1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "float.h"
9
10 #include "SkColorPriv.h"
11 #include "SkEndian.h"
12 #include "SkFDot6.h"
13 #include "SkFixed.h"
14 #include "SkFloatBits.h"
15 #include "SkFloatingPoint.h"
16 #include "SkHalf.h"
17 #include "SkMathPriv.h"
18 #include "SkPoint.h"
19 #include "SkRandom.h"
20 #include "Test.h"
21
test_clz(skiatest::Reporter * reporter)22 static void test_clz(skiatest::Reporter* reporter) {
23 REPORTER_ASSERT(reporter, 32 == SkCLZ(0));
24 REPORTER_ASSERT(reporter, 31 == SkCLZ(1));
25 REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30));
26 REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U));
27
28 SkRandom rand;
29 for (int i = 0; i < 1000; ++i) {
30 uint32_t mask = rand.nextU();
31 // need to get some zeros for testing, but in some obscure way so the
32 // compiler won't "see" that, and work-around calling the functions.
33 mask >>= (mask & 31);
34 int intri = SkCLZ(mask);
35 int porta = SkCLZ_portable(mask);
36 REPORTER_ASSERT(reporter, intri == porta);
37 }
38 }
39
test_quick_div(skiatest::Reporter * reporter)40 static void test_quick_div(skiatest::Reporter* reporter) {
41 /*
42 The inverse table is generated by turning on SkDebugf in the following test code
43 */
44 SkFixed storage[kInverseTableSize * 2];
45 SkFixed* table = storage + kInverseTableSize;
46
47 // SkDebugf("static const int gFDot6INVERSE[] = {");
48 for (SkFDot6 i=-kInverseTableSize; i<kInverseTableSize; i++) {
49 if (i != 0) {
50 table[i] = SkFDot6Div(SK_FDot6One, i);
51 REPORTER_ASSERT(reporter, table[i] == gFDot6INVERSE[i + kInverseTableSize]);
52 }
53 // SkDebugf("%d, ", table[i]);
54 }
55 // SkDebugf("}\n");
56
57
58 for (SkFDot6 a = -1024; a <= 1024; a++) {
59 for (SkFDot6 b = -1024; b <= 1024; b++) {
60 if (b != 0) {
61 SkFixed ourAnswer = QuickSkFDot6Div(a, b);
62 SkFixed directAnswer = SkFDot6Div(a, b);
63 REPORTER_ASSERT(reporter,
64 (directAnswer == 0 && ourAnswer == 0) ||
65 SkFixedDiv(SkAbs32(directAnswer - ourAnswer), SkAbs32(directAnswer)) <= 1 << 10
66 );
67 }
68 }
69 }
70 }
71
72 ///////////////////////////////////////////////////////////////////////////////
73
sk_fsel(float pred,float result_ge,float result_lt)74 static float sk_fsel(float pred, float result_ge, float result_lt) {
75 return pred >= 0 ? result_ge : result_lt;
76 }
77
fast_floor(float x)78 static float fast_floor(float x) {
79 // float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23);
80 float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23));
81 return (float)(x + big) - big;
82 }
83
std_floor(float x)84 static float std_floor(float x) {
85 return sk_float_floor(x);
86 }
87
test_floor_value(skiatest::Reporter * reporter,float value)88 static void test_floor_value(skiatest::Reporter* reporter, float value) {
89 float fast = fast_floor(value);
90 float std = std_floor(value);
91 if (std != fast) {
92 ERRORF(reporter, "fast_floor(%.9g) == %.9g != %.9g == std_floor(%.9g)",
93 value, fast, std, value);
94 }
95 }
96
test_floor(skiatest::Reporter * reporter)97 static void test_floor(skiatest::Reporter* reporter) {
98 static const float gVals[] = {
99 0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f
100 };
101
102 for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) {
103 test_floor_value(reporter, gVals[i]);
104 // test_floor_value(reporter, -gVals[i]);
105 }
106 }
107
108 ///////////////////////////////////////////////////////////////////////////////
109
110 // test that SkMul16ShiftRound and SkMulDiv255Round return the same result
test_muldivround(skiatest::Reporter * reporter)111 static void test_muldivround(skiatest::Reporter* reporter) {
112 #if 0
113 // this "complete" test is too slow, so we test a random sampling of it
114
115 for (int a = 0; a <= 32767; ++a) {
116 for (int b = 0; b <= 32767; ++b) {
