// Factory for Positive and Negative Infinity.
225   ///
226   /// \param Negative True iff the number should be negative.
227   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
228     APFloat Val(Sem, uninitialized);
229     Val.makeInf(Negative);
230     return Val;
231   }
232 
233   /// Factory for QNaN values.
234   ///
235   /// \param Negative - True iff the NaN generated should be negative.
236   /// \param type - The unspecified fill bits for creating the NaN, 0 by
237   /// default.  The value is truncated as necessary.
238   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
239                         unsigned type = 0) {
240     if (type) {
241       APInt fill(64, type);
242       return getQNaN(Sem, Negative, &fill);
243     } else {
244       return getQNaN(Sem, Negative, nullptr);
245     }
246   }
247 
248   /// Factory for QNaN values.
249   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
250                          const APInt *payload = nullptr) {
251     return makeNaN(Sem, false, Negative, payload);
252   }
253 
254   /// Factory for SNaN values.
255   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
256                          const APInt *payload = nullptr) {
257     return makeNaN(Sem, true, Negative, payload);
258   }
259 
260   /// Returns the largest finite number in the given semantics.
261   ///
262   /// \param Negative - True iff the number should be negative
263   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
264 
265   /// Returns the smallest (by magnitude) finite number in the given semantics.
266   /// Might be denormalized, which implies a relative loss of precision.
267   ///
268   /// \param Negative - True iff the number should be negative
269   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
270 
271   /// Returns the smallest (by magnitude) normalized finite number in the given
272   /// semantics.
273   ///
274   /// \param Negative - True iff the number should be negative
275   static APFloat getSmallestNormalized(const fltSemantics &Sem,
276                                        bool Negative = false);
277 
278   /// Returns a float which is bitcasted from an all one value int.
279   ///
280   /// \param BitWidth - Select float type
281   /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
282   static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
283 
284   /// Returns the size of the floating point number (in bits) in the given
285   /// semantics.
286   static unsigned getSizeInBits(const fltSemantics &Sem);
287 
288   /// @}
289 
290   /// Used to insert APFloat objects, or objects that contain APFloat objects,
291   /// into FoldingSets.
292   void Profile(FoldingSetNodeID &NID) const;
293 
294   /// \name Arithmetic
295   /// @{
296 
297   opStatus add(const APFloat &, roundingMode);
298   opStatus subtract(const APFloat &, roundingMode);
299   opStatus multiply(const APFloat &, roundingMode);
300   opStatus divide(const APFloat &, roundingMode);
301   /// IEEE remainder.
302   opStatus remainder(const APFloat &);
303   /// C fmod, or llvm frem.
304   opStatus mod(const APFloat &);
305   opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
306   opStatus roundToIntegral(roundingMode);
307   /// IEEE-754R 5.3.1: nextUp/nextDown.
308   opStatus next(bool nextDown);
309 
310   /// \brief Operator+ overload which provides the default
311   /// \c nmNearestTiesToEven rounding mode and *no* error checking.
312   APFloat operator+(const APFloat &RHS) const {
313     APFloat Result = *this;
314     Result.add(RHS, rmNearestTiesToEven);
315     return Result;
316   }
317 
318   /// \brief Operator- overload which provides the default
319   /// \c nmNearestTiesToEven rounding mode and *no* error checking.
320   APFloat operator-(const APFloat &RHS) const {
321     APFloat Result = *this;
322     Result.subtract(RHS, rmNearestTiesToEven);
323     return Result;
324   }
325 
326   /// \brief Operator* overload which provides the default
327   /// \c nmNearestTiesToEven rounding mode and *no* error checking.
328   APFloat operator*(const APFloat &RHS) const {
329     APFloat Result = *this;
330     Result.multiply(RHS, rmNearestTiesToEven);
331     return Result;
332   }
333 
334   /// \brief Operator/ overload which provides the default
335   /// \c nmNearestTiesToEven rounding mode and *no* error checking.
