• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrAAConvexTessellator.h"
9 #include "SkCanvas.h"
10 #include "SkPath.h"
11 #include "SkPoint.h"
12 #include "SkString.h"
13 #include "GrPathUtils.h"
14 
15 // Next steps:
16 //  add an interactive sample app slide
17 //  add debug check that all points are suitably far apart
18 //  test more degenerate cases
19 
20 // The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
21 static const SkScalar kClose = (SK_Scalar1 / 16);
22 static const SkScalar kCloseSqd = kClose * kClose;
23 
24 // tesselation tolerance values, in device space pixels
25 static const SkScalar kQuadTolerance = 0.2f;
26 static const SkScalar kCubicTolerance = 0.2f;
27 static const SkScalar kConicTolerance = 0.5f;
28 
29 // dot product below which we use a round cap between curve segments
30 static const SkScalar kRoundCapThreshold = 0.8f;
31 
32 // dot product above which we consider two adjacent curves to be part of the "same" curve
33 static const SkScalar kCurveConnectionThreshold = 0.8f;
34 
intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & n1,SkScalar * t)35 static bool intersect(const SkPoint& p0, const SkPoint& n0,
36                       const SkPoint& p1, const SkPoint& n1,
37                       SkScalar* t) {
38     const SkPoint v = p1 - p0;
39     SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
40     if (SkScalarNearlyZero(perpDot)) {
41         return false;
42     }
43     *t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
44     SkASSERT(SkScalarIsFinite(*t));
45     return true;
46 }
47 
48 // This is a special case version of intersect where we have the vector
49 // perpendicular to the second line rather than the vector parallel to it.
perp_intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & perp)50 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
51                                const SkPoint& p1, const SkPoint& perp) {
52     const SkPoint v = p1 - p0;
53     SkScalar perpDot = n0.dot(perp);
54     return v.dot(perp) / perpDot;
55 }
56 
duplicate_pt(const SkPoint & p0,const SkPoint & p1)57 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
58     SkScalar distSq = p0.distanceToSqd(p1);
59     return distSq < kCloseSqd;
60 }
61 
abs_dist_from_line(const SkPoint & p0,const SkVector & v,const SkPoint & test)62 static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) {
63     SkPoint testV = test - p0;
64     SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
65     return SkScalarAbs(dist);
66 }
67 
addPt(const SkPoint & pt,SkScalar depth,SkScalar coverage,bool movable,CurveState curve)68 int GrAAConvexTessellator::addPt(const SkPoint& pt,
69                                  SkScalar depth,
70                                  SkScalar coverage,
71                                  bool movable,
72                                  CurveState curve) {
73     this->validate();
74 
75     int index = fPts.count();
76     *fPts.push() = pt;
77     *fCoverages.push() = coverage;
78     *fMovable.push() = movable;
79     *fCurveState.push() = curve;
80 
81     this->validate();
82     return index;
83 }
84 
popLastPt()85 void GrAAConvexTessellator::popLastPt() {
86     this->validate();
87 
88     fPts.pop();
89     fCoverages.pop();
90     fMovable.pop();
91     fCurveState.pop();
92 
93     this->validate();
94 }
95 
popFirstPtShuffle()96 void GrAAConvexTessellator::popFirstPtShuffle() {
97     this->validate();
98 
99     fPts.removeShuffle(0);
100     fCoverages.removeShuffle(0);
101     fMovable.removeShuffle(0);
102     fCurveState.removeShuffle(0);
103 
104     this->validate();
105 }
106 
updatePt(int index,const SkPoint & pt,SkScalar depth,SkScalar coverage)107 void GrAAConvexTessellator::updatePt(int index,
108                                      const SkPoint& pt,
109                                      SkScalar depth,
110                                      SkScalar coverage) {
111     this->validate();
112     SkASSERT(fMovable[index]);
113 
114     fPts[index] = pt;
115     fCoverages[index] = coverage;
116 }
117 
addTri(int i0,int i1,int i2)118 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
119     if (i0 == i1 || i1 == i2 || i2 == i0) {
120         return;
121     }
122 
123     *fIndices.push() = i0;
124     *fIndices.push() = i1;
125     *fIndices.push() = i2;
126 }
127 
rewind()128 void GrAAConvexTessellator::rewind() {
129     fPts.rewind();
130     fCoverages.rewind();
131     fMovable.rewind();
132     fIndices.rewind();
133     fNorms.rewind();
134     fCurveState.rewind();
135     fInitialRing.rewind();
136     fCandidateVerts.rewind();
137 #if GR_AA_CONVEX_TESSELLATOR_VIZ
138     fRings.rewind();        // TODO: leak in this case!