117 unsigned prod0 = SkMul16ShiftRound(a, b, 8);
118 unsigned prod1 = SkMulDiv255Round(a, b);
119 SkASSERT(prod0 == prod1);
120 }
121 }
122 #endif
123
124 SkRandom rand;
125 for (int i = 0; i < 10000; ++i) {
126 unsigned a = rand.nextU() & 0x7FFF;
127 unsigned b = rand.nextU() & 0x7FFF;
128
129 unsigned prod0 = SkMul16ShiftRound(a, b, 8);
130 unsigned prod1 = SkMulDiv255Round(a, b);
131
132 REPORTER_ASSERT(reporter, prod0 == prod1);
133 }
134 }
135
float_blend(int src,int dst,float unit)136 static float float_blend(int src, int dst, float unit) {
137 return dst + (src - dst) * unit;
138 }
139
blend31(int src,int dst,int a31)140 static int blend31(int src, int dst, int a31) {
141 return dst + ((src - dst) * a31 * 2114 >> 16);
142 // return dst + ((src - dst) * a31 * 33 >> 10);
143 }
144
blend31_slow(int src,int dst,int a31)145 static int blend31_slow(int src, int dst, int a31) {
146 int prod = src * a31 + (31 - a31) * dst + 16;
147 prod = (prod + (prod >> 5)) >> 5;
148 return prod;
149 }
150
blend31_round(int src,int dst,int a31)151 static int blend31_round(int src, int dst, int a31) {
152 int prod = (src - dst) * a31 + 16;
153 prod = (prod + (prod >> 5)) >> 5;
154 return dst + prod;
155 }
156
blend31_old(int src,int dst,int a31)157 static int blend31_old(int src, int dst, int a31) {
158 a31 += a31 >> 4;
159 return dst + ((src - dst) * a31 >> 5);
160 }
161
162 // suppress unused code warning
163 static int (*blend_functions[])(int, int, int) = {
164 blend31,
165 blend31_slow,
166 blend31_round,
167 blend31_old
168 };
169
test_blend31()170 static void test_blend31() {
171 int failed = 0;
172 int death = 0;
173 if (false) { // avoid bit rot, suppress warning
174 failed = (*blend_functions[0])(0,0,0);
175 }
176 for (int src = 0; src <= 255; src++) {
177 for (int dst = 0; dst <= 255; dst++) {
178 for (int a = 0; a <= 31; a++) {
179 // int r0 = blend31(src, dst, a);
180 // int r0 = blend31_round(src, dst, a);
181 // int r0 = blend31_old(src, dst, a);
182 int r0 = blend31_slow(src, dst, a);
183
184 float f = float_blend(src, dst, a / 31.f);
185 int r1 = (int)f;
186 int r2 = SkScalarRoundToInt(f);
187
188 if (r0 != r1 && r0 != r2) {
189 SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
190 src, dst, a, r0, f);
191 failed += 1;
192 }
193 if (r0 > 255) {
194 death += 1;
195 SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n",
196 src, dst, a, r0, f);
197 }
198 }
199 }
200 }
201 SkDebugf("---- failed %d death %d\n", failed, death);
202 }
203
test_blend(skiatest::Reporter * reporter)204 static void test_blend(skiatest::Reporter* reporter) {
205 for (int src = 0; src <= 255; src++) {
206 for (int dst = 0; dst <= 255; dst++) {
207 for (int a = 0; a <= 255; a++) {
208 int r0 = SkAlphaBlend255(src, dst, a);
209 float f1 = float_blend(src, dst, a / 255.f);
210 int r1 = SkScalarRoundToInt(f1);
211
212 if (r0 != r1) {
213 float diff = sk_float_abs(f1 - r1);
214 diff = sk_float_abs(diff - 0.5f);
215 if (diff > (1 / 255.f)) {
216 ERRORF(reporter, "src:%d dst:%d a:%d "
217 "result:%d float:%g\n", src, dst, a, r0, f1);
218 }
219 }
220 }
221 }
222 }
223 }
224
check_length(skiatest::Reporter * reporter,const SkPoint & p,SkScalar targetLen)225 static void check_length(skiatest::Reporter* reporter,
226 const SkPoint& p, SkScalar targetLen) {
227 float x = SkScalarToFloat(p.fX);
228 float y = SkScalarToFloat(p.fY);
229 float len = sk_float_sqrt(x*x + y*y);
230
231 len /= SkScalarToFloat(targetLen);
232
233 REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f);
234 }
235
nextFloat(SkRandom & rand)236 static float nextFloat(SkRandom& rand) {
237 SkFloatIntUnion data;
238 data.fSignBitInt = rand.nextU();
239 return data.fFloat;
240 }
241
242 /* returns true if a == b as resulting from (int)x. Since it is undefined
243 what to do if the float exceeds 2^32-1, we check for that explicitly.
