1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief
12 /// This file declares a class to represent arbitrary precision floating point
13 /// values and provide a variety of arithmetic operations on them.
14 ///
15 //===----------------------------------------------------------------------===//
16
17 #ifndef LLVM_ADT_APFLOAT_H
18 #define LLVM_ADT_APFLOAT_H
19
20 #include "llvm/ADT/APInt.h"
21
22 namespace llvm {
23
24 struct fltSemantics;
25 class APSInt;
26 class StringRef;
27
28 template <typename T> class SmallVectorImpl;
29
30 /// Enum that represents what fraction of the LSB truncated bits of an fp number
31 /// represent.
32 ///
33 /// This essentially combines the roles of guard and sticky bits.
34 enum lostFraction { // Example of truncated bits:
35 lfExactlyZero, // 000000
36 lfLessThanHalf, // 0xxxxx x's not all zero
37 lfExactlyHalf, // 100000
38 lfMoreThanHalf // 1xxxxx x's not all zero
39 };
40
41 /// \brief A self-contained host- and target-independent arbitrary-precision
42 /// floating-point software implementation.
43 ///
44 /// APFloat uses bignum integer arithmetic as provided by static functions in
45 /// the APInt class. The library will work with bignum integers whose parts are
46 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
47 ///
48 /// Written for clarity rather than speed, in particular with a view to use in
49 /// the front-end of a cross compiler so that target arithmetic can be correctly
50 /// performed on the host. Performance should nonetheless be reasonable,
51 /// particularly for its intended use. It may be useful as a base
52 /// implementation for a run-time library during development of a faster
53 /// target-specific one.
54 ///
55 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
56 /// implemented operations. Currently implemented operations are add, subtract,
57 /// multiply, divide, fused-multiply-add, conversion-to-float,
58 /// conversion-to-integer and conversion-from-integer. New rounding modes
59 /// (e.g. away from zero) can be added with three or four lines of code.
60 ///
61 /// Four formats are built-in: IEEE single precision, double precision,
62 /// quadruple precision, and x87 80-bit extended double (when operating with
63 /// full extended precision). Adding a new format that obeys IEEE semantics
64 /// only requires adding two lines of code: a declaration and definition of the
65 /// format.
66 ///
67 /// All operations return the status of that operation as an exception bit-mask,
68 /// so multiple operations can be done consecutively with their results or-ed
69 /// together. The returned status can be useful for compiler diagnostics; e.g.,
70 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
71 /// and compiler optimizers can determine what exceptions would be raised by
72 /// folding operations and optimize, or perhaps not optimize, accordingly.
73 ///
74 /// At present, underflow tininess is detected after rounding; it should be
75 /// straight forward to add support for the before-rounding case too.
76 ///
77 /// The library reads hexadecimal floating point numbers as per C99, and
78 /// correctly rounds if necessary according to the specified rounding mode.
79 /// Syntax is required to have been validated by the caller. It also converts
80 /// floating point numbers to hexadecimal text as per the C99 %a and %A
81 /// conversions. The output precision (or alternatively the natural minimal
82 /// precision) can be specified; if the requested precision is less than the
83 /// natural precision the output is correctly rounded for the specified rounding
84 /// mode.
85 ///
86 /// It also reads decimal floating point numbers and correctly rounds according
87 /// to the specified rounding mode.
88 ///
89 /// Conversion to decimal text is not currently implemented.
90 ///
91 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
92 /// signed exponent, and the significand as an array of integer parts. After
93 /// normalization of a number of precision P the exponent is within the range of
94 /// the format, and if the number is not denormal the P-th bit of the
95 /// significand is set as an explicit integer bit. For denormals the most
96 /// significant bit is shifted right so that the exponent is maintained at the
97 /// format's minimum, so that the smallest denormal has just the least
98 /// significant bit of the significand set. The sign of zeroes and infinities
99 /// is significant; the exponent and significand of such numbers is not stored,
100 /// but has a known implicit (deterministic) value: 0 for the significands, 0
101 /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
102 /// significand are deterministic, although not really meaningful, and preserved
103 /// in non-conversion operations. The exponent is implicitly all 1 bits.
