• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "MipsInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Mips profiles and nodes
22//===----------------------------------------------------------------------===//
23
24def SDT_MipsRet          : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
25def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
26def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
27                                                SDTCisSameAs<1, 2>,
28                                                SDTCisSameAs<3, 4>,
29                                                SDTCisInt<4>]>;
30def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
31def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
32def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
33                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
34                                          SDTCisSameAs<1, 2>,
35                                          SDTCisSameAs<2, 3>]>;
36def SDT_MipsDivRem       : SDTypeProfile<0, 2,
37                                         [SDTCisInt<0>,
38                                          SDTCisSameAs<0, 1>]>;
39
40def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
41
42def SDT_MipsDynAlloc    : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
43                                               SDTCisVT<1, iPTR>]>;
44def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
45
46def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
47                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
48def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
49                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
50                                   SDTCisSameAs<0, 4>]>;
51
52// Call
53def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
54                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
55                          SDNPVariadic]>;
56
57// Hi and Lo nodes are used to handle global addresses. Used on
58// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
59// static model. (nothing to do with Mips Registers Hi and Lo)
60def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
61def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
62def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
63
64// TlsGd node is used to handle General Dynamic TLS
65def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
66
67// TprelHi and TprelLo nodes are used to handle Local Exec TLS
68def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
69def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
70
71// Thread pointer
72def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
73
74// Return
75def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
76                     SDNPOptInGlue]>;
77
78// These are target-independent nodes, but have target-specific formats.
79def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
80                           [SDNPHasChain, SDNPOutGlue]>;
81def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
82                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
83
84// MAdd*/MSub* nodes
85def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
92                           [SDNPOptInGlue, SDNPOutGlue]>;
93
94// DivRem(u) nodes
95def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
98                           [SDNPOutGlue]>;
99
100// Target constant nodes that are not part of any isel patterns and remain
101// unchanged can cause instructions with illegal operands to be emitted.
102// Wrapper node patterns give the instruction selector a chance to replace
103// target constant nodes that would otherwise remain unchanged with ADDiu
104// nodes. Without these wrapper node patterns, the following conditional move
105// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
106// compiled:
107//  movn  %got(d)($gp), %got(c)($gp), $4
108// This instruction is illegal since movn can take only register operands.
109
110def MipsWrapperPIC    : SDNode<"MipsISD::WrapperPIC",  SDTIntUnaryOp>;
111
112// Pointer to dynamically allocated stack area.
113def MipsDynAlloc  : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
114                           [SDNPHasChain, SDNPInGlue]>;
115
116def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain]>;
117
118def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
119def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
120
121//===----------------------------------------------------------------------===//
122// Mips Instruction Predicate Definitions.
123//===----------------------------------------------------------------------===//
124def HasSEInReg  : Predicate<"Subtarget.hasSEInReg()">;
125def HasBitCount : Predicate<"Subtarget.hasBitCount()">;
126def HasSwap     : Predicate<"Subtarget.hasSwap()">;
127def HasCondMov  : Predicate<"Subtarget.hasCondMov()">;
128def HasMips32    : Predicate<"Subtarget.hasMips32()">;
129def HasMips32r2  : Predicate<"Subtarget.hasMips32r2()">;
130def HasMips64    : Predicate<"Subtarget.hasMips64()">;
131def NotMips64    : Predicate<"!Subtarget.hasMips64()">;
132def HasMips64r2  : Predicate<"Subtarget.hasMips64r2()">;
133def IsN64       : Predicate<"Subtarget.isABI_N64()">;
134def NotN64      : Predicate<"!Subtarget.isABI_N64()">;
135
136//===----------------------------------------------------------------------===//
137// Mips Operand, Complex Patterns and Transformations Definitions.