139 #else
140     fRings[0].rewind();
141     fRings[1].rewind();
142 #endif
143 }
144 
computeBisectors()145 void GrAAConvexTessellator::computeBisectors() {
146     fBisectors.setCount(fNorms.count());
147 
148     int prev = fBisectors.count() - 1;
149     for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
150         fBisectors[cur] = fNorms[cur] + fNorms[prev];
151         if (!fBisectors[cur].normalize()) {
152             SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSide);
153             fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide);
154             SkVector other;
155             other.setOrthog(fNorms[prev], fSide);
156             fBisectors[cur] += other;
157             SkAssertResult(fBisectors[cur].normalize());
158         } else {
159             fBisectors[cur].negate();      // make the bisector face in
160         }
161         if (fCurveState[prev] == kIndeterminate_CurveState) {
162             if (fCurveState[cur] == kSharp_CurveState) {
163                 fCurveState[prev] = kSharp_CurveState;
164             } else {
165                 if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) {
166                     fCurveState[prev] = kCurve_CurveState;
167                     fCurveState[cur]  = kCurve_CurveState;
168                 } else {
169                     fCurveState[prev] = kSharp_CurveState;
170                     fCurveState[cur]  = kSharp_CurveState;
171                 }
172             }
173         }
174 
175         SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
176     }
177 }
178 
179 // Create as many rings as we need to (up to a predefined limit) to reach the specified target
180 // depth. If we are in fill mode, the final ring will automatically be fanned.
createInsetRings(Ring & previousRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,Ring ** finalRing)181 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
182                                              SkScalar initialCoverage, SkScalar targetDepth,
183                                              SkScalar targetCoverage, Ring** finalRing) {
184     static const int kMaxNumRings = 8;
185 
186     if (previousRing.numPts() < 3) {
187         return false;
188     }
189     Ring* currentRing = &previousRing;
190     int i;
191     for (i = 0; i < kMaxNumRings; ++i) {
192         Ring* nextRing = this->getNextRing(currentRing);
193         SkASSERT(nextRing != currentRing);
194 
195         bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
196                                           targetDepth, targetCoverage, i == 0);
197         currentRing = nextRing;
198         if (done) {
199             break;
200         }
201         currentRing->init(*this);
202     }
203 
204     if (kMaxNumRings == i) {
205         // Bail if we've exceeded the amount of time we want to throw at this.
206         this->terminate(*currentRing);
207         return false;
208     }
209     bool done = currentRing->numPts() >= 3;
210     if (done) {
211         currentRing->init(*this);
212     }
213     *finalRing = currentRing;
214     return done;
215 }
216 
217 // The general idea here is to, conceptually, start with the original polygon and slide
218 // the vertices along the bisectors until the first intersection. At that
219 // point two of the edges collapse and the process repeats on the new polygon.
220 // The polygon state is captured in the Ring class while the GrAAConvexTessellator
221 // controls the iteration. The CandidateVerts holds the formative points for the
222 // next ring.
tessellate(const SkMatrix & m,const SkPath & path)223 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
224     if (!this->extractFromPath(m, path)) {
225         return false;
226     }
227 
228     SkScalar coverage = 1.0f;
229     SkScalar scaleFactor = 0.0f;
230 
231     if (SkStrokeRec::kStrokeAndFill_Style == fStyle) {
232         SkASSERT(m.isSimilarity());
233         scaleFactor = m.getMaxScale(); // x and y scale are the same
234         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
235         Ring outerStrokeAndAARing;
236         this->createOuterRing(fInitialRing,
237                               effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0,
238                               &outerStrokeAndAARing);
239 
240         // discard all the triangles added between the originating ring and the new outer ring
241         fIndices.rewind();
242 
243         outerStrokeAndAARing.init(*this);
244 
245         outerStrokeAndAARing.makeOriginalRing();
246 
247         // Add the outer stroke ring's normals to the originating ring's normals
248         // so it can also act as an originating ring
249         fNorms.setCount(fNorms.count() + outerStrokeAndAARing.numPts());
250         for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) {
251             SkASSERT(outerStrokeAndAARing.index(i) < fNorms.count());
252             fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i);
253         }
254 
255         // the bisectors are only needed for the computation of the outer ring
256         fBisectors.rewind();
257 
258         Ring* insetAARing;
259         this->createInsetRings(outerStrokeAndAARing,
260                                0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f,
261                                &insetAARing);
262 
263         SkDEBUGCODE(this->validate();)
264         return true;
265     }
266 
267     if (SkStrokeRec::kStroke_Style == fStyle) {
268         SkASSERT(fStrokeWidth >= 0.0f);
269         SkASSERT(m.isSimilarity());
270         scaleFactor = m.getMaxScale(); // x and y scale are the same
271         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
272         Ring outerStrokeRing;
273         this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
274                               coverage, &outerStrokeRing);
275         outerStrokeRing.init(*this);
276         Ring outerAARing;
277         this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
278     } else {
279         Ring outerAARing;
280         this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
281     }
282 
283     // the bisectors are only needed for the computation of the outer ring
284     fBisectors.rewind();
285     if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) {
286         SkASSERT(fStrokeWidth >= 0.0f);
287         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
288         Ring* insetStrokeRing;
289         SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
290         if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
291                                    &insetStrokeRing)) {
292             Ring* insetAARing;
293             this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
294                                    kAntialiasingRadius * 2, 0.0f, &insetAARing);
295         }
296     } else {
297         Ring* insetAARing;
298         this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
299     }
300 
301     SkDEBUGCODE(this->validate();)
302     return true;
303 }
304 
computeDepthFromEdge(int edgeIdx,const SkPoint & p) const305 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
306     SkASSERT(edgeIdx < fNorms.count());
307 
308     SkPoint v = p - fPts[edgeIdx];
309     SkScalar depth = -fNorms[edgeIdx].dot(v);
310     return depth;
311 }
312 
313 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
314 // along the 'bisector' from the 'startIdx'-th point.