244 */
equal_float_native_skia(float x,int32_t ni,int32_t si)245 static bool equal_float_native_skia(float x, int32_t ni, int32_t si) {
246 // When the float is out of integer range (NaN, above, below),
247 // the C cast is undefined, but Skia's methods should have clamped.
248 if (!(x == x)) { // NaN
249 return si == SK_MaxS32 || si == SK_MinS32;
250 }
251 if (x > SK_MaxS32) {
252 return si == SK_MaxS32;
253 }
254 if (x < SK_MinS32) {
255 return si == SK_MinS32;
256 }
257 return si == ni;
258 }
259
assert_float_equal(skiatest::Reporter * reporter,const char op[],float x,int32_t ni,int32_t si)260 static void assert_float_equal(skiatest::Reporter* reporter, const char op[],
261 float x, int32_t ni, int32_t si) {
262 if (!equal_float_native_skia(x, ni, si)) {
263 ERRORF(reporter, "%s float %g bits %x native %x skia %x\n",
264 op, x, SkFloat2Bits(x), ni, si);
265 }
266 }
267
test_float_floor(skiatest::Reporter * reporter,float x)268 static void test_float_floor(skiatest::Reporter* reporter, float x) {
269 int ix = (int)floor(x);
270 int iix = SkFloatToIntFloor(x);
271 assert_float_equal(reporter, "floor", x, ix, iix);
272 }
273
test_float_round(skiatest::Reporter * reporter,float x)274 static void test_float_round(skiatest::Reporter* reporter, float x) {
275 double xx = x + 0.5; // need intermediate double to avoid temp loss
276 int ix = (int)floor(xx);
277 int iix = SkFloatToIntRound(x);
278 assert_float_equal(reporter, "round", x, ix, iix);
279 }
280
test_float_ceil(skiatest::Reporter * reporter,float x)281 static void test_float_ceil(skiatest::Reporter* reporter, float x) {
282 int ix = (int)ceil(x);
283 int iix = SkFloatToIntCeil(x);
284 assert_float_equal(reporter, "ceil", x, ix, iix);
285 }
286
test_float_conversions(skiatest::Reporter * reporter,float x)287 static void test_float_conversions(skiatest::Reporter* reporter, float x) {
288 test_float_floor(reporter, x);
289 test_float_round(reporter, x);
290 test_float_ceil(reporter, x);
291 }
292
unittest_fastfloat(skiatest::Reporter * reporter)293 static void unittest_fastfloat(skiatest::Reporter* reporter) {
294 SkRandom rand;
295 size_t i;
296
297 static const float gFloats[] = {
298 0.f/0.f, -0.f/0.f, 1.f/0.f, -1.f/0.f,
299 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
300 0.000000001f, 1000000000.f, // doesn't overflow
301 0.0000000001f, 10000000000.f // does overflow
302 };
303 for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) {
304 test_float_conversions(reporter, gFloats[i]);
305 test_float_conversions(reporter, -gFloats[i]);
306 }
307
308 for (int outer = 0; outer < 100; outer++) {
309 rand.setSeed(outer);
310 for (i = 0; i < 100000; i++) {
311 float x = nextFloat(rand);
312 test_float_conversions(reporter, x);
313 }
314 }
315 }
316
make_zero()317 static float make_zero() {
318 return sk_float_sin(0);
319 }
320
unittest_isfinite(skiatest::Reporter * reporter)321 static void unittest_isfinite(skiatest::Reporter* reporter) {
322 float nan = sk_float_asin(2);
323 float inf = 1.0f / make_zero();
324 float big = 3.40282e+038f;
325
326 REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf));
327 REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf));
328 REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf));
329 REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf));
330
331 REPORTER_ASSERT(reporter, SkScalarIsNaN(nan));
332 REPORTER_ASSERT(reporter, !SkScalarIsNaN(big));
333 REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big));
