1 //===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the AArch64-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // AArch64GenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "AArch64.h"
17 #include "AArch64CallingConvention.h"
18 #include "AArch64Subtarget.h"
19 #include "AArch64TargetMachine.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/FastISel.h"
24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/MC/MCSymbol.h"
40 using namespace llvm;
41
42 namespace {
43
44 class AArch64FastISel final : public FastISel {
45 class Address {
46 public:
47 typedef enum {
48 RegBase,
49 FrameIndexBase
50 } BaseKind;
51
52 private:
53 BaseKind Kind;
54 AArch64_AM::ShiftExtendType ExtType;
55 union {
56 unsigned Reg;
57 int FI;
58 } Base;
59 unsigned OffsetReg;
60 unsigned Shift;
61 int64_t Offset;
62 const GlobalValue *GV;
63
64 public:
Address()65 Address() : Kind(RegBase), ExtType(AArch64_AM::InvalidShiftExtend),
66 OffsetReg(0), Shift(0), Offset(0), GV(nullptr) { Base.Reg = 0; }
setKind(BaseKind K)67 void setKind(BaseKind K) { Kind = K; }
getKind() const68 BaseKind getKind() const { return Kind; }
setExtendType(AArch64_AM::ShiftExtendType E)69 void setExtendType(AArch64_AM::ShiftExtendType E) { ExtType = E; }
getExtendType() const70 AArch64_AM::ShiftExtendType getExtendType() const { return ExtType; }
isRegBase() const71 bool isRegBase() const { return Kind == RegBase; }
isFIBase() const72 bool isFIBase() const { return Kind == FrameIndexBase; }
setReg(unsigned Reg)73 void setReg(unsigned Reg) {
74 assert(isRegBase() && "Invalid base register access!");
75 Base.Reg = Reg;
76 }
getReg() const77 unsigned getReg() const {
78 assert(isRegBase() && "Invalid base register access!");
79 return Base.Reg;
80 }
setOffsetReg(unsigned Reg)81 void setOffsetReg(unsigned Reg) {
82 OffsetReg = Reg;
83 }
getOffsetReg() const84 unsigned getOffsetReg() const {
85 return OffsetReg;
86 }
setFI(unsigned FI)87 void setFI(unsigned FI) {
88 assert(isFIBase() && "Invalid base frame index access!");
89 Base.FI = FI;
90 }
getFI() const91 unsigned getFI() const {
92 assert(isFIBase() && "Invalid base frame index access!");
93 return Base.FI;
94 }
setOffset(int64_t O)95 void setOffset(int64_t O) { Offset = O; }
getOffset()96 int64_t getOffset() { return Offset; }
setShift(unsigned S)97 void setShift(unsigned S) { Shift = S; }
getShift()98 unsigned getShift() { return Shift; }
99
setGlobalValue(const GlobalValue * G)100 void setGlobalValue(const GlobalValue *G) { GV = G; }
getGlobalValue()101 const GlobalValue *getGlobalValue() { return GV; }
102 };
103
104 /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
105 /// make the right decision when generating code for different targets.
106 const AArch64Subtarget *Subtarget;
107 LLVMContext *Context;
108
109 bool fastLowerArguments() override;
110 bool fastLowerCall(CallLoweringInfo &CLI) override;
111 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
112
113 private:
114 // Selection routines.
115 bool selectAddSub(const Instruction *I);
116 bool selectLogicalOp(const Instruction *I);
117 bool selectLoad(const Instruction *I);
118 bool selectStore(const Instruction *I);
119 bool selectBranch(const Instruction *I);
120 bool selectIndirectBr(const Instruction *I);
121 bool selectCmp(const Instruction *I);
122 bool selectSelect(const Instruction *I);
123 bool selectFPExt(const Instruction *I);
124 bool selectFPTrunc(const Instruction *I);
125 bool selectFPToInt(const Instruction *I, bool Signed);
126 bool selectIntToFP(const Instruction *I, bool Signed);
127 bool selectRem(const Instruction *I, unsigned ISDOpcode);
128 bool selectRet(const Instruction *I);
129 bool selectTrunc(const Instruction *I);
130 bool selectIntExt(const Instruction *I);
131 bool selectMul(const Instruction *I);
132 bool selectShift(const Instruction *I);
133 bool selectBitCast(const Instruction *I);
134 bool selectFRem(const Instruction *I);
135 bool selectSDiv(const Instruction *I);
136 bool selectGetElementPtr(const Instruction *I);
137
138 // Utility helper routines.
139 bool isTypeLegal(Type *Ty, MVT &VT);
140 bool isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed = false);
141 bool isValueAvailable(const Value *V) const;
142 bool computeAddress(const Value *Obj, Address &Addr, Type *Ty = nullptr);
143 bool computeCallAddress(const Value *V, Address &Addr);
144 bool simplifyAddress(Address &Addr, MVT VT);
145 void addLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
146 unsigned Flags, unsigned ScaleFactor,
147 MachineMemOperand *MMO);
148 bool isMemCpySmall(uint64_t Len, unsigned Alignment);
149 bool tryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
150 unsigned Alignment);
151 bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I,
152 const Value *Cond);
153 bool optimizeIntExtLoad(const Instruction *I, MVT RetVT, MVT SrcVT);
154 bool optimizeSelect(const SelectInst *SI);
155 std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx);
156
157 // Emit helper routines.
158 unsigned emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
159 const Value *RHS, bool SetFlags = false,
160 bool WantResult = true, bool IsZExt = false);
161 unsigned emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
162 bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
163 bool SetFlags = false, bool WantResult = true);
164 unsigned emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
165 bool LHSIsKill, uint64_t Imm, bool SetFlags = false,
166 bool WantResult = true);
167 unsigned emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
168 bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
169 AArch64_AM::ShiftExtendType ShiftType,
170 uint64_t ShiftImm, bool SetFlags = false,
171 bool WantResult = true);
172 unsigned emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
173 bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
174 AArch64_AM::ShiftExtendType ExtType,
175 uint64_t ShiftImm, bool SetFlags = false,
176 bool WantResult = true);
177
178 // Emit functions.
179 bool emitCompareAndBranch(const BranchInst *BI);
180 bool emitCmp(const Value *LHS, const Value *RHS, bool IsZExt);
181 bool emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, bool IsZExt);
182 bool emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
183 bool emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS);
184 unsigned emitLoad(MVT VT, MVT ResultVT, Address Addr, bool WantZExt = true,
185 MachineMemOperand *MMO = nullptr);
186 bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
187 MachineMemOperand *MMO = nullptr);
188 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
189 unsigned emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
190 unsigned emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
191 bool SetFlags = false, bool WantResult = true,
192 bool IsZExt = false);
193 unsigned emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill, int64_t Imm);
194 unsigned emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
195 bool SetFlags = false, bool WantResult = true,
196 bool IsZExt = false);
197 unsigned emitSubs_rr(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
198 unsigned RHSReg, bool RHSIsKill, bool WantResult = true);
199 unsigned emitSubs_rs(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
200 unsigned RHSReg, bool RHSIsKill,
201 AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm,
202 bool WantResult = true);
203 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
204 const Value *RHS);
205 unsigned emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
206 bool LHSIsKill, uint64_t Imm);
207 unsigned emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
208 bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
209 uint64_t ShiftImm);
210 unsigned emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
211 unsigned emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
212 unsigned Op1, bool Op1IsKill);
213 unsigned emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
214 unsigned Op1, bool Op1IsKill);
215 unsigned emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
216 unsigned Op1, bool Op1IsKill);
217 unsigned emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
218 unsigned Op1Reg, bool Op1IsKill);
219 unsigned emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
220 uint64_t Imm, bool IsZExt = true);
221 unsigned emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
222 unsigned Op1Reg, bool Op1IsKill);
223 unsigned emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
224 uint64_t Imm, bool IsZExt = true);
225 unsigned emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
226 unsigned Op1Reg, bool Op1IsKill);
227 unsigned emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
228 uint64_t Imm, bool IsZExt = false);
229
230 unsigned materializeInt(const ConstantInt *CI, MVT VT);
231 unsigned materializeFP(const ConstantFP *CFP, MVT VT);
232 unsigned materializeGV(const GlobalValue *GV);
233
234 // Call handling routines.
235 private:
236 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
237 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
238 unsigned &NumBytes);
239 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
240
241 public:
242 // Backend specific FastISel code.
243 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
244 unsigned fastMaterializeConstant(const Constant *C) override;
245 unsigned fastMaterializeFloatZero(const ConstantFP* CF) override;
246
AArch64FastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)247 explicit AArch64FastISel(FunctionLoweringInfo &FuncInfo,
248 const TargetLibraryInfo *LibInfo)
249 : FastISel(FuncInfo, LibInfo, /*SkipTargetIndependentISel=*/true) {
250 Subtarget =
251 &static_cast<const AArch64Subtarget &>(FuncInfo.MF->getSubtarget());
252 Context = &FuncInfo.Fn->getContext();
253 }
254
255 bool fastSelectInstruction(const Instruction *I) override;
256
257 #include "AArch64GenFastISel.inc"
258 };
259
260 } // end anonymous namespace
261
262 #include "AArch64GenCallingConv.inc"
263
264 /// \brief Check if the sign-/zero-extend will be a noop.
isIntExtFree(const Instruction * I)265 static bool isIntExtFree(const Instruction *I) {
266 assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
267 "Unexpected integer extend instruction.");
268 assert(!I->getType()->isVectorTy() && I->getType()->isIntegerTy() &&
269 "Unexpected value type.");
270 bool IsZExt = isa<ZExtInst>(I);
271
272 if (const auto *LI = dyn_cast<LoadInst>(I->getOperand(0)))
273 if (LI->hasOneUse())
274 return true;
275
276 if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0)))
277 if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr()))
278 return true;
279
280 return false;
281 }
282
283 /// \brief Determine the implicit scale factor that is applied by a memory
284 /// operation for a given value type.
getImplicitScaleFactor(MVT VT)285 static unsigned getImplicitScaleFactor(MVT VT) {
286 switch (VT.SimpleTy) {
287 default:
288 return 0; // invalid
289 case MVT::i1: // fall-through
290 case MVT::i8:
291 return 1;
292 case MVT::i16:
293 return 2;
294 case MVT::i32: // fall-through
295 case MVT::f32:
296 return 4;
297 case MVT::i64: // fall-through
298 case MVT::f64:
299 return 8;
300 }
301 }
302
CCAssignFnForCall(CallingConv::ID CC) const303 CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
304 if (CC == CallingConv::WebKit_JS)
305 return CC_AArch64_WebKit_JS;
306 if (CC == CallingConv::GHC)
307 return CC_AArch64_GHC;
308 return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
309 }
310
fastMaterializeAlloca(const AllocaInst * AI)311 unsigned AArch64FastISel::fastMaterializeAlloca(const AllocaInst *AI) {
312 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i64 &&
313 "Alloca should always return a pointer.");
314
315 // Don't handle dynamic allocas.
316 if (!FuncInfo.StaticAllocaMap.count(AI))
317 return 0;
318
319 DenseMap<const AllocaInst *, int>::iterator SI =
320 FuncInfo.StaticAllocaMap.find(AI);
321
322 if (SI != FuncInfo.StaticAllocaMap.end()) {
323 unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
324 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
325 ResultReg)
326 .addFrameIndex(SI->second)
327 .addImm(0)
328 .addImm(0);
329 return ResultReg;
330 }
331
332 return 0;
333 }
334
materializeInt(const ConstantInt * CI,MVT VT)335 unsigned AArch64FastISel::materializeInt(const ConstantInt *CI, MVT VT) {
336 if (VT > MVT::i64)
337 return 0;
338
339 if (!CI->isZero())
340 return fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
341
342 // Create a copy from the zero register to materialize a "0" value.
343 const TargetRegisterClass *RC = (VT == MVT::i64) ? &AArch64::GPR64RegClass
344 : &AArch64::GPR32RegClass;
345 unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
346 unsigned ResultReg = createResultReg(RC);
347 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
348 ResultReg).addReg(ZeroReg, getKillRegState(true));
349 return ResultReg;
350 }
351
materializeFP(const ConstantFP * CFP,MVT VT)352 unsigned AArch64FastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
353 // Positive zero (+0.0) has to be materialized with a fmov from the zero
354 // register, because the immediate version of fmov cannot encode zero.
355 if (CFP->isNullValue())
356 return fastMaterializeFloatZero(CFP);
357
358 if (VT != MVT::f32 && VT != MVT::f64)
359 return 0;
360
361 const APFloat Val = CFP->getValueAPF();
362 bool Is64Bit = (VT == MVT::f64);
363 // This checks to see if we can use FMOV instructions to materialize
364 // a constant, otherwise we have to materialize via the constant pool.
365 if (TLI.isFPImmLegal(Val, VT)) {
366 int Imm =
367 Is64Bit ? AArch64_AM::getFP64Imm(Val) : AArch64_AM::getFP32Imm(Val);
368 assert((Imm != -1) && "Cannot encode floating-point constant.");
369 unsigned Opc = Is64Bit ? AArch64::FMOVDi : AArch64::FMOVSi;
370 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
371 }
372
373 // For the MachO large code model materialize the FP constant in code.
374 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
375 unsigned Opc1 = Is64Bit ? AArch64::MOVi64imm : AArch64::MOVi32imm;
376 const TargetRegisterClass *RC = Is64Bit ?
377 &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
378
379 unsigned TmpReg = createResultReg(RC);
380 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc1), TmpReg)
381 .addImm(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
382
383 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
384 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
385 TII.get(TargetOpcode::COPY), ResultReg)
386 .addReg(TmpReg, getKillRegState(true));
387
388 return ResultReg;
389 }
390
391 // Materialize via constant pool. MachineConstantPool wants an explicit
392 // alignment.
393 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
394 if (Align == 0)
395 Align = DL.getTypeAllocSize(CFP->getType());
396
397 unsigned CPI = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
398 unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
399 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
400 ADRPReg).addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGE);
401
402 unsigned Opc = Is64Bit ? AArch64::LDRDui : AArch64::LDRSui;
403 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
404 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
405 .addReg(ADRPReg)
406 .addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
407 return ResultReg;
408 }
409
materializeGV(const GlobalValue * GV)410 unsigned AArch64FastISel::materializeGV(const GlobalValue *GV) {
411 // We can't handle thread-local variables quickly yet.
412 if (GV->isThreadLocal())
413 return 0;
414
415 // MachO still uses GOT for large code-model accesses, but ELF requires
416 // movz/movk sequences, which FastISel doesn't handle yet.
417 if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO())
418 return 0;
419
420 unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
421
422 EVT DestEVT = TLI.getValueType(DL, GV->getType(), true);
423 if (!DestEVT.isSimple())
424 return 0;
425
426 unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
427 unsigned ResultReg;
428
429 if (OpFlags & AArch64II::MO_GOT) {
430 // ADRP + LDRX
431 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
432 ADRPReg)
433 .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
434
435 ResultReg = createResultReg(&AArch64::GPR64RegClass);
436 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
437 ResultReg)
438 .addReg(ADRPReg)
439 .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
440 AArch64II::MO_NC);
441 } else {
442 // ADRP + ADDX
443 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
444 ADRPReg)
445 .addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
446
447 ResultReg = createResultReg(&AArch64::GPR64spRegClass);
448 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
449 ResultReg)
450 .addReg(ADRPReg)
451 .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
452 .addImm(0);
453 }
454 return ResultReg;
455 }
456
fastMaterializeConstant(const Constant * C)457 unsigned AArch64FastISel::fastMaterializeConstant(const Constant *C) {
458 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
459
460 // Only handle simple types.
461 if (!CEVT.isSimple())
462 return 0;
463 MVT VT = CEVT.getSimpleVT();
464
465 if (const auto *CI = dyn_cast<ConstantInt>(C))
466 return materializeInt(CI, VT);
467 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
468 return materializeFP(CFP, VT);
469 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
470 return materializeGV(GV);
471
472 return 0;
473 }
474
fastMaterializeFloatZero(const ConstantFP * CFP)475 unsigned AArch64FastISel::fastMaterializeFloatZero(const ConstantFP* CFP) {
476 assert(CFP->isNullValue() &&
477 "Floating-point constant is not a positive zero.");
478 MVT VT;
479 if (!isTypeLegal(CFP->getType(), VT))
480 return 0;
481
482 if (VT != MVT::f32 && VT != MVT::f64)
483 return 0;
484
485 bool Is64Bit = (VT == MVT::f64);
486 unsigned ZReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
487 unsigned Opc = Is64Bit ? AArch64::FMOVXDr : AArch64::FMOVWSr;
488 return fastEmitInst_r(Opc, TLI.getRegClassFor(VT), ZReg, /*IsKill=*/true);
489 }
490
491 /// \brief Check if the multiply is by a power-of-2 constant.
isMulPowOf2(const Value * I)492 static bool isMulPowOf2(const Value *I) {
493 if (const auto *MI = dyn_cast<MulOperator>(I)) {
494 if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(0)))
495 if (C->getValue().isPowerOf2())
496 return true;
497 if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(1)))
498 if (C->getValue().isPowerOf2())
499 return true;
500 }
501 return false;
502 }
503
504 // Computes the address to get to an object.
computeAddress(const Value * Obj,Address & Addr,Type * Ty)505 bool AArch64FastISel::computeAddress(const Value *Obj, Address &Addr, Type *Ty)
506 {
507 const User *U = nullptr;
508 unsigned Opcode = Instruction::UserOp1;
509 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
510 // Don't walk into other basic blocks unless the object is an alloca from
511 // another block, otherwise it may not have a virtual register assigned.
512 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
513 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
514 Opcode = I->getOpcode();
515 U = I;
516 }
517 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
518 Opcode = C->getOpcode();
519 U = C;
520 }
521
522 if (auto *Ty = dyn_cast<PointerType>(Obj->getType()))
523 if (Ty->getAddressSpace() > 255)
524 // Fast instruction selection doesn't support the special
525 // address spaces.
526 return false;
527
528 switch (Opcode) {
529 default:
530 break;
531 case Instruction::BitCast: {
532 // Look through bitcasts.
533 return computeAddress(U->getOperand(0), Addr, Ty);
534 }
535 case Instruction::IntToPtr: {
536 // Look past no-op inttoptrs.
537 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
538 TLI.getPointerTy(DL))
539 return computeAddress(U->getOperand(0), Addr, Ty);
540 break;
541 }
542 case Instruction::PtrToInt: {
543 // Look past no-op ptrtoints.
544 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
545 return computeAddress(U->getOperand(0), Addr, Ty);
546 break;
547 }
548 case Instruction::GetElementPtr: {
549 Address SavedAddr = Addr;
550 uint64_t TmpOffset = Addr.getOffset();
551
552 // Iterate through the GEP folding the constants into offsets where
553 // we can.
554 for (gep_type_iterator GTI = gep_type_begin(U), E = gep_type_end(U);
555 GTI != E; ++GTI) {
556 const Value *Op = GTI.getOperand();
557 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
558 const StructLayout *SL = DL.getStructLayout(STy);
559 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
560 TmpOffset += SL->getElementOffset(Idx);
561 } else {
562 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
563 for (;;) {
564 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
565 // Constant-offset addressing.
566 TmpOffset += CI->getSExtValue() * S;
567 break;
568 }
569 if (canFoldAddIntoGEP(U, Op)) {
570 // A compatible add with a constant operand. Fold the constant.
571 ConstantInt *CI =
572 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
573 TmpOffset += CI->getSExtValue() * S;
574 // Iterate on the other operand.
575 Op = cast<AddOperator>(Op)->getOperand(0);
576 continue;
577 }
578 // Unsupported
579 goto unsupported_gep;
580 }
581 }
582 }
583
584 // Try to grab the base operand now.
585 Addr.setOffset(TmpOffset);
586 if (computeAddress(U->getOperand(0), Addr, Ty))
587 return true;
588
589 // We failed, restore everything and try the other options.
590 Addr = SavedAddr;
591
592 unsupported_gep:
593 break;
594 }
595 case Instruction::Alloca: {
596 const AllocaInst *AI = cast<AllocaInst>(Obj);
597 DenseMap<const AllocaInst *, int>::iterator SI =
598 FuncInfo.StaticAllocaMap.find(AI);
599 if (SI != FuncInfo.StaticAllocaMap.end()) {
600 Addr.setKind(Address::FrameIndexBase);
601 Addr.setFI(SI->second);
602 return true;
603 }
604 break;
605 }
606 case Instruction::Add: {
607 // Adds of constants are common and easy enough.
608 const Value *LHS = U->getOperand(0);
609 const Value *RHS = U->getOperand(1);
610
611 if (isa<ConstantInt>(LHS))
612 std::swap(LHS, RHS);
613
614 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
615 Addr.setOffset(Addr.getOffset() + CI->getSExtValue());
616 return computeAddress(LHS, Addr, Ty);
617 }
618
619 Address Backup = Addr;
620 if (computeAddress(LHS, Addr, Ty) && computeAddress(RHS, Addr, Ty))
621 return true;
622 Addr = Backup;
623
624 break;
625 }
626 case Instruction::Sub: {
627 // Subs of constants are common and easy enough.
628 const Value *LHS = U->getOperand(0);
629 const Value *RHS = U->getOperand(1);
630
631 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
632 Addr.setOffset(Addr.getOffset() - CI->getSExtValue());
633 return computeAddress(LHS, Addr, Ty);
634 }
635 break;
636 }
637 case Instruction::Shl: {
638 if (Addr.getOffsetReg())
639 break;
640
641 const auto *CI = dyn_cast<ConstantInt>(U->getOperand(1));
642 if (!CI)
643 break;
644
645 unsigned Val = CI->getZExtValue();
646 if (Val < 1 || Val > 3)
647 break;
648
649 uint64_t NumBytes = 0;
650 if (Ty && Ty->isSized()) {
651 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
652 NumBytes = NumBits / 8;
653 if (!isPowerOf2_64(NumBits))
654 NumBytes = 0;
655 }
656
657 if (NumBytes != (1ULL << Val))
658 break;
659
660 Addr.setShift(Val);
661 Addr.setExtendType(AArch64_AM::LSL);
662
663 const Value *Src = U->getOperand(0);
664 if (const auto *I = dyn_cast<Instruction>(Src)) {
665 if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
666 // Fold the zext or sext when it won't become a noop.
667 if (const auto *ZE = dyn_cast<ZExtInst>(I)) {
668 if (!isIntExtFree(ZE) &&
669 ZE->getOperand(0)->getType()->isIntegerTy(32)) {
670 Addr.setExtendType(AArch64_AM::UXTW);
671 Src = ZE->getOperand(0);
672 }
673 } else if (const auto *SE = dyn_cast<SExtInst>(I)) {
674 if (!isIntExtFree(SE) &&
675 SE->getOperand(0)->getType()->isIntegerTy(32)) {
676 Addr.setExtendType(AArch64_AM::SXTW);
677 Src = SE->getOperand(0);
678 }
679 }
680 }
681 }
682
683 if (const auto *AI = dyn_cast<BinaryOperator>(Src))
684 if (AI->getOpcode() == Instruction::And) {
685 const Value *LHS = AI->getOperand(0);
686 const Value *RHS = AI->getOperand(1);
687
688 if (const auto *C = dyn_cast<ConstantInt>(LHS))
689 if (C->getValue() == 0xffffffff)
690 std::swap(LHS, RHS);
691
692 if (const auto *C = dyn_cast<ConstantInt>(RHS))
693 if (C->getValue() == 0xffffffff) {
694 Addr.setExtendType(AArch64_AM::UXTW);
695 unsigned Reg = getRegForValue(LHS);
696 if (!Reg)
697 return false;
698 bool RegIsKill = hasTrivialKill(LHS);
699 Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
700 AArch64::sub_32);
701 Addr.setOffsetReg(Reg);
702 return true;
703 }
704 }
705
706 unsigned Reg = getRegForValue(Src);
707 if (!Reg)
708 return false;
709 Addr.setOffsetReg(Reg);
710 return true;
711 }
712 case Instruction::Mul: {
713 if (Addr.getOffsetReg())
714 break;
715
716 if (!isMulPowOf2(U))
717 break;
718
719 const Value *LHS = U->getOperand(0);
720 const Value *RHS = U->getOperand(1);
721
722 // Canonicalize power-of-2 value to the RHS.