computePtAlongBisector(int startIdx,const SkVector & bisector,int edgeIdx,SkScalar desiredDepth,SkPoint * result) const315 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
316                                                    const SkVector& bisector,
317                                                    int edgeIdx,
318                                                    SkScalar desiredDepth,
319                                                    SkPoint* result) const {
320     const SkPoint& norm = fNorms[edgeIdx];
321 
322     // First find the point where the edge and the bisector intersect
323     SkPoint newP;
324 
325     SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
326     if (SkScalarNearlyEqual(t, 0.0f)) {
327         // the start point was one of the original ring points
328         SkASSERT(startIdx < fPts.count());
329         newP = fPts[startIdx];
330     } else if (t < 0.0f) {
331         newP = bisector;
332         newP.scale(t);
333         newP += fPts[startIdx];
334     } else {
335         return false;
336     }
337 
338     // Then offset along the bisector from that point the correct distance
339     SkScalar dot = bisector.dot(norm);
340     t = -desiredDepth / dot;
341     *result = bisector;
342     result->scale(t);
343     *result += newP;
344 
345     return true;
346 }
347 
extractFromPath(const SkMatrix & m,const SkPath & path)348 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
349     SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
350 
351     // Outer ring: 3*numPts
352     // Middle ring: numPts
353     // Presumptive inner ring: numPts
354     this->reservePts(5*path.countPoints());
355     // Outer ring: 12*numPts
356     // Middle ring: 0
357     // Presumptive inner ring: 6*numPts + 6
358     fIndices.setReserve(18*path.countPoints() + 6);
359 
360     fNorms.setReserve(path.countPoints());
361 
362     // TODO: is there a faster way to extract the points from the path? Perhaps
363     // get all the points via a new entry point, transform them all in bulk
364     // and then walk them to find duplicates?
365     SkPath::Iter iter(path, true);
366     SkPoint pts[4];
367     SkPath::Verb verb;
368     while ((verb = iter.next(pts, true, true)) != SkPath::kDone_Verb) {
369         switch (verb) {
370             case SkPath::kLine_Verb:
371                 this->lineTo(m, pts[1], kSharp_CurveState);
372                 break;
373             case SkPath::kQuad_Verb:
374                 this->quadTo(m, pts);
375                 break;
376             case SkPath::kCubic_Verb:
377                 this->cubicTo(m, pts);
378                 break;
379             case SkPath::kConic_Verb:
380                 this->conicTo(m, pts, iter.conicWeight());
381                 break;
382             case SkPath::kMove_Verb:
383             case SkPath::kClose_Verb:
384             case SkPath::kDone_Verb:
385                 break;
386         }
387     }
388 
389     if (this->numPts() < 2) {
390         return false;
391     }
392 
393     // check if last point is a duplicate of the first point. If so, remove it.
394     if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
395         this->popLastPt();
396         fNorms.pop();
397     }
398 
399     SkASSERT(fPts.count() == fNorms.count()+1);
400     if (this->numPts() >= 3) {
401         if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
402             // The last point is on the line from the second to last to the first point.
403             this->popLastPt();
404             fNorms.pop();
405         }
406 
407         *fNorms.push() = fPts[0] - fPts.top();
408         SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
409         SkASSERT(len > 0.0f);
410         SkASSERT(fPts.count() == fNorms.count());
411     }
412 
413     if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
414         // The first point is on the line from the last to the second.
415         this->popFirstPtShuffle();
416         fNorms.removeShuffle(0);
417         fNorms[0] = fPts[1] - fPts[0];
418         SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]);
419         SkASSERT(len > 0.0f);
420         SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
421     }
422 
423     if (this->numPts() >= 3) {
424         // Check the cross product of the final trio
425         SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
426         if (cross > 0.0f) {
427             fSide = SkPoint::kRight_Side;
428         } else {
429             fSide = SkPoint::kLeft_Side;
430         }
431 
432         // Make all the normals face outwards rather than along the edge
433         for (int cur = 0; cur < fNorms.count(); ++cur) {
434             fNorms[cur].setOrthog(fNorms[cur], fSide);
435             SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
436         }
437 
438         this->computeBisectors();
439     } else if (this->numPts() == 2) {
440         // We've got two points, so we're degenerate.