334 REPORTER_ASSERT(reporter, !SkScalarIsNaN(0));
335
336 REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan));
337 REPORTER_ASSERT(reporter, SkScalarIsFinite(big));
338 REPORTER_ASSERT(reporter, SkScalarIsFinite(-big));
339 REPORTER_ASSERT(reporter, SkScalarIsFinite(0));
340 }
341
unittest_half(skiatest::Reporter * reporter)342 static void unittest_half(skiatest::Reporter* reporter) {
343 static const float gFloats[] = {
344 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
345 -0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3
346 };
347
348 for (size_t i = 0; i < SK_ARRAY_COUNT(gFloats); ++i) {
349 SkHalf h = SkFloatToHalf(gFloats[i]);
350 float f = SkHalfToFloat(h);
351 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i]));
352 }
353
354 // check some special values
355 union FloatUnion {
356 uint32_t fU;
357 float fF;
358 };
359
360 static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) };
361 SkHalf h = SkFloatToHalf(largestPositiveHalf.fF);
362 float f = SkHalfToFloat(h);
363 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF));
364
365 static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) };
366 h = SkFloatToHalf(largestNegativeHalf.fF);
367 f = SkHalfToFloat(h);
368 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF));
369
370 static const FloatUnion smallestPositiveHalf = { 102 << 23 };
371 h = SkFloatToHalf(smallestPositiveHalf.fF);
372 f = SkHalfToFloat(h);
373 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF));
374
375 static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) };
376 h = SkFloatToHalf(overflowHalf.fF);
377 f = SkHalfToFloat(h);
378 REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
379
380 static const FloatUnion underflowHalf = { 101 << 23 };
381 h = SkFloatToHalf(underflowHalf.fF);
382 f = SkHalfToFloat(h);
383 REPORTER_ASSERT(reporter, f == 0.0f );
384
385 static const FloatUnion inf32 = { 255 << 23 };
386 h = SkFloatToHalf(inf32.fF);
387 f = SkHalfToFloat(h);
388 REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
389
390 static const FloatUnion nan32 = { 255 << 23 | 1 };
391 h = SkFloatToHalf(nan32.fF);
392 f = SkHalfToFloat(h);
393 REPORTER_ASSERT(reporter, SkScalarIsNaN(f) );
394
395 }
396
397 template <typename RSqrtFn>
test_rsqrt(skiatest::Reporter * reporter,RSqrtFn rsqrt)398 static void test_rsqrt(skiatest::Reporter* reporter, RSqrtFn rsqrt) {
399 const float maxRelativeError = 6.50196699e-4f;
400
401 // test close to 0 up to 1
402 float input = 0.000001f;
403 for (int i = 0; i < 1000; ++i) {
404 float exact = 1.0f/sk_float_sqrt(input);
405 float estimate = rsqrt(input);
406 float relativeError = sk_float_abs(exact - estimate)/exact;
407 REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
408 input += 0.001f;
409 }
410
411 // test 1 to ~100
412 input = 1.0f;
413 for (int i = 0; i < 1000; ++i) {
414 float exact = 1.0f/sk_float_sqrt(input);
415 float estimate = rsqrt(input);
416 float relativeError = sk_float_abs(exact - estimate)/exact;
417 REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
418 input += 0.01f;
419 }
420
421 // test some big numbers
422 input = 1000000.0f;
423 for (int i = 0; i < 100; ++i) {
424 float exact = 1.0f/sk_float_sqrt(input);
425 float estimate = rsqrt(input);
426 float relativeError = sk_float_abs(exact - estimate)/exact;
427 REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
428 input += 754326.f;
429 }
430 }
431
test_muldiv255(skiatest::Reporter * reporter)432 static void test_muldiv255(skiatest::Reporter* reporter) {