723 if (const auto *C = dyn_cast<ConstantInt>(LHS))
724 if (C->getValue().isPowerOf2())
725 std::swap(LHS, RHS);
726
727 assert(isa<ConstantInt>(RHS) && "Expected an ConstantInt.");
728 const auto *C = cast<ConstantInt>(RHS);
729 unsigned Val = C->getValue().logBase2();
730 if (Val < 1 || Val > 3)
731 break;
732
733 uint64_t NumBytes = 0;
734 if (Ty && Ty->isSized()) {
735 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
736 NumBytes = NumBits / 8;
737 if (!isPowerOf2_64(NumBits))
738 NumBytes = 0;
739 }
740
741 if (NumBytes != (1ULL << Val))
742 break;
743
744 Addr.setShift(Val);
745 Addr.setExtendType(AArch64_AM::LSL);
746
747 const Value *Src = LHS;
748 if (const auto *I = dyn_cast<Instruction>(Src)) {
749 if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
750 // Fold the zext or sext when it won't become a noop.
751 if (const auto *ZE = dyn_cast<ZExtInst>(I)) {
752 if (!isIntExtFree(ZE) &&
753 ZE->getOperand(0)->getType()->isIntegerTy(32)) {
754 Addr.setExtendType(AArch64_AM::UXTW);
755 Src = ZE->getOperand(0);
756 }
757 } else if (const auto *SE = dyn_cast<SExtInst>(I)) {
758 if (!isIntExtFree(SE) &&
759 SE->getOperand(0)->getType()->isIntegerTy(32)) {
760 Addr.setExtendType(AArch64_AM::SXTW);
761 Src = SE->getOperand(0);
762 }
763 }
764 }
765 }
766
767 unsigned Reg = getRegForValue(Src);
768 if (!Reg)
769 return false;
770 Addr.setOffsetReg(Reg);
771 return true;
772 }
773 case Instruction::And: {
774 if (Addr.getOffsetReg())
775 break;
776
777 if (!Ty || DL.getTypeSizeInBits(Ty) != 8)
778 break;
779
780 const Value *LHS = U->getOperand(0);
781 const Value *RHS = U->getOperand(1);
782
783 if (const auto *C = dyn_cast<ConstantInt>(LHS))
784 if (C->getValue() == 0xffffffff)
785 std::swap(LHS, RHS);
786
787 if (const auto *C = dyn_cast<ConstantInt>(RHS))
788 if (C->getValue() == 0xffffffff) {
789 Addr.setShift(0);
790 Addr.setExtendType(AArch64_AM::LSL);
791 Addr.setExtendType(AArch64_AM::UXTW);
792
793 unsigned Reg = getRegForValue(LHS);
794 if (!Reg)
795 return false;
796 bool RegIsKill = hasTrivialKill(LHS);
797 Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
798 AArch64::sub_32);
799 Addr.setOffsetReg(Reg);
800 return true;
801 }
802 break;
803 }
804 case Instruction::SExt:
805 case Instruction::ZExt: {
806 if (!Addr.getReg() || Addr.getOffsetReg())
807 break;
808
809 const Value *Src = nullptr;
810 // Fold the zext or sext when it won't become a noop.
811 if (const auto *ZE = dyn_cast<ZExtInst>(U)) {
812 if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
813 Addr.setExtendType(AArch64_AM::UXTW);
814 Src = ZE->getOperand(0);
815 }
816 } else if (const auto *SE = dyn_cast<SExtInst>(U)) {
817 if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
818 Addr.setExtendType(AArch64_AM::SXTW);
819 Src = SE->getOperand(0);
820 }
821 }
822
823 if (!Src)
824 break;
825
826 Addr.setShift(0);
827 unsigned Reg = getRegForValue(Src);
828 if (!Reg)
829 return false;
830 Addr.setOffsetReg(Reg);
831 return true;
832 }
833 } // end switch
834
835 if (Addr.isRegBase() && !Addr.getReg()) {
836 unsigned Reg = getRegForValue(Obj);
837 if (!Reg)
838 return false;
839 Addr.setReg(Reg);
840 return true;
841 }
842
843 if (!Addr.getOffsetReg()) {
844 unsigned Reg = getRegForValue(Obj);
845 if (!Reg)
846 return false;
847 Addr.setOffsetReg(Reg);
848 return true;
849 }
850
851 return false;
852 }
853
computeCallAddress(const Value * V,Address & Addr)854 bool AArch64FastISel::computeCallAddress(const Value *V, Address &Addr) {
855 const User *U = nullptr;
856 unsigned Opcode = Instruction::UserOp1;
857 bool InMBB = true;
858
859 if (const auto *I = dyn_cast<Instruction>(V)) {
860 Opcode = I->getOpcode();
861 U = I;
862 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
863 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
864 Opcode = C->getOpcode();
865 U = C;
866 }
867
868 switch (Opcode) {
869 default: break;
870 case Instruction::BitCast:
871 // Look past bitcasts if its operand is in the same BB.
872 if (InMBB)
873 return computeCallAddress(U->getOperand(0), Addr);
874 break;
875 case Instruction::IntToPtr:
876 // Look past no-op inttoptrs if its operand is in the same BB.
877 if (InMBB &&
878 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
879 TLI.getPointerTy(DL))
880 return computeCallAddress(U->getOperand(0), Addr);
881 break;
882 case Instruction::PtrToInt:
883 // Look past no-op ptrtoints if its operand is in the same BB.
884 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
885 return computeCallAddress(U->getOperand(0), Addr);
886 break;
887 }
888
889 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
890 Addr.setGlobalValue(GV);
891 return true;
892 }
893
894 // If all else fails, try to materialize the value in a register.
895 if (!Addr.getGlobalValue()) {
896 Addr.setReg(getRegForValue(V));
897 return Addr.getReg() != 0;
898 }
899
900 return false;
901 }
902
903
isTypeLegal(Type * Ty,MVT & VT)904 bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
905 EVT evt = TLI.getValueType(DL, Ty, true);
906
907 // Only handle simple types.
908 if (evt == MVT::Other || !evt.isSimple())
909 return false;
910 VT = evt.getSimpleVT();
911
912 // This is a legal type, but it's not something we handle in fast-isel.
913 if (VT == MVT::f128)
914 return false;
915
916 // Handle all other legal types, i.e. a register that will directly hold this
917 // value.
918 return TLI.isTypeLegal(VT);
919 }
920
921 /// \brief Determine if the value type is supported by FastISel.
922 ///
923 /// FastISel for AArch64 can handle more value types than are legal. This adds
924 /// simple value type such as i1, i8, and i16.
isTypeSupported(Type * Ty,MVT & VT,bool IsVectorAllowed)925 bool AArch64FastISel::isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed) {
926 if (Ty->isVectorTy() && !IsVectorAllowed)
927 return false;
928
929 if (isTypeLegal(Ty, VT))
930 return true;
931
932 // If this is a type than can be sign or zero-extended to a basic operation
933 // go ahead and accept it now.
934 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
935 return true;
936
937 return false;
938 }
939
isValueAvailable(const Value * V) const940 bool AArch64FastISel::isValueAvailable(const Value *V) const {
941 if (!isa<Instruction>(V))
942 return true;
943
944 const auto *I = cast<Instruction>(V);
945 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
946 }
947
simplifyAddress(Address & Addr,MVT VT)948 bool AArch64FastISel::simplifyAddress(Address &Addr, MVT VT) {
949 unsigned ScaleFactor = getImplicitScaleFactor(VT);
950 if (!ScaleFactor)
951 return false;
952
953 bool ImmediateOffsetNeedsLowering = false;
954 bool RegisterOffsetNeedsLowering = false;
955 int64_t Offset = Addr.getOffset();
956 if (((Offset < 0) || (Offset & (ScaleFactor - 1))) && !isInt<9>(Offset))
957 ImmediateOffsetNeedsLowering = true;
958 else if (Offset > 0 && !(Offset & (ScaleFactor - 1)) &&
959 !isUInt<12>(Offset / ScaleFactor))
960 ImmediateOffsetNeedsLowering = true;
961
962 // Cannot encode an offset register and an immediate offset in the same
963 // instruction. Fold the immediate offset into the load/store instruction and
964 // emit an additional add to take care of the offset register.
965 if (!ImmediateOffsetNeedsLowering && Addr.getOffset() && Addr.getOffsetReg())
966 RegisterOffsetNeedsLowering = true;
967
968 // Cannot encode zero register as base.
969 if (Addr.isRegBase() && Addr.getOffsetReg() && !Addr.getReg())
970 RegisterOffsetNeedsLowering = true;
971
972 // If this is a stack pointer and the offset needs to be simplified then put
973 // the alloca address into a register, set the base type back to register and
974 // continue. This should almost never happen.
975 if ((ImmediateOffsetNeedsLowering || Addr.getOffsetReg()) && Addr.isFIBase())
976 {
977 unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
979 ResultReg)
980 .addFrameIndex(Addr.getFI())
981 .addImm(0)
982 .addImm(0);
983 Addr.setKind(Address::RegBase);
984 Addr.setReg(ResultReg);
985 }
986
987 if (RegisterOffsetNeedsLowering) {
988 unsigned ResultReg = 0;
989 if (Addr.getReg()) {
990 if (Addr.getExtendType() == AArch64_AM::SXTW ||
991 Addr.getExtendType() == AArch64_AM::UXTW )
992 ResultReg = emitAddSub_rx(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
993 /*TODO:IsKill=*/false, Addr.getOffsetReg(),
994 /*TODO:IsKill=*/false, Addr.getExtendType(),
995 Addr.getShift());
996 else
997 ResultReg = emitAddSub_rs(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
998 /*TODO:IsKill=*/false, Addr.getOffsetReg(),
999 /*TODO:IsKill=*/false, AArch64_AM::LSL,
1000 Addr.getShift());
1001 } else {
1002 if (Addr.getExtendType() == AArch64_AM::UXTW)
1003 ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
1004 /*Op0IsKill=*/false, Addr.getShift(),
1005 /*IsZExt=*/true);
1006 else if (Addr.getExtendType() == AArch64_AM::SXTW)
1007 ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
1008 /*Op0IsKill=*/false, Addr.getShift(),
1009 /*IsZExt=*/false);
1010 else
1011 ResultReg = emitLSL_ri(MVT::i64, MVT::i64, Addr.getOffsetReg(),
1012 /*Op0IsKill=*/false, Addr.getShift());
1013 }
1014 if (!ResultReg)
1015 return false;
1016
1017 Addr.setReg(ResultReg);
1018 Addr.setOffsetReg(0);
1019 Addr.setShift(0);
1020 Addr.setExtendType(AArch64_AM::InvalidShiftExtend);
1021 }
1022
1023 // Since the offset is too large for the load/store instruction get the
1024 // reg+offset into a register.
1025 if (ImmediateOffsetNeedsLowering) {
1026 unsigned ResultReg;
1027 if (Addr.getReg())
1028 // Try to fold the immediate into the add instruction.
1029 ResultReg = emitAdd_ri_(MVT::i64, Addr.getReg(), /*IsKill=*/false, Offset);
1030 else
1031 ResultReg = fastEmit_i(MVT::i64, MVT::i64, ISD::Constant, Offset);
1032
1033 if (!ResultReg)
1034 return false;
1035 Addr.setReg(ResultReg);
1036 Addr.setOffset(0);
1037 }
1038 return true;
1039 }
1040
addLoadStoreOperands(Address & Addr,const MachineInstrBuilder & MIB,unsigned Flags,unsigned ScaleFactor,MachineMemOperand * MMO)1041 void AArch64FastISel::addLoadStoreOperands(Address &Addr,
1042 const MachineInstrBuilder &MIB,
1043 unsigned Flags,
1044 unsigned ScaleFactor,
1045 MachineMemOperand *MMO) {
1046 int64_t Offset = Addr.getOffset() / ScaleFactor;
1047 // Frame base works a bit differently. Handle it separately.
1048 if (Addr.isFIBase()) {
1049 int FI = Addr.getFI();
1050 // FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size
1051 // and alignment should be based on the VT.
1052 MMO = FuncInfo.MF->getMachineMemOperand(
1053 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
1054 MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
1055 // Now add the rest of the operands.
1056 MIB.addFrameIndex(FI).addImm(Offset);
1057 } else {
1058 assert(Addr.isRegBase() && "Unexpected address kind.");
1059 const MCInstrDesc &II = MIB->getDesc();
1060 unsigned Idx = (Flags & MachineMemOperand::MOStore) ? 1 : 0;
1061 Addr.setReg(
1062 constrainOperandRegClass(II, Addr.getReg(), II.getNumDefs()+Idx));
1063 Addr.setOffsetReg(
1064 constrainOperandRegClass(II, Addr.getOffsetReg(), II.getNumDefs()+Idx+1));
1065 if (Addr.getOffsetReg()) {
1066 assert(Addr.getOffset() == 0 && "Unexpected offset");
1067 bool IsSigned = Addr.getExtendType() == AArch64_AM::SXTW ||
1068 Addr.getExtendType() == AArch64_AM::SXTX;
1069 MIB.addReg(Addr.getReg());
1070 MIB.addReg(Addr.getOffsetReg());
1071 MIB.addImm(IsSigned);
1072 MIB.addImm(Addr.getShift() != 0);
1073 } else
1074 MIB.addReg(Addr.getReg()).addImm(Offset);
1075 }
1076
1077 if (MMO)
1078 MIB.addMemOperand(MMO);
1079 }
1080
emitAddSub(bool UseAdd,MVT RetVT,const Value * LHS,const Value * RHS,bool SetFlags,bool WantResult,bool IsZExt)1081 unsigned AArch64FastISel::emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
1082 const Value *RHS, bool SetFlags,
1083 bool WantResult, bool IsZExt) {
1084 AArch64_AM::ShiftExtendType ExtendType = AArch64_AM::InvalidShiftExtend;
1085 bool NeedExtend = false;
1086 switch (RetVT.SimpleTy) {
1087 default:
1088 return 0;
1089 case MVT::i1:
1090 NeedExtend = true;
1091 break;
1092 case MVT::i8:
1093 NeedExtend = true;
1094 ExtendType = IsZExt ? AArch64_AM::UXTB : AArch64_AM::SXTB;
1095 break;
1096 case MVT::i16:
1097 NeedExtend = true;
1098 ExtendType = IsZExt ? AArch64_AM::UXTH : AArch64_AM::SXTH;
1099 break;
1100 case MVT::i32: // fall-through
1101 case MVT::i64:
1102 break;
1103 }
1104 MVT SrcVT = RetVT;
1105 RetVT.SimpleTy = std::max(RetVT.SimpleTy, MVT::i32);
1106
1107 // Canonicalize immediates to the RHS first.
1108 if (UseAdd && isa<Constant>(LHS) && !isa<Constant>(RHS))
1109 std::swap(LHS, RHS);
1110
1111 // Canonicalize mul by power of 2 to the RHS.
1112 if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
1113 if (isMulPowOf2(LHS))
1114 std::swap(LHS, RHS);
1115
1116 // Canonicalize shift immediate to the RHS.
1117 if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
1118 if (const auto *SI = dyn_cast<BinaryOperator>(LHS))
1119 if (isa<ConstantInt>(SI->getOperand(1)))
1120 if (SI->getOpcode() == Instruction::Shl ||
1121 SI->getOpcode() == Instruction::LShr ||
1122 SI->getOpcode() == Instruction::AShr )
1123 std::swap(LHS, RHS);
1124
1125 unsigned LHSReg = getRegForValue(LHS);
1126 if (!LHSReg)
1127 return 0;
1128 bool LHSIsKill = hasTrivialKill(LHS);
1129
1130 if (NeedExtend)
1131 LHSReg = emitIntExt(SrcVT, LHSReg, RetVT, IsZExt);
1132
1133 unsigned ResultReg = 0;
1134 if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
1135 uint64_t Imm = IsZExt ? C->getZExtValue() : C->getSExtValue();
1136 if (C->isNegative())
1137 ResultReg = emitAddSub_ri(!UseAdd, RetVT, LHSReg, LHSIsKill, -Imm,
1138 SetFlags, WantResult);
1139 else
1140 ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, Imm, SetFlags,
1141 WantResult);
1142 } else if (const auto *C = dyn_cast<Constant>(RHS))
1143 if (C->isNullValue())
1144 ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, 0, SetFlags,
1145 WantResult);
1146
1147 if (ResultReg)
1148 return ResultReg;
1149
1150 // Only extend the RHS within the instruction if there is a valid extend type.
1151 if (ExtendType != AArch64_AM::InvalidShiftExtend && RHS->hasOneUse() &&
1152 isValueAvailable(RHS)) {
1153 if (const auto *SI = dyn_cast<BinaryOperator>(RHS))
1154 if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1)))
1155 if ((SI->getOpcode() == Instruction::Shl) && (C->getZExtValue() < 4)) {
1156 unsigned RHSReg = getRegForValue(SI->getOperand(0));
1157 if (!RHSReg)
1158 return 0;
1159 bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
1160 return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
1161 RHSIsKill, ExtendType, C->getZExtValue(),
1162 SetFlags, WantResult);
1163 }
1164 unsigned RHSReg = getRegForValue(RHS);
1165 if (!RHSReg)
1166 return 0;
1167 bool RHSIsKill = hasTrivialKill(RHS);
1168 return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
1169 ExtendType, 0, SetFlags, WantResult);
1170 }
1171
1172 // Check if the mul can be folded into the instruction.
1173 if (RHS->hasOneUse() && isValueAvailable(RHS)) {
1174 if (isMulPowOf2(RHS)) {
1175 const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
1176 const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
1177
1178 if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
1179 if (C->getValue().isPowerOf2())
1180 std::swap(MulLHS, MulRHS);
1181
1182 assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
1183 uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
1184 unsigned RHSReg = getRegForValue(MulLHS);
1185 if (!RHSReg)
1186 return 0;
1187 bool RHSIsKill = hasTrivialKill(MulLHS);
1188 ResultReg = emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
1189 RHSIsKill, AArch64_AM::LSL, ShiftVal, SetFlags,
1190 WantResult);
1191 if (ResultReg)
1192 return ResultReg;
1193 }
1194 }
1195
1196 // Check if the shift can be folded into the instruction.
1197 if (RHS->hasOneUse() && isValueAvailable(RHS)) {
1198 if (const auto *SI = dyn_cast<BinaryOperator>(RHS)) {
1199 if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
1200 AArch64_AM::ShiftExtendType ShiftType = AArch64_AM::InvalidShiftExtend;
1201 switch (SI->getOpcode()) {
1202 default: break;
1203 case Instruction::Shl: ShiftType = AArch64_AM::LSL; break;
1204 case Instruction::LShr: ShiftType = AArch64_AM::LSR; break;
1205 case Instruction::AShr: ShiftType = AArch64_AM::ASR; break;
1206 }
1207 uint64_t ShiftVal = C->getZExtValue();
1208 if (ShiftType != AArch64_AM::InvalidShiftExtend) {
1209 unsigned RHSReg = getRegForValue(SI->getOperand(0));
1210 if (!RHSReg)
1211 return 0;
1212 bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
1213 ResultReg = emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
1214 RHSIsKill, ShiftType, ShiftVal, SetFlags,
1215 WantResult);
1216 if (ResultReg)
1217 return ResultReg;
1218 }
1219 }
1220 }
1221 }
1222
1223 unsigned RHSReg = getRegForValue(RHS);
1224 if (!RHSReg)
1225 return 0;
1226 bool RHSIsKill = hasTrivialKill(RHS);
1227
1228 if (NeedExtend)
1229 RHSReg = emitIntExt(SrcVT, RHSReg, RetVT, IsZExt);
1230
1231 return emitAddSub_rr(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
1232 SetFlags, WantResult);
1233 }
1234
emitAddSub_rr(bool UseAdd,MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,bool SetFlags,bool WantResult)1235 unsigned AArch64FastISel::emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
1236 bool LHSIsKill, unsigned RHSReg,
1237 bool RHSIsKill, bool SetFlags,
1238 bool WantResult) {
1239 assert(LHSReg && RHSReg && "Invalid register number.");
1240
1241 if (RetVT != MVT::i32 && RetVT != MVT::i64)
1242 return 0;
1243
1244 static const unsigned OpcTable[2][2][2] = {
1245 { { AArch64::SUBWrr, AArch64::SUBXrr },
1246 { AArch64::ADDWrr, AArch64::ADDXrr } },
1247 { { AArch64::SUBSWrr, AArch64::SUBSXrr },
1248 { AArch64::ADDSWrr, AArch64::ADDSXrr } }
1249 };
1250 bool Is64Bit = RetVT == MVT::i64;
1251 unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1252 const TargetRegisterClass *RC =
1253 Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1254 unsigned ResultReg;
1255 if (WantResult)
1256 ResultReg = createResultReg(RC);
1257 else
1258 ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1259
1260 const MCInstrDesc &II = TII.get(Opc);
1261 LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1262 RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
1263 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1264 .addReg(LHSReg, getKillRegState(LHSIsKill))
1265 .addReg(RHSReg, getKillRegState(RHSIsKill));
1266 return ResultReg;
1267 }
1268
emitAddSub_ri(bool UseAdd,MVT RetVT,unsigned LHSReg,bool LHSIsKill,uint64_t Imm,bool SetFlags,bool WantResult)1269 unsigned AArch64FastISel::emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
1270 bool LHSIsKill, uint64_t Imm,
1271 bool SetFlags, bool WantResult) {
1272 assert(LHSReg && "Invalid register number.");
1273
1274 if (RetVT != MVT::i32 && RetVT != MVT::i64)
1275 return 0;
1276
1277 unsigned ShiftImm;
1278 if (isUInt<12>(Imm))
1279 ShiftImm = 0;
1280 else if ((Imm & 0xfff000) == Imm) {
1281 ShiftImm = 12;
1282 Imm >>= 12;
1283 } else
1284 return 0;
1285
1286 static const unsigned OpcTable[2][2][2] = {
1287 { { AArch64::SUBWri, AArch64::SUBXri },
1288 { AArch64::ADDWri, AArch64::ADDXri } },
1289 { { AArch64::SUBSWri, AArch64::SUBSXri },
1290 { AArch64::ADDSWri, AArch64::ADDSXri } }
1291 };
1292 bool Is64Bit = RetVT == MVT::i64;
1293 unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1294 const TargetRegisterClass *RC;
1295 if (SetFlags)
1296 RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1297 else
1298 RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
1299 unsigned ResultReg;
1300 if (WantResult)
1301 ResultReg = createResultReg(RC);
1302 else
1303 ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1304
1305 const MCInstrDesc &II = TII.get(Opc);
1306 LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1307 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1308 .addReg(LHSReg, getKillRegState(LHSIsKill))
1309 .addImm(Imm)
1310 .addImm(getShifterImm(AArch64_AM::LSL, ShiftImm));
1311 return ResultReg;
1312 }
1313
emitAddSub_rs(bool UseAdd,MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,AArch64_AM::ShiftExtendType ShiftType,uint64_t ShiftImm,bool SetFlags,bool WantResult)1314 unsigned AArch64FastISel::emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
1315 bool LHSIsKill, unsigned RHSReg,
1316 bool RHSIsKill,
1317 AArch64_AM::ShiftExtendType ShiftType,
1318 uint64_t ShiftImm, bool SetFlags,
1319 bool WantResult) {
1320 assert(LHSReg && RHSReg && "Invalid register number.");
1321
1322 if (RetVT != MVT::i32 && RetVT != MVT::i64)
1323 return 0;
1324
1325 // Don't deal with undefined shifts.