441         if (fStyle == SkStrokeRec::kFill_Style) {
442             // it's a fill, so we don't need to worry about degenerate paths
443             return false;
444         }
445         // For stroking, we still need to process the degenerate path, so fix it up
446         fSide = SkPoint::kLeft_Side;
447 
448         // Make all the normals face outwards rather than along the edge
449         for (int cur = 0; cur < fNorms.count(); ++cur) {
450             fNorms[cur].setOrthog(fNorms[cur], fSide);
451             SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
452         }
453 
454         fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY));
455         // we won't actually use the bisectors, so just push zeroes
456         fBisectors.push(SkPoint::Make(0.0, 0.0));
457         fBisectors.push(SkPoint::Make(0.0, 0.0));
458     } else {
459         return false;
460     }
461 
462     fCandidateVerts.setReserve(this->numPts());
463     fInitialRing.setReserve(this->numPts());
464     for (int i = 0; i < this->numPts(); ++i) {
465         fInitialRing.addIdx(i, i);
466     }
467     fInitialRing.init(fNorms, fBisectors);
468 
469     this->validate();
470     return true;
471 }
472 
getNextRing(Ring * lastRing)473 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
474 #if GR_AA_CONVEX_TESSELLATOR_VIZ
475     Ring* ring = *fRings.push() = new Ring;
476     ring->setReserve(fInitialRing.numPts());
477     ring->rewind();
478     return ring;
479 #else
480     // Flip flop back and forth between fRings[0] & fRings[1]
481     int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
482     fRings[nextRing].setReserve(fInitialRing.numPts());
483     fRings[nextRing].rewind();
484     return &fRings[nextRing];
485 #endif
486 }
487 
fanRing(const Ring & ring)488 void GrAAConvexTessellator::fanRing(const Ring& ring) {
489     // fan out from point 0
490     int startIdx = ring.index(0);
491     for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
492         this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
493     }
494 }
495 
createOuterRing(const Ring & previousRing,SkScalar outset,SkScalar coverage,Ring * nextRing)496 void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
497                                             SkScalar coverage, Ring* nextRing) {
498     const int numPts = previousRing.numPts();
499     if (numPts == 0) {
500         return;
501     }
502 
503     int prev = numPts - 1;
504     int lastPerpIdx = -1, firstPerpIdx = -1;
505 
506     const SkScalar outsetSq = outset * outset;
507     SkScalar miterLimitSq = outset * fMiterLimit;
508     miterLimitSq = miterLimitSq * miterLimitSq;
509     for (int cur = 0; cur < numPts; ++cur) {
510         int originalIdx = previousRing.index(cur);
511         // For each vertex of the original polygon we add at least two points to the
512         // outset polygon - one extending perpendicular to each impinging edge. Connecting these
513         // two points yields a bevel join. We need one additional point for a mitered join, and
514         // a round join requires one or more points depending upon curvature.
515 
516         // The perpendicular point for the last edge
517         SkPoint normal1 = previousRing.norm(prev);
518         SkPoint perp1 = normal1;
519         perp1.scale(outset);
520         perp1 += this->point(originalIdx);
521 
522         // The perpendicular point for the next edge.
523         SkPoint normal2 = previousRing.norm(cur);
524         SkPoint perp2 = normal2;
525         perp2.scale(outset);
526         perp2 += fPts[originalIdx];
527 
528         CurveState curve = fCurveState[originalIdx];
529 
530         // We know it isn't a duplicate of the prior point (since it and this
531         // one are just perpendicular offsets from the non-merged polygon points)
532         int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve);
533         nextRing->addIdx(perp1Idx, originalIdx);
534 
535         int perp2Idx;
536         // For very shallow angles all the corner points could fuse.
537         if (duplicate_pt(perp2, this->point(perp1Idx))) {
538             perp2Idx = perp1Idx;
539         } else {
540             perp2Idx = this->addPt(perp2, -outset, coverage, false, curve);
541         }
542 
543         if (perp2Idx != perp1Idx) {
544             if (curve == kCurve_CurveState) {
545                 // bevel or round depending upon curvature
546                 SkScalar dotProd = normal1.dot(normal2);
547                 if (dotProd < kRoundCapThreshold) {
548                     // Currently we "round" by creating a single extra point, which produces
549                     // good results for common cases. For thick strokes with high curvature, we will
550                     // need to add more points; for the time being we simply fall back to software
551                     // rendering for thick strokes.