138//===----------------------------------------------------------------------===//
139
140// Instruction operand types
141def brtarget    : Operand<OtherVT>;
142def calltarget  : Operand<i32>;
143def simm16      : Operand<i32>;
144def simm16_64   : Operand<i64>;
145def shamt       : Operand<i32>;
146
147// Unsigned Operand
148def uimm16      : Operand<i32> {
149  let PrintMethod = "printUnsignedImm";
150}
151
152// Address operand
153def mem : Operand<i32> {
154  let PrintMethod = "printMemOperand";
155  let MIOperandInfo = (ops CPURegs, simm16);
156  let EncoderMethod = "getMemEncoding";
157}
158
159def mem64 : Operand<i64> {
160  let PrintMethod = "printMemOperand";
161  let MIOperandInfo = (ops CPU64Regs, simm16_64);
162}
163
164def mem_ea : Operand<i32> {
165  let PrintMethod = "printMemOperandEA";
166  let MIOperandInfo = (ops CPURegs, simm16);
167  let EncoderMethod = "getMemEncoding";
168}
169
170// size operand of ext instruction
171def size_ext : Operand<i32> {
172  let EncoderMethod = "getSizeExtEncoding";
173}
174
175// size operand of ins instruction
176def size_ins : Operand<i32> {
177  let EncoderMethod = "getSizeInsEncoding";
178}
179
180// Transformation Function - get the lower 16 bits.
181def LO16 : SDNodeXForm<imm, [{
182  return getI32Imm((unsigned)N->getZExtValue() & 0xFFFF);
183}]>;
184
185// Transformation Function - get the higher 16 bits.
186def HI16 : SDNodeXForm<imm, [{
187  return getI32Imm((unsigned)N->getZExtValue() >> 16);
188}]>;
189
190// Node immediate fits as 16-bit sign extended on target immediate.
191// e.g. addi, andi
192def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
193
194// Node immediate fits as 16-bit zero extended on target immediate.
195// The LO16 param means that only the lower 16 bits of the node
196// immediate are caught.
197// e.g. addiu, sltiu
198def immZExt16  : PatLeaf<(imm), [{
199  if (N->getValueType(0) == MVT::i32)
200    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
201  else
202    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
203}], LO16>;
204
205// shamt field must fit in 5 bits.
206def immZExt5 : PatLeaf<(imm), [{
207  return N->getZExtValue() == ((N->getZExtValue()) & 0x1f) ;
208}]>;
209
210// Mips Address Mode! SDNode frameindex could possibily be a match
211// since load and store instructions from stack used it.
212def addr : ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], []>;
213
214//===----------------------------------------------------------------------===//
215// Pattern fragment for load/store
216//===----------------------------------------------------------------------===//
217class UnalignedLoad<PatFrag Node> : PatFrag<(ops node:$ptr), (Node node:$ptr), [{
218  LoadSDNode *LD = cast<LoadSDNode>(N);
219  return LD->getMemoryVT().getSizeInBits()/8 > LD->getAlignment();
220}]>;
221
222class AlignedLoad<PatFrag Node> : PatFrag<(ops node:$ptr), (Node node:$ptr), [{
223  LoadSDNode *LD = cast<LoadSDNode>(N);
224  return LD->getMemoryVT().getSizeInBits()/8 <= LD->getAlignment();
225}]>;
226
227class UnalignedStore<PatFrag Node> : PatFrag<(ops node:$val, node:$ptr),
228                                             (Node node:$val, node:$ptr), [{
229  StoreSDNode *SD = cast<StoreSDNode>(N);
230  return SD->getMemoryVT().getSizeInBits()/8 > SD->getAlignment();
231}]>;
232
233class AlignedStore<PatFrag Node> : PatFrag<(ops node:$val, node:$ptr),
234                                           (Node node:$val, node:$ptr), [{
235  StoreSDNode *SD = cast<StoreSDNode>(N);
236  return SD->getMemoryVT().getSizeInBits()/8 <= SD->getAlignment();
237}]>;
238
239// Load/Store PatFrags.