1326 if (ShiftImm >= RetVT.getSizeInBits())
1327 return 0;
1328
1329 static const unsigned OpcTable[2][2][2] = {
1330 { { AArch64::SUBWrs, AArch64::SUBXrs },
1331 { AArch64::ADDWrs, AArch64::ADDXrs } },
1332 { { AArch64::SUBSWrs, AArch64::SUBSXrs },
1333 { AArch64::ADDSWrs, AArch64::ADDSXrs } }
1334 };
1335 bool Is64Bit = RetVT == MVT::i64;
1336 unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1337 const TargetRegisterClass *RC =
1338 Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1339 unsigned ResultReg;
1340 if (WantResult)
1341 ResultReg = createResultReg(RC);
1342 else
1343 ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1344
1345 const MCInstrDesc &II = TII.get(Opc);
1346 LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1347 RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
1348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1349 .addReg(LHSReg, getKillRegState(LHSIsKill))
1350 .addReg(RHSReg, getKillRegState(RHSIsKill))
1351 .addImm(getShifterImm(ShiftType, ShiftImm));
1352 return ResultReg;
1353 }
1354
emitAddSub_rx(bool UseAdd,MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,AArch64_AM::ShiftExtendType ExtType,uint64_t ShiftImm,bool SetFlags,bool WantResult)1355 unsigned AArch64FastISel::emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
1356 bool LHSIsKill, unsigned RHSReg,
1357 bool RHSIsKill,
1358 AArch64_AM::ShiftExtendType ExtType,
1359 uint64_t ShiftImm, bool SetFlags,
1360 bool WantResult) {
1361 assert(LHSReg && RHSReg && "Invalid register number.");
1362
1363 if (RetVT != MVT::i32 && RetVT != MVT::i64)
1364 return 0;
1365
1366 if (ShiftImm >= 4)
1367 return 0;
1368
1369 static const unsigned OpcTable[2][2][2] = {
1370 { { AArch64::SUBWrx, AArch64::SUBXrx },
1371 { AArch64::ADDWrx, AArch64::ADDXrx } },
1372 { { AArch64::SUBSWrx, AArch64::SUBSXrx },
1373 { AArch64::ADDSWrx, AArch64::ADDSXrx } }
1374 };
1375 bool Is64Bit = RetVT == MVT::i64;
1376 unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1377 const TargetRegisterClass *RC = nullptr;
1378 if (SetFlags)
1379 RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1380 else
1381 RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
1382 unsigned ResultReg;
1383 if (WantResult)
1384 ResultReg = createResultReg(RC);
1385 else
1386 ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1387
1388 const MCInstrDesc &II = TII.get(Opc);
1389 LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1390 RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
1391 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1392 .addReg(LHSReg, getKillRegState(LHSIsKill))
1393 .addReg(RHSReg, getKillRegState(RHSIsKill))
1394 .addImm(getArithExtendImm(ExtType, ShiftImm));
1395 return ResultReg;
1396 }
1397
emitCmp(const Value * LHS,const Value * RHS,bool IsZExt)1398 bool AArch64FastISel::emitCmp(const Value *LHS, const Value *RHS, bool IsZExt) {
1399 Type *Ty = LHS->getType();
1400 EVT EVT = TLI.getValueType(DL, Ty, true);
1401 if (!EVT.isSimple())
1402 return false;
1403 MVT VT = EVT.getSimpleVT();
1404
1405 switch (VT.SimpleTy) {
1406 default:
1407 return false;
1408 case MVT::i1:
1409 case MVT::i8:
1410 case MVT::i16:
1411 case MVT::i32:
1412 case MVT::i64:
1413 return emitICmp(VT, LHS, RHS, IsZExt);
1414 case MVT::f32:
1415 case MVT::f64:
1416 return emitFCmp(VT, LHS, RHS);
1417 }
1418 }
1419
emitICmp(MVT RetVT,const Value * LHS,const Value * RHS,bool IsZExt)1420 bool AArch64FastISel::emitICmp(MVT RetVT, const Value *LHS, const Value *RHS,
1421 bool IsZExt) {
1422 return emitSub(RetVT, LHS, RHS, /*SetFlags=*/true, /*WantResult=*/false,
1423 IsZExt) != 0;
1424 }
1425
emitICmp_ri(MVT RetVT,unsigned LHSReg,bool LHSIsKill,uint64_t Imm)1426 bool AArch64FastISel::emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
1427 uint64_t Imm) {
1428 return emitAddSub_ri(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, Imm,
1429 /*SetFlags=*/true, /*WantResult=*/false) != 0;
1430 }
1431
emitFCmp(MVT RetVT,const Value * LHS,const Value * RHS)1432 bool AArch64FastISel::emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS) {
1433 if (RetVT != MVT::f32 && RetVT != MVT::f64)
1434 return false;
1435
1436 // Check to see if the 2nd operand is a constant that we can encode directly
1437 // in the compare.
1438 bool UseImm = false;
1439 if (const auto *CFP = dyn_cast<ConstantFP>(RHS))
1440 if (CFP->isZero() && !CFP->isNegative())
1441 UseImm = true;
1442
1443 unsigned LHSReg = getRegForValue(LHS);
1444 if (!LHSReg)
1445 return false;
1446 bool LHSIsKill = hasTrivialKill(LHS);
1447
1448 if (UseImm) {
1449 unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDri : AArch64::FCMPSri;
1450 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
1451 .addReg(LHSReg, getKillRegState(LHSIsKill));
1452 return true;
1453 }
1454
1455 unsigned RHSReg = getRegForValue(RHS);
1456 if (!RHSReg)
1457 return false;
1458 bool RHSIsKill = hasTrivialKill(RHS);
1459
1460 unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDrr : AArch64::FCMPSrr;
1461 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
1462 .addReg(LHSReg, getKillRegState(LHSIsKill))
1463 .addReg(RHSReg, getKillRegState(RHSIsKill));
1464 return true;
1465 }
1466
emitAdd(MVT RetVT,const Value * LHS,const Value * RHS,bool SetFlags,bool WantResult,bool IsZExt)1467 unsigned AArch64FastISel::emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
1468 bool SetFlags, bool WantResult, bool IsZExt) {
1469 return emitAddSub(/*UseAdd=*/true, RetVT, LHS, RHS, SetFlags, WantResult,
1470 IsZExt);
1471 }
1472
1473 /// \brief This method is a wrapper to simplify add emission.
1474 ///
1475 /// First try to emit an add with an immediate operand using emitAddSub_ri. If
1476 /// that fails, then try to materialize the immediate into a register and use
1477 /// emitAddSub_rr instead.
emitAdd_ri_(MVT VT,unsigned Op0,bool Op0IsKill,int64_t Imm)1478 unsigned AArch64FastISel::emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill,
1479 int64_t Imm) {
1480 unsigned ResultReg;
1481 if (Imm < 0)
1482 ResultReg = emitAddSub_ri(false, VT, Op0, Op0IsKill, -Imm);
1483 else
1484 ResultReg = emitAddSub_ri(true, VT, Op0, Op0IsKill, Imm);
1485
1486 if (ResultReg)
1487 return ResultReg;
1488
1489 unsigned CReg = fastEmit_i(VT, VT, ISD::Constant, Imm);
1490 if (!CReg)
1491 return 0;
1492
1493 ResultReg = emitAddSub_rr(true, VT, Op0, Op0IsKill, CReg, true);
1494 return ResultReg;
1495 }
1496
emitSub(MVT RetVT,const Value * LHS,const Value * RHS,bool SetFlags,bool WantResult,bool IsZExt)1497 unsigned AArch64FastISel::emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
1498 bool SetFlags, bool WantResult, bool IsZExt) {
1499 return emitAddSub(/*UseAdd=*/false, RetVT, LHS, RHS, SetFlags, WantResult,
1500 IsZExt);
1501 }
1502
emitSubs_rr(MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,bool WantResult)1503 unsigned AArch64FastISel::emitSubs_rr(MVT RetVT, unsigned LHSReg,
1504 bool LHSIsKill, unsigned RHSReg,
1505 bool RHSIsKill, bool WantResult) {
1506 return emitAddSub_rr(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
1507 RHSIsKill, /*SetFlags=*/true, WantResult);
1508 }
1509
emitSubs_rs(MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,AArch64_AM::ShiftExtendType ShiftType,uint64_t ShiftImm,bool WantResult)1510 unsigned AArch64FastISel::emitSubs_rs(MVT RetVT, unsigned LHSReg,
1511 bool LHSIsKill, unsigned RHSReg,
1512 bool RHSIsKill,
1513 AArch64_AM::ShiftExtendType ShiftType,
1514 uint64_t ShiftImm, bool WantResult) {
1515 return emitAddSub_rs(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
1516 RHSIsKill, ShiftType, ShiftImm, /*SetFlags=*/true,
1517 WantResult);
1518 }
1519
emitLogicalOp(unsigned ISDOpc,MVT RetVT,const Value * LHS,const Value * RHS)1520 unsigned AArch64FastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
1521 const Value *LHS, const Value *RHS) {
1522 // Canonicalize immediates to the RHS first.
1523 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
1524 std::swap(LHS, RHS);
1525
1526 // Canonicalize mul by power-of-2 to the RHS.
1527 if (LHS->hasOneUse() && isValueAvailable(LHS))
1528 if (isMulPowOf2(LHS))
1529 std::swap(LHS, RHS);
1530
1531 // Canonicalize shift immediate to the RHS.
1532 if (LHS->hasOneUse() && isValueAvailable(LHS))
1533 if (const auto *SI = dyn_cast<ShlOperator>(LHS))
1534 if (isa<ConstantInt>(SI->getOperand(1)))
1535 std::swap(LHS, RHS);
1536
1537 unsigned LHSReg = getRegForValue(LHS);
1538 if (!LHSReg)
1539 return 0;
1540 bool LHSIsKill = hasTrivialKill(LHS);
1541
1542 unsigned ResultReg = 0;
1543 if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
1544 uint64_t Imm = C->getZExtValue();
1545 ResultReg = emitLogicalOp_ri(ISDOpc, RetVT, LHSReg, LHSIsKill, Imm);
1546 }
1547 if (ResultReg)
1548 return ResultReg;
1549
1550 // Check if the mul can be folded into the instruction.
1551 if (RHS->hasOneUse() && isValueAvailable(RHS)) {
1552 if (isMulPowOf2(RHS)) {
1553 const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
1554 const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
1555
1556 if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
1557 if (C->getValue().isPowerOf2())
1558 std::swap(MulLHS, MulRHS);
1559
1560 assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
1561 uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
1562
1563 unsigned RHSReg = getRegForValue(MulLHS);
1564 if (!RHSReg)
1565 return 0;
1566 bool RHSIsKill = hasTrivialKill(MulLHS);
1567 ResultReg = emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
1568 RHSIsKill, ShiftVal);
1569 if (ResultReg)
1570 return ResultReg;
1571 }
1572 }
1573
1574 // Check if the shift can be folded into the instruction.
1575 if (RHS->hasOneUse() && isValueAvailable(RHS)) {
1576 if (const auto *SI = dyn_cast<ShlOperator>(RHS))
1577 if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
1578 uint64_t ShiftVal = C->getZExtValue();
1579 unsigned RHSReg = getRegForValue(SI->getOperand(0));
1580 if (!RHSReg)
1581 return 0;
1582 bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
1583 ResultReg = emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
1584 RHSIsKill, ShiftVal);
1585 if (ResultReg)
1586 return ResultReg;
1587 }
1588 }
1589
1590 unsigned RHSReg = getRegForValue(RHS);
1591 if (!RHSReg)
1592 return 0;
1593 bool RHSIsKill = hasTrivialKill(RHS);
1594
1595 MVT VT = std::max(MVT::i32, RetVT.SimpleTy);
1596 ResultReg = fastEmit_rr(VT, VT, ISDOpc, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
1597 if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
1598 uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
1599 ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
1600 }
1601 return ResultReg;
1602 }
1603
emitLogicalOp_ri(unsigned ISDOpc,MVT RetVT,unsigned LHSReg,bool LHSIsKill,uint64_t Imm)1604 unsigned AArch64FastISel::emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT,
1605 unsigned LHSReg, bool LHSIsKill,
1606 uint64_t Imm) {
1607 static_assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR),
1608 "ISD nodes are not consecutive!");
1609 static const unsigned OpcTable[3][2] = {
1610 { AArch64::ANDWri, AArch64::ANDXri },
1611 { AArch64::ORRWri, AArch64::ORRXri },
1612 { AArch64::EORWri, AArch64::EORXri }
1613 };
1614 const TargetRegisterClass *RC;
1615 unsigned Opc;
1616 unsigned RegSize;
1617 switch (RetVT.SimpleTy) {
1618 default:
1619 return 0;
1620 case MVT::i1:
1621 case MVT::i8:
1622 case MVT::i16:
1623 case MVT::i32: {
1624 unsigned Idx = ISDOpc - ISD::AND;
1625 Opc = OpcTable[Idx][0];
1626 RC = &AArch64::GPR32spRegClass;
1627 RegSize = 32;
1628 break;
1629 }
1630 case MVT::i64:
1631 Opc = OpcTable[ISDOpc - ISD::AND][1];
1632 RC = &AArch64::GPR64spRegClass;
1633 RegSize = 64;
1634 break;
1635 }
1636
1637 if (!AArch64_AM::isLogicalImmediate(Imm, RegSize))
1638 return 0;
1639
1640 unsigned ResultReg =
1641 fastEmitInst_ri(Opc, RC, LHSReg, LHSIsKill,
1642 AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
1643 if (RetVT >= MVT::i8 && RetVT <= MVT::i16 && ISDOpc != ISD::AND) {
1644 uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
1645 ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
1646 }
1647 return ResultReg;
1648 }
1649
emitLogicalOp_rs(unsigned ISDOpc,MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,uint64_t ShiftImm)1650 unsigned AArch64FastISel::emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT,
1651 unsigned LHSReg, bool LHSIsKill,
1652 unsigned RHSReg, bool RHSIsKill,
1653 uint64_t ShiftImm) {
1654 static_assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR),
1655 "ISD nodes are not consecutive!");
1656 static const unsigned OpcTable[3][2] = {
1657 { AArch64::ANDWrs, AArch64::ANDXrs },
1658 { AArch64::ORRWrs, AArch64::ORRXrs },
1659 { AArch64::EORWrs, AArch64::EORXrs }
1660 };
1661
1662 // Don't deal with undefined shifts.
1663 if (ShiftImm >= RetVT.getSizeInBits())
1664 return 0;
1665
1666 const TargetRegisterClass *RC;
1667 unsigned Opc;
1668 switch (RetVT.SimpleTy) {
1669 default:
1670 return 0;
1671 case MVT::i1:
1672 case MVT::i8:
1673 case MVT::i16:
1674 case MVT::i32:
1675 Opc = OpcTable[ISDOpc - ISD::AND][0];
1676 RC = &AArch64::GPR32RegClass;
1677 break;
1678 case MVT::i64:
1679 Opc = OpcTable[ISDOpc - ISD::AND][1];
1680 RC = &AArch64::GPR64RegClass;
1681 break;
1682 }
1683 unsigned ResultReg =
1684 fastEmitInst_rri(Opc, RC, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
1685 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftImm));
1686 if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
1687 uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
1688 ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
1689 }
1690 return ResultReg;
1691 }
1692
emitAnd_ri(MVT RetVT,unsigned LHSReg,bool LHSIsKill,uint64_t Imm)1693 unsigned AArch64FastISel::emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
1694 uint64_t Imm) {
1695 return emitLogicalOp_ri(ISD::AND, RetVT, LHSReg, LHSIsKill, Imm);
1696 }
1697
emitLoad(MVT VT,MVT RetVT,Address Addr,bool WantZExt,MachineMemOperand * MMO)1698 unsigned AArch64FastISel::emitLoad(MVT VT, MVT RetVT, Address Addr,
1699 bool WantZExt, MachineMemOperand *MMO) {
1700 if (!TLI.allowsMisalignedMemoryAccesses(VT))
1701 return 0;
1702
1703 // Simplify this down to something we can handle.
1704 if (!simplifyAddress(Addr, VT))
1705 return 0;
1706
1707 unsigned ScaleFactor = getImplicitScaleFactor(VT);
1708 if (!ScaleFactor)
1709 llvm_unreachable("Unexpected value type.");
1710
1711 // Negative offsets require unscaled, 9-bit, signed immediate offsets.
1712 // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
1713 bool UseScaled = true;
1714 if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
1715 UseScaled = false;
1716 ScaleFactor = 1;
1717 }
1718
1719 static const unsigned GPOpcTable[2][8][4] = {
1720 // Sign-extend.
1721 { { AArch64::LDURSBWi, AArch64::LDURSHWi, AArch64::LDURWi,
1722 AArch64::LDURXi },
1723 { AArch64::LDURSBXi, AArch64::LDURSHXi, AArch64::LDURSWi,
1724 AArch64::LDURXi },
1725 { AArch64::LDRSBWui, AArch64::LDRSHWui, AArch64::LDRWui,
1726 AArch64::LDRXui },
1727 { AArch64::LDRSBXui, AArch64::LDRSHXui, AArch64::LDRSWui,
1728 AArch64::LDRXui },
1729 { AArch64::LDRSBWroX, AArch64::LDRSHWroX, AArch64::LDRWroX,
1730 AArch64::LDRXroX },
1731 { AArch64::LDRSBXroX, AArch64::LDRSHXroX, AArch64::LDRSWroX,
1732 AArch64::LDRXroX },
1733 { AArch64::LDRSBWroW, AArch64::LDRSHWroW, AArch64::LDRWroW,
1734 AArch64::LDRXroW },
1735 { AArch64::LDRSBXroW, AArch64::LDRSHXroW, AArch64::LDRSWroW,
1736 AArch64::LDRXroW }
1737 },
1738 // Zero-extend.
1739 { { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi,
1740 AArch64::LDURXi },
1741 { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi,
1742 AArch64::LDURXi },
1743 { AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui,
1744 AArch64::LDRXui },
1745 { AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui,
1746 AArch64::LDRXui },
1747 { AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX,
1748 AArch64::LDRXroX },
1749 { AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX,
1750 AArch64::LDRXroX },
1751 { AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW,
1752 AArch64::LDRXroW },
1753 { AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW,
1754 AArch64::LDRXroW }
1755 }
1756 };
1757
1758 static const unsigned FPOpcTable[4][2] = {
1759 { AArch64::LDURSi, AArch64::LDURDi },
1760 { AArch64::LDRSui, AArch64::LDRDui },
1761 { AArch64::LDRSroX, AArch64::LDRDroX },
1762 { AArch64::LDRSroW, AArch64::LDRDroW }
1763 };
1764
1765 unsigned Opc;
1766 const TargetRegisterClass *RC;
1767 bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
1768 Addr.getOffsetReg();
1769 unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
1770 if (Addr.getExtendType() == AArch64_AM::UXTW ||
1771 Addr.getExtendType() == AArch64_AM::SXTW)
1772 Idx++;
1773
1774 bool IsRet64Bit = RetVT == MVT::i64;
1775 switch (VT.SimpleTy) {
1776 default:
1777 llvm_unreachable("Unexpected value type.");
1778 case MVT::i1: // Intentional fall-through.
1779 case MVT::i8:
1780 Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][0];
1781 RC = (IsRet64Bit && !WantZExt) ?
1782 &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
1783 break;
1784 case MVT::i16:
1785 Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][1];
1786 RC = (IsRet64Bit && !WantZExt) ?
1787 &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
1788 break;
1789 case MVT::i32:
1790 Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][2];
1791 RC = (IsRet64Bit && !WantZExt) ?
1792 &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
1793 break;
1794 case MVT::i64:
1795 Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][3];
1796 RC = &AArch64::GPR64RegClass;
1797 break;
1798 case MVT::f32:
1799 Opc = FPOpcTable[Idx][0];
1800 RC = &AArch64::FPR32RegClass;
1801 break;
1802 case MVT::f64:
1803 Opc = FPOpcTable[Idx][1];
1804 RC = &AArch64::FPR64RegClass;
1805 break;
1806 }
1807
1808 // Create the base instruction, then add the operands.
1809 unsigned ResultReg = createResultReg(RC);
1810 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1811 TII.get(Opc), ResultReg);
1812 addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, ScaleFactor, MMO);
1813
1814 // Loading an i1 requires special handling.
1815 if (VT == MVT::i1) {
1816 unsigned ANDReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, 1);
1817 assert(ANDReg && "Unexpected AND instruction emission failure.");
1818 ResultReg = ANDReg;
1819 }
1820
1821 // For zero-extending loads to 64bit we emit a 32bit load and then convert
1822 // the 32bit reg to a 64bit reg.
1823 if (WantZExt && RetVT == MVT::i64 && VT <= MVT::i32) {
1824 unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
1825 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1826 TII.get(AArch64::SUBREG_TO_REG), Reg64)
1827 .addImm(0)
1828 .addReg(ResultReg, getKillRegState(true))
1829 .addImm(AArch64::sub_32);
1830 ResultReg = Reg64;
1831 }
1832 return ResultReg;
1833 }
1834
selectAddSub(const Instruction * I)1835 bool AArch64FastISel::selectAddSub(const Instruction *I) {
1836 MVT VT;
1837 if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
1838 return false;
1839
1840 if (VT.isVector())
1841 return selectOperator(I, I->getOpcode());
1842
1843 unsigned ResultReg;
1844 switch (I->getOpcode()) {
1845 default:
1846 llvm_unreachable("Unexpected instruction.");
1847 case Instruction::Add:
1848 ResultReg = emitAdd(VT, I->getOperand(0), I->getOperand(1));
1849 break;
1850 case Instruction::Sub:
1851 ResultReg = emitSub(VT, I->getOperand(0), I->getOperand(1));
1852 break;
1853 }
1854 if (!ResultReg)
1855 return false;
1856
1857 updateValueMap(I, ResultReg);
1858 return true;
1859 }
1860
selectLogicalOp(const Instruction * I)1861 bool AArch64FastISel::selectLogicalOp(const Instruction *I) {
1862 MVT VT;
1863 if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
1864 return false;
1865
1866 if (VT.isVector())
1867 return selectOperator(I, I->getOpcode());
1868
1869 unsigned ResultReg;
1870 switch (I->getOpcode()) {
1871 default:
1872 llvm_unreachable("Unexpected instruction.");
1873 case Instruction::And:
1874 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
1875 break;
1876 case Instruction::Or:
1877 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
1878 break;
1879 case Instruction::Xor:
1880 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
1881 break;
1882 }
1883 if (!ResultReg)
1884 return false;
1885
1886 updateValueMap(I, ResultReg);
1887 return true;
1888 }
1889
selectLoad(const Instruction * I)1890 bool AArch64FastISel::selectLoad(const Instruction *I) {
1891 MVT VT;
1892 // Verify we have a legal type before going any further. Currently, we handle
1893 // simple types that will directly fit in a register (i32/f32/i64/f64) or
1894 // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
1895 if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true) ||
1896 cast<LoadInst>(I)->isAtomic())
1897 return false;
1898
1899 const Value *SV = I->getOperand(0);
1900 if (TLI.supportSwiftError()) {
1901 // Swifterror values can come from either a function parameter with
1902 // swifterror attribute or an alloca with swifterror attribute.