552                     SkPoint miter = previousRing.bisector(cur);
553                     miter.setLength(-outset);
554                     miter += fPts[originalIdx];
555 
556                     // For very shallow angles all the corner points could fuse
557                     if (!duplicate_pt(miter, this->point(perp1Idx))) {
558                         int miterIdx;
559                         miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState);
560                         nextRing->addIdx(miterIdx, originalIdx);
561                         // The two triangles for the corner
562                         this->addTri(originalIdx, perp1Idx, miterIdx);
563                         this->addTri(originalIdx, miterIdx, perp2Idx);
564                     }
565                 } else {
566                     this->addTri(originalIdx, perp1Idx, perp2Idx);
567                 }
568             } else {
569                 switch (fJoin) {
570                     case SkPaint::Join::kMiter_Join: {
571                         // The bisector outset point
572                         SkPoint miter = previousRing.bisector(cur);
573                         SkScalar dotProd = normal1.dot(normal2);
574                         SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd);
575                         SkScalar lengthSq = outsetSq / sinHalfAngleSq;
576                         if (lengthSq > miterLimitSq) {
577                             // just bevel it
578                             this->addTri(originalIdx, perp1Idx, perp2Idx);
579                             break;
580                         }
581                         miter.setLength(-SkScalarSqrt(lengthSq));
582                         miter += fPts[originalIdx];
583 
584                         // For very shallow angles all the corner points could fuse
585                         if (!duplicate_pt(miter, this->point(perp1Idx))) {
586                             int miterIdx;
587                             miterIdx = this->addPt(miter, -outset, coverage, false,
588                                                    kSharp_CurveState);
589                             nextRing->addIdx(miterIdx, originalIdx);
590                             // The two triangles for the corner
591                             this->addTri(originalIdx, perp1Idx, miterIdx);
592                             this->addTri(originalIdx, miterIdx, perp2Idx);
593                         }
594                         break;
595                     }
596                     case SkPaint::Join::kBevel_Join:
597                         this->addTri(originalIdx, perp1Idx, perp2Idx);
598                         break;
599                     default:
600                         // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
601                         // only willing to draw mitered or beveled, so we should never get here.
602                         SkASSERT(false);
603                 }
604             }
605 
606             nextRing->addIdx(perp2Idx, originalIdx);
607         }
608 
609         if (0 == cur) {
610             // Store the index of the first perpendicular point to finish up
611             firstPerpIdx = perp1Idx;
612             SkASSERT(-1 == lastPerpIdx);
613         } else {
614             // The triangles for the previous edge
615             int prevIdx = previousRing.index(prev);
616             this->addTri(prevIdx, perp1Idx, originalIdx);
617             this->addTri(prevIdx, lastPerpIdx, perp1Idx);
618         }
619 
620         // Track the last perpendicular outset point so we can construct the
621         // trailing edge triangles.
622         lastPerpIdx = perp2Idx;
623         prev = cur;
624     }
625 
626     // pick up the final edge rect
627     int lastIdx = previousRing.index(numPts - 1);
628     this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
629     this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
630 
631     this->validate();
632 }
633 
634 // Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
635 // and fan it.
terminate(const Ring & ring)636 void GrAAConvexTessellator::terminate(const Ring& ring) {
637     if (fStyle != SkStrokeRec::kStroke_Style) {
638         this->fanRing(ring);
639     }
640 }
641 
compute_coverage(SkScalar depth,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage)642 static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
643                                 SkScalar targetDepth, SkScalar targetCoverage) {
644     if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
645         return targetCoverage;
646     }
647     SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
648             (targetCoverage - initialCoverage) + initialCoverage;
649     return SkScalarClampMax(result, 1.0f);
650 }
651 
652 // return true when processing is complete
createInsetRing(const Ring & lastRing,Ring * nextRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,bool forceNew)653 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
654                                             SkScalar initialDepth, SkScalar initialCoverage,
655                                             SkScalar targetDepth, SkScalar targetCoverage,
656                                             bool forceNew) {
657     bool done = false;
658 
659     fCandidateVerts.rewind();
660 
661     // Loop through all the points in the ring and find the intersection with the smallest depth
662     SkScalar minDist = SK_ScalarMax, minT = 0.0f;
663     int minEdgeIdx = -1;
664 
665     for (int cur = 0; cur < lastRing.numPts(); ++cur) {
666         int next = (cur + 1) % lastRing.numPts();
667 
668         SkScalar t;
669         bool result = intersect(this->point(lastRing.index(cur)),  lastRing.bisector(cur),
670                                 this->point(lastRing.index(next)), lastRing.bisector(next),
671                                 &t);
672         if (!result) {
673             continue;
674         }
675         SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
676 
677         if (minDist > dist) {
678             minDist = dist;
679             minT = t;
680             minEdgeIdx = cur;
681         }
682     }
683 
684     if (minEdgeIdx == -1) {
685         return false;
686     }
687     SkPoint newPt = lastRing.bisector(minEdgeIdx);
688     newPt.scale(minT);
689     newPt += this->point(lastRing.index(minEdgeIdx));
690 
691     SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
692     if (depth >= targetDepth) {
693         // None of the bisectors intersect before reaching the desired depth.