240def sextloadi16_a   : AlignedLoad<sextloadi16>;
241def zextloadi16_a   : AlignedLoad<zextloadi16>;
242def extloadi16_a    : AlignedLoad<extloadi16>;
243def load_a          : AlignedLoad<load>;
244def sextloadi32_a   : AlignedLoad<sextloadi32>;
245def zextloadi32_a   : AlignedLoad<zextloadi32>;
246def extloadi32_a    : AlignedLoad<extloadi32>;
247def truncstorei16_a : AlignedStore<truncstorei16>;
248def store_a         : AlignedStore<store>;
249def truncstorei32_a : AlignedStore<truncstorei32>;
250def sextloadi16_u   : UnalignedLoad<sextloadi16>;
251def zextloadi16_u   : UnalignedLoad<zextloadi16>;
252def extloadi16_u    : UnalignedLoad<extloadi16>;
253def load_u          : UnalignedLoad<load>;
254def sextloadi32_u   : UnalignedLoad<sextloadi32>;
255def zextloadi32_u   : UnalignedLoad<zextloadi32>;
256def extloadi32_u    : UnalignedLoad<extloadi32>;
257def truncstorei16_u : UnalignedStore<truncstorei16>;
258def store_u         : UnalignedStore<store>;
259def truncstorei32_u : UnalignedStore<truncstorei32>;
260
261//===----------------------------------------------------------------------===//
262// Instructions specific format
263//===----------------------------------------------------------------------===//
264
265// Arithmetic and logical instructions with 3 register operands.
266class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
267                  InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
268  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
269     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
270     [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
271  let shamt = 0;
272  let isCommutable = isComm;
273}
274
275class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
276                    InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
277  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
278     !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> {
279  let shamt = 0;
280  let isCommutable = isComm;
281}
282
283// Arithmetic and logical instructions with 2 register operands.
284class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode,
285                  Operand Od, PatLeaf imm_type, RegisterClass RC> :
286  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
287     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
288     [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu>;
289
290class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
291                     Operand Od, PatLeaf imm_type, RegisterClass RC> :
292  FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
293     !strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>;
294
295// Arithmetic Multiply ADD/SUB
296let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
297class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
298  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
299     !strconcat(instr_asm, "\t$rs, $rt"),
300     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
301  let rd = 0;
302  let shamt = 0;
303  let isCommutable = isComm;
304}
305
306//  Logical
307class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
308  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
309     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
310     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
311  let shamt = 0;
312  let isCommutable = 1;
313}
314
315// Shifts
316class LogicR_shift_rotate_imm<bits<6> func, bits<5> _rs, string instr_asm,
317                              SDNode OpNode>:
318  FR<0x00, func, (outs CPURegs:$rd), (ins CPURegs:$rt, shamt:$shamt),
319     !strconcat(instr_asm, "\t$rd, $rt, $shamt"),
320     [(set CPURegs:$rd, (OpNode CPURegs:$rt, (i32 immZExt5:$shamt)))], IIAlu> {
321  let rs = _rs;
322}
323
324class LogicR_shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
325                              SDNode OpNode>:
326  FR<0x00, func, (outs CPURegs:$rd), (ins CPURegs:$rs, CPURegs:$rt),
327     !strconcat(instr_asm, "\t$rd, $rt, $rs"),
328     [(set CPURegs:$rd, (OpNode CPURegs:$rt, CPURegs:$rs))], IIAlu> {
329  let shamt = isRotate;
330}
331
332// Load Upper Imediate
333class LoadUpper<bits<6> op, string instr_asm>:
334  FI<op, (outs CPURegs:$rt), (ins uimm16:$imm16),
335     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> {
336  let rs = 0;
337}
338
339class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
340          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
341  bits<21> addr;
342  let Inst{25-21} = addr{20-16};
343  let Inst{15-0}  = addr{15-0};
344}
345
346// Memory Load/Store
347let canFoldAsLoad = 1 in
348class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
349            Operand MemOpnd, bit Pseudo>:
350  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
351     !strconcat(instr_asm, "\t$rt, $addr"),
352     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
353  let isPseudo = Pseudo;
354}
355
356class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
357             Operand MemOpnd, bit Pseudo>:
358  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
359     !strconcat(instr_asm, "\t$rt, $addr"),
360     [(OpNode RC:$rt, addr:$addr)], IIStore> {
361  let isPseudo = Pseudo;
362}
363
364// 32-bit load.
365multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
366                   bit Pseudo = 0> {
367  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
368               Requires<[NotN64]>;
369  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
370               Requires<[IsN64]>;
371}
372
373// 64-bit load.
374multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
375                   bit Pseudo = 0> {
376  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
377               Requires<[NotN64]>;
378  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
379               Requires<[IsN64]>;
380}
381
382// 32-bit store.
383multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
384                    bit Pseudo = 0> {
385  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
386               Requires<[NotN64]>;
387  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
388               Requires<[IsN64]>;
389}
390
391// 64-bit store.
392multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
393                    bit Pseudo = 0> {
394  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
395               Requires<[NotN64]>;
396  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
397               Requires<[IsN64]>;
398}
399
400// Conditional Branch
401class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
402  CBranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
403              !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
404              [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
405  let isBranch = 1;
406  let isTerminator = 1;
407  let hasDelaySlot = 1;
408}
409
410class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
411                  RegisterClass RC>:
412  CBranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
413              !strconcat(instr_asm, "\t$rs, $imm16"),
414              [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
415  let rt = _rt;
416  let isBranch = 1;
417  let isTerminator = 1;
418  let hasDelaySlot = 1;
419}
420
421// SetCC
422class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
423              RegisterClass RC>:
424  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
425     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
426     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
427     IIAlu> {
428  let shamt = 0;
429}
430
431class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
432              PatLeaf imm_type, RegisterClass RC>:
433  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
434     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
435     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
436     IIAlu>;
437
438// Unconditional branch
439let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
440class JumpFJ<bits<6> op, string instr_asm>:
441  FJ<op, (outs), (ins brtarget:$target),
442     !strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch>;
443
444let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in
445class JumpFR<bits<6> op, bits<6> func, string instr_asm>:
446  FR<op, func, (outs), (ins CPURegs:$rs),
447     !strconcat(instr_asm, "\t$rs"), [(brind CPURegs:$rs)], IIBranch> {
448  let rt = 0;
449  let rd = 0;
450  let shamt = 0;
451}
452
453// Jump and Link (Call)
454let isCall=1, hasDelaySlot=1,
455  // All calls clobber the non-callee saved registers...
456  Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
457          K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in {
458  class JumpLink<bits<6> op, string instr_asm>:
459    FJ<op, (outs), (ins calltarget:$target, variable_ops),
460       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
461       IIBranch>;
462
463  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>:
464    FR<op, func, (outs), (ins CPURegs:$rs, variable_ops),
465       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink CPURegs:$rs)], IIBranch> {
466    let rt = 0;
467    let rd = 31;
468    let shamt = 0;
469  }
470
471  class BranchLink<string instr_asm>:
472    FI<0x1, (outs), (ins CPURegs:$rs, brtarget:$imm16, variable_ops),
473       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch>;
474}
475
476// Mul, Div
477class Mul<bits<6> func, string instr_asm, InstrItinClass itin>:
478  FR<0x00, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
479     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
480  let rd = 0;
481  let shamt = 0;
482  let isCommutable = 1;
483  let Defs = [HI, LO];
484}
485
486class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
487          FR<0x00, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
488          !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
489          [(op CPURegs:$rs, CPURegs:$rt)], itin> {
490  let rd = 0;
491  let shamt = 0;
492  let Defs = [HI, LO];
493}
494
495// Move from Hi/Lo
496class MoveFromLOHI<bits<6> func, string instr_asm>:
497  FR<0x00, func, (outs CPURegs:$rd), (ins),
498     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
499  let rs = 0;
500  let rt = 0;
501  let shamt = 0;
502}
503
504class MoveToLOHI<bits<6> func, string instr_asm>:
505  FR<0x00, func, (outs), (ins CPURegs:$rs),
506     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
507  let rt = 0;
508  let rd = 0;
509  let shamt = 0;
510}
511
512class EffectiveAddress<string instr_asm> :
513  FMem<0x09, (outs CPURegs:$rt), (ins mem_ea:$addr),
514     instr_asm, [(set CPURegs:$rt, addr:$addr)], IIAlu>;
515
516// Count Leading Ones/Zeros in Word
517class CountLeading<bits<6> func, string instr_asm, list<dag> pattern>:
518  FR<0x1c, func, (outs CPURegs:$rd), (ins CPURegs:$rs),
519     !strconcat(instr_asm, "\t$rd, $rs"), pattern, IIAlu>,
520     Requires<[HasBitCount]> {
521  let shamt = 0;
522  let rt = rd;
523}
524
525// Sign Extend in Register.