1903 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1904 if (Arg->hasSwiftErrorAttr())
1905 return false;
1906 }
1907
1908 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1909 if (Alloca->isSwiftError())
1910 return false;
1911 }
1912 }
1913
1914 // See if we can handle this address.
1915 Address Addr;
1916 if (!computeAddress(I->getOperand(0), Addr, I->getType()))
1917 return false;
1918
1919 // Fold the following sign-/zero-extend into the load instruction.
1920 bool WantZExt = true;
1921 MVT RetVT = VT;
1922 const Value *IntExtVal = nullptr;
1923 if (I->hasOneUse()) {
1924 if (const auto *ZE = dyn_cast<ZExtInst>(I->use_begin()->getUser())) {
1925 if (isTypeSupported(ZE->getType(), RetVT))
1926 IntExtVal = ZE;
1927 else
1928 RetVT = VT;
1929 } else if (const auto *SE = dyn_cast<SExtInst>(I->use_begin()->getUser())) {
1930 if (isTypeSupported(SE->getType(), RetVT))
1931 IntExtVal = SE;
1932 else
1933 RetVT = VT;
1934 WantZExt = false;
1935 }
1936 }
1937
1938 unsigned ResultReg =
1939 emitLoad(VT, RetVT, Addr, WantZExt, createMachineMemOperandFor(I));
1940 if (!ResultReg)
1941 return false;
1942
1943 // There are a few different cases we have to handle, because the load or the
1944 // sign-/zero-extend might not be selected by FastISel if we fall-back to
1945 // SelectionDAG. There is also an ordering issue when both instructions are in
1946 // different basic blocks.
1947 // 1.) The load instruction is selected by FastISel, but the integer extend
1948 // not. This usually happens when the integer extend is in a different
1949 // basic block and SelectionDAG took over for that basic block.
1950 // 2.) The load instruction is selected before the integer extend. This only
1951 // happens when the integer extend is in a different basic block.
1952 // 3.) The load instruction is selected by SelectionDAG and the integer extend
1953 // by FastISel. This happens if there are instructions between the load
1954 // and the integer extend that couldn't be selected by FastISel.
1955 if (IntExtVal) {
1956 // The integer extend hasn't been emitted yet. FastISel or SelectionDAG
1957 // could select it. Emit a copy to subreg if necessary. FastISel will remove
1958 // it when it selects the integer extend.
1959 unsigned Reg = lookUpRegForValue(IntExtVal);
1960 auto *MI = MRI.getUniqueVRegDef(Reg);
1961 if (!MI) {
1962 if (RetVT == MVT::i64 && VT <= MVT::i32) {
1963 if (WantZExt) {
1964 // Delete the last emitted instruction from emitLoad (SUBREG_TO_REG).
1965 std::prev(FuncInfo.InsertPt)->eraseFromParent();
1966 ResultReg = std::prev(FuncInfo.InsertPt)->getOperand(0).getReg();
1967 } else
1968 ResultReg = fastEmitInst_extractsubreg(MVT::i32, ResultReg,
1969 /*IsKill=*/true,
1970 AArch64::sub_32);
1971 }
1972 updateValueMap(I, ResultReg);
1973 return true;
1974 }
1975
1976 // The integer extend has already been emitted - delete all the instructions
1977 // that have been emitted by the integer extend lowering code and use the
1978 // result from the load instruction directly.
1979 while (MI) {
1980 Reg = 0;
1981 for (auto &Opnd : MI->uses()) {
1982 if (Opnd.isReg()) {
1983 Reg = Opnd.getReg();
1984 break;
1985 }
1986 }
1987 MI->eraseFromParent();
1988 MI = nullptr;
1989 if (Reg)
1990 MI = MRI.getUniqueVRegDef(Reg);
1991 }
1992 updateValueMap(IntExtVal, ResultReg);
1993 return true;
1994 }
1995
1996 updateValueMap(I, ResultReg);
1997 return true;
1998 }
1999
emitStore(MVT VT,unsigned SrcReg,Address Addr,MachineMemOperand * MMO)2000 bool AArch64FastISel::emitStore(MVT VT, unsigned SrcReg, Address Addr,
2001 MachineMemOperand *MMO) {
2002 if (!TLI.allowsMisalignedMemoryAccesses(VT))
2003 return false;
2004
2005 // Simplify this down to something we can handle.
2006 if (!simplifyAddress(Addr, VT))
2007 return false;
2008
2009 unsigned ScaleFactor = getImplicitScaleFactor(VT);
2010 if (!ScaleFactor)
2011 llvm_unreachable("Unexpected value type.");
2012
2013 // Negative offsets require unscaled, 9-bit, signed immediate offsets.
2014 // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
2015 bool UseScaled = true;
2016 if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
2017 UseScaled = false;
2018 ScaleFactor = 1;
2019 }
2020
2021 static const unsigned OpcTable[4][6] = {
2022 { AArch64::STURBBi, AArch64::STURHHi, AArch64::STURWi, AArch64::STURXi,
2023 AArch64::STURSi, AArch64::STURDi },
2024 { AArch64::STRBBui, AArch64::STRHHui, AArch64::STRWui, AArch64::STRXui,
2025 AArch64::STRSui, AArch64::STRDui },
2026 { AArch64::STRBBroX, AArch64::STRHHroX, AArch64::STRWroX, AArch64::STRXroX,
2027 AArch64::STRSroX, AArch64::STRDroX },
2028 { AArch64::STRBBroW, AArch64::STRHHroW, AArch64::STRWroW, AArch64::STRXroW,
2029 AArch64::STRSroW, AArch64::STRDroW }
2030 };
2031
2032 unsigned Opc;
2033 bool VTIsi1 = false;
2034 bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
2035 Addr.getOffsetReg();
2036 unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
2037 if (Addr.getExtendType() == AArch64_AM::UXTW ||
2038 Addr.getExtendType() == AArch64_AM::SXTW)
2039 Idx++;
2040
2041 switch (VT.SimpleTy) {
2042 default: llvm_unreachable("Unexpected value type.");
2043 case MVT::i1: VTIsi1 = true;
2044 case MVT::i8: Opc = OpcTable[Idx][0]; break;
2045 case MVT::i16: Opc = OpcTable[Idx][1]; break;
2046 case MVT::i32: Opc = OpcTable[Idx][2]; break;
2047 case MVT::i64: Opc = OpcTable[Idx][3]; break;
2048 case MVT::f32: Opc = OpcTable[Idx][4]; break;
2049 case MVT::f64: Opc = OpcTable[Idx][5]; break;
2050 }
2051
2052 // Storing an i1 requires special handling.
2053 if (VTIsi1 && SrcReg != AArch64::WZR) {
2054 unsigned ANDReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
2055 assert(ANDReg && "Unexpected AND instruction emission failure.");
2056 SrcReg = ANDReg;
2057 }
2058 // Create the base instruction, then add the operands.
2059 const MCInstrDesc &II = TII.get(Opc);
2060 SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
2061 MachineInstrBuilder MIB =
2062 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(SrcReg);
2063 addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, ScaleFactor, MMO);
2064
2065 return true;
2066 }
2067
selectStore(const Instruction * I)2068 bool AArch64FastISel::selectStore(const Instruction *I) {
2069 MVT VT;
2070 const Value *Op0 = I->getOperand(0);
2071 // Verify we have a legal type before going any further. Currently, we handle
2072 // simple types that will directly fit in a register (i32/f32/i64/f64) or
2073 // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
2074 if (!isTypeSupported(Op0->getType(), VT, /*IsVectorAllowed=*/true) ||
2075 cast<StoreInst>(I)->isAtomic())
2076 return false;
2077
2078 const Value *PtrV = I->getOperand(1);
2079 if (TLI.supportSwiftError()) {
2080 // Swifterror values can come from either a function parameter with
2081 // swifterror attribute or an alloca with swifterror attribute.
2082 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
2083 if (Arg->hasSwiftErrorAttr())
2084 return false;
2085 }
2086
2087 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
2088 if (Alloca->isSwiftError())
2089 return false;
2090 }
2091 }
2092
2093 // Get the value to be stored into a register. Use the zero register directly
2094 // when possible to avoid an unnecessary copy and a wasted register.
2095 unsigned SrcReg = 0;
2096 if (const auto *CI = dyn_cast<ConstantInt>(Op0)) {
2097 if (CI->isZero())
2098 SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
2099 } else if (const auto *CF = dyn_cast<ConstantFP>(Op0)) {
2100 if (CF->isZero() && !CF->isNegative()) {
2101 VT = MVT::getIntegerVT(VT.getSizeInBits());
2102 SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
2103 }
2104 }
2105
2106 if (!SrcReg)
2107 SrcReg = getRegForValue(Op0);
2108
2109 if (!SrcReg)
2110 return false;
2111
2112 // See if we can handle this address.
2113 Address Addr;
2114 if (!computeAddress(I->getOperand(1), Addr, I->getOperand(0)->getType()))
2115 return false;
2116
2117 if (!emitStore(VT, SrcReg, Addr, createMachineMemOperandFor(I)))
2118 return false;
2119 return true;
2120 }
2121
getCompareCC(CmpInst::Predicate Pred)2122 static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
2123 switch (Pred) {
2124 case CmpInst::FCMP_ONE:
2125 case CmpInst::FCMP_UEQ:
2126 default:
2127 // AL is our "false" for now. The other two need more compares.
2128 return AArch64CC::AL;
2129 case CmpInst::ICMP_EQ:
2130 case CmpInst::FCMP_OEQ:
2131 return AArch64CC::EQ;
2132 case CmpInst::ICMP_SGT:
2133 case CmpInst::FCMP_OGT:
2134 return AArch64CC::GT;
2135 case CmpInst::ICMP_SGE:
2136 case CmpInst::FCMP_OGE:
2137 return AArch64CC::GE;
2138 case CmpInst::ICMP_UGT:
2139 case CmpInst::FCMP_UGT:
2140 return AArch64CC::HI;
2141 case CmpInst::FCMP_OLT:
2142 return AArch64CC::MI;
2143 case CmpInst::ICMP_ULE:
2144 case CmpInst::FCMP_OLE:
2145 return AArch64CC::LS;
2146 case CmpInst::FCMP_ORD:
2147 return AArch64CC::VC;
2148 case CmpInst::FCMP_UNO:
2149 return AArch64CC::VS;
2150 case CmpInst::FCMP_UGE:
2151 return AArch64CC::PL;
2152 case CmpInst::ICMP_SLT:
2153 case CmpInst::FCMP_ULT:
2154 return AArch64CC::LT;
2155 case CmpInst::ICMP_SLE:
2156 case CmpInst::FCMP_ULE:
2157 return AArch64CC::LE;
2158 case CmpInst::FCMP_UNE:
2159 case CmpInst::ICMP_NE:
2160 return AArch64CC::NE;
2161 case CmpInst::ICMP_UGE:
2162 return AArch64CC::HS;
2163 case CmpInst::ICMP_ULT:
2164 return AArch64CC::LO;
2165 }
2166 }
2167
2168 /// \brief Try to emit a combined compare-and-branch instruction.
emitCompareAndBranch(const BranchInst * BI)2169 bool AArch64FastISel::emitCompareAndBranch(const BranchInst *BI) {
2170 assert(isa<CmpInst>(BI->getCondition()) && "Expected cmp instruction");
2171 const CmpInst *CI = cast<CmpInst>(BI->getCondition());
2172 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2173
2174 const Value *LHS = CI->getOperand(0);
2175 const Value *RHS = CI->getOperand(1);
2176
2177 MVT VT;
2178 if (!isTypeSupported(LHS->getType(), VT))
2179 return false;
2180
2181 unsigned BW = VT.getSizeInBits();
2182 if (BW > 64)
2183 return false;
2184
2185 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
2186 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
2187
2188 // Try to take advantage of fallthrough opportunities.
2189 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
2190 std::swap(TBB, FBB);
2191 Predicate = CmpInst::getInversePredicate(Predicate);
2192 }
2193
2194 int TestBit = -1;
2195 bool IsCmpNE;
2196 switch (Predicate) {
2197 default:
2198 return false;
2199 case CmpInst::ICMP_EQ:
2200 case CmpInst::ICMP_NE:
2201 if (isa<Constant>(LHS) && cast<Constant>(LHS)->isNullValue())
2202 std::swap(LHS, RHS);
2203
2204 if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
2205 return false;
2206
2207 if (const auto *AI = dyn_cast<BinaryOperator>(LHS))
2208 if (AI->getOpcode() == Instruction::And && isValueAvailable(AI)) {
2209 const Value *AndLHS = AI->getOperand(0);
2210 const Value *AndRHS = AI->getOperand(1);
2211
2212 if (const auto *C = dyn_cast<ConstantInt>(AndLHS))
2213 if (C->getValue().isPowerOf2())
2214 std::swap(AndLHS, AndRHS);
2215
2216 if (const auto *C = dyn_cast<ConstantInt>(AndRHS))
2217 if (C->getValue().isPowerOf2()) {
2218 TestBit = C->getValue().logBase2();
2219 LHS = AndLHS;
2220 }
2221 }
2222
2223 if (VT == MVT::i1)
2224 TestBit = 0;
2225
2226 IsCmpNE = Predicate == CmpInst::ICMP_NE;
2227 break;
2228 case CmpInst::ICMP_SLT:
2229 case CmpInst::ICMP_SGE:
2230 if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
2231 return false;
2232
2233 TestBit = BW - 1;
2234 IsCmpNE = Predicate == CmpInst::ICMP_SLT;
2235 break;
2236 case CmpInst::ICMP_SGT:
2237 case CmpInst::ICMP_SLE:
2238 if (!isa<ConstantInt>(RHS))
2239 return false;
2240
2241 if (cast<ConstantInt>(RHS)->getValue() != APInt(BW, -1, true))
2242 return false;
2243
2244 TestBit = BW - 1;
2245 IsCmpNE = Predicate == CmpInst::ICMP_SLE;
2246 break;
2247 } // end switch
2248
2249 static const unsigned OpcTable[2][2][2] = {
2250 { {AArch64::CBZW, AArch64::CBZX },
2251 {AArch64::CBNZW, AArch64::CBNZX} },
2252 { {AArch64::TBZW, AArch64::TBZX },
2253 {AArch64::TBNZW, AArch64::TBNZX} }
2254 };
2255
2256 bool IsBitTest = TestBit != -1;
2257 bool Is64Bit = BW == 64;
2258 if (TestBit < 32 && TestBit >= 0)
2259 Is64Bit = false;
2260
2261 unsigned Opc = OpcTable[IsBitTest][IsCmpNE][Is64Bit];
2262 const MCInstrDesc &II = TII.get(Opc);
2263
2264 unsigned SrcReg = getRegForValue(LHS);
2265 if (!SrcReg)
2266 return false;
2267 bool SrcIsKill = hasTrivialKill(LHS);
2268
2269 if (BW == 64 && !Is64Bit)
2270 SrcReg = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
2271 AArch64::sub_32);
2272
2273 if ((BW < 32) && !IsBitTest)
2274 SrcReg = emitIntExt(VT, SrcReg, MVT::i32, /*IsZExt=*/true);
2275
2276 // Emit the combined compare and branch instruction.
2277 SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
2278 MachineInstrBuilder MIB =
2279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
2280 .addReg(SrcReg, getKillRegState(SrcIsKill));
2281 if (IsBitTest)
2282 MIB.addImm(TestBit);
2283 MIB.addMBB(TBB);
2284
2285 finishCondBranch(BI->getParent(), TBB, FBB);
2286 return true;
2287 }
2288
selectBranch(const Instruction * I)2289 bool AArch64FastISel::selectBranch(const Instruction *I) {
2290 const BranchInst *BI = cast<BranchInst>(I);
2291 if (BI->isUnconditional()) {
2292 MachineBasicBlock *MSucc = FuncInfo.MBBMap[BI->getSuccessor(0)];
2293 fastEmitBranch(MSucc, BI->getDebugLoc());
2294 return true;
2295 }
2296
2297 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
2298 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
2299
2300 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
2301 if (CI->hasOneUse() && isValueAvailable(CI)) {
2302 // Try to optimize or fold the cmp.
2303 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2304 switch (Predicate) {
2305 default:
2306 break;
2307 case CmpInst::FCMP_FALSE:
2308 fastEmitBranch(FBB, DbgLoc);
2309 return true;
2310 case CmpInst::FCMP_TRUE:
2311 fastEmitBranch(TBB, DbgLoc);
2312 return true;
2313 }
2314
2315 // Try to emit a combined compare-and-branch first.
2316 if (emitCompareAndBranch(BI))
2317 return true;
2318
2319 // Try to take advantage of fallthrough opportunities.
2320 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
2321 std::swap(TBB, FBB);
2322 Predicate = CmpInst::getInversePredicate(Predicate);
2323 }
2324
2325 // Emit the cmp.
2326 if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
2327 return false;
2328
2329 // FCMP_UEQ and FCMP_ONE cannot be checked with a single branch
2330 // instruction.
2331 AArch64CC::CondCode CC = getCompareCC(Predicate);
2332 AArch64CC::CondCode ExtraCC = AArch64CC::AL;
2333 switch (Predicate) {
2334 default:
2335 break;
2336 case CmpInst::FCMP_UEQ:
2337 ExtraCC = AArch64CC::EQ;
2338 CC = AArch64CC::VS;
2339 break;
2340 case CmpInst::FCMP_ONE:
2341 ExtraCC = AArch64CC::MI;
2342 CC = AArch64CC::GT;
2343 break;
2344 }
2345 assert((CC != AArch64CC::AL) && "Unexpected condition code.");
2346
2347 // Emit the extra branch for FCMP_UEQ and FCMP_ONE.
2348 if (ExtraCC != AArch64CC::AL) {
2349 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
2350 .addImm(ExtraCC)
2351 .addMBB(TBB);
2352 }
2353
2354 // Emit the branch.
2355 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
2356 .addImm(CC)
2357 .addMBB(TBB);
2358
2359 finishCondBranch(BI->getParent(), TBB, FBB);
2360 return true;
2361 }
2362 } else if (const auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
2363 uint64_t Imm = CI->getZExtValue();
2364 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
2365 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
2366 .addMBB(Target);
2367
2368 // Obtain the branch probability and add the target to the successor list.
2369 if (FuncInfo.BPI) {
2370 auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
2371 BI->getParent(), Target->getBasicBlock());
2372 FuncInfo.MBB->addSuccessor(Target, BranchProbability);
2373 } else
2374 FuncInfo.MBB->addSuccessorWithoutProb(Target);
2375 return true;
2376 } else {
2377 AArch64CC::CondCode CC = AArch64CC::NE;
2378 if (foldXALUIntrinsic(CC, I, BI->getCondition())) {
2379 // Fake request the condition, otherwise the intrinsic might be completely
2380 // optimized away.
2381 unsigned CondReg = getRegForValue(BI->getCondition());
2382 if (!CondReg)
2383 return false;
2384
2385 // Emit the branch.
2386 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
2387 .addImm(CC)
2388 .addMBB(TBB);
2389
2390 finishCondBranch(BI->getParent(), TBB, FBB);
2391 return true;
2392 }
2393 }
2394
2395 unsigned CondReg = getRegForValue(BI->getCondition());
2396 if (CondReg == 0)
2397 return false;
2398 bool CondRegIsKill = hasTrivialKill(BI->getCondition());
2399
2400 // i1 conditions come as i32 values, test the lowest bit with tb(n)z.
2401 unsigned Opcode = AArch64::TBNZW;
2402 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
2403 std::swap(TBB, FBB);
2404 Opcode = AArch64::TBZW;
2405 }
2406
2407 const MCInstrDesc &II = TII.get(Opcode);
2408 unsigned ConstrainedCondReg
2409 = constrainOperandRegClass(II, CondReg, II.getNumDefs());
2410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2411 .addReg(ConstrainedCondReg, getKillRegState(CondRegIsKill))
2412 .addImm(0)
2413 .addMBB(TBB);
2414
2415 finishCondBranch(BI->getParent(), TBB, FBB);
2416 return true;
2417 }
2418
selectIndirectBr(const Instruction * I)2419 bool AArch64FastISel::selectIndirectBr(const Instruction *I) {
2420 const IndirectBrInst *BI = cast<IndirectBrInst>(I);
2421 unsigned AddrReg = getRegForValue(BI->getOperand(0));
2422 if (AddrReg == 0)
2423 return false;
2424
2425 // Emit the indirect branch.
2426 const MCInstrDesc &II = TII.get(AArch64::BR);
2427 AddrReg = constrainOperandRegClass(II, AddrReg, II.getNumDefs());
2428 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(AddrReg);
2429
2430 // Make sure the CFG is up-to-date.
2431 for (auto *Succ : BI->successors())
2432 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[Succ]);
2433
2434 return true;
2435 }
2436
selectCmp(const Instruction * I)2437 bool AArch64FastISel::selectCmp(const Instruction *I) {
2438 const CmpInst *CI = cast<CmpInst>(I);
2439
2440 // Vectors of i1 are weird: bail out.
2441 if (CI->getType()->isVectorTy())
2442 return false;
2443
2444 // Try to optimize or fold the cmp.
2445 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2446 unsigned ResultReg = 0;
2447 switch (Predicate) {
2448 default:
2449 break;
2450 case CmpInst::FCMP_FALSE:
2451 ResultReg = createResultReg(&AArch64::GPR32RegClass);
2452 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2453 TII.get(TargetOpcode::COPY), ResultReg)
2454 .addReg(AArch64::WZR, getKillRegState(true));
2455 break;
2456 case CmpInst::FCMP_TRUE:
2457 ResultReg = fastEmit_i(MVT::i32, MVT::i32, ISD::Constant, 1);
2458 break;
2459 }
2460
2461 if (ResultReg) {
2462 updateValueMap(I, ResultReg);
2463 return true;
2464 }
2465
2466 // Emit the cmp.
2467 if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
2468 return false;
2469
2470 ResultReg = createResultReg(&AArch64::GPR32RegClass);
2471
2472 // FCMP_UEQ and FCMP_ONE cannot be checked with a single instruction. These
2473 // condition codes are inverted, because they are used by CSINC.
2474 static unsigned CondCodeTable[2][2] = {
2475 { AArch64CC::NE, AArch64CC::VC },
2476 { AArch64CC::PL, AArch64CC::LE }
2477 };
2478 unsigned *CondCodes = nullptr;
2479 switch (Predicate) {
2480 default:
2481 break;
2482 case CmpInst::FCMP_UEQ:
2483 CondCodes = &CondCodeTable[0][0];
2484 break;
2485 case CmpInst::FCMP_ONE:
2486 CondCodes = &CondCodeTable[1][0];
2487 break;
2488 }
2489
2490 if (CondCodes) {
2491 unsigned TmpReg1 = createResultReg(&AArch64::GPR32RegClass);
2492 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
2493 TmpReg1)
2494 .addReg(AArch64::WZR, getKillRegState(true))
2495 .addReg(AArch64::WZR, getKillRegState(true))
2496 .addImm(CondCodes[0]);
2497 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
2498 ResultReg)
2499 .addReg(TmpReg1, getKillRegState(true))
2500 .addReg(AArch64::WZR, getKillRegState(true))
2501 .addImm(CondCodes[1]);
2502
2503 updateValueMap(I, ResultReg);
2504 return true;
2505 }
2506
2507 // Now set a register based on the comparison.