104 ///
105 /// APFloat does not provide any exception handling beyond default exception
106 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
107 /// by encoding Signaling NaNs with the first bit of its trailing significand as
108 /// 0.
109 ///
110 /// TODO
111 /// ====
112 ///
113 /// Some features that may or may not be worth adding:
114 ///
115 /// Binary to decimal conversion (hard).
116 ///
117 /// Optional ability to detect underflow tininess before rounding.
118 ///
119 /// New formats: x87 in single and double precision mode (IEEE apart from
120 /// extended exponent range) (hard).
121 ///
122 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
123 ///
124 class APFloat {
125 public:
126
127 /// A signed type to represent a floating point numbers unbiased exponent.
128 typedef signed short ExponentType;
129
130 /// \name Floating Point Semantics.
131 /// @{
132
133 static const fltSemantics IEEEhalf;
134 static const fltSemantics IEEEsingle;
135 static const fltSemantics IEEEdouble;
136 static const fltSemantics IEEEquad;
137 static const fltSemantics PPCDoubleDouble;
138 static const fltSemantics x87DoubleExtended;
139
140 /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
141 /// anything real.
142 static const fltSemantics Bogus;
143
144 /// @}
145
146 static unsigned int semanticsPrecision(const fltSemantics &);
147 static ExponentType semanticsMinExponent(const fltSemantics &);
148 static ExponentType semanticsMaxExponent(const fltSemantics &);
149 static unsigned int semanticsSizeInBits(const fltSemantics &);
150
151 /// IEEE-754R 5.11: Floating Point Comparison Relations.
152 enum cmpResult {
153 cmpLessThan,
154 cmpEqual,
155 cmpGreaterThan,
156 cmpUnordered
157 };
158
159 /// IEEE-754R 4.3: Rounding-direction attributes.
160 enum roundingMode {
161 rmNearestTiesToEven,
162 rmTowardPositive,
163 rmTowardNegative,
164 rmTowardZero,
165 rmNearestTiesToAway
166 };
167
168 /// IEEE-754R 7: Default exception handling.
169 ///
170 /// opUnderflow or opOverflow are always returned or-ed with opInexact.
171 enum opStatus {
172 opOK = 0x00,
173 opInvalidOp = 0x01,
174 opDivByZero = 0x02,
175 opOverflow = 0x04,
176 opUnderflow = 0x08,
177 opInexact = 0x10
178 };
179
180 /// Category of internally-represented number.
181 enum fltCategory {
182 fcInfinity,
183 fcNaN,
184 fcNormal,
185 fcZero
186 };
187
188 /// Convenience enum used to construct an uninitialized APFloat.
189 enum uninitializedTag {
190 uninitialized
191 };
192
193 /// \name Constructors
194 /// @{
195
196 APFloat(const fltSemantics &); // Default construct to 0.0
197 APFloat(const fltSemantics &, StringRef);
198 APFloat(const fltSemantics &, integerPart);
199 APFloat(const fltSemantics &, uninitializedTag);
200 APFloat(const fltSemantics &, const APInt &);
201 explicit APFloat(double d);
202 explicit APFloat(float f);
203 APFloat(const APFloat &);
204 APFloat(APFloat &&);
205 ~APFloat();
206
207 /// @}
208
209 /// \brief Returns whether this instance allocated memory.
needsCleanup()210 bool needsCleanup() const { return partCount() > 1; }
211
212 /// \name Convenience "constructors"
213 /// @{
214
215 /// Factory for Positive and Negative Zero.
216 ///
217 /// \param Negative True iff the number should be negative.
218 static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
219 APFloat Val(Sem, uninitialized);
220 Val.makeZero(Negative);
221 return Val;
222 }
223
224 /// Factory for Positive and Negative Infinity.
225 ///
226 /// \param Negative True iff the number should be negative.