694         // Just step them all to the desired depth
695         depth = targetDepth;
696         done = true;
697     }
698 
699     // 'dst' stores where each point in the last ring maps to/transforms into
700     // in the next ring.
701     SkTDArray<int> dst;
702     dst.setCount(lastRing.numPts());
703 
704     // Create the first point (who compares with no one)
705     if (!this->computePtAlongBisector(lastRing.index(0),
706                                       lastRing.bisector(0),
707                                       lastRing.origEdgeID(0),
708                                       depth, &newPt)) {
709         this->terminate(lastRing);
710         return true;
711     }
712     dst[0] = fCandidateVerts.addNewPt(newPt,
713                                       lastRing.index(0), lastRing.origEdgeID(0),
714                                       !this->movable(lastRing.index(0)));
715 
716     // Handle the middle points (who only compare with the prior point)
717     for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
718         if (!this->computePtAlongBisector(lastRing.index(cur),
719                                           lastRing.bisector(cur),
720                                           lastRing.origEdgeID(cur),
721                                           depth, &newPt)) {
722             this->terminate(lastRing);
723             return true;
724         }
725         if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
726             dst[cur] = fCandidateVerts.addNewPt(newPt,
727                                                 lastRing.index(cur), lastRing.origEdgeID(cur),
728                                                 !this->movable(lastRing.index(cur)));
729         } else {
730             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
731         }
732     }
733 
734     // Check on the last point (handling the wrap around)
735     int cur = lastRing.numPts()-1;
736     if  (!this->computePtAlongBisector(lastRing.index(cur),
737                                        lastRing.bisector(cur),
738                                        lastRing.origEdgeID(cur),
739                                        depth, &newPt)) {
740         this->terminate(lastRing);
741         return true;
742     }
743     bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
744     bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
745 
746     if (!dupPrev && !dupNext) {
747         dst[cur] = fCandidateVerts.addNewPt(newPt,
748                                             lastRing.index(cur), lastRing.origEdgeID(cur),
749                                             !this->movable(lastRing.index(cur)));
750     } else if (dupPrev && !dupNext) {
751         dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
752     } else if (!dupPrev && dupNext) {
753         dst[cur] = fCandidateVerts.fuseWithNext();
754     } else {
755         bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
756 
757         if (!dupPrevVsNext) {
758             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
759         } else {
760             const int fused = fCandidateVerts.fuseWithBoth();
761             dst[cur] = fused;
762             const int targetIdx = dst[cur - 1];
763             for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
764                 dst[i] = fused;
765             }
766         }
767     }
768 
769     // Fold the new ring's points into the global pool
770     for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
771         int newIdx;
772         if (fCandidateVerts.needsToBeNew(i) || forceNew) {
773             // if the originating index is still valid then this point wasn't
774             // fused (and is thus movable)
775             SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
776                                                  targetDepth, targetCoverage);
777             newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
778                                  fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState);
779         } else {
780             SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
781             this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
782                            targetCoverage);
783             newIdx = fCandidateVerts.originatingIdx(i);
784         }
785 
786         nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
787     }
788 
789     // 'dst' currently has indices into the ring. Remap these to be indices
790     // into the global pool since the triangulation operates in that space.
791     for (int i = 0; i < dst.count(); ++i) {
792         dst[i] = nextRing->index(dst[i]);
793     }
794 
795     for (int i = 0; i < lastRing.numPts(); ++i) {
796         int next = (i + 1) % lastRing.numPts();
797 
798         this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
799         this->addTri(lastRing.index(i), dst[next], dst[i]);
800     }
801 
802     if (done && fStyle != SkStrokeRec::kStroke_Style) {
803         // fill or stroke-and-fill
804         this->fanRing(*nextRing);
805     }
806 
807     if (nextRing->numPts() < 3) {
808         done = true;
809     }
810     return done;
811 }
812 
validate() const813 void GrAAConvexTessellator::validate() const {
814     SkASSERT(fPts.count() == fMovable.count());
815     SkASSERT(fPts.count() == fCoverages.count());
816     SkASSERT(fPts.count() == fCurveState.count());
817     SkASSERT(0 == (fIndices.count() % 3));
818     SkASSERT(!fBisectors.count() || fBisectors.count() == fNorms.count());
819 }
820 
821 //////////////////////////////////////////////////////////////////////////////
init(const GrAAConvexTessellator & tess)822 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
823     this->computeNormals(tess);
824     this->computeBisectors(tess);
825 }
826 
init(const SkTDArray<SkVector> & norms,const SkTDArray<SkVector> & bisectors)827 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
828                                        const SkTDArray<SkVector>& bisectors) {
829     for (int i = 0; i < fPts.count(); ++i) {
830         fPts[i].fNorm = norms[i];
831         fPts[i].fBisector = bisectors[i];
832     }
833 }
834 
835 // Compute the outward facing normal at each vertex.