336   APFloat operator/(const APFloat &RHS) const {
337     APFloat Result = *this;
338     Result.divide(RHS, rmNearestTiesToEven);
339     return Result;
340   }
341 
342   /// @}
343 
344   /// \name Sign operations.
345   /// @{
346 
347   void changeSign();
348   void clearSign();
349   void copySign(const APFloat &);
350 
351   /// \brief A static helper to produce a copy of an APFloat value with its sign
352   /// copied from some other APFloat.
copySign(APFloat Value,const APFloat & Sign)353   static APFloat copySign(APFloat Value, const APFloat &Sign) {
354     Value.copySign(Sign);
355     return Value;
356   }
357 
358   /// @}
359 
360   /// \name Conversions
361   /// @{
362 
363   opStatus convert(const fltSemantics &, roundingMode, bool *);
364   opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
365                             bool *) const;
366   opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
367   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
368   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
369                                           bool, roundingMode);
370   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
371                                           bool, roundingMode);
372   opStatus convertFromString(StringRef, roundingMode);
373   APInt bitcastToAPInt() const;
374   double convertToDouble() const;
375   float convertToFloat() const;
376 
377   /// @}
378 
379   /// The definition of equality is not straightforward for floating point, so
380   /// we won't use operator==.  Use one of the following, or write whatever it
381   /// is you really mean.
382   bool operator==(const APFloat &) const = delete;
383 
384   /// IEEE comparison with another floating point number (NaNs compare
385   /// unordered, 0==-0).
386   cmpResult compare(const APFloat &) const;
387 
388   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
389   bool bitwiseIsEqual(const APFloat &) const;
390 
391   /// Write out a hexadecimal representation of the floating point value to DST,
392   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
393   /// Return the number of characters written, excluding the terminating NUL.
394   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
395                                   bool upperCase, roundingMode) const;
396 
397   /// \name IEEE-754R 5.7.2 General operations.
398   /// @{
399 
400   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
401   /// negative.
402   ///
403   /// This applies to zeros and NaNs as well.
isNegative()404   bool isNegative() const { return sign; }
405 
406   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
407   ///
408   /// This implies that the current value of the float is not zero, subnormal,
409   /// infinite, or NaN following the definition of normality from IEEE-754R.
isNormal()410   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
411 
412   /// Returns true if and only if the current value is zero, subnormal, or
413   /// normal.
414   ///
415   /// This means that the value is not infinite or NaN.
isFinite()416   bool isFinite() const { return !isNaN() && !isInfinity(); }
417 
418   /// Returns true if and only if the float is plus or minus zero.
isZero()419   bool isZero() const { return category == fcZero; }
420 
421   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
422   /// denormal.
423   bool isDenormal() const;
424 
425   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
isInfinity()426   bool isInfinity() const { return category == fcInfinity; }
427 
428   /// Returns true if and only if the float is a quiet or signaling NaN.
isNaN()429   bool isNaN() const { return category == fcNaN; }
430 
431   /// Returns true if and only if the float is a signaling NaN.
432   bool isSignaling() const;
433 
434   /// @}
435 
436   /// \name Simple Queries
437   /// @{
438 
getCategory()439   fltCategory getCategory() const { return category; }
getSemantics()440   const fltSemantics &getSemantics() const { return *semantics; }
isNonZero()441   bool isNonZero() const { return category != fcZero; }
isFiniteNonZero()442   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()443   bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()444   bool isNegZero() const { return isZero() && isNegative(); }
445 
446   /// Returns true if and only if the number has the smallest possible non-zero
447   /// magnitude in the current semantics.
448   bool isSmallest() const;
449 
450   /// Returns true if and only if the number has the largest possible finite
451   /// magnitude in the current semantics.
452   bool isLargest() const;
453 
454   /// Returns true if and only if the number is an exact integer.
455   bool isInteger() const;
456 
457   /// @}
458 
459   APFloat &operator=(const APFloat &);
460   APFloat &operator=(APFloat &&);
461 
462   /// \brief Overload to compute a hash code for an APFloat value.