526class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt>:
527  FR<0x1f, 0x20, (outs CPURegs:$rd), (ins CPURegs:$rt),
528     !strconcat(instr_asm, "\t$rd, $rt"),
529     [(set CPURegs:$rd, (sext_inreg CPURegs:$rt, vt))], NoItinerary> {
530  let rs = 0;
531  let shamt = sa;
532  let Predicates = [HasSEInReg];
533}
534
535// Byte Swap
536class ByteSwap<bits<6> func, bits<5> sa, string instr_asm>:
537  FR<0x1f, func, (outs CPURegs:$rd), (ins CPURegs:$rt),
538     !strconcat(instr_asm, "\t$rd, $rt"),
539     [(set CPURegs:$rd, (bswap CPURegs:$rt))], NoItinerary> {
540  let rs = 0;
541  let shamt = sa;
542  let Predicates = [HasSwap];
543}
544
545// Read Hardware
546class ReadHardware: FR<0x1f, 0x3b, (outs CPURegs:$rt), (ins HWRegs:$rd),
547    "rdhwr\t$rt, $rd", [], IIAlu> {
548  let rs = 0;
549  let shamt = 0;
550}
551
552// Ext and Ins
553class ExtIns<bits<6> _funct, string instr_asm, dag outs, dag ins,
554             list<dag> pattern, InstrItinClass itin>:
555  FR<0x1f, _funct, outs, ins, !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
556     pattern, itin>, Requires<[HasMips32r2]> {
557  bits<5> pos;
558  bits<5> sz;
559  let rd = sz;
560  let shamt = pos;
561}
562
563// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
564class Atomic2Ops<PatFrag Op, string Opstr> :
565  MipsPseudo<(outs CPURegs:$dst), (ins CPURegs:$ptr, CPURegs:$incr),
566             !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
567             [(set CPURegs:$dst,
568              (Op CPURegs:$ptr, CPURegs:$incr))]>;
569
570// Atomic Compare & Swap.
571class AtomicCmpSwap<PatFrag Op, string Width> :
572  MipsPseudo<(outs CPURegs:$dst),
573             (ins CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap),
574             !strconcat("atomic_cmp_swap_", Width,
575                        "\t$dst, $ptr, $cmp, $swap"),
576             [(set CPURegs:$dst,
577              (Op CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap))]>;
578
579//===----------------------------------------------------------------------===//
580// Pseudo instructions
581//===----------------------------------------------------------------------===//
582
583// As stack alignment is always done with addiu, we need a 16-bit immediate
584let Defs = [SP], Uses = [SP] in {
585def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt),
586                                  "!ADJCALLSTACKDOWN $amt",
587                                  [(callseq_start timm:$amt)]>;
588def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2),
589                                  "!ADJCALLSTACKUP $amt1",
590                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
591}
592
593// Some assembly macros need to avoid pseudoinstructions and assembler
594// automatic reodering, we should reorder ourselves.
595def MACRO     : MipsPseudo<(outs), (ins), ".set\tmacro",     []>;
596def REORDER   : MipsPseudo<(outs), (ins), ".set\treorder",   []>;
597def NOMACRO   : MipsPseudo<(outs), (ins), ".set\tnomacro",   []>;
598def NOREORDER : MipsPseudo<(outs), (ins), ".set\tnoreorder", []>;
599
600// These macros are inserted to prevent GAS from complaining
601// when using the AT register.
602def NOAT      : MipsPseudo<(outs), (ins), ".set\tnoat", []>;
603def ATMACRO   : MipsPseudo<(outs), (ins), ".set\tat", []>;
604
605// When handling PIC code the assembler needs .cpload and .cprestore
606// directives. If the real instructions corresponding these directives
607// are used, we have the same behavior, but get also a bunch of warnings
608// from the assembler.