2508 AArch64CC::CondCode CC = getCompareCC(Predicate);
2509 assert((CC != AArch64CC::AL) && "Unexpected condition code.");
2510 AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
2511 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
2512 ResultReg)
2513 .addReg(AArch64::WZR, getKillRegState(true))
2514 .addReg(AArch64::WZR, getKillRegState(true))
2515 .addImm(invertedCC);
2516
2517 updateValueMap(I, ResultReg);
2518 return true;
2519 }
2520
2521 /// \brief Optimize selects of i1 if one of the operands has a 'true' or 'false'
2522 /// value.
optimizeSelect(const SelectInst * SI)2523 bool AArch64FastISel::optimizeSelect(const SelectInst *SI) {
2524 if (!SI->getType()->isIntegerTy(1))
2525 return false;
2526
2527 const Value *Src1Val, *Src2Val;
2528 unsigned Opc = 0;
2529 bool NeedExtraOp = false;
2530 if (auto *CI = dyn_cast<ConstantInt>(SI->getTrueValue())) {
2531 if (CI->isOne()) {
2532 Src1Val = SI->getCondition();
2533 Src2Val = SI->getFalseValue();
2534 Opc = AArch64::ORRWrr;
2535 } else {
2536 assert(CI->isZero());
2537 Src1Val = SI->getFalseValue();
2538 Src2Val = SI->getCondition();
2539 Opc = AArch64::BICWrr;
2540 }
2541 } else if (auto *CI = dyn_cast<ConstantInt>(SI->getFalseValue())) {
2542 if (CI->isOne()) {
2543 Src1Val = SI->getCondition();
2544 Src2Val = SI->getTrueValue();
2545 Opc = AArch64::ORRWrr;
2546 NeedExtraOp = true;
2547 } else {
2548 assert(CI->isZero());
2549 Src1Val = SI->getCondition();
2550 Src2Val = SI->getTrueValue();
2551 Opc = AArch64::ANDWrr;
2552 }
2553 }
2554
2555 if (!Opc)
2556 return false;
2557
2558 unsigned Src1Reg = getRegForValue(Src1Val);
2559 if (!Src1Reg)
2560 return false;
2561 bool Src1IsKill = hasTrivialKill(Src1Val);
2562
2563 unsigned Src2Reg = getRegForValue(Src2Val);
2564 if (!Src2Reg)
2565 return false;
2566 bool Src2IsKill = hasTrivialKill(Src2Val);
2567
2568 if (NeedExtraOp) {
2569 Src1Reg = emitLogicalOp_ri(ISD::XOR, MVT::i32, Src1Reg, Src1IsKill, 1);
2570 Src1IsKill = true;
2571 }
2572 unsigned ResultReg = fastEmitInst_rr(Opc, &AArch64::GPR32RegClass, Src1Reg,
2573 Src1IsKill, Src2Reg, Src2IsKill);
2574 updateValueMap(SI, ResultReg);
2575 return true;
2576 }
2577
selectSelect(const Instruction * I)2578 bool AArch64FastISel::selectSelect(const Instruction *I) {
2579 assert(isa<SelectInst>(I) && "Expected a select instruction.");
2580 MVT VT;
2581 if (!isTypeSupported(I->getType(), VT))
2582 return false;
2583
2584 unsigned Opc;
2585 const TargetRegisterClass *RC;
2586 switch (VT.SimpleTy) {
2587 default:
2588 return false;
2589 case MVT::i1:
2590 case MVT::i8:
2591 case MVT::i16:
2592 case MVT::i32:
2593 Opc = AArch64::CSELWr;
2594 RC = &AArch64::GPR32RegClass;
2595 break;
2596 case MVT::i64:
2597 Opc = AArch64::CSELXr;
2598 RC = &AArch64::GPR64RegClass;
2599 break;
2600 case MVT::f32:
2601 Opc = AArch64::FCSELSrrr;
2602 RC = &AArch64::FPR32RegClass;
2603 break;
2604 case MVT::f64:
2605 Opc = AArch64::FCSELDrrr;
2606 RC = &AArch64::FPR64RegClass;
2607 break;
2608 }
2609
2610 const SelectInst *SI = cast<SelectInst>(I);
2611 const Value *Cond = SI->getCondition();
2612 AArch64CC::CondCode CC = AArch64CC::NE;
2613 AArch64CC::CondCode ExtraCC = AArch64CC::AL;
2614
2615 if (optimizeSelect(SI))
2616 return true;
2617
2618 // Try to pickup the flags, so we don't have to emit another compare.
2619 if (foldXALUIntrinsic(CC, I, Cond)) {
2620 // Fake request the condition to force emission of the XALU intrinsic.
2621 unsigned CondReg = getRegForValue(Cond);
2622 if (!CondReg)
2623 return false;
2624 } else if (isa<CmpInst>(Cond) && cast<CmpInst>(Cond)->hasOneUse() &&
2625 isValueAvailable(Cond)) {
2626 const auto *Cmp = cast<CmpInst>(Cond);
2627 // Try to optimize or fold the cmp.
2628 CmpInst::Predicate Predicate = optimizeCmpPredicate(Cmp);
2629 const Value *FoldSelect = nullptr;
2630 switch (Predicate) {
2631 default:
2632 break;
2633 case CmpInst::FCMP_FALSE:
2634 FoldSelect = SI->getFalseValue();
2635 break;
2636 case CmpInst::FCMP_TRUE:
2637 FoldSelect = SI->getTrueValue();
2638 break;
2639 }
2640
2641 if (FoldSelect) {
2642 unsigned SrcReg = getRegForValue(FoldSelect);
2643 if (!SrcReg)
2644 return false;
2645 unsigned UseReg = lookUpRegForValue(SI);
2646 if (UseReg)
2647 MRI.clearKillFlags(UseReg);
2648
2649 updateValueMap(I, SrcReg);
2650 return true;
2651 }
2652
2653 // Emit the cmp.
2654 if (!emitCmp(Cmp->getOperand(0), Cmp->getOperand(1), Cmp->isUnsigned()))
2655 return false;
2656
2657 // FCMP_UEQ and FCMP_ONE cannot be checked with a single select instruction.
2658 CC = getCompareCC(Predicate);
2659 switch (Predicate) {
2660 default:
2661 break;
2662 case CmpInst::FCMP_UEQ:
2663 ExtraCC = AArch64CC::EQ;
2664 CC = AArch64CC::VS;
2665 break;
2666 case CmpInst::FCMP_ONE:
2667 ExtraCC = AArch64CC::MI;
2668 CC = AArch64CC::GT;
2669 break;
2670 }
2671 assert((CC != AArch64CC::AL) && "Unexpected condition code.");
2672 } else {
2673 unsigned CondReg = getRegForValue(Cond);
2674 if (!CondReg)
2675 return false;
2676 bool CondIsKill = hasTrivialKill(Cond);
2677
2678 const MCInstrDesc &II = TII.get(AArch64::ANDSWri);
2679 CondReg = constrainOperandRegClass(II, CondReg, 1);
2680
2681 // Emit a TST instruction (ANDS wzr, reg, #imm).
2682 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
2683 AArch64::WZR)
2684 .addReg(CondReg, getKillRegState(CondIsKill))
2685 .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
2686 }
2687
2688 unsigned Src1Reg = getRegForValue(SI->getTrueValue());
2689 bool Src1IsKill = hasTrivialKill(SI->getTrueValue());
2690
2691 unsigned Src2Reg = getRegForValue(SI->getFalseValue());
2692 bool Src2IsKill = hasTrivialKill(SI->getFalseValue());
2693
2694 if (!Src1Reg || !Src2Reg)
2695 return false;
2696
2697 if (ExtraCC != AArch64CC::AL) {
2698 Src2Reg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
2699 Src2IsKill, ExtraCC);
2700 Src2IsKill = true;
2701 }
2702 unsigned ResultReg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
2703 Src2IsKill, CC);
2704 updateValueMap(I, ResultReg);
2705 return true;
2706 }
2707
selectFPExt(const Instruction * I)2708 bool AArch64FastISel::selectFPExt(const Instruction *I) {
2709 Value *V = I->getOperand(0);
2710 if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
2711 return false;
2712
2713 unsigned Op = getRegForValue(V);
2714 if (Op == 0)
2715 return false;
2716
2717 unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
2718 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
2719 ResultReg).addReg(Op);
2720 updateValueMap(I, ResultReg);
2721 return true;
2722 }
2723
selectFPTrunc(const Instruction * I)2724 bool AArch64FastISel::selectFPTrunc(const Instruction *I) {
2725 Value *V = I->getOperand(0);
2726 if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
2727 return false;
2728
2729 unsigned Op = getRegForValue(V);
2730 if (Op == 0)
2731 return false;
2732
2733 unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
2734 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
2735 ResultReg).addReg(Op);
2736 updateValueMap(I, ResultReg);
2737 return true;
2738 }
2739
2740 // FPToUI and FPToSI
selectFPToInt(const Instruction * I,bool Signed)2741 bool AArch64FastISel::selectFPToInt(const Instruction *I, bool Signed) {
2742 MVT DestVT;
2743 if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
2744 return false;
2745
2746 unsigned SrcReg = getRegForValue(I->getOperand(0));
2747 if (SrcReg == 0)
2748 return false;
2749
2750 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType(), true);
2751 if (SrcVT == MVT::f128)
2752 return false;
2753
2754 unsigned Opc;
2755 if (SrcVT == MVT::f64) {
2756 if (Signed)
2757 Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr;
2758 else
2759 Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr;
2760 } else {
2761 if (Signed)
2762 Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr;
2763 else
2764 Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr;
2765 }
2766 unsigned ResultReg = createResultReg(
2767 DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
2768 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2769 .addReg(SrcReg);
2770 updateValueMap(I, ResultReg);
2771 return true;
2772 }
2773
selectIntToFP(const Instruction * I,bool Signed)2774 bool AArch64FastISel::selectIntToFP(const Instruction *I, bool Signed) {
2775 MVT DestVT;
2776 if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
2777 return false;
2778 assert ((DestVT == MVT::f32 || DestVT == MVT::f64) &&
2779 "Unexpected value type.");
2780
2781 unsigned SrcReg = getRegForValue(I->getOperand(0));
2782 if (!SrcReg)
2783 return false;
2784 bool SrcIsKill = hasTrivialKill(I->getOperand(0));
2785
2786 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType(), true);
2787
2788 // Handle sign-extension.
2789 if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
2790 SrcReg =
2791 emitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
2792 if (!SrcReg)
2793 return false;
2794 SrcIsKill = true;
2795 }
2796
2797 unsigned Opc;
2798 if (SrcVT == MVT::i64) {
2799 if (Signed)
2800 Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri;
2801 else
2802 Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri;
2803 } else {
2804 if (Signed)
2805 Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri;
2806 else
2807 Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
2808 }
2809
2810 unsigned ResultReg = fastEmitInst_r(Opc, TLI.getRegClassFor(DestVT), SrcReg,
2811 SrcIsKill);
2812 updateValueMap(I, ResultReg);
2813 return true;
2814 }
2815
fastLowerArguments()2816 bool AArch64FastISel::fastLowerArguments() {
2817 if (!FuncInfo.CanLowerReturn)
2818 return false;
2819
2820 const Function *F = FuncInfo.Fn;
2821 if (F->isVarArg())
2822 return false;
2823
2824 CallingConv::ID CC = F->getCallingConv();
2825 if (CC != CallingConv::C)
2826 return false;
2827
2828 // Only handle simple cases of up to 8 GPR and FPR each.
2829 unsigned GPRCnt = 0;
2830 unsigned FPRCnt = 0;
2831 unsigned Idx = 0;
2832 for (auto const &Arg : F->args()) {
2833 // The first argument is at index 1.
2834 ++Idx;
2835 if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2836 F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2837 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
2838 F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) ||
2839 F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) ||
2840 F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2841 return false;
2842
2843 Type *ArgTy = Arg.getType();
2844 if (ArgTy->isStructTy() || ArgTy->isArrayTy())
2845 return false;
2846
2847 EVT ArgVT = TLI.getValueType(DL, ArgTy);
2848 if (!ArgVT.isSimple())
2849 return false;
2850
2851 MVT VT = ArgVT.getSimpleVT().SimpleTy;
2852 if (VT.isFloatingPoint() && !Subtarget->hasFPARMv8())
2853 return false;
2854
2855 if (VT.isVector() &&
2856 (!Subtarget->hasNEON() || !Subtarget->isLittleEndian()))
2857 return false;
2858
2859 if (VT >= MVT::i1 && VT <= MVT::i64)
2860 ++GPRCnt;
2861 else if ((VT >= MVT::f16 && VT <= MVT::f64) || VT.is64BitVector() ||
2862 VT.is128BitVector())
2863 ++FPRCnt;
2864 else
2865 return false;
2866
2867 if (GPRCnt > 8 || FPRCnt > 8)
2868 return false;
2869 }
2870
2871 static const MCPhysReg Registers[6][8] = {
2872 { AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4,
2873 AArch64::W5, AArch64::W6, AArch64::W7 },
2874 { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4,
2875 AArch64::X5, AArch64::X6, AArch64::X7 },
2876 { AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4,
2877 AArch64::H5, AArch64::H6, AArch64::H7 },
2878 { AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4,
2879 AArch64::S5, AArch64::S6, AArch64::S7 },
2880 { AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4,
2881 AArch64::D5, AArch64::D6, AArch64::D7 },
2882 { AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4,
2883 AArch64::Q5, AArch64::Q6, AArch64::Q7 }
2884 };
2885
2886 unsigned GPRIdx = 0;
2887 unsigned FPRIdx = 0;
2888 for (auto const &Arg : F->args()) {
2889 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
2890 unsigned SrcReg;
2891 const TargetRegisterClass *RC;
2892 if (VT >= MVT::i1 && VT <= MVT::i32) {
2893 SrcReg = Registers[0][GPRIdx++];
2894 RC = &AArch64::GPR32RegClass;
2895 VT = MVT::i32;
2896 } else if (VT == MVT::i64) {
2897 SrcReg = Registers[1][GPRIdx++];
2898 RC = &AArch64::GPR64RegClass;
2899 } else if (VT == MVT::f16) {
2900 SrcReg = Registers[2][FPRIdx++];
2901 RC = &AArch64::FPR16RegClass;
2902 } else if (VT == MVT::f32) {
2903 SrcReg = Registers[3][FPRIdx++];
2904 RC = &AArch64::FPR32RegClass;
2905 } else if ((VT == MVT::f64) || VT.is64BitVector()) {
2906 SrcReg = Registers[4][FPRIdx++];
2907 RC = &AArch64::FPR64RegClass;
2908 } else if (VT.is128BitVector()) {
2909 SrcReg = Registers[5][FPRIdx++];
2910 RC = &AArch64::FPR128RegClass;
2911 } else
2912 llvm_unreachable("Unexpected value type.");
2913
2914 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
2915 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
2916 // Without this, EmitLiveInCopies may eliminate the livein if its only
2917 // use is a bitcast (which isn't turned into an instruction).
2918 unsigned ResultReg = createResultReg(RC);
2919 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2920 TII.get(TargetOpcode::COPY), ResultReg)
2921 .addReg(DstReg, getKillRegState(true));
2922 updateValueMap(&Arg, ResultReg);
2923 }
2924 return true;
2925 }
2926
processCallArgs(CallLoweringInfo & CLI,SmallVectorImpl<MVT> & OutVTs,unsigned & NumBytes)2927 bool AArch64FastISel::processCallArgs(CallLoweringInfo &CLI,
2928 SmallVectorImpl<MVT> &OutVTs,
2929 unsigned &NumBytes) {
2930 CallingConv::ID CC = CLI.CallConv;
2931 SmallVector<CCValAssign, 16> ArgLocs;
2932 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
2933 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
2934
2935 // Get a count of how many bytes are to be pushed on the stack.
2936 NumBytes = CCInfo.getNextStackOffset();
2937
2938 // Issue CALLSEQ_START
2939 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
2940 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
2941 .addImm(NumBytes);
2942
2943 // Process the args.
2944 for (CCValAssign &VA : ArgLocs) {
2945 const Value *ArgVal = CLI.OutVals[VA.getValNo()];
2946 MVT ArgVT = OutVTs[VA.getValNo()];
2947
2948 unsigned ArgReg = getRegForValue(ArgVal);
2949 if (!ArgReg)
2950 return false;
2951
2952 // Handle arg promotion: SExt, ZExt, AExt.
2953 switch (VA.getLocInfo()) {
2954 case CCValAssign::Full:
2955 break;
2956 case CCValAssign::SExt: {
2957 MVT DestVT = VA.getLocVT();
2958 MVT SrcVT = ArgVT;
2959 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
2960 if (!ArgReg)
2961 return false;
2962 break;
2963 }
2964 case CCValAssign::AExt:
2965 // Intentional fall-through.
2966 case CCValAssign::ZExt: {
2967 MVT DestVT = VA.getLocVT();
2968 MVT SrcVT = ArgVT;
2969 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
2970 if (!ArgReg)
2971 return false;
2972 break;
2973 }
2974 default:
2975 llvm_unreachable("Unknown arg promotion!");
2976 }
2977
2978 // Now copy/store arg to correct locations.
2979 if (VA.isRegLoc() && !VA.needsCustom()) {
2980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2981 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
2982 CLI.OutRegs.push_back(VA.getLocReg());
2983 } else if (VA.needsCustom()) {
2984 // FIXME: Handle custom args.
2985 return false;
2986 } else {
2987 assert(VA.isMemLoc() && "Assuming store on stack.");
2988
2989 // Don't emit stores for undef values.
2990 if (isa<UndefValue>(ArgVal))
2991 continue;
2992
2993 // Need to store on the stack.
2994 unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;
2995
2996 unsigned BEAlign = 0;
2997 if (ArgSize < 8 && !Subtarget->isLittleEndian())
2998 BEAlign = 8 - ArgSize;
2999
3000 Address Addr;
3001 Addr.setKind(Address::RegBase);
3002 Addr.setReg(AArch64::SP);
3003 Addr.setOffset(VA.getLocMemOffset() + BEAlign);
3004
3005 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3006 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3007 MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
3008 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3009
3010 if (!emitStore(ArgVT, ArgReg, Addr, MMO))
3011 return false;
3012 }
3013 }
3014 return true;
3015 }
3016
finishCall(CallLoweringInfo & CLI,MVT RetVT,unsigned NumBytes)3017 bool AArch64FastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
3018 unsigned NumBytes) {
3019 CallingConv::ID CC = CLI.CallConv;
3020
3021 // Issue CALLSEQ_END
3022 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3023 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3024 .addImm(NumBytes).addImm(0);
3025
3026 // Now the return value.
3027 if (RetVT != MVT::isVoid) {
3028 SmallVector<CCValAssign, 16> RVLocs;
3029 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
3030 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
3031
3032 // Only handle a single return value.
3033 if (RVLocs.size() != 1)
3034 return false;
3035
3036 // Copy all of the result registers out of their specified physreg.
3037 MVT CopyVT = RVLocs[0].getValVT();
3038
3039 // TODO: Handle big-endian results
3040 if (CopyVT.isVector() && !Subtarget->isLittleEndian())
3041 return false;
3042
3043 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
3044 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3045 TII.get(TargetOpcode::COPY), ResultReg)
3046 .addReg(RVLocs[0].getLocReg());
3047 CLI.InRegs.push_back(RVLocs[0].getLocReg());
3048
3049 CLI.ResultReg = ResultReg;
3050 CLI.NumResultRegs = 1;
3051 }
3052
3053 return true;
3054 }
3055
fastLowerCall(CallLoweringInfo & CLI)3056 bool AArch64FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3057 CallingConv::ID CC = CLI.CallConv;
3058 bool IsTailCall = CLI.IsTailCall;
3059 bool IsVarArg = CLI.IsVarArg;
3060 const Value *Callee = CLI.Callee;
3061 MCSymbol *Symbol = CLI.Symbol;
3062
3063 if (!Callee && !Symbol)
3064 return false;
3065
3066 // Allow SelectionDAG isel to handle tail calls.
3067 if (IsTailCall)
3068 return false;
3069
3070 CodeModel::Model CM = TM.getCodeModel();
3071 // Only support the small and large code model.
3072 if (CM != CodeModel::Small && CM != CodeModel::Large)
3073 return false;
3074
3075 // FIXME: Add large code model support for ELF.
3076 if (CM == CodeModel::Large && !Subtarget->isTargetMachO())
3077 return false;
3078
3079 // Let SDISel handle vararg functions.
3080 if (IsVarArg)
3081 return false;
3082
3083 // FIXME: Only handle *simple* calls for now.
3084 MVT RetVT;
3085 if (CLI.RetTy->isVoidTy())
3086 RetVT = MVT::isVoid;
3087 else if (!isTypeLegal(CLI.RetTy, RetVT))
3088 return false;
3089
3090 for (auto Flag : CLI.OutFlags)
3091 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal() ||
3092 Flag.isSwiftSelf() || Flag.isSwiftError())
3093 return false;
3094
3095 // Set up the argument vectors.
3096 SmallVector<MVT, 16> OutVTs;
3097 OutVTs.reserve(CLI.OutVals.size());
3098
3099 for (auto *Val : CLI.OutVals) {
3100 MVT VT;
3101 if (!isTypeLegal(Val->getType(), VT) &&
3102 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
3103 return false;
3104
3105 // We don't handle vector parameters yet.
3106 if (VT.isVector() || VT.getSizeInBits() > 64)
3107 return false;
3108
3109 OutVTs.push_back(VT);
3110 }
3111
3112 Address Addr;
3113 if (Callee && !computeCallAddress(Callee, Addr))
3114 return false;
3115
3116 // Handle the arguments now that we've gotten them.
3117 unsigned NumBytes;
3118 if (!processCallArgs(CLI, OutVTs, NumBytes))
3119 return false;
3120
3121 // Issue the call.
3122 MachineInstrBuilder MIB;
3123 if (CM == CodeModel::Small) {
3124 const MCInstrDesc &II = TII.get(Addr.getReg() ? AArch64::BLR : AArch64::BL);
3125 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II);
3126 if (Symbol)
3127 MIB.addSym(Symbol, 0);
3128 else if (Addr.getGlobalValue())
3129 MIB.addGlobalAddress(Addr.getGlobalValue(), 0, 0);
3130 else if (Addr.getReg()) {
3131 unsigned Reg = constrainOperandRegClass(II, Addr.getReg(), 0);
3132 MIB.addReg(Reg);
3133 } else
3134 return false;
3135 } else {
3136 unsigned CallReg = 0;
3137 if (Symbol) {
3138 unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
3139 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
3140 ADRPReg)
3141 .addSym(Symbol, AArch64II::MO_GOT | AArch64II::MO_PAGE);
3142
3143 CallReg = createResultReg(&AArch64::GPR64RegClass);
3144 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3145 TII.get(AArch64::LDRXui), CallReg)
3146 .addReg(ADRPReg)
3147 .addSym(Symbol,
3148 AArch64II::MO_GOT | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3149 } else if (Addr.getGlobalValue())
3150 CallReg = materializeGV(Addr.getGlobalValue());
3151 else if (Addr.getReg())
3152 CallReg = Addr.getReg();
3153
3154 if (!CallReg)
3155 return false;
3156
3157 const MCInstrDesc &II = TII.get(AArch64::BLR);
3158 CallReg = constrainOperandRegClass(II, CallReg, 0);
3159 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(CallReg);
3160 }
3161
3162 // Add implicit physical register uses to the call.