227 static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
228 APFloat Val(Sem, uninitialized);
229 Val.makeInf(Negative);
230 return Val;
231 }
232
233 /// Factory for QNaN values.
234 ///
235 /// \param Negative - True iff the NaN generated should be negative.
236 /// \param type - The unspecified fill bits for creating the NaN, 0 by
237 /// default. The value is truncated as necessary.
238 static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
239 unsigned type = 0) {
240 if (type) {
241 APInt fill(64, type);
242 return getQNaN(Sem, Negative, &fill);
243 } else {
244 return getQNaN(Sem, Negative, nullptr);
245 }
246 }
247
248 /// Factory for QNaN values.
249 static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
250 const APInt *payload = nullptr) {
251 return makeNaN(Sem, false, Negative, payload);
252 }
253
254 /// Factory for SNaN values.
255 static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
256 const APInt *payload = nullptr) {
257 return makeNaN(Sem, true, Negative, payload);
258 }
259
260 /// Returns the largest finite number in the given semantics.
261 ///
262 /// \param Negative - True iff the number should be negative
263 static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
264
265 /// Returns the smallest (by magnitude) finite number in the given semantics.
266 /// Might be denormalized, which implies a relative loss of precision.
267 ///
268 /// \param Negative - True iff the number should be negative
269 static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
270
271 /// Returns the smallest (by magnitude) normalized finite number in the given
272 /// semantics.
273 ///
274 /// \param Negative - True iff the number should be negative
275 static APFloat getSmallestNormalized(const fltSemantics &Sem,
276 bool Negative = false);
277
278 /// Returns a float which is bitcasted from an all one value int.
279 ///
280 /// \param BitWidth - Select float type
281 /// \param isIEEE - If 128 bit number, select between PPC and IEEE
282 static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
283
284 /// Returns the size of the floating point number (in bits) in the given
285 /// semantics.
286 static unsigned getSizeInBits(const fltSemantics &Sem);
287
288 /// @}
289
290 /// Used to insert APFloat objects, or objects that contain APFloat objects,
291 /// into FoldingSets.
292 void Profile(FoldingSetNodeID &NID) const;
293
294 /// \name Arithmetic
295 /// @{
296
297 opStatus add(const APFloat &, roundingMode);
298 opStatus subtract(const APFloat &, roundingMode);
299 opStatus multiply(const APFloat &, roundingMode);
300 opStatus divide(const APFloat &, roundingMode);
301 /// IEEE remainder.
302 opStatus remainder(const APFloat &);
303 /// C fmod, or llvm frem.
304 opStatus mod(const APFloat &);
305 opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
306 opStatus roundToIntegral(roundingMode);
307 /// IEEE-754R 5.3.1: nextUp/nextDown.
308 opStatus next(bool nextDown);
309
310 /// \brief Operator+ overload which provides the default
311 /// \c nmNearestTiesToEven rounding mode and *no* error checking.
312 APFloat operator+(const APFloat &RHS) const {
313 APFloat Result = *this;
314 Result.add(RHS, rmNearestTiesToEven);
315 return Result;
316 }
317
318 /// \brief Operator- overload which provides the default
319 /// \c nmNearestTiesToEven rounding mode and *no* error checking.
320 APFloat operator-(const APFloat &RHS) const {
321 APFloat Result = *this;
322 Result.subtract(RHS, rmNearestTiesToEven);
323 return Result;
324 }
325
326 /// \brief Operator* overload which provides the default
327 /// \c nmNearestTiesToEven rounding mode and *no* error checking.
328 APFloat operator*(const APFloat &RHS) const {
329 APFloat Result = *this;
330 Result.multiply(RHS, rmNearestTiesToEven);
331 return Result;
332 }
333
334 /// \brief Operator/ overload which provides the default
335 /// \c nmNearestTiesToEven rounding mode and *no* error checking.
336 APFloat operator/(const APFloat &RHS) const {
337 APFloat Result = *this;
338 Result.divide(RHS, rmNearestTiesToEven);
339 return Result;
340 }
341
342 /// @}
343
344 /// \name Sign operations.