609def CPLOAD : MipsPseudo<(outs), (ins CPURegs:$picreg), ".cpload\t$picreg", []>;
610def CPRESTORE : MipsPseudo<(outs), (ins i32imm:$loc), ".cprestore\t$loc", []>;
611
612let usesCustomInserter = 1 in {
613  def ATOMIC_LOAD_ADD_I8   : Atomic2Ops<atomic_load_add_8, "load_add_8">;
614  def ATOMIC_LOAD_ADD_I16  : Atomic2Ops<atomic_load_add_16, "load_add_16">;
615  def ATOMIC_LOAD_ADD_I32  : Atomic2Ops<atomic_load_add_32, "load_add_32">;
616  def ATOMIC_LOAD_SUB_I8   : Atomic2Ops<atomic_load_sub_8, "load_sub_8">;
617  def ATOMIC_LOAD_SUB_I16  : Atomic2Ops<atomic_load_sub_16, "load_sub_16">;
618  def ATOMIC_LOAD_SUB_I32  : Atomic2Ops<atomic_load_sub_32, "load_sub_32">;
619  def ATOMIC_LOAD_AND_I8   : Atomic2Ops<atomic_load_and_8, "load_and_8">;
620  def ATOMIC_LOAD_AND_I16  : Atomic2Ops<atomic_load_and_16, "load_and_16">;
621  def ATOMIC_LOAD_AND_I32  : Atomic2Ops<atomic_load_and_32, "load_and_32">;
622  def ATOMIC_LOAD_OR_I8    : Atomic2Ops<atomic_load_or_8, "load_or_8">;
623  def ATOMIC_LOAD_OR_I16   : Atomic2Ops<atomic_load_or_16, "load_or_16">;
624  def ATOMIC_LOAD_OR_I32   : Atomic2Ops<atomic_load_or_32, "load_or_32">;
625  def ATOMIC_LOAD_XOR_I8   : Atomic2Ops<atomic_load_xor_8, "load_xor_8">;
626  def ATOMIC_LOAD_XOR_I16  : Atomic2Ops<atomic_load_xor_16, "load_xor_16">;
627  def ATOMIC_LOAD_XOR_I32  : Atomic2Ops<atomic_load_xor_32, "load_xor_32">;
628  def ATOMIC_LOAD_NAND_I8  : Atomic2Ops<atomic_load_nand_8, "load_nand_8">;
629  def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, "load_nand_16">;
630  def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, "load_nand_32">;
631
632  def ATOMIC_SWAP_I8       : Atomic2Ops<atomic_swap_8, "swap_8">;
633  def ATOMIC_SWAP_I16      : Atomic2Ops<atomic_swap_16, "swap_16">;
634  def ATOMIC_SWAP_I32      : Atomic2Ops<atomic_swap_32, "swap_32">;
635
636  def ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap<atomic_cmp_swap_8, "8">;
637  def ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap<atomic_cmp_swap_16, "16">;
638  def ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap<atomic_cmp_swap_32, "32">;
639}
640
641//===----------------------------------------------------------------------===//
642// Instruction definition
643//===----------------------------------------------------------------------===//
644
645//===----------------------------------------------------------------------===//
646// MipsI Instructions
647//===----------------------------------------------------------------------===//
648
649/// Arithmetic Instructions (ALU Immediate)
650def ADDiu   : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>;
651def ADDi    : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>;
652def SLTi    : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
653def SLTiu   : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
654def ANDi    : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>;
655def ORi     : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>;
656def XORi    : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>;
657def LUi     : LoadUpper<0x0f, "lui">;
658
659/// Arithmetic Instructions (3-Operand, R-Type)
660def ADDu    : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>;
661def SUBu    : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>;
662def ADD     : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
663def SUB     : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>;
664def SLT     : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
665def SLTu    : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
666def AND     : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>;
667def OR      : ArithLogicR<0x00, 0x25, "or",  or, IIAlu, CPURegs, 1>;
