1 //===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RABasic function pass, which provides a minimal
11 // implementation of the basic register allocator.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "RegAllocBase.h"
17 #include "LiveDebugVariables.h"
18 #include "LiveIntervalUnion.h"
19 #include "LiveRangeEdit.h"
20 #include "RenderMachineFunction.h"
21 #include "Spiller.h"
22 #include "VirtRegMap.h"
23 #include "llvm/ADT/OwningPtr.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Function.h"
27 #include "llvm/PassAnalysisSupport.h"
28 #include "llvm/CodeGen/CalcSpillWeights.h"
29 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
30 #include "llvm/CodeGen/LiveStackAnalysis.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #ifndef NDEBUG
41 #include "llvm/ADT/SparseBitVector.h"
42 #endif
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Support/Timer.h"
47
48 #include <cstdlib>
49 #include <queue>
50
51 using namespace llvm;
52
53 STATISTIC(NumAssigned , "Number of registers assigned");
54 STATISTIC(NumUnassigned , "Number of registers unassigned");
55 STATISTIC(NumNewQueued , "Number of new live ranges queued");
56
57 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
58 createBasicRegisterAllocator);
59
60 // Temporary verification option until we can put verification inside
61 // MachineVerifier.
62 static cl::opt<bool, true>
63 VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
64 cl::desc("Verify during register allocation"));
65
66 const char *RegAllocBase::TimerGroupName = "Register Allocation";
67 bool RegAllocBase::VerifyEnabled = false;
68
69 namespace {
70 struct CompSpillWeight {
operator ()__anon45998f0c0111::CompSpillWeight71 bool operator()(LiveInterval *A, LiveInterval *B) const {
72 return A->weight < B->weight;
73 }
74 };
75 }
76
77 namespace {
78 /// RABasic provides a minimal implementation of the basic register allocation
79 /// algorithm. It prioritizes live virtual registers by spill weight and spills
80 /// whenever a register is unavailable. This is not practical in production but
81 /// provides a useful baseline both for measuring other allocators and comparing
82 /// the speed of the basic algorithm against other styles of allocators.
83 class RABasic : public MachineFunctionPass, public RegAllocBase
84 {
85 // context
86 MachineFunction *MF;
87
88 // analyses
89 LiveStacks *LS;
90 RenderMachineFunction *RMF;
91
92 // state
93 std::auto_ptr<Spiller> SpillerInstance;
94 std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
95 CompSpillWeight> Queue;
96 public:
97 RABasic();
98
99 /// Return the pass name.
getPassName() const100 virtual const char* getPassName() const {
101 return "Basic Register Allocator";
102 }
103
104 /// RABasic analysis usage.
105 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
106
107 virtual void releaseMemory();
108
spiller()109 virtual Spiller &spiller() { return *SpillerInstance; }
110
getPriority(LiveInterval * LI)111 virtual float getPriority(LiveInterval *LI) { return LI->weight; }
112
enqueue(LiveInterval * LI)113 virtual void enqueue(LiveInterval *LI) {
114 Queue.push(LI);
115 }
116
dequeue()117 virtual LiveInterval *dequeue() {
118 if (Queue.empty())
119 return 0;
120 LiveInterval *LI = Queue.top();
121 Queue.pop();
122 return LI;
123 }
124
125 virtual unsigned selectOrSplit(LiveInterval &VirtReg,
126 SmallVectorImpl<LiveInterval*> &SplitVRegs);
127
128 /// Perform register allocation.