345 /// @{
346
347 void changeSign();
348 void clearSign();
349 void copySign(const APFloat &);
350
351 /// \brief A static helper to produce a copy of an APFloat value with its sign
352 /// copied from some other APFloat.
copySign(APFloat Value,const APFloat & Sign)353 static APFloat copySign(APFloat Value, const APFloat &Sign) {
354 Value.copySign(Sign);
355 return Value;
356 }
357
358 /// @}
359
360 /// \name Conversions
361 /// @{
362
363 opStatus convert(const fltSemantics &, roundingMode, bool *);
364 opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
365 bool *) const;
366 opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
367 opStatus convertFromAPInt(const APInt &, bool, roundingMode);
368 opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
369 bool, roundingMode);
370 opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
371 bool, roundingMode);
372 opStatus convertFromString(StringRef, roundingMode);
373 APInt bitcastToAPInt() const;
374 double convertToDouble() const;
375 float convertToFloat() const;
376
377 /// @}
378
379 /// The definition of equality is not straightforward for floating point, so
380 /// we won't use operator==. Use one of the following, or write whatever it
381 /// is you really mean.
382 bool operator==(const APFloat &) const = delete;
383
384 /// IEEE comparison with another floating point number (NaNs compare
385 /// unordered, 0==-0).
386 cmpResult compare(const APFloat &) const;
387
388 /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
389 bool bitwiseIsEqual(const APFloat &) const;
390
391 /// Write out a hexadecimal representation of the floating point value to DST,
392 /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
393 /// Return the number of characters written, excluding the terminating NUL.
394 unsigned int convertToHexString(char *dst, unsigned int hexDigits,
395 bool upperCase, roundingMode) const;
396
397 /// \name IEEE-754R 5.7.2 General operations.
398 /// @{
399
400 /// IEEE-754R isSignMinus: Returns true if and only if the current value is
401 /// negative.
402 ///
403 /// This applies to zeros and NaNs as well.
isNegative()404 bool isNegative() const { return sign; }
405
406 /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
407 ///
408 /// This implies that the current value of the float is not zero, subnormal,
409 /// infinite, or NaN following the definition of normality from IEEE-754R.
isNormal()410 bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
411
412 /// Returns true if and only if the current value is zero, subnormal, or
413 /// normal.
414 ///
415 /// This means that the value is not infinite or NaN.
isFinite()416 bool isFinite() const { return !isNaN() && !isInfinity(); }
417
418 /// Returns true if and only if the float is plus or minus zero.
isZero()419 bool isZero() const { return category == fcZero; }
420
421 /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
422 /// denormal.
423 bool isDenormal() const;
424
425 /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
isInfinity()426 bool isInfinity() const { return category == fcInfinity; }
427
428 /// Returns true if and only if the float is a quiet or signaling NaN.
isNaN()429 bool isNaN() const { return category == fcNaN; }
430
431 /// Returns true if and only if the float is a signaling NaN.
432 bool isSignaling() const;
433
434 /// @}
435
436 /// \name Simple Queries
437 /// @{
438
getCategory()439 fltCategory getCategory() const { return category; }
getSemantics()440 const fltSemantics &getSemantics() const { return *semantics; }
isNonZero()441 bool isNonZero() const { return category != fcZero; }
isFiniteNonZero()442 bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()443 bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()444 bool isNegZero() const { return isZero() && isNegative(); }
445
446 /// Returns true if and only if the number has the smallest possible non-zero
447 /// magnitude in the current semantics.
448 bool isSmallest() const;
449
450 /// Returns true if and only if the number has the largest possible finite
451 /// magnitude in the current semantics.
452 bool isLargest() const;
453
454 /// Returns true if and only if the number is an exact integer.
455 bool isInteger() const;
456
457 /// @}
458
459 APFloat &operator=(const APFloat &);
460 APFloat &operator=(APFloat &&);
461
462 /// \brief Overload to compute a hash code for an APFloat value.