668def XOR     : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>;
669def NOR     : LogicNOR<0x00, 0x27, "nor", CPURegs>;
670
671/// Shift Instructions
672def SLL     : LogicR_shift_rotate_imm<0x00, 0x00, "sll", shl>;
673def SRL     : LogicR_shift_rotate_imm<0x02, 0x00, "srl", srl>;
674def SRA     : LogicR_shift_rotate_imm<0x03, 0x00, "sra", sra>;
675def SLLV    : LogicR_shift_rotate_reg<0x04, 0x00, "sllv", shl>;
676def SRLV    : LogicR_shift_rotate_reg<0x06, 0x00, "srlv", srl>;
677def SRAV    : LogicR_shift_rotate_reg<0x07, 0x00, "srav", sra>;
678
679// Rotate Instructions
680let Predicates = [HasMips32r2] in {
681    def ROTR    : LogicR_shift_rotate_imm<0x02, 0x01, "rotr", rotr>;
682    def ROTRV   : LogicR_shift_rotate_reg<0x06, 0x01, "rotrv", rotr>;
683}
684
685/// Load and Store Instructions
686///  aligned
687defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
688defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
689defm LH      : LoadM32<0x21, "lh",  sextloadi16_a>;
690defm LHu     : LoadM32<0x25, "lhu", zextloadi16_a>;
691defm LW      : LoadM32<0x23, "lw",  load_a>;
692defm SB      : StoreM32<0x28, "sb", truncstorei8>;
693defm SH      : StoreM32<0x29, "sh", truncstorei16_a>;
694defm SW      : StoreM32<0x2b, "sw", store_a>;
695
696///  unaligned
697defm ULH     : LoadM32<0x21, "ulh",  sextloadi16_u, 1>;
698defm ULHu    : LoadM32<0x25, "ulhu", zextloadi16_u, 1>;
699defm ULW     : LoadM32<0x23, "ulw",  load_u, 1>;
700defm USH     : StoreM32<0x29, "ush", truncstorei16_u, 1>;
701defm USW     : StoreM32<0x2b, "usw", store_u, 1>;
702
703let hasSideEffects = 1 in
704def SYNC : MipsInst<(outs), (ins i32imm:$stype), "sync $stype",
705                    [(MipsSync imm:$stype)], NoItinerary, FrmOther>
706{
707  bits<5> stype;
708  let Opcode = 0;
709  let Inst{25-11} = 0;
710  let Inst{10-6} = stype;
711  let Inst{5-0} = 15;
712}
713
714/// Load-linked, Store-conditional
715let mayLoad = 1 in
716  def LL    : FMem<0x30, (outs CPURegs:$rt), (ins mem:$addr),
717              "ll\t$rt, $addr", [], IILoad>;
718let mayStore = 1, Constraints = "$rt = $dst" in
719  def SC    : FMem<0x38, (outs CPURegs:$dst), (ins CPURegs:$rt, mem:$addr),
720              "sc\t$rt, $addr", [], IIStore>;
721
722/// Jump and Branch Instructions
723def J       : JumpFJ<0x02, "j">;
724let isIndirectBranch = 1 in
725  def JR      : JumpFR<0x00, 0x08, "jr">;
726def JAL     : JumpLink<0x03, "jal">;
727def JALR    : JumpLinkReg<0x00, 0x09, "jalr">;
728def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
729def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
730def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
731def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
732def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
733def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
734
735let rt=0x11 in
736  def BGEZAL  : BranchLink<"bgezal">;
737let rt=0x10 in
738  def BLTZAL  : BranchLink<"bltzal">;
739
740let isReturn=1, isTerminator=1, hasDelaySlot=1,
741    isBarrier=1, hasCtrlDep=1, rd=0, rt=0, shamt=0 in
742  def RET : FR <0x00, 0x08, (outs), (ins CPURegs:$target),
743                "jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>;
744
745/// Multiply and Divide Instructions.
746def MULT    : Mul<0x18, "mult", IIImul>;
747def MULTu   : Mul<0x19, "multu", IIImul>;
748def SDIV    : Div<MipsDivRem, 0x1a, "div", IIIdiv>;
749def UDIV    : Div<MipsDivRemU, 0x1b, "divu", IIIdiv>;
750
751let Defs = [HI] in
752  def MTHI  : MoveToLOHI<0x11, "mthi">;
753let Defs = [LO] in
754  def MTLO  : MoveToLOHI<0x13, "mtlo">;
755
756let Uses = [HI] in
757  def MFHI  : MoveFromLOHI<0x10, "mfhi">;
758let Uses = [LO] in
759  def MFLO  : MoveFromLOHI<0x12, "mflo">;
760
761/// Sign Ext In Register Instructions.