3163 for (auto Reg : CLI.OutRegs)
3164 MIB.addReg(Reg, RegState::Implicit);
3165
3166 // Add a register mask with the call-preserved registers.
3167 // Proper defs for return values will be added by setPhysRegsDeadExcept().
3168 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3169
3170 CLI.Call = MIB;
3171
3172 // Finish off the call including any return values.
3173 return finishCall(CLI, RetVT, NumBytes);
3174 }
3175
isMemCpySmall(uint64_t Len,unsigned Alignment)3176 bool AArch64FastISel::isMemCpySmall(uint64_t Len, unsigned Alignment) {
3177 if (Alignment)
3178 return Len / Alignment <= 4;
3179 else
3180 return Len < 32;
3181 }
3182
tryEmitSmallMemCpy(Address Dest,Address Src,uint64_t Len,unsigned Alignment)3183 bool AArch64FastISel::tryEmitSmallMemCpy(Address Dest, Address Src,
3184 uint64_t Len, unsigned Alignment) {
3185 // Make sure we don't bloat code by inlining very large memcpy's.
3186 if (!isMemCpySmall(Len, Alignment))
3187 return false;
3188
3189 int64_t UnscaledOffset = 0;
3190 Address OrigDest = Dest;
3191 Address OrigSrc = Src;
3192
3193 while (Len) {
3194 MVT VT;
3195 if (!Alignment || Alignment >= 8) {
3196 if (Len >= 8)
3197 VT = MVT::i64;
3198 else if (Len >= 4)
3199 VT = MVT::i32;
3200 else if (Len >= 2)
3201 VT = MVT::i16;
3202 else {
3203 VT = MVT::i8;
3204 }
3205 } else {
3206 // Bound based on alignment.
3207 if (Len >= 4 && Alignment == 4)
3208 VT = MVT::i32;
3209 else if (Len >= 2 && Alignment == 2)
3210 VT = MVT::i16;
3211 else {
3212 VT = MVT::i8;
3213 }
3214 }
3215
3216 unsigned ResultReg = emitLoad(VT, VT, Src);
3217 if (!ResultReg)
3218 return false;
3219
3220 if (!emitStore(VT, ResultReg, Dest))
3221 return false;
3222
3223 int64_t Size = VT.getSizeInBits() / 8;
3224 Len -= Size;
3225 UnscaledOffset += Size;
3226
3227 // We need to recompute the unscaled offset for each iteration.
3228 Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
3229 Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
3230 }
3231
3232 return true;
3233 }
3234
3235 /// \brief Check if it is possible to fold the condition from the XALU intrinsic
3236 /// into the user. The condition code will only be updated on success.
foldXALUIntrinsic(AArch64CC::CondCode & CC,const Instruction * I,const Value * Cond)3237 bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC,
3238 const Instruction *I,
3239 const Value *Cond) {
3240 if (!isa<ExtractValueInst>(Cond))
3241 return false;
3242
3243 const auto *EV = cast<ExtractValueInst>(Cond);
3244 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
3245 return false;
3246
3247 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
3248 MVT RetVT;
3249 const Function *Callee = II->getCalledFunction();
3250 Type *RetTy =
3251 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
3252 if (!isTypeLegal(RetTy, RetVT))
3253 return false;
3254
3255 if (RetVT != MVT::i32 && RetVT != MVT::i64)
3256 return false;
3257
3258 const Value *LHS = II->getArgOperand(0);
3259 const Value *RHS = II->getArgOperand(1);
3260
3261 // Canonicalize immediate to the RHS.
3262 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
3263 isCommutativeIntrinsic(II))
3264 std::swap(LHS, RHS);
3265
3266 // Simplify multiplies.
3267 Intrinsic::ID IID = II->getIntrinsicID();
3268 switch (IID) {
3269 default:
3270 break;
3271 case Intrinsic::smul_with_overflow:
3272 if (const auto *C = dyn_cast<ConstantInt>(RHS))
3273 if (C->getValue() == 2)
3274 IID = Intrinsic::sadd_with_overflow;
3275 break;
3276 case Intrinsic::umul_with_overflow:
3277 if (const auto *C = dyn_cast<ConstantInt>(RHS))
3278 if (C->getValue() == 2)
3279 IID = Intrinsic::uadd_with_overflow;
3280 break;
3281 }
3282
3283 AArch64CC::CondCode TmpCC;
3284 switch (IID) {
3285 default:
3286 return false;
3287 case Intrinsic::sadd_with_overflow:
3288 case Intrinsic::ssub_with_overflow:
3289 TmpCC = AArch64CC::VS;
3290 break;
3291 case Intrinsic::uadd_with_overflow:
3292 TmpCC = AArch64CC::HS;
3293 break;
3294 case Intrinsic::usub_with_overflow:
3295 TmpCC = AArch64CC::LO;
3296 break;
3297 case Intrinsic::smul_with_overflow:
3298 case Intrinsic::umul_with_overflow:
3299 TmpCC = AArch64CC::NE;
3300 break;
3301 }
3302
3303 // Check if both instructions are in the same basic block.
3304 if (!isValueAvailable(II))
3305 return false;
3306
3307 // Make sure nothing is in the way
3308 BasicBlock::const_iterator Start(I);
3309 BasicBlock::const_iterator End(II);
3310 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
3311 // We only expect extractvalue instructions between the intrinsic and the
3312 // instruction to be selected.
3313 if (!isa<ExtractValueInst>(Itr))
3314 return false;
3315
3316 // Check that the extractvalue operand comes from the intrinsic.
3317 const auto *EVI = cast<ExtractValueInst>(Itr);
3318 if (EVI->getAggregateOperand() != II)
3319 return false;
3320 }
3321
3322 CC = TmpCC;
3323 return true;
3324 }
3325
fastLowerIntrinsicCall(const IntrinsicInst * II)3326 bool AArch64FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
3327 // FIXME: Handle more intrinsics.
3328 switch (II->getIntrinsicID()) {
3329 default: return false;
3330 case Intrinsic::frameaddress: {
3331 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
3332 MFI->setFrameAddressIsTaken(true);
3333
3334 const AArch64RegisterInfo *RegInfo =
3335 static_cast<const AArch64RegisterInfo *>(Subtarget->getRegisterInfo());
3336 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
3337 unsigned SrcReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3338 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3339 TII.get(TargetOpcode::COPY), SrcReg).addReg(FramePtr);
3340 // Recursively load frame address
3341 // ldr x0, [fp]
3342 // ldr x0, [x0]
3343 // ldr x0, [x0]
3344 // ...
3345 unsigned DestReg;
3346 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
3347 while (Depth--) {
3348 DestReg = fastEmitInst_ri(AArch64::LDRXui, &AArch64::GPR64RegClass,
3349 SrcReg, /*IsKill=*/true, 0);
3350 assert(DestReg && "Unexpected LDR instruction emission failure.");
3351 SrcReg = DestReg;
3352 }
3353
3354 updateValueMap(II, SrcReg);
3355 return true;
3356 }
3357 case Intrinsic::memcpy:
3358 case Intrinsic::memmove: {
3359 const auto *MTI = cast<MemTransferInst>(II);
3360 // Don't handle volatile.
3361 if (MTI->isVolatile())
3362 return false;
3363
3364 // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
3365 // we would emit dead code because we don't currently handle memmoves.
3366 bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy);
3367 if (isa<ConstantInt>(MTI->getLength()) && IsMemCpy) {
3368 // Small memcpy's are common enough that we want to do them without a call
3369 // if possible.
3370 uint64_t Len = cast<ConstantInt>(MTI->getLength())->getZExtValue();
3371 unsigned Alignment = MTI->getAlignment();
3372 if (isMemCpySmall(Len, Alignment)) {
3373 Address Dest, Src;
3374 if (!computeAddress(MTI->getRawDest(), Dest) ||
3375 !computeAddress(MTI->getRawSource(), Src))
3376 return false;
3377 if (tryEmitSmallMemCpy(Dest, Src, Len, Alignment))
3378 return true;
3379 }
3380 }
3381
3382 if (!MTI->getLength()->getType()->isIntegerTy(64))
3383 return false;
3384
3385 if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255)
3386 // Fast instruction selection doesn't support the special
3387 // address spaces.
3388 return false;
3389
3390 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
3391 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
3392 }
3393 case Intrinsic::memset: {
3394 const MemSetInst *MSI = cast<MemSetInst>(II);
3395 // Don't handle volatile.
3396 if (MSI->isVolatile())
3397 return false;
3398
3399 if (!MSI->getLength()->getType()->isIntegerTy(64))
3400 return false;
3401
3402 if (MSI->getDestAddressSpace() > 255)
3403 // Fast instruction selection doesn't support the special
3404 // address spaces.
3405 return false;
3406
3407 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
3408 }
3409 case Intrinsic::sin:
3410 case Intrinsic::cos:
3411 case Intrinsic::pow: {
3412 MVT RetVT;
3413 if (!isTypeLegal(II->getType(), RetVT))
3414 return false;
3415
3416 if (RetVT != MVT::f32 && RetVT != MVT::f64)
3417 return false;
3418
3419 static const RTLIB::Libcall LibCallTable[3][2] = {
3420 { RTLIB::SIN_F32, RTLIB::SIN_F64 },
3421 { RTLIB::COS_F32, RTLIB::COS_F64 },
3422 { RTLIB::POW_F32, RTLIB::POW_F64 }
3423 };
3424 RTLIB::Libcall LC;
3425 bool Is64Bit = RetVT == MVT::f64;
3426 switch (II->getIntrinsicID()) {
3427 default:
3428 llvm_unreachable("Unexpected intrinsic.");
3429 case Intrinsic::sin:
3430 LC = LibCallTable[0][Is64Bit];
3431 break;
3432 case Intrinsic::cos:
3433 LC = LibCallTable[1][Is64Bit];
3434 break;
3435 case Intrinsic::pow:
3436 LC = LibCallTable[2][Is64Bit];
3437 break;
3438 }
3439
3440 ArgListTy Args;
3441 Args.reserve(II->getNumArgOperands());
3442
3443 // Populate the argument list.
3444 for (auto &Arg : II->arg_operands()) {
3445 ArgListEntry Entry;
3446 Entry.Val = Arg;
3447 Entry.Ty = Arg->getType();
3448 Args.push_back(Entry);
3449 }
3450
3451 CallLoweringInfo CLI;
3452 MCContext &Ctx = MF->getContext();
3453 CLI.setCallee(DL, Ctx, TLI.getLibcallCallingConv(LC), II->getType(),
3454 TLI.getLibcallName(LC), std::move(Args));
3455 if (!lowerCallTo(CLI))
3456 return false;
3457 updateValueMap(II, CLI.ResultReg);
3458 return true;
3459 }
3460 case Intrinsic::fabs: {
3461 MVT VT;
3462 if (!isTypeLegal(II->getType(), VT))
3463 return false;
3464
3465 unsigned Opc;
3466 switch (VT.SimpleTy) {
3467 default:
3468 return false;
3469 case MVT::f32:
3470 Opc = AArch64::FABSSr;
3471 break;
3472 case MVT::f64:
3473 Opc = AArch64::FABSDr;
3474 break;
3475 }
3476 unsigned SrcReg = getRegForValue(II->getOperand(0));
3477 if (!SrcReg)
3478 return false;
3479 bool SrcRegIsKill = hasTrivialKill(II->getOperand(0));
3480 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3481 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3482 .addReg(SrcReg, getKillRegState(SrcRegIsKill));
3483 updateValueMap(II, ResultReg);
3484 return true;
3485 }
3486 case Intrinsic::trap: {
3487 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
3488 .addImm(1);
3489 return true;
3490 }
3491 case Intrinsic::sqrt: {
3492 Type *RetTy = II->getCalledFunction()->getReturnType();
3493
3494 MVT VT;
3495 if (!isTypeLegal(RetTy, VT))
3496 return false;
3497
3498 unsigned Op0Reg = getRegForValue(II->getOperand(0));
3499 if (!Op0Reg)
3500 return false;
3501 bool Op0IsKill = hasTrivialKill(II->getOperand(0));
3502
3503 unsigned ResultReg = fastEmit_r(VT, VT, ISD::FSQRT, Op0Reg, Op0IsKill);
3504 if (!ResultReg)
3505 return false;
3506
3507 updateValueMap(II, ResultReg);
3508 return true;
3509 }
3510 case Intrinsic::sadd_with_overflow:
3511 case Intrinsic::uadd_with_overflow:
3512 case Intrinsic::ssub_with_overflow:
3513 case Intrinsic::usub_with_overflow:
3514 case Intrinsic::smul_with_overflow:
3515 case Intrinsic::umul_with_overflow: {
3516 // This implements the basic lowering of the xalu with overflow intrinsics.
3517 const Function *Callee = II->getCalledFunction();
3518 auto *Ty = cast<StructType>(Callee->getReturnType());
3519 Type *RetTy = Ty->getTypeAtIndex(0U);
3520
3521 MVT VT;
3522 if (!isTypeLegal(RetTy, VT))
3523 return false;
3524
3525 if (VT != MVT::i32 && VT != MVT::i64)
3526 return false;
3527
3528 const Value *LHS = II->getArgOperand(0);
3529 const Value *RHS = II->getArgOperand(1);
3530 // Canonicalize immediate to the RHS.
3531 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
3532 isCommutativeIntrinsic(II))
3533 std::swap(LHS, RHS);
3534
3535 // Simplify multiplies.
3536 Intrinsic::ID IID = II->getIntrinsicID();
3537 switch (IID) {
3538 default:
3539 break;
3540 case Intrinsic::smul_with_overflow:
3541 if (const auto *C = dyn_cast<ConstantInt>(RHS))
3542 if (C->getValue() == 2) {
3543 IID = Intrinsic::sadd_with_overflow;
3544 RHS = LHS;
3545 }
3546 break;
3547 case Intrinsic::umul_with_overflow:
3548 if (const auto *C = dyn_cast<ConstantInt>(RHS))
3549 if (C->getValue() == 2) {
3550 IID = Intrinsic::uadd_with_overflow;
3551 RHS = LHS;
3552 }
3553 break;
3554 }
3555
3556 unsigned ResultReg1 = 0, ResultReg2 = 0, MulReg = 0;
3557 AArch64CC::CondCode CC = AArch64CC::Invalid;
3558 switch (IID) {
3559 default: llvm_unreachable("Unexpected intrinsic!");
3560 case Intrinsic::sadd_with_overflow:
3561 ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
3562 CC = AArch64CC::VS;
3563 break;
3564 case Intrinsic::uadd_with_overflow:
3565 ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
3566 CC = AArch64CC::HS;
3567 break;
3568 case Intrinsic::ssub_with_overflow:
3569 ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
3570 CC = AArch64CC::VS;
3571 break;
3572 case Intrinsic::usub_with_overflow:
3573 ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
3574 CC = AArch64CC::LO;
3575 break;
3576 case Intrinsic::smul_with_overflow: {
3577 CC = AArch64CC::NE;
3578 unsigned LHSReg = getRegForValue(LHS);
3579 if (!LHSReg)
3580 return false;
3581 bool LHSIsKill = hasTrivialKill(LHS);
3582
3583 unsigned RHSReg = getRegForValue(RHS);
3584 if (!RHSReg)
3585 return false;
3586 bool RHSIsKill = hasTrivialKill(RHS);
3587
3588 if (VT == MVT::i32) {
3589 MulReg = emitSMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
3590 unsigned ShiftReg = emitLSR_ri(MVT::i64, MVT::i64, MulReg,
3591 /*IsKill=*/false, 32);
3592 MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
3593 AArch64::sub_32);
3594 ShiftReg = fastEmitInst_extractsubreg(VT, ShiftReg, /*IsKill=*/true,
3595 AArch64::sub_32);
3596 emitSubs_rs(VT, ShiftReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
3597 AArch64_AM::ASR, 31, /*WantResult=*/false);
3598 } else {
3599 assert(VT == MVT::i64 && "Unexpected value type.");
3600 // LHSReg and RHSReg cannot be killed by this Mul, since they are
3601 // reused in the next instruction.
3602 MulReg = emitMul_rr(VT, LHSReg, /*IsKill=*/false, RHSReg,
3603 /*IsKill=*/false);
3604 unsigned SMULHReg = fastEmit_rr(VT, VT, ISD::MULHS, LHSReg, LHSIsKill,
3605 RHSReg, RHSIsKill);
3606 emitSubs_rs(VT, SMULHReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
3607 AArch64_AM::ASR, 63, /*WantResult=*/false);
3608 }
3609 break;
3610 }
3611 case Intrinsic::umul_with_overflow: {
3612 CC = AArch64CC::NE;
3613 unsigned LHSReg = getRegForValue(LHS);
3614 if (!LHSReg)
3615 return false;
3616 bool LHSIsKill = hasTrivialKill(LHS);
3617
3618 unsigned RHSReg = getRegForValue(RHS);
3619 if (!RHSReg)
3620 return false;
3621 bool RHSIsKill = hasTrivialKill(RHS);
3622
3623 if (VT == MVT::i32) {
3624 MulReg = emitUMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
3625 emitSubs_rs(MVT::i64, AArch64::XZR, /*IsKill=*/true, MulReg,
3626 /*IsKill=*/false, AArch64_AM::LSR, 32,
3627 /*WantResult=*/false);
3628 MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
3629 AArch64::sub_32);
3630 } else {
3631 assert(VT == MVT::i64 && "Unexpected value type.");
3632 // LHSReg and RHSReg cannot be killed by this Mul, since they are
3633 // reused in the next instruction.
3634 MulReg = emitMul_rr(VT, LHSReg, /*IsKill=*/false, RHSReg,
3635 /*IsKill=*/false);
3636 unsigned UMULHReg = fastEmit_rr(VT, VT, ISD::MULHU, LHSReg, LHSIsKill,
3637 RHSReg, RHSIsKill);
3638 emitSubs_rr(VT, AArch64::XZR, /*IsKill=*/true, UMULHReg,
3639 /*IsKill=*/false, /*WantResult=*/false);
3640 }
3641 break;
3642 }
3643 }
3644
3645 if (MulReg) {
3646 ResultReg1 = createResultReg(TLI.getRegClassFor(VT));
3647 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3648 TII.get(TargetOpcode::COPY), ResultReg1).addReg(MulReg);
3649 }
3650
3651 ResultReg2 = fastEmitInst_rri(AArch64::CSINCWr, &AArch64::GPR32RegClass,
3652 AArch64::WZR, /*IsKill=*/true, AArch64::WZR,
3653 /*IsKill=*/true, getInvertedCondCode(CC));
3654 (void)ResultReg2;
3655 assert((ResultReg1 + 1) == ResultReg2 &&
3656 "Nonconsecutive result registers.");
3657 updateValueMap(II, ResultReg1, 2);
3658 return true;
3659 }
3660 }
3661 return false;
3662 }
3663
selectRet(const Instruction * I)3664 bool AArch64FastISel::selectRet(const Instruction *I) {
3665 const ReturnInst *Ret = cast<ReturnInst>(I);
3666 const Function &F = *I->getParent()->getParent();
3667
3668 if (!FuncInfo.CanLowerReturn)
3669 return false;
3670
3671 if (F.isVarArg())
3672 return false;
3673
3674 if (TLI.supportSwiftError() &&
3675 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
3676 return false;
3677
3678 if (TLI.supportSplitCSR(FuncInfo.MF))
3679 return false;
3680
3681 // Build a list of return value registers.
3682 SmallVector<unsigned, 4> RetRegs;
3683
3684 if (Ret->getNumOperands() > 0) {
3685 CallingConv::ID CC = F.getCallingConv();
3686 SmallVector<ISD::OutputArg, 4> Outs;
3687 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
3688
3689 // Analyze operands of the call, assigning locations to each operand.
3690 SmallVector<CCValAssign, 16> ValLocs;
3691 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
3692 CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
3693 : RetCC_AArch64_AAPCS;
3694 CCInfo.AnalyzeReturn(Outs, RetCC);
3695
3696 // Only handle a single return value for now.
3697 if (ValLocs.size() != 1)
3698 return false;
3699
3700 CCValAssign &VA = ValLocs[0];
3701 const Value *RV = Ret->getOperand(0);
3702
3703 // Don't bother handling odd stuff for now.
3704 if ((VA.getLocInfo() != CCValAssign::Full) &&
3705 (VA.getLocInfo() != CCValAssign::BCvt))
3706 return false;
3707
3708 // Only handle register returns for now.
3709 if (!VA.isRegLoc())
3710 return false;
3711
3712 unsigned Reg = getRegForValue(RV);
3713 if (Reg == 0)
3714 return false;
3715
3716 unsigned SrcReg = Reg + VA.getValNo();
3717 unsigned DestReg = VA.getLocReg();
3718 // Avoid a cross-class copy. This is very unlikely.
3719 if (!MRI.getRegClass(SrcReg)->contains(DestReg))
3720 return false;
3721
3722 EVT RVEVT = TLI.getValueType(DL, RV->getType());
3723 if (!RVEVT.isSimple())
3724 return false;
3725
3726 // Vectors (of > 1 lane) in big endian need tricky handling.
3727 if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1 &&
3728 !Subtarget->isLittleEndian())
3729 return false;
3730
3731 MVT RVVT = RVEVT.getSimpleVT();
3732 if (RVVT == MVT::f128)
3733 return false;
3734
3735 MVT DestVT = VA.getValVT();
3736 // Special handling for extended integers.
3737 if (RVVT != DestVT) {
3738 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
3739 return false;
3740
3741 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
3742 return false;
3743
3744 bool IsZExt = Outs[0].Flags.isZExt();
3745 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
3746 if (SrcReg == 0)
3747 return false;
3748 }
3749
3750 // Make the copy.
3751 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3752 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
3753
3754 // Add register to return instruction.
3755 RetRegs.push_back(VA.getLocReg());
3756 }
3757
3758 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3759 TII.get(AArch64::RET_ReallyLR));
3760 for (unsigned RetReg : RetRegs)
3761 MIB.addReg(RetReg, RegState::Implicit);
3762 return true;
3763 }
3764
selectTrunc(const Instruction * I)3765 bool AArch64FastISel::selectTrunc(const Instruction *I) {
3766 Type *DestTy = I->getType();
3767 Value *Op = I->getOperand(0);
3768 Type *SrcTy = Op->getType();
3769
3770 EVT SrcEVT = TLI.getValueType(DL, SrcTy, true);
3771 EVT DestEVT = TLI.getValueType(DL, DestTy, true);
3772 if (!SrcEVT.isSimple())
3773 return false;
3774 if (!DestEVT.isSimple())
3775 return false;
3776
3777 MVT SrcVT = SrcEVT.getSimpleVT();
3778 MVT DestVT = DestEVT.getSimpleVT();
3779
3780 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
3781 SrcVT != MVT::i8)
3782 return false;
3783 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
3784 DestVT != MVT::i1)
3785 return false;
3786
3787 unsigned SrcReg = getRegForValue(Op);
3788 if (!SrcReg)
3789 return false;
3790 bool SrcIsKill = hasTrivialKill(Op);
3791
3792 // If we're truncating from i64 to a smaller non-legal type then generate an
3793 // AND. Otherwise, we know the high bits are undefined and a truncate only
3794 // generate a COPY. We cannot mark the source register also as result
3795 // register, because this can incorrectly transfer the kill flag onto the
3796 // source register.