433 for (int a = 0; a <= 255; a++) {
434 for (int b = 0; b <= 255; b++) {
435 int ab = a * b;
436 float s = ab / 255.0f;
437 int round = (int)floorf(s + 0.5f);
438 int trunc = (int)floorf(s);
439
440 int iround = SkMulDiv255Round(a, b);
441 int itrunc = SkMulDiv255Trunc(a, b);
442
443 REPORTER_ASSERT(reporter, iround == round);
444 REPORTER_ASSERT(reporter, itrunc == trunc);
445
446 REPORTER_ASSERT(reporter, itrunc <= iround);
447 REPORTER_ASSERT(reporter, iround <= a);
448 REPORTER_ASSERT(reporter, iround <= b);
449 }
450 }
451 }
452
test_muldiv255ceiling(skiatest::Reporter * reporter)453 static void test_muldiv255ceiling(skiatest::Reporter* reporter) {
454 for (int c = 0; c <= 255; c++) {
455 for (int a = 0; a <= 255; a++) {
456 int product = (c * a + 255);
457 int expected_ceiling = (product + (product >> 8)) >> 8;
458 int webkit_ceiling = (c * a + 254) / 255;
459 REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling);
460 int skia_ceiling = SkMulDiv255Ceiling(c, a);
461 REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling);
462 }
463 }
464 }
465
test_copysign(skiatest::Reporter * reporter)466 static void test_copysign(skiatest::Reporter* reporter) {
467 static const int32_t gTriples[] = {
468 // x, y, expected result
469 0, 0, 0,
470 0, 1, 0,
471 0, -1, 0,
472 1, 0, 1,
473 1, 1, 1,
474 1, -1, -1,
475 -1, 0, 1,
476 -1, 1, 1,
477 -1, -1, -1,
478 };
479 for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) {
480 REPORTER_ASSERT(reporter,
481 SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]);
482 float x = (float)gTriples[i];
483 float y = (float)gTriples[i+1];
484 float expected = (float)gTriples[i+2];
485 REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected);
486 }
487
488 SkRandom rand;
489 for (int j = 0; j < 1000; j++) {
490 int ix = rand.nextS();
491 REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix);
492 REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix);
493 REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix);
494 REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix);
495
496 SkScalar sx = rand.nextSScalar1();
497 REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx);
498 REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx);
499 REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx);
500 REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx);
501 }
502 }
503
DEF_TEST(Math,reporter)504 DEF_TEST(Math, reporter) {
505 int i;
506 SkRandom rand;
507
508 // these should assert
509 #if 0
510 SkToS8(128);
511 SkToS8(-129);
512 SkToU8(256);
513 SkToU8(-5);
514
515 SkToS16(32768);
516 SkToS16(-32769);
517 SkToU16(65536);
518 SkToU16(-5);
519
520 if (sizeof(size_t) > 4) {
521 SkToS32(4*1024*1024);
522 SkToS32(-4*1024*1024);
523 SkToU32(5*1024*1024);
524 SkToU32(-5);
525 }
526 #endif
527
528 test_muldiv255(reporter);
529 test_muldiv255ceiling(reporter);
530 test_copysign(reporter);
531
532 {
533 SkScalar x = SK_ScalarNaN;
534 REPORTER_ASSERT(reporter, SkScalarIsNaN(x));
535 }
536
537 for (i = 0; i < 1000; i++) {
538 int value = rand.nextS16();
539 int max = rand.nextU16();
540
541 int clamp = SkClampMax(value, max);
542 int clamp2 = value < 0 ? 0 : (value > max ? max : value);
543 REPORTER_ASSERT(reporter, clamp == clamp2);
544 }
545
546 for (i = 0; i < 10000; i++) {
547 SkPoint p;
548
549 // These random values are being treated as 32-bit-patterns, not as
550 // ints; calling SkIntToScalar() here produces crashes.