129 virtual bool runOnMachineFunction(MachineFunction &mf);
130
131 static char ID;
132 };
133
134 char RABasic::ID = 0;
135
136 } // end anonymous namespace
137
RABasic()138 RABasic::RABasic(): MachineFunctionPass(ID) {
139 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
140 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
141 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
142 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
143 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
144 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
145 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
146 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
147 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
148 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
149 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
150 }
151
getAnalysisUsage(AnalysisUsage & AU) const152 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
153 AU.setPreservesCFG();
154 AU.addRequired<AliasAnalysis>();
155 AU.addPreserved<AliasAnalysis>();
156 AU.addRequired<LiveIntervals>();
157 AU.addPreserved<SlotIndexes>();
158 AU.addRequired<LiveDebugVariables>();
159 AU.addPreserved<LiveDebugVariables>();
160 if (StrongPHIElim)
161 AU.addRequiredID(StrongPHIEliminationID);
162 AU.addRequiredTransitiveID(RegisterCoalescerPassID);
163 AU.addRequired<CalculateSpillWeights>();
164 AU.addRequired<LiveStacks>();
165 AU.addPreserved<LiveStacks>();
166 AU.addRequiredID(MachineDominatorsID);
167 AU.addPreservedID(MachineDominatorsID);
168 AU.addRequired<MachineLoopInfo>();
169 AU.addPreserved<MachineLoopInfo>();
170 AU.addRequired<VirtRegMap>();
171 AU.addPreserved<VirtRegMap>();
172 DEBUG(AU.addRequired<RenderMachineFunction>());
173 MachineFunctionPass::getAnalysisUsage(AU);
174 }
175
releaseMemory()176 void RABasic::releaseMemory() {
177 SpillerInstance.reset(0);
178 RegAllocBase::releaseMemory();
179 }
180
181 #ifndef NDEBUG
182 // Verify each LiveIntervalUnion.
verify()183 void RegAllocBase::verify() {
184 LiveVirtRegBitSet VisitedVRegs;
185 OwningArrayPtr<LiveVirtRegBitSet>
186 unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
187
188 // Verify disjoint unions.
189 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
190 DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
191 LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
192 PhysReg2LiveUnion[PhysReg].verify(VRegs);
193 // Union + intersection test could be done efficiently in one pass, but
194 // don't add a method to SparseBitVector unless we really need it.
195 assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
196 VisitedVRegs |= VRegs;
197 }
198
199 // Verify vreg coverage.
200 for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
201 liItr != liEnd; ++liItr) {
202 unsigned reg = liItr->first;
203 if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
204 if (!VRM->hasPhys(reg)) continue; // spilled?
205 unsigned PhysReg = VRM->getPhys(reg);
206 if (!unionVRegs[PhysReg].test(reg)) {
207 dbgs() << "LiveVirtReg " << reg << " not in union " <<
208 TRI->getName(PhysReg) << "\n";
209 llvm_unreachable("unallocated live vreg");
210 }
211 }
212 // FIXME: I'm not sure how to verify spilled intervals.
213 }
214 #endif //!NDEBUG
215
216 //===----------------------------------------------------------------------===//
217 // RegAllocBase Implementation
218 //===----------------------------------------------------------------------===//
219
220 // Instantiate a LiveIntervalUnion for each physical register.
init(LiveIntervalUnion::Allocator & allocator,unsigned NRegs)221 void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
222 unsigned NRegs) {
223 NumRegs = NRegs;
224 Array =
225 static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
226 for (unsigned r = 0; r != NRegs; ++r)
227 new(Array + r) LiveIntervalUnion(r, allocator);
228 }
229
init(VirtRegMap & vrm,LiveIntervals & lis)230 void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
231 NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
232 TRI = &vrm.getTargetRegInfo();
233 MRI = &vrm.getRegInfo();
234 VRM = &vrm;
235 LIS = &lis;
236 RegClassInfo.runOnMachineFunction(vrm.getMachineFunction());
237
238 const unsigned NumRegs = TRI->getNumRegs();
239 if (NumRegs != PhysReg2LiveUnion.numRegs()) {
240 PhysReg2LiveUnion.init(UnionAllocator, NumRegs);
241 // Cache an interferece query for each physical reg
242 Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
243 }
244 }
245
clear()246 void RegAllocBase::LiveUnionArray::clear() {
247 if (!Array)
248 return;
249 for (unsigned r = 0; r != NumRegs; ++r)
250 Array[r].~LiveIntervalUnion();
251 free(Array);
252 NumRegs = 0;
253 Array = 0;
254 }
255
releaseMemory()256 void RegAllocBase::releaseMemory() {
257 for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r)
258 PhysReg2LiveUnion[r].clear();
259 }
260
261 // Visit all the live registers. If they are already assigned to a physical
262 // register, unify them with the corresponding LiveIntervalUnion, otherwise push
263 // them on the priority queue for later assignment.