3797 unsigned ResultReg;
3798 if (SrcVT == MVT::i64) {
3799 uint64_t Mask = 0;
3800 switch (DestVT.SimpleTy) {
3801 default:
3802 // Trunc i64 to i32 is handled by the target-independent fast-isel.
3803 return false;
3804 case MVT::i1:
3805 Mask = 0x1;
3806 break;
3807 case MVT::i8:
3808 Mask = 0xff;
3809 break;
3810 case MVT::i16:
3811 Mask = 0xffff;
3812 break;
3813 }
3814 // Issue an extract_subreg to get the lower 32-bits.
3815 unsigned Reg32 = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
3816 AArch64::sub_32);
3817 // Create the AND instruction which performs the actual truncation.
3818 ResultReg = emitAnd_ri(MVT::i32, Reg32, /*IsKill=*/true, Mask);
3819 assert(ResultReg && "Unexpected AND instruction emission failure.");
3820 } else {
3821 ResultReg = createResultReg(&AArch64::GPR32RegClass);
3822 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3823 TII.get(TargetOpcode::COPY), ResultReg)
3824 .addReg(SrcReg, getKillRegState(SrcIsKill));
3825 }
3826
3827 updateValueMap(I, ResultReg);
3828 return true;
3829 }
3830
emiti1Ext(unsigned SrcReg,MVT DestVT,bool IsZExt)3831 unsigned AArch64FastISel::emiti1Ext(unsigned SrcReg, MVT DestVT, bool IsZExt) {
3832 assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
3833 DestVT == MVT::i64) &&
3834 "Unexpected value type.");
3835 // Handle i8 and i16 as i32.
3836 if (DestVT == MVT::i8 || DestVT == MVT::i16)
3837 DestVT = MVT::i32;
3838
3839 if (IsZExt) {
3840 unsigned ResultReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
3841 assert(ResultReg && "Unexpected AND instruction emission failure.");
3842 if (DestVT == MVT::i64) {
3843 // We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the
3844 // upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd.
3845 unsigned Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3846 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3847 TII.get(AArch64::SUBREG_TO_REG), Reg64)
3848 .addImm(0)
3849 .addReg(ResultReg)
3850 .addImm(AArch64::sub_32);
3851 ResultReg = Reg64;
3852 }
3853 return ResultReg;
3854 } else {
3855 if (DestVT == MVT::i64) {
3856 // FIXME: We're SExt i1 to i64.
3857 return 0;
3858 }
3859 return fastEmitInst_rii(AArch64::SBFMWri, &AArch64::GPR32RegClass, SrcReg,
3860 /*TODO:IsKill=*/false, 0, 0);
3861 }
3862 }
3863
emitMul_rr(MVT RetVT,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)3864 unsigned AArch64FastISel::emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
3865 unsigned Op1, bool Op1IsKill) {
3866 unsigned Opc, ZReg;
3867 switch (RetVT.SimpleTy) {
3868 default: return 0;
3869 case MVT::i8:
3870 case MVT::i16:
3871 case MVT::i32:
3872 RetVT = MVT::i32;
3873 Opc = AArch64::MADDWrrr; ZReg = AArch64::WZR; break;
3874 case MVT::i64:
3875 Opc = AArch64::MADDXrrr; ZReg = AArch64::XZR; break;
3876 }
3877
3878 const TargetRegisterClass *RC =
3879 (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
3880 return fastEmitInst_rrr(Opc, RC, Op0, Op0IsKill, Op1, Op1IsKill,
3881 /*IsKill=*/ZReg, true);
3882 }
3883
emitSMULL_rr(MVT RetVT,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)3884 unsigned AArch64FastISel::emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
3885 unsigned Op1, bool Op1IsKill) {
3886 if (RetVT != MVT::i64)
3887 return 0;
3888
3889 return fastEmitInst_rrr(AArch64::SMADDLrrr, &AArch64::GPR64RegClass,
3890 Op0, Op0IsKill, Op1, Op1IsKill,
3891 AArch64::XZR, /*IsKill=*/true);
3892 }
3893
emitUMULL_rr(MVT RetVT,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)3894 unsigned AArch64FastISel::emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
3895 unsigned Op1, bool Op1IsKill) {
3896 if (RetVT != MVT::i64)
3897 return 0;
3898
3899 return fastEmitInst_rrr(AArch64::UMADDLrrr, &AArch64::GPR64RegClass,
3900 Op0, Op0IsKill, Op1, Op1IsKill,
3901 AArch64::XZR, /*IsKill=*/true);
3902 }
3903
emitLSL_rr(MVT RetVT,unsigned Op0Reg,bool Op0IsKill,unsigned Op1Reg,bool Op1IsKill)3904 unsigned AArch64FastISel::emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
3905 unsigned Op1Reg, bool Op1IsKill) {
3906 unsigned Opc = 0;
3907 bool NeedTrunc = false;
3908 uint64_t Mask = 0;
3909 switch (RetVT.SimpleTy) {
3910 default: return 0;
3911 case MVT::i8: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xff; break;
3912 case MVT::i16: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xffff; break;
3913 case MVT::i32: Opc = AArch64::LSLVWr; break;
3914 case MVT::i64: Opc = AArch64::LSLVXr; break;
3915 }
3916
3917 const TargetRegisterClass *RC =
3918 (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
3919 if (NeedTrunc) {
3920 Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
3921 Op1IsKill = true;
3922 }
3923 unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
3924 Op1IsKill);
3925 if (NeedTrunc)
3926 ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
3927 return ResultReg;
3928 }
3929
emitLSL_ri(MVT RetVT,MVT SrcVT,unsigned Op0,bool Op0IsKill,uint64_t Shift,bool IsZExt)3930 unsigned AArch64FastISel::emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
3931 bool Op0IsKill, uint64_t Shift,
3932 bool IsZExt) {
3933 assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
3934 "Unexpected source/return type pair.");
3935 assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
3936 SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
3937 "Unexpected source value type.");
3938 assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
3939 RetVT == MVT::i64) && "Unexpected return value type.");
3940
3941 bool Is64Bit = (RetVT == MVT::i64);
3942 unsigned RegSize = Is64Bit ? 64 : 32;
3943 unsigned DstBits = RetVT.getSizeInBits();
3944 unsigned SrcBits = SrcVT.getSizeInBits();
3945 const TargetRegisterClass *RC =
3946 Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
3947
3948 // Just emit a copy for "zero" shifts.
3949 if (Shift == 0) {
3950 if (RetVT == SrcVT) {
3951 unsigned ResultReg = createResultReg(RC);
3952 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3953 TII.get(TargetOpcode::COPY), ResultReg)
3954 .addReg(Op0, getKillRegState(Op0IsKill));
3955 return ResultReg;
3956 } else
3957 return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
3958 }
3959
3960 // Don't deal with undefined shifts.
3961 if (Shift >= DstBits)
3962 return 0;
3963
3964 // For immediate shifts we can fold the zero-/sign-extension into the shift.
3965 // {S|U}BFM Wd, Wn, #r, #s
3966 // Wd<32+s-r,32-r> = Wn<s:0> when r > s
3967
3968 // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
3969 // %2 = shl i16 %1, 4
3970 // Wd<32+7-28,32-28> = Wn<7:0> <- clamp s to 7
3971 // 0b1111_1111_1111_1111__1111_1010_1010_0000 sext
3972 // 0b0000_0000_0000_0000__0000_0101_0101_0000 sext | zext
3973 // 0b0000_0000_0000_0000__0000_1010_1010_0000 zext
3974
3975 // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
3976 // %2 = shl i16 %1, 8
3977 // Wd<32+7-24,32-24> = Wn<7:0>
3978 // 0b1111_1111_1111_1111__1010_1010_0000_0000 sext
3979 // 0b0000_0000_0000_0000__0101_0101_0000_0000 sext | zext
3980 // 0b0000_0000_0000_0000__1010_1010_0000_0000 zext
3981
3982 // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
3983 // %2 = shl i16 %1, 12
3984 // Wd<32+3-20,32-20> = Wn<3:0>
3985 // 0b1111_1111_1111_1111__1010_0000_0000_0000 sext
3986 // 0b0000_0000_0000_0000__0101_0000_0000_0000 sext | zext
3987 // 0b0000_0000_0000_0000__1010_0000_0000_0000 zext
3988
3989 unsigned ImmR = RegSize - Shift;
3990 // Limit the width to the length of the source type.
3991 unsigned ImmS = std::min<unsigned>(SrcBits - 1, DstBits - 1 - Shift);
3992 static const unsigned OpcTable[2][2] = {
3993 {AArch64::SBFMWri, AArch64::SBFMXri},
3994 {AArch64::UBFMWri, AArch64::UBFMXri}
3995 };
3996 unsigned Opc = OpcTable[IsZExt][Is64Bit];
3997 if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
3998 unsigned TmpReg = MRI.createVirtualRegister(RC);
3999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4000 TII.get(AArch64::SUBREG_TO_REG), TmpReg)
4001 .addImm(0)
4002 .addReg(Op0, getKillRegState(Op0IsKill))
4003 .addImm(AArch64::sub_32);
4004 Op0 = TmpReg;
4005 Op0IsKill = true;
4006 }
4007 return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
4008 }
4009
emitLSR_rr(MVT RetVT,unsigned Op0Reg,bool Op0IsKill,unsigned Op1Reg,bool Op1IsKill)4010 unsigned AArch64FastISel::emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
4011 unsigned Op1Reg, bool Op1IsKill) {
4012 unsigned Opc = 0;
4013 bool NeedTrunc = false;
4014 uint64_t Mask = 0;
4015 switch (RetVT.SimpleTy) {
4016 default: return 0;
4017 case MVT::i8: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xff; break;
4018 case MVT::i16: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xffff; break;
4019 case MVT::i32: Opc = AArch64::LSRVWr; break;
4020 case MVT::i64: Opc = AArch64::LSRVXr; break;
4021 }
4022
4023 const TargetRegisterClass *RC =
4024 (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
4025 if (NeedTrunc) {
4026 Op0Reg = emitAnd_ri(MVT::i32, Op0Reg, Op0IsKill, Mask);
4027 Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
4028 Op0IsKill = Op1IsKill = true;
4029 }
4030 unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
4031 Op1IsKill);
4032 if (NeedTrunc)
4033 ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
4034 return ResultReg;
4035 }
4036
emitLSR_ri(MVT RetVT,MVT SrcVT,unsigned Op0,bool Op0IsKill,uint64_t Shift,bool IsZExt)4037 unsigned AArch64FastISel::emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
4038 bool Op0IsKill, uint64_t Shift,
4039 bool IsZExt) {
4040 assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
4041 "Unexpected source/return type pair.");
4042 assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
4043 SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
4044 "Unexpected source value type.");
4045 assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
4046 RetVT == MVT::i64) && "Unexpected return value type.");
4047
4048 bool Is64Bit = (RetVT == MVT::i64);
4049 unsigned RegSize = Is64Bit ? 64 : 32;
4050 unsigned DstBits = RetVT.getSizeInBits();
4051 unsigned SrcBits = SrcVT.getSizeInBits();
4052 const TargetRegisterClass *RC =
4053 Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
4054
4055 // Just emit a copy for "zero" shifts.
4056 if (Shift == 0) {
4057 if (RetVT == SrcVT) {
4058 unsigned ResultReg = createResultReg(RC);
4059 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4060 TII.get(TargetOpcode::COPY), ResultReg)
4061 .addReg(Op0, getKillRegState(Op0IsKill));
4062 return ResultReg;
4063 } else
4064 return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
4065 }
4066
4067 // Don't deal with undefined shifts.
4068 if (Shift >= DstBits)
4069 return 0;
4070
4071 // For immediate shifts we can fold the zero-/sign-extension into the shift.
4072 // {S|U}BFM Wd, Wn, #r, #s
4073 // Wd<s-r:0> = Wn<s:r> when r <= s
4074
4075 // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4076 // %2 = lshr i16 %1, 4
4077 // Wd<7-4:0> = Wn<7:4>
4078 // 0b0000_0000_0000_0000__0000_1111_1111_1010 sext
4079 // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
4080 // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
4081
4082 // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4083 // %2 = lshr i16 %1, 8
4084 // Wd<7-7,0> = Wn<7:7>
4085 // 0b0000_0000_0000_0000__0000_0000_1111_1111 sext
4086 // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
4087 // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
4088
4089 // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4090 // %2 = lshr i16 %1, 12
4091 // Wd<7-7,0> = Wn<7:7> <- clamp r to 7
4092 // 0b0000_0000_0000_0000__0000_0000_0000_1111 sext
4093 // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
4094 // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
4095
4096 if (Shift >= SrcBits && IsZExt)
4097 return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
4098
4099 // It is not possible to fold a sign-extend into the LShr instruction. In this
4100 // case emit a sign-extend.
4101 if (!IsZExt) {
4102 Op0 = emitIntExt(SrcVT, Op0, RetVT, IsZExt);
4103 if (!Op0)
4104 return 0;
4105 Op0IsKill = true;
4106 SrcVT = RetVT;
4107 SrcBits = SrcVT.getSizeInBits();
4108 IsZExt = true;
4109 }
4110
4111 unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
4112 unsigned ImmS = SrcBits - 1;
4113 static const unsigned OpcTable[2][2] = {
4114 {AArch64::SBFMWri, AArch64::SBFMXri},
4115 {AArch64::UBFMWri, AArch64::UBFMXri}
4116 };
4117 unsigned Opc = OpcTable[IsZExt][Is64Bit];
4118 if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
4119 unsigned TmpReg = MRI.createVirtualRegister(RC);
4120 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4121 TII.get(AArch64::SUBREG_TO_REG), TmpReg)
4122 .addImm(0)
4123 .addReg(Op0, getKillRegState(Op0IsKill))
4124 .addImm(AArch64::sub_32);
4125 Op0 = TmpReg;
4126 Op0IsKill = true;
4127 }
4128 return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
4129 }
4130
emitASR_rr(MVT RetVT,unsigned Op0Reg,bool Op0IsKill,unsigned Op1Reg,bool Op1IsKill)4131 unsigned AArch64FastISel::emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
4132 unsigned Op1Reg, bool Op1IsKill) {
4133 unsigned Opc = 0;
4134 bool NeedTrunc = false;
4135 uint64_t Mask = 0;
4136 switch (RetVT.SimpleTy) {
4137 default: return 0;
4138 case MVT::i8: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xff; break;
4139 case MVT::i16: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xffff; break;
4140 case MVT::i32: Opc = AArch64::ASRVWr; break;
4141 case MVT::i64: Opc = AArch64::ASRVXr; break;
4142 }
4143
4144 const TargetRegisterClass *RC =
4145 (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
4146 if (NeedTrunc) {
4147 Op0Reg = emitIntExt(RetVT, Op0Reg, MVT::i32, /*IsZExt=*/false);
4148 Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
4149 Op0IsKill = Op1IsKill = true;
4150 }
4151 unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
4152 Op1IsKill);
4153 if (NeedTrunc)
4154 ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
4155 return ResultReg;
4156 }
4157
emitASR_ri(MVT RetVT,MVT SrcVT,unsigned Op0,bool Op0IsKill,uint64_t Shift,bool IsZExt)4158 unsigned AArch64FastISel::emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
4159 bool Op0IsKill, uint64_t Shift,
4160 bool IsZExt) {
4161 assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
4162 "Unexpected source/return type pair.");
4163 assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
4164 SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
4165 "Unexpected source value type.");
4166 assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
4167 RetVT == MVT::i64) && "Unexpected return value type.");
4168
4169 bool Is64Bit = (RetVT == MVT::i64);
4170 unsigned RegSize = Is64Bit ? 64 : 32;
4171 unsigned DstBits = RetVT.getSizeInBits();
4172 unsigned SrcBits = SrcVT.getSizeInBits();
4173 const TargetRegisterClass *RC =
4174 Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
4175
4176 // Just emit a copy for "zero" shifts.
4177 if (Shift == 0) {
4178 if (RetVT == SrcVT) {
4179 unsigned ResultReg = createResultReg(RC);
4180 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4181 TII.get(TargetOpcode::COPY), ResultReg)
4182 .addReg(Op0, getKillRegState(Op0IsKill));
4183 return ResultReg;
4184 } else
4185 return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
4186 }
4187
4188 // Don't deal with undefined shifts.
4189 if (Shift >= DstBits)
4190 return 0;
4191
4192 // For immediate shifts we can fold the zero-/sign-extension into the shift.
4193 // {S|U}BFM Wd, Wn, #r, #s
4194 // Wd<s-r:0> = Wn<s:r> when r <= s
4195
4196 // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4197 // %2 = ashr i16 %1, 4
4198 // Wd<7-4:0> = Wn<7:4>
4199 // 0b1111_1111_1111_1111__1111_1111_1111_1010 sext
4200 // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
4201 // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
4202
4203 // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4204 // %2 = ashr i16 %1, 8
4205 // Wd<7-7,0> = Wn<7:7>
4206 // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
4207 // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
4208 // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
4209
4210 // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4211 // %2 = ashr i16 %1, 12
4212 // Wd<7-7,0> = Wn<7:7> <- clamp r to 7
4213 // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
4214 // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
4215 // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
4216
4217 if (Shift >= SrcBits && IsZExt)
4218 return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
4219
4220 unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
4221 unsigned ImmS = SrcBits - 1;
4222 static const unsigned OpcTable[2][2] = {
4223 {AArch64::SBFMWri, AArch64::SBFMXri},
4224 {AArch64::UBFMWri, AArch64::UBFMXri}
4225 };
4226 unsigned Opc = OpcTable[IsZExt][Is64Bit];
4227 if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
4228 unsigned TmpReg = MRI.createVirtualRegister(RC);
4229 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4230 TII.get(AArch64::SUBREG_TO_REG), TmpReg)
4231 .addImm(0)
4232 .addReg(Op0, getKillRegState(Op0IsKill))
4233 .addImm(AArch64::sub_32);
4234 Op0 = TmpReg;
4235 Op0IsKill = true;
4236 }
4237 return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
4238 }
4239
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool IsZExt)4240 unsigned AArch64FastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
4241 bool IsZExt) {
4242 assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
4243
4244 // FastISel does not have plumbing to deal with extensions where the SrcVT or
4245 // DestVT are odd things, so test to make sure that they are both types we can
4246 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
4247 // bail out to SelectionDAG.
4248 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) &&
4249 (DestVT != MVT::i32) && (DestVT != MVT::i64)) ||
4250 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) &&
4251 (SrcVT != MVT::i16) && (SrcVT != MVT::i32)))
4252 return 0;
4253
4254 unsigned Opc;
4255 unsigned Imm = 0;
4256
4257 switch (SrcVT.SimpleTy) {
4258 default:
4259 return 0;
4260 case MVT::i1:
4261 return emiti1Ext(SrcReg, DestVT, IsZExt);
4262 case MVT::i8:
4263 if (DestVT == MVT::i64)
4264 Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
4265 else
4266 Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
4267 Imm = 7;
4268 break;
4269 case MVT::i16:
4270 if (DestVT == MVT::i64)
4271 Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
4272 else
4273 Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
4274 Imm = 15;
4275 break;
4276 case MVT::i32:
4277 assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
4278 Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
4279 Imm = 31;
4280 break;
4281 }
4282
4283 // Handle i8 and i16 as i32.
4284 if (DestVT == MVT::i8 || DestVT == MVT::i16)
4285 DestVT = MVT::i32;
4286 else if (DestVT == MVT::i64) {
4287 unsigned Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
4288 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4289 TII.get(AArch64::SUBREG_TO_REG), Src64)
4290 .addImm(0)
4291 .addReg(SrcReg)
4292 .addImm(AArch64::sub_32);
4293 SrcReg = Src64;
4294 }
4295
4296 const TargetRegisterClass *RC =
4297 (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
4298 return fastEmitInst_rii(Opc, RC, SrcReg, /*TODO:IsKill=*/false, 0, Imm);
4299 }
4300
isZExtLoad(const MachineInstr * LI)4301 static bool isZExtLoad(const MachineInstr *LI) {
4302 switch (LI->getOpcode()) {
4303 default:
4304 return false;
4305 case AArch64::LDURBBi:
4306 case AArch64::LDURHHi:
4307 case AArch64::LDURWi:
4308 case AArch64::LDRBBui:
4309 case AArch64::LDRHHui:
4310 case AArch64::LDRWui:
4311 case AArch64::LDRBBroX:
4312 case AArch64::LDRHHroX:
4313 case AArch64::LDRWroX:
4314 case AArch64::LDRBBroW:
4315 case AArch64::LDRHHroW:
4316 case AArch64::LDRWroW:
4317 return true;
4318 }
4319 }
4320
isSExtLoad(const MachineInstr * LI)4321 static bool isSExtLoad(const MachineInstr *LI) {
4322 switch (LI->getOpcode()) {
4323 default:
4324 return false;
4325 case AArch64::LDURSBWi:
4326 case AArch64::LDURSHWi:
4327 case AArch64::LDURSBXi:
4328 case AArch64::LDURSHXi:
4329 case AArch64::LDURSWi:
4330 case AArch64::LDRSBWui:
4331 case AArch64::LDRSHWui:
4332 case AArch64::LDRSBXui:
4333 case AArch64::LDRSHXui:
4334 case AArch64::LDRSWui:
4335 case AArch64::LDRSBWroX:
4336 case AArch64::LDRSHWroX:
4337 case AArch64::LDRSBXroX:
4338 case AArch64::LDRSHXroX:
4339 case AArch64::LDRSWroX:
4340 case AArch64::LDRSBWroW:
4341 case AArch64::LDRSHWroW:
4342 case AArch64::LDRSBXroW:
4343 case AArch64::LDRSHXroW:
4344 case AArch64::LDRSWroW:
4345 return true;
4346 }
4347 }
4348
optimizeIntExtLoad(const Instruction * I,MVT RetVT,MVT SrcVT)4349 bool AArch64FastISel::optimizeIntExtLoad(const Instruction *I, MVT RetVT,
4350 MVT SrcVT) {
4351 const auto *LI = dyn_cast<LoadInst>(I->getOperand(0));
4352 if (!LI || !LI->hasOneUse())
4353 return false;
4354
4355 // Check if the load instruction has already been selected.
4356 unsigned Reg = lookUpRegForValue(LI);
4357 if (!Reg)
4358 return false;
4359
4360 MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
4361 if (!MI)
4362 return false;
4363
4364 // Check if the correct load instruction has been emitted - SelectionDAG might
4365 // have emitted a zero-extending load, but we need a sign-extending load.
4366 bool IsZExt = isa<ZExtInst>(I);
4367 const auto *LoadMI = MI;
4368 if (LoadMI->getOpcode() == TargetOpcode::COPY &&
4369 LoadMI->getOperand(1).getSubReg() == AArch64::sub_32) {
4370 unsigned LoadReg = MI->getOperand(1).getReg();
4371 LoadMI = MRI.getUniqueVRegDef(LoadReg);
4372 assert(LoadMI && "Expected valid instruction");
4373 }
4374 if (!(IsZExt && isZExtLoad(LoadMI)) && !(!IsZExt && isSExtLoad(LoadMI)))
4375 return false;
4376
4377 // Nothing to be done.