463 ///
464 /// Note that the use of hash codes for floating point values is in general
465 /// frought with peril. Equality is hard to define for these values. For
466 /// example, should negative and positive zero hash to different codes? Are
467 /// they equal or not? This hash value implementation specifically
468 /// emphasizes producing different codes for different inputs in order to
469 /// be used in canonicalization and memoization. As such, equality is
470 /// bitwiseIsEqual, and 0 != -0.
471 friend hash_code hash_value(const APFloat &Arg);
472
473 /// Converts this value into a decimal string.
474 ///
475 /// \param FormatPrecision The maximum number of digits of
476 /// precision to output. If there are fewer digits available,
477 /// zero padding will not be used unless the value is
478 /// integral and small enough to be expressed in
479 /// FormatPrecision digits. 0 means to use the natural
480 /// precision of the number.
481 /// \param FormatMaxPadding The maximum number of zeros to
482 /// consider inserting before falling back to scientific
483 /// notation. 0 means to always use scientific notation.
484 ///
485 /// Number Precision MaxPadding Result
486 /// ------ --------- ---------- ------
487 /// 1.01E+4 5 2 10100
488 /// 1.01E+4 4 2 1.01E+4
489 /// 1.01E+4 5 1 1.01E+4
490 /// 1.01E-2 5 2 0.0101
491 /// 1.01E-2 4 2 0.0101
492 /// 1.01E-2 4 1 1.01E-2
493 void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
494 unsigned FormatMaxPadding = 3) const;
495
496 /// If this value has an exact multiplicative inverse, store it in inv and
497 /// return true.
498 bool getExactInverse(APFloat *inv) const;
499
500 /// \brief Enumeration of \c ilogb error results.
501 enum IlogbErrorKinds {
502 IEK_Zero = INT_MIN+1,
503 IEK_NaN = INT_MIN,
504 IEK_Inf = INT_MAX
505 };
506
507 /// \brief Returns the exponent of the internal representation of the APFloat.
508 ///
509 /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
510 /// For special APFloat values, this returns special error codes:
511 ///
512 /// NaN -> \c IEK_NaN
513 /// 0 -> \c IEK_Zero
514 /// Inf -> \c IEK_Inf
515 ///
516 friend int ilogb(const APFloat &Arg);
517
518 /// \brief Returns: X * 2^Exp for integral exponents.
519 friend APFloat scalbn(APFloat X, int Exp, roundingMode);
520
521 friend APFloat frexp(const APFloat &X, int &Exp, roundingMode);
522
523 private:
524
525 /// \name Simple Queries
526 /// @{
527
528 integerPart *significandParts();
529 const integerPart *significandParts() const;
530 unsigned int partCount() const;
531
532 /// @}
533
534 /// \name Significand operations.
535 /// @{
536
537 integerPart addSignificand(const APFloat &);
538 integerPart subtractSignificand(const APFloat &, integerPart);
539 lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
540 lostFraction multiplySignificand(const APFloat &, const APFloat *);
541 lostFraction divideSignificand(const APFloat &);
542 void incrementSignificand();
543 void initialize(const fltSemantics *);
544 void shiftSignificandLeft(unsigned int);
545 lostFraction shiftSignificandRight(unsigned int);
546 unsigned int significandLSB() const;
547 unsigned int significandMSB() const;
548 void zeroSignificand();
549 /// Return true if the significand excluding the integral bit is all ones.
550 bool isSignificandAllOnes() const;
551 /// Return true if the significand excluding the integral bit is all zeros.
552 bool isSignificandAllZeros() const;
553
554 /// @}
555
556 /// \name Arithmetic on special values.
557 /// @{
558
559 opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
560 opStatus divideSpecials(const APFloat &);
561 opStatus multiplySpecials(const APFloat &);
562 opStatus modSpecials(const APFloat &);
563
564 /// @}
565
566 /// \name Special value setters.