551 p.setLength((SkScalar) rand.nextS(),
552 (SkScalar) rand.nextS(),
553 SK_Scalar1);
554 check_length(reporter, p, SK_Scalar1);
555 p.setLength((SkScalar) (rand.nextS() >> 13),
556 (SkScalar) (rand.nextS() >> 13),
557 SK_Scalar1);
558 check_length(reporter, p, SK_Scalar1);
559 }
560
561 {
562 SkFixed result = SkFixedDiv(100, 100);
563 REPORTER_ASSERT(reporter, result == SK_Fixed1);
564 result = SkFixedDiv(1, SK_Fixed1);
565 REPORTER_ASSERT(reporter, result == 1);
566 result = SkFixedDiv(10 - 1, SK_Fixed1 * 3);
567 REPORTER_ASSERT(reporter, result == 3);
568 }
569
570 {
571 REPORTER_ASSERT(reporter, (SkFixedRoundToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
572 REPORTER_ASSERT(reporter, (SkFixedFloorToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
573 REPORTER_ASSERT(reporter, (SkFixedCeilToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5);
574 }
575
576 unittest_fastfloat(reporter);
577 unittest_isfinite(reporter);
578 unittest_half(reporter);
579 test_rsqrt(reporter, sk_float_rsqrt);
580 test_rsqrt(reporter, sk_float_rsqrt_portable);
581
582 for (i = 0; i < 10000; i++) {
583 SkFixed numer = rand.nextS();
584 SkFixed denom = rand.nextS();
585 SkFixed result = SkFixedDiv(numer, denom);
586 int64_t check = SkLeftShift((int64_t)numer, 16) / denom;
587
588 (void)SkCLZ(numer);
589 (void)SkCLZ(denom);
590
591 REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
592 if (check > SK_MaxS32) {
593 check = SK_MaxS32;
594 } else if (check < -SK_MaxS32) {
595 check = SK_MinS32;
596 }
597 if (result != (int32_t)check) {
598 ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8x\n", numer, denom, result, check);
599 }
600 REPORTER_ASSERT(reporter, result == (int32_t)check);
601 }
602
603 test_blend(reporter);
604
605 if (false) test_floor(reporter);
606
607 // disable for now
608 if (false) test_blend31(); // avoid bit rot, suppress warning
609
610 test_muldivround(reporter);
611 test_clz(reporter);
612 test_quick_div(reporter);
613 }
614
615 template <typename T> struct PairRec {
616 T fYin;
617 T fYang;
618 };
619
DEF_TEST(TestEndian,reporter)620 DEF_TEST(TestEndian, reporter) {
621 static const PairRec<uint16_t> g16[] = {
622 { 0x0, 0x0 },
623 { 0xFFFF, 0xFFFF },
624 { 0x1122, 0x2211 },
625 };
626 static const PairRec<uint32_t> g32[] = {
627 { 0x0, 0x0 },
628 { 0xFFFFFFFF, 0xFFFFFFFF },
629 { 0x11223344, 0x44332211 },
630 };
631 static const PairRec<uint64_t> g64[] = {
632 { 0x0, 0x0 },
633 { 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL },
634 { 0x1122334455667788ULL, 0x8877665544332211ULL },
635 };
636
637 REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value);
638 REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value);
639 REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value);
640
641 for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) {
642 REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin));
643 }
644 for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) {
645 REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin));
646 }
647 for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) {
648 REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin));
649 }
650 }
651
652 template <typename T>
test_divmod(skiatest::Reporter * r)653 static void test_divmod(skiatest::Reporter* r) {
654 const struct {
655 T numer;
656 T denom;
657 } kEdgeCases[] = {
658 {(T)17, (T)17},
659 {(T)17, (T)4},
660 {(T)0, (T)17},
661 // For unsigned T these negatives are just some large numbers. Doesn't hurt to test them.