computeNormals(const GrAAConvexTessellator & tess)836 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
837     for (int cur = 0; cur < fPts.count(); ++cur) {
838         int next = (cur + 1) % fPts.count();
839 
840         fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
841         SkPoint::Normalize(&fPts[cur].fNorm);
842         fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
843     }
844 }
845 
computeBisectors(const GrAAConvexTessellator & tess)846 void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
847     int prev = fPts.count() - 1;
848     for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
849         fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
850         if (!fPts[cur].fBisector.normalize()) {
851             SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side == tess.side());
852             fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.side());
853             SkVector other;
854             other.setOrthog(fPts[prev].fNorm, tess.side());
855             fPts[cur].fBisector += other;
856             SkAssertResult(fPts[cur].fBisector.normalize());
857         } else {
858             fPts[cur].fBisector.negate();      // make the bisector face in
859         }
860     }
861 }
862 
863 //////////////////////////////////////////////////////////////////////////////
864 #ifdef SK_DEBUG
865 // Is this ring convex?
isConvex(const GrAAConvexTessellator & tess) const866 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
867     if (fPts.count() < 3) {
868         return true;
869     }
870 
871     SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
872     SkPoint cur  = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
873     SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
874     SkScalar maxDot = minDot;
875 
876     prev = cur;
877     for (int i = 1; i < fPts.count(); ++i) {
878         int next = (i + 1) % fPts.count();
879 
880         cur  = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
881         SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
882 
883         minDot = SkMinScalar(minDot, dot);
884         maxDot = SkMaxScalar(maxDot, dot);
885 
886         prev = cur;
887     }
888 
889     if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
890         maxDot = 0;
891     }
892     if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
893         minDot = 0;
894     }
895     return (maxDot >= 0.0f) == (minDot >= 0.0f);
896 }
897 
898 #endif
899 
lineTo(const SkPoint & p,CurveState curve)900 void GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) {
901     if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
902         return;
903     }
904 
905     SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
906     if (this->numPts() >= 2 && abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) {
907         // The old last point is on the line from the second to last to the new point
908         this->popLastPt();
909         fNorms.pop();
910         // double-check that the new last point is not a duplicate of the new point. In an ideal
911         // world this wouldn't be necessary (since it's only possible for non-convex paths), but
912         // floating point precision issues mean it can actually happen on paths that were
913         // determined to be convex.
914         if (duplicate_pt(p, this->lastPoint())) {
915             return;
916         }
917     }
918     SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f;
919     this->addPt(p, 0.0f, initialRingCoverage, false, curve);
920     if (this->numPts() > 1) {
921         *fNorms.push() = fPts.top() - fPts[fPts.count()-2];
922         SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
923         SkASSERT(len > 0.0f);
924         SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
925     }
926 }
927 
lineTo(const SkMatrix & m,SkPoint p,CurveState curve)928 void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, CurveState curve) {
929     m.mapPoints(&p, 1);
930     this->lineTo(p, curve);
931 }
932 
quadTo(const SkPoint pts[3])933 void GrAAConvexTessellator::quadTo(const SkPoint pts[3]) {
934     int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
935     fPointBuffer.setReserve(maxCount);
936     SkPoint* target = fPointBuffer.begin();
937     int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
938                                                      kQuadTolerance, &target, maxCount);
939     fPointBuffer.setCount(count);
940     for (int i = 0; i < count - 1; i++) {
941         this->lineTo(fPointBuffer[i], kCurve_CurveState);
942     }
943     this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
944 }
945 
quadTo(const SkMatrix & m,SkPoint pts[3])946 void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
947     m.mapPoints(pts, 3);
948     this->quadTo(pts);
949 }
950 
cubicTo(const SkMatrix & m,SkPoint pts[4])951 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
952     m.mapPoints(pts, 4);
953     int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
954     fPointBuffer.setReserve(maxCount);
955     SkPoint* target = fPointBuffer.begin();
956     int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
957             kCubicTolerance, &target, maxCount);
958     fPointBuffer.setCount(count);
959     for (int i = 0; i < count - 1; i++) {
960         this->lineTo(fPointBuffer[i], kCurve_CurveState);
961     }
962     this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