seedLiveRegs()264 void RegAllocBase::seedLiveRegs() {
265 NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled);
266 for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
267 unsigned RegNum = I->first;
268 LiveInterval &VirtReg = *I->second;
269 if (TargetRegisterInfo::isPhysicalRegister(RegNum))
270 PhysReg2LiveUnion[RegNum].unify(VirtReg);
271 else
272 enqueue(&VirtReg);
273 }
274 }
275
assign(LiveInterval & VirtReg,unsigned PhysReg)276 void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
277 DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
278 << " to " << PrintReg(PhysReg, TRI) << '\n');
279 assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
280 VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
281 MRI->setPhysRegUsed(PhysReg);
282 PhysReg2LiveUnion[PhysReg].unify(VirtReg);
283 ++NumAssigned;
284 }
285
unassign(LiveInterval & VirtReg,unsigned PhysReg)286 void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
287 DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
288 << " from " << PrintReg(PhysReg, TRI) << '\n');
289 assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
290 PhysReg2LiveUnion[PhysReg].extract(VirtReg);
291 VRM->clearVirt(VirtReg.reg);
292 ++NumUnassigned;
293 }
294
295 // Top-level driver to manage the queue of unassigned VirtRegs and call the
296 // selectOrSplit implementation.
allocatePhysRegs()297 void RegAllocBase::allocatePhysRegs() {
298 seedLiveRegs();
299
300 // Continue assigning vregs one at a time to available physical registers.
301 while (LiveInterval *VirtReg = dequeue()) {
302 assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned");
303
304 // Unused registers can appear when the spiller coalesces snippets.
305 if (MRI->reg_nodbg_empty(VirtReg->reg)) {
306 DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n');
307 LIS->removeInterval(VirtReg->reg);
308 continue;
309 }
310
311 // Invalidate all interference queries, live ranges could have changed.
312 invalidateVirtRegs();
313
314 // selectOrSplit requests the allocator to return an available physical
315 // register if possible and populate a list of new live intervals that
316 // result from splitting.
317 DEBUG(dbgs() << "\nselectOrSplit "
318 << MRI->getRegClass(VirtReg->reg)->getName()
319 << ':' << *VirtReg << '\n');
320 typedef SmallVector<LiveInterval*, 4> VirtRegVec;
321 VirtRegVec SplitVRegs;
322 unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs);
323
324 if (AvailablePhysReg == ~0u) {
325 // selectOrSplit failed to find a register!
326 const char *Msg = "ran out of registers during register allocation";
327 // Probably caused by an inline asm.
328 MachineInstr *MI;
329 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg);
330 (MI = I.skipInstruction());)
331 if (MI->isInlineAsm())
332 break;
333 if (MI)
334 MI->emitError(Msg);
335 else
336 report_fatal_error(Msg);
337 // Keep going after reporting the error.
338 VRM->assignVirt2Phys(VirtReg->reg,
339 RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front());
340 continue;
341 }
342
343 if (AvailablePhysReg)
344 assign(*VirtReg, AvailablePhysReg);
345
346 for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
347 I != E; ++I) {
348 LiveInterval *SplitVirtReg = *I;
349 assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned");
350 if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) {
351 DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n');
352 LIS->removeInterval(SplitVirtReg->reg);
353 continue;
354 }
355 DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
356 assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
357 "expect split value in virtual register");
358 enqueue(SplitVirtReg);
359 ++NumNewQueued;
360 }
361 }
362 }
363
364 // Check if this live virtual register interferes with a physical register. If
365 // not, then check for interference on each register that aliases with the
366 // physical register. Return the interfering register.