463   ///
464   /// Note that the use of hash codes for floating point values is in general
465   /// frought with peril. Equality is hard to define for these values. For
466   /// example, should negative and positive zero hash to different codes? Are
467   /// they equal or not? This hash value implementation specifically
468   /// emphasizes producing different codes for different inputs in order to
469   /// be used in canonicalization and memoization. As such, equality is
470   /// bitwiseIsEqual, and 0 != -0.
471   friend hash_code hash_value(const APFloat &Arg);
472 
473   /// Converts this value into a decimal string.
474   ///
475   /// \param FormatPrecision The maximum number of digits of
476   ///   precision to output.  If there are fewer digits available,
477   ///   zero padding will not be used unless the value is
478   ///   integral and small enough to be expressed in
479   ///   FormatPrecision digits.  0 means to use the natural
480   ///   precision of the number.
481   /// \param FormatMaxPadding The maximum number of zeros to
482   ///   consider inserting before falling back to scientific
483   ///   notation.  0 means to always use scientific notation.
484   ///
485   /// Number       Precision    MaxPadding      Result
486   /// ------       ---------    ----------      ------
487   /// 1.01E+4              5             2       10100
488   /// 1.01E+4              4             2       1.01E+4
489   /// 1.01E+4              5             1       1.01E+4
490   /// 1.01E-2              5             2       0.0101
491   /// 1.01E-2              4             2       0.0101
492   /// 1.01E-2              4             1       1.01E-2
493   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
494                 unsigned FormatMaxPadding = 3) const;
495 
496   /// If this value has an exact multiplicative inverse, store it in inv and
497   /// return true.
498   bool getExactInverse(APFloat *inv) const;
499 
500   /// \brief Enumeration of \c ilogb error results.
501   enum IlogbErrorKinds {
502     IEK_Zero = INT_MIN+1,
503     IEK_NaN = INT_MIN,
504     IEK_Inf = INT_MAX
505   };
506 
507   /// \brief Returns the exponent of the internal representation of the APFloat.
508   ///
509   /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
510   /// For special APFloat values, this returns special error codes:
511   ///
512   ///   NaN -> \c IEK_NaN
513   ///   0   -> \c IEK_Zero
514   ///   Inf -> \c IEK_Inf
515   ///
516   friend int ilogb(const APFloat &Arg);
517 
518   /// \brief Returns: X * 2^Exp for integral exponents.
519   friend APFloat scalbn(APFloat X, int Exp, roundingMode);
520 
521   friend APFloat frexp(const APFloat &X, int &Exp, roundingMode);
522 
523 private:
524 
525   /// \name Simple Queries
526   /// @{
527 
528   integerPart *significandParts();
529   const integerPart *significandParts() const;
530   unsigned int partCount() const;
531 
532   /// @}
533 
534   /// \name Significand operations.
535   /// @{
536 
537   integerPart addSignificand(const APFloat &);
538   integerPart subtractSignificand(const APFloat &, integerPart);
539   lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
540   lostFraction multiplySignificand(const APFloat &, const APFloat *);
541   lostFraction divideSignificand(const APFloat &);
542   void incrementSignificand();
543   void initialize(const fltSemantics *);
544   void shiftSignificandLeft(unsigned int);
545   lostFraction shiftSignificandRight(unsigned int);
546   unsigned int significandLSB() const;
547   unsigned int significandMSB() const;
548   void zeroSignificand();
549   /// Return true if the significand excluding the integral bit is all ones.
550   bool isSignificandAllOnes() const;
551   /// Return true if the significand excluding the integral bit is all zeros.
552   bool isSignificandAllZeros() const;
553 
554   /// @}
555 
556   /// \name Arithmetic on special values.
557   /// @{
558 
559   opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
560   opStatus divideSpecials(const APFloat &);
561   opStatus multiplySpecials(const APFloat &);
562   opStatus modSpecials(const APFloat &);
563 
564   /// @}
565 
566   /// \name Special value setters.