4378 if (RetVT != MVT::i64 || SrcVT > MVT::i32) {
4379 updateValueMap(I, Reg);
4380 return true;
4381 }
4382
4383 if (IsZExt) {
4384 unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
4385 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4386 TII.get(AArch64::SUBREG_TO_REG), Reg64)
4387 .addImm(0)
4388 .addReg(Reg, getKillRegState(true))
4389 .addImm(AArch64::sub_32);
4390 Reg = Reg64;
4391 } else {
4392 assert((MI->getOpcode() == TargetOpcode::COPY &&
4393 MI->getOperand(1).getSubReg() == AArch64::sub_32) &&
4394 "Expected copy instruction");
4395 Reg = MI->getOperand(1).getReg();
4396 MI->eraseFromParent();
4397 }
4398 updateValueMap(I, Reg);
4399 return true;
4400 }
4401
selectIntExt(const Instruction * I)4402 bool AArch64FastISel::selectIntExt(const Instruction *I) {
4403 assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
4404 "Unexpected integer extend instruction.");
4405 MVT RetVT;
4406 MVT SrcVT;
4407 if (!isTypeSupported(I->getType(), RetVT))
4408 return false;
4409
4410 if (!isTypeSupported(I->getOperand(0)->getType(), SrcVT))
4411 return false;
4412
4413 // Try to optimize already sign-/zero-extended values from load instructions.
4414 if (optimizeIntExtLoad(I, RetVT, SrcVT))
4415 return true;
4416
4417 unsigned SrcReg = getRegForValue(I->getOperand(0));
4418 if (!SrcReg)
4419 return false;
4420 bool SrcIsKill = hasTrivialKill(I->getOperand(0));
4421
4422 // Try to optimize already sign-/zero-extended values from function arguments.
4423 bool IsZExt = isa<ZExtInst>(I);
4424 if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0))) {
4425 if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr())) {
4426 if (RetVT == MVT::i64 && SrcVT != MVT::i64) {
4427 unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
4428 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4429 TII.get(AArch64::SUBREG_TO_REG), ResultReg)
4430 .addImm(0)
4431 .addReg(SrcReg, getKillRegState(SrcIsKill))
4432 .addImm(AArch64::sub_32);
4433 SrcReg = ResultReg;
4434 }
4435 // Conservatively clear all kill flags from all uses, because we are
4436 // replacing a sign-/zero-extend instruction at IR level with a nop at MI
4437 // level. The result of the instruction at IR level might have been
4438 // trivially dead, which is now not longer true.
4439 unsigned UseReg = lookUpRegForValue(I);
4440 if (UseReg)
4441 MRI.clearKillFlags(UseReg);
4442
4443 updateValueMap(I, SrcReg);
4444 return true;
4445 }
4446 }
4447
4448 unsigned ResultReg = emitIntExt(SrcVT, SrcReg, RetVT, IsZExt);
4449 if (!ResultReg)
4450 return false;
4451
4452 updateValueMap(I, ResultReg);
4453 return true;
4454 }
4455
selectRem(const Instruction * I,unsigned ISDOpcode)4456 bool AArch64FastISel::selectRem(const Instruction *I, unsigned ISDOpcode) {
4457 EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
4458 if (!DestEVT.isSimple())
4459 return false;
4460
4461 MVT DestVT = DestEVT.getSimpleVT();
4462 if (DestVT != MVT::i64 && DestVT != MVT::i32)
4463 return false;
4464
4465 unsigned DivOpc;
4466 bool Is64bit = (DestVT == MVT::i64);
4467 switch (ISDOpcode) {
4468 default:
4469 return false;
4470 case ISD::SREM:
4471 DivOpc = Is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
4472 break;
4473 case ISD::UREM:
4474 DivOpc = Is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
4475 break;
4476 }
4477 unsigned MSubOpc = Is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
4478 unsigned Src0Reg = getRegForValue(I->getOperand(0));
4479 if (!Src0Reg)
4480 return false;
4481 bool Src0IsKill = hasTrivialKill(I->getOperand(0));
4482
4483 unsigned Src1Reg = getRegForValue(I->getOperand(1));
4484 if (!Src1Reg)
4485 return false;
4486 bool Src1IsKill = hasTrivialKill(I->getOperand(1));
4487
4488 const TargetRegisterClass *RC =
4489 (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
4490 unsigned QuotReg = fastEmitInst_rr(DivOpc, RC, Src0Reg, /*IsKill=*/false,
4491 Src1Reg, /*IsKill=*/false);
4492 assert(QuotReg && "Unexpected DIV instruction emission failure.");
4493 // The remainder is computed as numerator - (quotient * denominator) using the
4494 // MSUB instruction.
4495 unsigned ResultReg = fastEmitInst_rrr(MSubOpc, RC, QuotReg, /*IsKill=*/true,
4496 Src1Reg, Src1IsKill, Src0Reg,
4497 Src0IsKill);
4498 updateValueMap(I, ResultReg);
4499 return true;
4500 }
4501
selectMul(const Instruction * I)4502 bool AArch64FastISel::selectMul(const Instruction *I) {
4503 MVT VT;
4504 if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
4505 return false;
4506
4507 if (VT.isVector())
4508 return selectBinaryOp(I, ISD::MUL);
4509
4510 const Value *Src0 = I->getOperand(0);
4511 const Value *Src1 = I->getOperand(1);
4512 if (const auto *C = dyn_cast<ConstantInt>(Src0))
4513 if (C->getValue().isPowerOf2())
4514 std::swap(Src0, Src1);
4515
4516 // Try to simplify to a shift instruction.
4517 if (const auto *C = dyn_cast<ConstantInt>(Src1))
4518 if (C->getValue().isPowerOf2()) {
4519 uint64_t ShiftVal = C->getValue().logBase2();
4520 MVT SrcVT = VT;
4521 bool IsZExt = true;
4522 if (const auto *ZExt = dyn_cast<ZExtInst>(Src0)) {
4523 if (!isIntExtFree(ZExt)) {
4524 MVT VT;
4525 if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), VT)) {
4526 SrcVT = VT;
4527 IsZExt = true;
4528 Src0 = ZExt->getOperand(0);
4529 }
4530 }
4531 } else if (const auto *SExt = dyn_cast<SExtInst>(Src0)) {
4532 if (!isIntExtFree(SExt)) {
4533 MVT VT;
4534 if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), VT)) {
4535 SrcVT = VT;
4536 IsZExt = false;
4537 Src0 = SExt->getOperand(0);
4538 }
4539 }
4540 }
4541
4542 unsigned Src0Reg = getRegForValue(Src0);
4543 if (!Src0Reg)
4544 return false;
4545 bool Src0IsKill = hasTrivialKill(Src0);
4546
4547 unsigned ResultReg =
4548 emitLSL_ri(VT, SrcVT, Src0Reg, Src0IsKill, ShiftVal, IsZExt);
4549
4550 if (ResultReg) {
4551 updateValueMap(I, ResultReg);
4552 return true;
4553 }
4554 }
4555
4556 unsigned Src0Reg = getRegForValue(I->getOperand(0));
4557 if (!Src0Reg)
4558 return false;
4559 bool Src0IsKill = hasTrivialKill(I->getOperand(0));
4560
4561 unsigned Src1Reg = getRegForValue(I->getOperand(1));
4562 if (!Src1Reg)
4563 return false;
4564 bool Src1IsKill = hasTrivialKill(I->getOperand(1));
4565
4566 unsigned ResultReg = emitMul_rr(VT, Src0Reg, Src0IsKill, Src1Reg, Src1IsKill);
4567
4568 if (!ResultReg)
4569 return false;
4570
4571 updateValueMap(I, ResultReg);
4572 return true;
4573 }
4574
selectShift(const Instruction * I)4575 bool AArch64FastISel::selectShift(const Instruction *I) {
4576 MVT RetVT;
4577 if (!isTypeSupported(I->getType(), RetVT, /*IsVectorAllowed=*/true))
4578 return false;
4579
4580 if (RetVT.isVector())
4581 return selectOperator(I, I->getOpcode());
4582
4583 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
4584 unsigned ResultReg = 0;
4585 uint64_t ShiftVal = C->getZExtValue();
4586 MVT SrcVT = RetVT;
4587 bool IsZExt = I->getOpcode() != Instruction::AShr;
4588 const Value *Op0 = I->getOperand(0);
4589 if (const auto *ZExt = dyn_cast<ZExtInst>(Op0)) {
4590 if (!isIntExtFree(ZExt)) {
4591 MVT TmpVT;
4592 if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), TmpVT)) {
4593 SrcVT = TmpVT;
4594 IsZExt = true;
4595 Op0 = ZExt->getOperand(0);
4596 }
4597 }
4598 } else if (const auto *SExt = dyn_cast<SExtInst>(Op0)) {
4599 if (!isIntExtFree(SExt)) {
4600 MVT TmpVT;
4601 if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), TmpVT)) {
4602 SrcVT = TmpVT;
4603 IsZExt = false;
4604 Op0 = SExt->getOperand(0);
4605 }
4606 }
4607 }
4608
4609 unsigned Op0Reg = getRegForValue(Op0);
4610 if (!Op0Reg)
4611 return false;
4612 bool Op0IsKill = hasTrivialKill(Op0);
4613
4614 switch (I->getOpcode()) {
4615 default: llvm_unreachable("Unexpected instruction.");
4616 case Instruction::Shl:
4617 ResultReg = emitLSL_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
4618 break;
4619 case Instruction::AShr:
4620 ResultReg = emitASR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
4621 break;
4622 case Instruction::LShr:
4623 ResultReg = emitLSR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
4624 break;
4625 }
4626 if (!ResultReg)
4627 return false;
4628
4629 updateValueMap(I, ResultReg);
4630 return true;
4631 }
4632
4633 unsigned Op0Reg = getRegForValue(I->getOperand(0));
4634 if (!Op0Reg)
4635 return false;
4636 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
4637
4638 unsigned Op1Reg = getRegForValue(I->getOperand(1));
4639 if (!Op1Reg)
4640 return false;
4641 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
4642
4643 unsigned ResultReg = 0;
4644 switch (I->getOpcode()) {
4645 default: llvm_unreachable("Unexpected instruction.");
4646 case Instruction::Shl:
4647 ResultReg = emitLSL_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
4648 break;
4649 case Instruction::AShr:
4650 ResultReg = emitASR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
4651 break;
4652 case Instruction::LShr:
4653 ResultReg = emitLSR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
4654 break;
4655 }
4656
4657 if (!ResultReg)
4658 return false;
4659
4660 updateValueMap(I, ResultReg);
4661 return true;
4662 }
4663
selectBitCast(const Instruction * I)4664 bool AArch64FastISel::selectBitCast(const Instruction *I) {
4665 MVT RetVT, SrcVT;
4666
4667 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT))
4668 return false;
4669 if (!isTypeLegal(I->getType(), RetVT))
4670 return false;
4671
4672 unsigned Opc;
4673 if (RetVT == MVT::f32 && SrcVT == MVT::i32)
4674 Opc = AArch64::FMOVWSr;
4675 else if (RetVT == MVT::f64 && SrcVT == MVT::i64)
4676 Opc = AArch64::FMOVXDr;
4677 else if (RetVT == MVT::i32 && SrcVT == MVT::f32)
4678 Opc = AArch64::FMOVSWr;
4679 else if (RetVT == MVT::i64 && SrcVT == MVT::f64)
4680 Opc = AArch64::FMOVDXr;
4681 else
4682 return false;
4683
4684 const TargetRegisterClass *RC = nullptr;
4685 switch (RetVT.SimpleTy) {
4686 default: llvm_unreachable("Unexpected value type.");
4687 case MVT::i32: RC = &AArch64::GPR32RegClass; break;
4688 case MVT::i64: RC = &AArch64::GPR64RegClass; break;
4689 case MVT::f32: RC = &AArch64::FPR32RegClass; break;
4690 case MVT::f64: RC = &AArch64::FPR64RegClass; break;
4691 }
4692 unsigned Op0Reg = getRegForValue(I->getOperand(0));
4693 if (!Op0Reg)
4694 return false;
4695 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
4696 unsigned ResultReg = fastEmitInst_r(Opc, RC, Op0Reg, Op0IsKill);
4697
4698 if (!ResultReg)
4699 return false;
4700
4701 updateValueMap(I, ResultReg);
4702 return true;
4703 }
4704
selectFRem(const Instruction * I)4705 bool AArch64FastISel::selectFRem(const Instruction *I) {
4706 MVT RetVT;
4707 if (!isTypeLegal(I->getType(), RetVT))
4708 return false;
4709
4710 RTLIB::Libcall LC;
4711 switch (RetVT.SimpleTy) {
4712 default:
4713 return false;
4714 case MVT::f32:
4715 LC = RTLIB::REM_F32;
4716 break;
4717 case MVT::f64:
4718 LC = RTLIB::REM_F64;
4719 break;
4720 }
4721
4722 ArgListTy Args;
4723 Args.reserve(I->getNumOperands());
4724
4725 // Populate the argument list.
4726 for (auto &Arg : I->operands()) {
4727 ArgListEntry Entry;
4728 Entry.Val = Arg;
4729 Entry.Ty = Arg->getType();
4730 Args.push_back(Entry);
4731 }
4732
4733 CallLoweringInfo CLI;
4734 MCContext &Ctx = MF->getContext();
4735 CLI.setCallee(DL, Ctx, TLI.getLibcallCallingConv(LC), I->getType(),
4736 TLI.getLibcallName(LC), std::move(Args));
4737 if (!lowerCallTo(CLI))
4738 return false;
4739 updateValueMap(I, CLI.ResultReg);
4740 return true;
4741 }
4742
selectSDiv(const Instruction * I)4743 bool AArch64FastISel::selectSDiv(const Instruction *I) {
4744 MVT VT;
4745 if (!isTypeLegal(I->getType(), VT))
4746 return false;
4747
4748 if (!isa<ConstantInt>(I->getOperand(1)))
4749 return selectBinaryOp(I, ISD::SDIV);
4750
4751 const APInt &C = cast<ConstantInt>(I->getOperand(1))->getValue();
4752 if ((VT != MVT::i32 && VT != MVT::i64) || !C ||
4753 !(C.isPowerOf2() || (-C).isPowerOf2()))
4754 return selectBinaryOp(I, ISD::SDIV);
4755
4756 unsigned Lg2 = C.countTrailingZeros();
4757 unsigned Src0Reg = getRegForValue(I->getOperand(0));
4758 if (!Src0Reg)
4759 return false;
4760 bool Src0IsKill = hasTrivialKill(I->getOperand(0));
4761
4762 if (cast<BinaryOperator>(I)->isExact()) {
4763 unsigned ResultReg = emitASR_ri(VT, VT, Src0Reg, Src0IsKill, Lg2);
4764 if (!ResultReg)
4765 return false;
4766 updateValueMap(I, ResultReg);
4767 return true;
4768 }
4769
4770 int64_t Pow2MinusOne = (1ULL << Lg2) - 1;
4771 unsigned AddReg = emitAdd_ri_(VT, Src0Reg, /*IsKill=*/false, Pow2MinusOne);
4772 if (!AddReg)
4773 return false;
4774
4775 // (Src0 < 0) ? Pow2 - 1 : 0;
4776 if (!emitICmp_ri(VT, Src0Reg, /*IsKill=*/false, 0))
4777 return false;
4778
4779 unsigned SelectOpc;
4780 const TargetRegisterClass *RC;
4781 if (VT == MVT::i64) {
4782 SelectOpc = AArch64::CSELXr;
4783 RC = &AArch64::GPR64RegClass;
4784 } else {
4785 SelectOpc = AArch64::CSELWr;
4786 RC = &AArch64::GPR32RegClass;
4787 }
4788 unsigned SelectReg =
4789 fastEmitInst_rri(SelectOpc, RC, AddReg, /*IsKill=*/true, Src0Reg,
4790 Src0IsKill, AArch64CC::LT);
4791 if (!SelectReg)
4792 return false;
4793
4794 // Divide by Pow2 --> ashr. If we're dividing by a negative value we must also
4795 // negate the result.
4796 unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
4797 unsigned ResultReg;
4798 if (C.isNegative())
4799 ResultReg = emitAddSub_rs(/*UseAdd=*/false, VT, ZeroReg, /*IsKill=*/true,
4800 SelectReg, /*IsKill=*/true, AArch64_AM::ASR, Lg2);
4801 else
4802 ResultReg = emitASR_ri(VT, VT, SelectReg, /*IsKill=*/true, Lg2);
4803
4804 if (!ResultReg)
4805 return false;
4806
4807 updateValueMap(I, ResultReg);
4808 return true;
4809 }
4810
4811 /// This is mostly a copy of the existing FastISel getRegForGEPIndex code. We
4812 /// have to duplicate it for AArch64, because otherwise we would fail during the
4813 /// sign-extend emission.
getRegForGEPIndex(const Value * Idx)4814 std::pair<unsigned, bool> AArch64FastISel::getRegForGEPIndex(const Value *Idx) {
4815 unsigned IdxN = getRegForValue(Idx);
4816 if (IdxN == 0)
4817 // Unhandled operand. Halt "fast" selection and bail.
4818 return std::pair<unsigned, bool>(0, false);
4819
4820 bool IdxNIsKill = hasTrivialKill(Idx);
4821
4822 // If the index is smaller or larger than intptr_t, truncate or extend it.
4823 MVT PtrVT = TLI.getPointerTy(DL);
4824 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
4825 if (IdxVT.bitsLT(PtrVT)) {
4826 IdxN = emitIntExt(IdxVT.getSimpleVT(), IdxN, PtrVT, /*IsZExt=*/false);
4827 IdxNIsKill = true;
4828 } else if (IdxVT.bitsGT(PtrVT))
4829 llvm_unreachable("AArch64 FastISel doesn't support types larger than i64");
4830 return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
4831 }
4832
4833 /// This is mostly a copy of the existing FastISel GEP code, but we have to
4834 /// duplicate it for AArch64, because otherwise we would bail out even for
4835 /// simple cases. This is because the standard fastEmit functions don't cover
4836 /// MUL at all and ADD is lowered very inefficientily.
selectGetElementPtr(const Instruction * I)4837 bool AArch64FastISel::selectGetElementPtr(const Instruction *I) {
4838 unsigned N = getRegForValue(I->getOperand(0));
4839 if (!N)
4840 return false;
4841 bool NIsKill = hasTrivialKill(I->getOperand(0));
4842
4843 // Keep a running tab of the total offset to coalesce multiple N = N + Offset
4844 // into a single N = N + TotalOffset.
4845 uint64_t TotalOffs = 0;
4846 MVT VT = TLI.getPointerTy(DL);
4847 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
4848 GTI != E; ++GTI) {
4849 const Value *Idx = GTI.getOperand();
4850 if (auto *StTy = dyn_cast<StructType>(*GTI)) {
4851 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
4852 // N = N + Offset
4853 if (Field)
4854 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
4855 } else {
4856 Type *Ty = GTI.getIndexedType();
4857
4858 // If this is a constant subscript, handle it quickly.
4859 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
4860 if (CI->isZero())
4861 continue;
4862 // N = N + Offset
4863 TotalOffs +=
4864 DL.getTypeAllocSize(Ty) * cast<ConstantInt>(CI)->getSExtValue();
4865 continue;
4866 }
4867 if (TotalOffs) {
4868 N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
4869 if (!N)
4870 return false;
4871 NIsKill = true;
4872 TotalOffs = 0;
4873 }
4874
4875 // N = N + Idx * ElementSize;
4876 uint64_t ElementSize = DL.getTypeAllocSize(Ty);
4877 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
4878 unsigned IdxN = Pair.first;
4879 bool IdxNIsKill = Pair.second;
4880 if (!IdxN)
4881 return false;
4882
4883 if (ElementSize != 1) {
4884 unsigned C = fastEmit_i(VT, VT, ISD::Constant, ElementSize);
4885 if (!C)
4886 return false;
4887 IdxN = emitMul_rr(VT, IdxN, IdxNIsKill, C, true);
4888 if (!IdxN)
4889 return false;
4890 IdxNIsKill = true;
4891 }
4892 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
4893 if (!N)
4894 return false;
4895 }
4896 }
4897 if (TotalOffs) {
4898 N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
4899 if (!N)
4900 return false;
4901 }
4902 updateValueMap(I, N);
4903 return true;
4904 }
4905
fastSelectInstruction(const Instruction * I)4906 bool AArch64FastISel::fastSelectInstruction(const Instruction *I) {
4907 switch (I->getOpcode()) {
4908 default:
4909 break;
4910 case Instruction::Add:
4911 case Instruction::Sub:
4912 return selectAddSub(I);
4913 case Instruction::Mul:
4914 return selectMul(I);
4915 case Instruction::SDiv:
4916 return selectSDiv(I);
4917 case Instruction::SRem:
4918 if (!selectBinaryOp(I, ISD::SREM))
4919 return selectRem(I, ISD::SREM);
4920 return true;
4921 case Instruction::URem:
4922 if (!selectBinaryOp(I, ISD::UREM))
4923 return selectRem(I, ISD::UREM);
4924 return true;
4925 case Instruction::Shl:
4926 case Instruction::LShr:
4927 case Instruction::AShr:
4928 return selectShift(I);
4929 case Instruction::And:
4930 case Instruction::Or:
4931 case Instruction::Xor:
4932 return selectLogicalOp(I);
4933 case Instruction::Br:
4934 return selectBranch(I);
4935 case Instruction::IndirectBr:
4936 return selectIndirectBr(I);
4937 case Instruction::BitCast:
4938 if (!FastISel::selectBitCast(I))
4939 return selectBitCast(I);
4940 return true;
4941 case Instruction::FPToSI:
4942 if (!selectCast(I, ISD::FP_TO_SINT))
4943 return selectFPToInt(I, /*Signed=*/true);
4944 return true;
4945 case Instruction::FPToUI:
4946 return selectFPToInt(I, /*Signed=*/false);
4947 case Instruction::ZExt:
4948 case Instruction::SExt:
4949 return selectIntExt(I);
4950 case Instruction::Trunc:
4951 if (!selectCast(I, ISD::TRUNCATE))
4952 return selectTrunc(I);
4953 return true;
4954 case Instruction::FPExt:
4955 return selectFPExt(I);
4956 case Instruction::FPTrunc:
4957 return selectFPTrunc(I);
4958 case Instruction::SIToFP:
4959 if (!selectCast(I, ISD::SINT_TO_FP))
4960 return selectIntToFP(I, /*Signed=*/true);
4961 return true;
4962 case Instruction::UIToFP:
4963 return selectIntToFP(I, /*Signed=*/false);
4964 case Instruction::Load:
4965 return selectLoad(I);
4966 case Instruction::Store:
4967 return selectStore(I);
4968 case Instruction::FCmp:
4969 case Instruction::ICmp:
4970 return selectCmp(I);
4971 case Instruction::Select:
4972 return selectSelect(I);
4973 case Instruction::Ret:
4974 return selectRet(I);
4975 case Instruction::FRem:
4976 return selectFRem(I);
4977 case Instruction::GetElementPtr:
4978 return selectGetElementPtr(I);
4979 }
4980
4981 // fall-back to target-independent instruction selection.
4982 return selectOperator(I, I->getOpcode());
4983 // Silence warnings.
4984 (void)&CC_AArch64_DarwinPCS_VarArg;
4985 }
4986
4987 namespace llvm {
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)4988 llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &FuncInfo,
4989 const TargetLibraryInfo *LibInfo) {
4990 return new AArch64FastISel(FuncInfo, LibInfo);
4991 }
4992 }
4993