567 /// @{
568
569 void makeLargest(bool Neg = false);
570 void makeSmallest(bool Neg = false);
571 void makeNaN(bool SNaN = false, bool Neg = false,
572 const APInt *fill = nullptr);
573 static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
574 const APInt *fill);
575 void makeInf(bool Neg = false);
576 void makeZero(bool Neg = false);
577 void makeQuiet();
578
579 /// @}
580
581 /// \name Miscellany
582 /// @{
583
584 bool convertFromStringSpecials(StringRef str);
585 opStatus normalize(roundingMode, lostFraction);
586 opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
587 cmpResult compareAbsoluteValue(const APFloat &) const;
588 opStatus handleOverflow(roundingMode);
589 bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
590 opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
591 roundingMode, bool *) const;
592 opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
593 roundingMode);
594 opStatus convertFromHexadecimalString(StringRef, roundingMode);
595 opStatus convertFromDecimalString(StringRef, roundingMode);
596 char *convertNormalToHexString(char *, unsigned int, bool,
597 roundingMode) const;
598 opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
599 roundingMode);
600
601 /// @}
602
603 APInt convertHalfAPFloatToAPInt() const;
604 APInt convertFloatAPFloatToAPInt() const;
605 APInt convertDoubleAPFloatToAPInt() const;
606 APInt convertQuadrupleAPFloatToAPInt() const;
607 APInt convertF80LongDoubleAPFloatToAPInt() const;
608 APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
609 void initFromAPInt(const fltSemantics *Sem, const APInt &api);
610 void initFromHalfAPInt(const APInt &api);
611 void initFromFloatAPInt(const APInt &api);
612 void initFromDoubleAPInt(const APInt &api);
613 void initFromQuadrupleAPInt(const APInt &api);
614 void initFromF80LongDoubleAPInt(const APInt &api);
615 void initFromPPCDoubleDoubleAPInt(const APInt &api);
616
617 void assign(const APFloat &);
618 void copySignificand(const APFloat &);
619 void freeSignificand();
620
621 /// The semantics that this value obeys.
622 const fltSemantics *semantics;
623
624 /// A binary fraction with an explicit integer bit.
625 ///
626 /// The significand must be at least one bit wider than the target precision.
627 union Significand {
628 integerPart part;
629 integerPart *parts;
630 } significand;
631
632 /// The signed unbiased exponent of the value.
633 ExponentType exponent;
634
635 /// What kind of floating point number this is.
636 ///
637 /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
638 /// Using the extra bit keeps it from failing under VisualStudio.
639 fltCategory category : 3;
640
641 /// Sign bit of the number.
642 unsigned int sign : 1;
643 };
644
645 /// See friend declarations above.
646 ///
647 /// These additional declarations are required in order to compile LLVM with IBM
648 /// xlC compiler.
649 hash_code hash_value(const APFloat &Arg);
650 int ilogb(const APFloat &Arg);
651 APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode);
652
653 /// \brief Equivalent of C standard library function.
654 ///
655 /// While the C standard says Exp is an unspecified value for infinity and nan,
656 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
657 APFloat frexp(const APFloat &Val, int &Exp, APFloat::roundingMode RM);
658
659 /// \brief Returns the absolute value of the argument.
abs(APFloat X)660 inline APFloat abs(APFloat X) {
661 X.clearSign();
662 return X;
663 }
664
665 /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
666 /// both are not NaN. If either argument is a NaN, returns the other argument.
667 LLVM_READONLY
minnum(const APFloat & A,const APFloat & B)668 inline APFloat minnum(const APFloat &A, const APFloat &B) {
669 if (A.isNaN())
670 return B;
671 if (B.isNaN())
672 return A;
673 return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
674 }
675
676 /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
677 /// both are not NaN. If either argument is a NaN, returns the other argument.
678 LLVM_READONLY
maxnum(const APFloat & A,const APFloat & B)679 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
680 if (A.isNaN())
681 return B;
682 if (B.isNaN())
683 return A;
684 return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
685 }
686
687 } // namespace llvm
688
689 #endif // LLVM_ADT_APFLOAT_H
690