963 }
964 
965 // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
966 #include "SkGeometry.h"
967 
conicTo(const SkMatrix & m,SkPoint pts[3],SkScalar w)968 void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
969     m.mapPoints(pts, 3);
970     SkAutoConicToQuads quadder;
971     const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
972     SkPoint lastPoint = *(quads++);
973     int count = quadder.countQuads();
974     for (int i = 0; i < count; ++i) {
975         SkPoint quadPts[3];
976         quadPts[0] = lastPoint;
977         quadPts[1] = quads[0];
978         quadPts[2] = i == count - 1 ? pts[2] : quads[1];
979         this->quadTo(quadPts);
980         lastPoint = quadPts[2];
981         quads += 2;
982     }
983 }
984 
985 //////////////////////////////////////////////////////////////////////////////
986 #if GR_AA_CONVEX_TESSELLATOR_VIZ
987 static const SkScalar kPointRadius = 0.02f;
988 static const SkScalar kArrowStrokeWidth = 0.0f;
989 static const SkScalar kArrowLength = 0.2f;
990 static const SkScalar kEdgeTextSize = 0.1f;
991 static const SkScalar kPointTextSize = 0.02f;
992 
draw_point(SkCanvas * canvas,const SkPoint & p,SkScalar paramValue,bool stroke)993 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
994     SkPaint paint;
995     SkASSERT(paramValue <= 1.0f);
996     int gs = int(255*paramValue);
997     paint.setARGB(255, gs, gs, gs);
998 
999     canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
1000 
1001     if (stroke) {
1002         SkPaint stroke;
1003         stroke.setColor(SK_ColorYELLOW);
1004         stroke.setStyle(SkPaint::kStroke_Style);
1005         stroke.setStrokeWidth(kPointRadius/3.0f);
1006         canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
1007     }
1008 }
1009 
draw_line(SkCanvas * canvas,const SkPoint & p0,const SkPoint & p1,SkColor color)1010 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
1011     SkPaint p;
1012     p.setColor(color);
1013 
1014     canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
1015 }
1016 
draw_arrow(SkCanvas * canvas,const SkPoint & p,const SkPoint & n,SkScalar len,SkColor color)1017 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
1018                        SkScalar len, SkColor color) {
1019     SkPaint paint;
1020     paint.setColor(color);
1021     paint.setStrokeWidth(kArrowStrokeWidth);
1022     paint.setStyle(SkPaint::kStroke_Style);
1023 
1024     canvas->drawLine(p.fX, p.fY,
1025                      p.fX + len * n.fX, p.fY + len * n.fY,
1026                      paint);
1027 }
1028 
draw(SkCanvas * canvas,const GrAAConvexTessellator & tess) const1029 void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
1030     SkPaint paint;
1031     paint.setTextSize(kEdgeTextSize);
1032 
1033     for (int cur = 0; cur < fPts.count(); ++cur) {
1034         int next = (cur + 1) % fPts.count();
1035 
1036         draw_line(canvas,
1037                   tess.point(fPts[cur].fIndex),
1038                   tess.point(fPts[next].fIndex),
1039                   SK_ColorGREEN);
1040 
1041         SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
1042         mid.scale(0.5f);
1043 
1044         if (fPts.count()) {
1045             draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
1046             mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
1047             mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
1048         }
1049 
1050         SkString num;
1051         num.printf("%d", this->origEdgeID(cur));
1052         canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
1053 
1054         if (fPts.count()) {
1055             draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
1056                        kArrowLength, SK_ColorBLUE);
1057         }
1058     }
1059 }
1060 
draw(SkCanvas * canvas) const1061 void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
1062     for (int i = 0; i < fIndices.count(); i += 3) {
1063         SkASSERT(fIndices[i] < this->numPts()) ;
1064         SkASSERT(fIndices[i+1] < this->numPts()) ;
1065         SkASSERT(fIndices[i+2] < this->numPts()) ;
1066 
1067         draw_line(canvas,
1068                   this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
1069                   SK_ColorBLACK);
1070         draw_line(canvas,
1071                   this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
1072                   SK_ColorBLACK);
1073         draw_line(canvas,
1074                   this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
1075                   SK_ColorBLACK);
1076     }
1077 
1078     fInitialRing.draw(canvas, *this);
1079     for (int i = 0; i < fRings.count(); ++i) {
1080         fRings[i]->draw(canvas, *this);
1081     }
1082 
1083     for (int i = 0; i < this->numPts(); ++i) {
1084         draw_point(canvas,
1085                    this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
1086                    !this->movable(i));
1087 
1088         SkPaint paint;
1089         paint.setTextSize(kPointTextSize);
1090         paint.setTextAlign(SkPaint::kCenter_Align);
1091         if (this->depth(i) <= -kAntialiasingRadius) {
1092             paint.setColor(SK_ColorWHITE);
1093         }
1094 
1095         SkString num;
1096         num.printf("%d", i);
1097         canvas->drawText(num.c_str(), num.size(),
1098                          this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
1099                          paint);
1100     }
1101 }
1102 
1103 #endif
1104