checkPhysRegInterference(LiveInterval & VirtReg,unsigned PhysReg)367 unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
368 unsigned PhysReg) {
369 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
370 if (query(VirtReg, *AliasI).checkInterference())
371 return *AliasI;
372 return 0;
373 }
374
375 // Helper for spillInteferences() that spills all interfering vregs currently
376 // assigned to this physical register.
spillReg(LiveInterval & VirtReg,unsigned PhysReg,SmallVectorImpl<LiveInterval * > & SplitVRegs)377 void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
378 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
379 LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
380 assert(Q.seenAllInterferences() && "need collectInterferences()");
381 const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
382
383 for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
384 E = PendingSpills.end(); I != E; ++I) {
385 LiveInterval &SpilledVReg = **I;
386 DEBUG(dbgs() << "extracting from " <<
387 TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
388
389 // Deallocate the interfering vreg by removing it from the union.
390 // A LiveInterval instance may not be in a union during modification!
391 unassign(SpilledVReg, PhysReg);
392
393 // Spill the extracted interval.
394 LiveRangeEdit LRE(SpilledVReg, SplitVRegs, 0, &PendingSpills);
395 spiller().spill(LRE);
396 }
397 // After extracting segments, the query's results are invalid. But keep the
398 // contents valid until we're done accessing pendingSpills.
399 Q.clear();
400 }
401
402 // Spill or split all live virtual registers currently unified under PhysReg
403 // that interfere with VirtReg. The newly spilled or split live intervals are
404 // returned by appending them to SplitVRegs.
405 bool
spillInterferences(LiveInterval & VirtReg,unsigned PhysReg,SmallVectorImpl<LiveInterval * > & SplitVRegs)406 RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
407 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
408 // Record each interference and determine if all are spillable before mutating
409 // either the union or live intervals.
410 unsigned NumInterferences = 0;
411 // Collect interferences assigned to any alias of the physical register.
412 for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
413 LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
414 NumInterferences += QAlias.collectInterferingVRegs();
415 if (QAlias.seenUnspillableVReg()) {
416 return false;
417 }
418 }
419 DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
420 " interferences with " << VirtReg << "\n");
421 assert(NumInterferences > 0 && "expect interference");
422
423 // Spill each interfering vreg allocated to PhysReg or an alias.
424 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
425 spillReg(VirtReg, *AliasI, SplitVRegs);
426 return true;
427 }
428
429 // Add newly allocated physical registers to the MBB live in sets.
addMBBLiveIns(MachineFunction * MF)430 void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
431 NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
432 SlotIndexes *Indexes = LIS->getSlotIndexes();
433 if (MF->size() <= 1)
434 return;
435
436 LiveIntervalUnion::SegmentIter SI;
437 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
438 LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
439 if (LiveUnion.empty())
440 continue;
441 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " live-in:");
442 MachineFunction::iterator MBB = llvm::next(MF->begin());
443 MachineFunction::iterator MFE = MF->end();
444 SlotIndex Start, Stop;
445 tie(Start, Stop) = Indexes->getMBBRange(MBB);
446 SI.setMap(LiveUnion.getMap());
447 SI.find(Start);
448 while (SI.valid()) {
449 if (SI.start() <= Start) {
450 if (!MBB->isLiveIn(PhysReg))
451 MBB->addLiveIn(PhysReg);
452 DEBUG(dbgs() << "\tBB#" << MBB->getNumber() << ':'
453 << PrintReg(SI.value()->reg, TRI));
454 } else if (SI.start() > Stop)
455 MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex());
456 if (++MBB == MFE)
457 break;
458 tie(Start, Stop) = Indexes->getMBBRange(MBB);
459 SI.advanceTo(Start);
460 }
461 DEBUG(dbgs() << '\n');
462 }
463 }
464
465
466 //===----------------------------------------------------------------------===//
467 // RABasic Implementation
468 //===----------------------------------------------------------------------===//
469
470 // Driver for the register assignment and splitting heuristics.