567   /// @{
568 
569   void makeLargest(bool Neg = false);
570   void makeSmallest(bool Neg = false);
571   void makeNaN(bool SNaN = false, bool Neg = false,
572                const APInt *fill = nullptr);
573   static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
574                          const APInt *fill);
575   void makeInf(bool Neg = false);
576   void makeZero(bool Neg = false);
577   void makeQuiet();
578 
579   /// @}
580 
581   /// \name Miscellany
582   /// @{
583 
584   bool convertFromStringSpecials(StringRef str);
585   opStatus normalize(roundingMode, lostFraction);
586   opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
587   cmpResult compareAbsoluteValue(const APFloat &) const;
588   opStatus handleOverflow(roundingMode);
589   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
590   opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
591                                         roundingMode, bool *) const;
592   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
593                                     roundingMode);
594   opStatus convertFromHexadecimalString(StringRef, roundingMode);
595   opStatus convertFromDecimalString(StringRef, roundingMode);
596   char *convertNormalToHexString(char *, unsigned int, bool,
597                                  roundingMode) const;
598   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
599                                         roundingMode);
600 
601   /// @}
602 
603   APInt convertHalfAPFloatToAPInt() const;
604   APInt convertFloatAPFloatToAPInt() const;
605   APInt convertDoubleAPFloatToAPInt() const;
606   APInt convertQuadrupleAPFloatToAPInt() const;
607   APInt convertF80LongDoubleAPFloatToAPInt() const;
608   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
609   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
610   void initFromHalfAPInt(const APInt &api);
611   void initFromFloatAPInt(const APInt &api);
612   void initFromDoubleAPInt(const APInt &api);
613   void initFromQuadrupleAPInt(const APInt &api);
614   void initFromF80LongDoubleAPInt(const APInt &api);
615   void initFromPPCDoubleDoubleAPInt(const APInt &api);
616 
617   void assign(const APFloat &);
618   void copySignificand(const APFloat &);
619   void freeSignificand();
620 
621   /// The semantics that this value obeys.
622   const fltSemantics *semantics;
623 
624   /// A binary fraction with an explicit integer bit.
625   ///
626   /// The significand must be at least one bit wider than the target precision.
627   union Significand {
628     integerPart part;
629     integerPart *parts;
630   } significand;
631 
632   /// The signed unbiased exponent of the value.
633   ExponentType exponent;
634 
635   /// What kind of floating point number this is.
636   ///
637   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
638   /// Using the extra bit keeps it from failing under VisualStudio.
639   fltCategory category : 3;
640 
641   /// Sign bit of the number.
642   unsigned int sign : 1;
643 };
644 
645 /// See friend declarations above.
646 ///
647 /// These additional declarations are required in order to compile LLVM with IBM
648 /// xlC compiler.
649 hash_code hash_value(const APFloat &Arg);
650 int ilogb(const APFloat &Arg);
651 APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode);
652 
653 /// \brief Equivalent of C standard library function.
654 ///
655 /// While the C standard says Exp is an unspecified value for infinity and nan,
656 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
657 APFloat frexp(const APFloat &Val, int &Exp, APFloat::roundingMode RM);
658 
659 /// \brief Returns the absolute value of the argument.
abs(APFloat X)660 inline APFloat abs(APFloat X) {
661   X.clearSign();
662   return X;
663 }
664 
665 /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
666 /// both are not NaN. If either argument is a NaN, returns the other argument.
667 LLVM_READONLY
minnum(const APFloat & A,const APFloat & B)668 inline APFloat minnum(const APFloat &A, const APFloat &B) {
669   if (A.isNaN())
670     return B;
671   if (B.isNaN())
672     return A;
673   return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
674 }
675 
676 /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
677 /// both are not NaN. If either argument is a NaN, returns the other argument.
678 LLVM_READONLY
maxnum(const APFloat & A,const APFloat & B)679 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
680   if (A.isNaN())
681     return B;
682   if (B.isNaN())
683     return A;
684   return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
685 }
686 
687 } // namespace llvm
688 
689 #endif // LLVM_ADT_APFLOAT_H
690