662 {(T)-17, (T)-17},
663 {(T)-17, (T)4},
664 {(T)17, (T)-4},
665 {(T)-17, (T)-4},
666 };
667
668 for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) {
669 const T numer = kEdgeCases[i].numer;
670 const T denom = kEdgeCases[i].denom;
671 T div, mod;
672 SkTDivMod(numer, denom, &div, &mod);
673 REPORTER_ASSERT(r, numer/denom == div);
674 REPORTER_ASSERT(r, numer%denom == mod);
675 }
676
677 SkRandom rand;
678 for (size_t i = 0; i < 10000; i++) {
679 const T numer = (T)rand.nextS();
680 T denom = 0;
681 while (0 == denom) {
682 denom = (T)rand.nextS();
683 }
684 T div, mod;
685 SkTDivMod(numer, denom, &div, &mod);
686 REPORTER_ASSERT(r, numer/denom == div);
687 REPORTER_ASSERT(r, numer%denom == mod);
688 }
689 }
690
DEF_TEST(divmod_u8,r)691 DEF_TEST(divmod_u8, r) {
692 test_divmod<uint8_t>(r);
693 }
694
DEF_TEST(divmod_u16,r)695 DEF_TEST(divmod_u16, r) {
696 test_divmod<uint16_t>(r);
697 }
698
DEF_TEST(divmod_u32,r)699 DEF_TEST(divmod_u32, r) {
700 test_divmod<uint32_t>(r);
701 }
702
DEF_TEST(divmod_u64,r)703 DEF_TEST(divmod_u64, r) {
704 test_divmod<uint64_t>(r);
705 }
706
DEF_TEST(divmod_s8,r)707 DEF_TEST(divmod_s8, r) {
708 test_divmod<int8_t>(r);
709 }
710
DEF_TEST(divmod_s16,r)711 DEF_TEST(divmod_s16, r) {
712 test_divmod<int16_t>(r);
713 }
714
DEF_TEST(divmod_s32,r)715 DEF_TEST(divmod_s32, r) {
716 test_divmod<int32_t>(r);
717 }
718
DEF_TEST(divmod_s64,r)719 DEF_TEST(divmod_s64, r) {
720 test_divmod<int64_t>(r);
721 }
722
test_nextsizepow2(skiatest::Reporter * r,size_t test,size_t expectedAns)723 static void test_nextsizepow2(skiatest::Reporter* r, size_t test, size_t expectedAns) {
724 size_t ans = GrNextSizePow2(test);
725
726 REPORTER_ASSERT(r, ans == expectedAns);
727 //SkDebugf("0x%zx -> 0x%zx (0x%zx)\n", test, ans, expectedAns);
728 }
729
DEF_TEST(GrNextSizePow2,reporter)730 DEF_TEST(GrNextSizePow2, reporter) {
731 constexpr int kNumSizeTBits = 8 * sizeof(size_t);
732
733 size_t test = 0, expectedAns = 1;
734
735 test_nextsizepow2(reporter, test, expectedAns);
736
737 test = 1; expectedAns = 1;
738
739 for (int i = 1; i < kNumSizeTBits; ++i) {
740 test_nextsizepow2(reporter, test, expectedAns);
741
742 test++;
743 expectedAns <<= 1;
744
745 test_nextsizepow2(reporter, test, expectedAns);
746
747 test = expectedAns;
748 }
749
750 // For the remaining three tests there is no higher power (of 2)
751 test = 0x1;
752 test <<= kNumSizeTBits-1;
753 test_nextsizepow2(reporter, test, test);
754
755 test++;
756 test_nextsizepow2(reporter, test, test);
757
758 test_nextsizepow2(reporter, SIZE_MAX, SIZE_MAX);
759 }
760