471 // Manages iteration over the LiveIntervalUnions.
472 //
473 // This is a minimal implementation of register assignment and splitting that
474 // spills whenever we run out of registers.
475 //
476 // selectOrSplit can only be called once per live virtual register. We then do a
477 // single interference test for each register the correct class until we find an
478 // available register. So, the number of interference tests in the worst case is
479 // |vregs| * |machineregs|. And since the number of interference tests is
480 // minimal, there is no value in caching them outside the scope of
481 // selectOrSplit().
selectOrSplit(LiveInterval & VirtReg,SmallVectorImpl<LiveInterval * > & SplitVRegs)482 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
483 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
484 // Populate a list of physical register spill candidates.
485 SmallVector<unsigned, 8> PhysRegSpillCands;
486
487 // Check for an available register in this class.
488 ArrayRef<unsigned> Order =
489 RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg));
490 for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E;
491 ++I) {
492 unsigned PhysReg = *I;
493
494 // Check interference and as a side effect, intialize queries for this
495 // VirtReg and its aliases.
496 unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
497 if (interfReg == 0) {
498 // Found an available register.
499 return PhysReg;
500 }
501 Queries[interfReg].collectInterferingVRegs(1);
502 LiveInterval *interferingVirtReg =
503 Queries[interfReg].interferingVRegs().front();
504
505 // The current VirtReg must either be spillable, or one of its interferences
506 // must have less spill weight.
507 if (interferingVirtReg->weight < VirtReg.weight ) {
508 PhysRegSpillCands.push_back(PhysReg);
509 }
510 }
511 // Try to spill another interfering reg with less spill weight.
512 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
513 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
514
515 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
516
517 assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
518 "Interference after spill.");
519 // Tell the caller to allocate to this newly freed physical register.
520 return *PhysRegI;
521 }
522
523 // No other spill candidates were found, so spill the current VirtReg.
524 DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
525 if (!VirtReg.isSpillable())
526 return ~0u;
527 LiveRangeEdit LRE(VirtReg, SplitVRegs);
528 spiller().spill(LRE);
529
530 // The live virtual register requesting allocation was spilled, so tell
531 // the caller not to allocate anything during this round.
532 return 0;
533 }
534
runOnMachineFunction(MachineFunction & mf)535 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
536 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
537 << "********** Function: "
538 << ((Value*)mf.getFunction())->getName() << '\n');
539
540 MF = &mf;
541 DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
542
543 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
544 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
545
546 allocatePhysRegs();
547
548 addMBBLiveIns(MF);
549
550 // Diagnostic output before rewriting
551 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
552
553 // optional HTML output
554 DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
555
556 // FIXME: Verification currently must run before VirtRegRewriter. We should
557 // make the rewriter a separate pass and override verifyAnalysis instead. When
558 // that happens, verification naturally falls under VerifyMachineCode.
559 #ifndef NDEBUG
560 if (VerifyEnabled) {
561 // Verify accuracy of LiveIntervals. The standard machine code verifier
562 // ensures that each LiveIntervals covers all uses of the virtual reg.
563
564 // FIXME: MachineVerifier is badly broken when using the standard
565 // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
566 // inline spiller, some tests fail to verify because the coalescer does not
567 // always generate verifiable code.
568 MF->verify(this, "In RABasic::verify");
569
570 // Verify that LiveIntervals are partitioned into unions and disjoint within
571 // the unions.
572 verify();
573 }
574 #endif // !NDEBUG
575
576 // Run rewriter
577 VRM->rewrite(LIS->getSlotIndexes());
578
579 // Write out new DBG_VALUE instructions.
580 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
581
582 // The pass output is in VirtRegMap. Release all the transient data.
583 releaseMemory();
584
585 return true;
586 }
587
createBasicRegisterAllocator()588 FunctionPass* llvm::createBasicRegisterAllocator()
589 {
590 return new RABasic();
591 }
592