762def SEB : SignExtInReg<0x10, "seb", i8>;
763def SEH : SignExtInReg<0x18, "seh", i16>;
764
765/// Count Leading
766def CLZ : CountLeading<0x20, "clz",
767                       [(set CPURegs:$rd, (ctlz CPURegs:$rs))]>;
768def CLO : CountLeading<0x21, "clo",
769                       [(set CPURegs:$rd, (ctlz (not CPURegs:$rs)))]>;
770
771/// Byte Swap
772def WSBW : ByteSwap<0x20, 0x2, "wsbw">;
773
774// Conditional moves:
775// These instructions are expanded in
776// MipsISelLowering::EmitInstrWithCustomInserter if target does not have
777// conditional move instructions.
778// flag:int, data:int
779class CondMovIntInt<bits<6> funct, string instr_asm> :
780  FR<0, funct, (outs CPURegs:$rd),
781     (ins CPURegs:$rs, CPURegs:$rt, CPURegs:$F),
782     !strconcat(instr_asm, "\t$rd, $rs, $rt"), [], NoItinerary> {
783  let shamt = 0;
784  let usesCustomInserter = 1;
785  let Constraints = "$F = $rd";
786}
787
788def MOVZ_I : CondMovIntInt<0x0a, "movz">;
789def MOVN_I : CondMovIntInt<0x0b, "movn">;
790
791/// No operation
792let addr=0 in
793  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
794
795// FrameIndexes are legalized when they are operands from load/store
796// instructions. The same not happens for stack address copies, so an
797// add op with mem ComplexPattern is used and the stack address copy
798// can be matched. It's similar to Sparc LEA_ADDRi
799def LEA_ADDiu : EffectiveAddress<"addiu\t$rt, $addr">;
800
801// DynAlloc node points to dynamically allocated stack space.
802// $sp is added to the list of implicitly used registers to prevent dead code
803// elimination from removing instructions that modify $sp.
804let Uses = [SP] in
805def DynAlloc : EffectiveAddress<"addiu\t$rt, $addr">;
806
807// MADD*/MSUB*
808def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
809def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
810def MSUB  : MArithR<4, "msub", MipsMSub>;
811def MSUBU : MArithR<5, "msubu", MipsMSubu>;
812
813// MUL is a assembly macro in the current used ISAs. In recent ISA's
814// it is a real instruction.
815def MUL   : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>,
816            Requires<[HasMips32]>;
817
818def RDHWR : ReadHardware;
819
820def EXT : ExtIns<0, "ext", (outs CPURegs:$rt),
821                 (ins CPURegs:$rs, uimm16:$pos, size_ext:$sz),
822                 [(set CPURegs:$rt,
823                   (MipsExt CPURegs:$rs, immZExt5:$pos, immZExt5:$sz))],
824                 NoItinerary>;
825
826let Constraints = "$src = $rt" in
827def INS : ExtIns<4, "ins", (outs CPURegs:$rt),
828                 (ins CPURegs:$rs, uimm16:$pos, size_ins:$sz, CPURegs:$src),
829                 [(set CPURegs:$rt,
830                   (MipsIns CPURegs:$rs, immZExt5:$pos, immZExt5:$sz,
831                    CPURegs:$src))],
832                 NoItinerary>;
833
834//===----------------------------------------------------------------------===//
835//  Arbitrary patterns that map to one or more instructions
836//===----------------------------------------------------------------------===//
837
838// Small immediates
839def : Pat<(i32 immSExt16:$in),
840          (ADDiu ZERO, imm:$in)>;
841def : Pat<(i32 immZExt16:$in),
842          (ORi ZERO, imm:$in)>;
843
844// Arbitrary immediates
845def : Pat<(i32 imm:$imm),
846          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
847
848// Carry patterns
849def : Pat<(subc CPURegs:$lhs, CPURegs:$rhs),
850          (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
851def : Pat<(addc CPURegs:$lhs, CPURegs:$rhs),
852          (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
853def : Pat<(addc  CPURegs:$src, immSExt16:$imm),
854          (ADDiu CPURegs:$src, imm:$imm)>;
855
856// Call
857def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
858          (JAL tglobaladdr:$dst)>;
859def : Pat<(MipsJmpLink (i32 texternalsym:$dst)),
860          (JAL texternalsym:$dst)>;
861//def : Pat<(MipsJmpLink CPURegs:$dst),
862//          (JALR CPURegs:$dst)>;
863
864// hi/lo relocs
865def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
866def : Pat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
867def : Pat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
868def : Pat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
869def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
870          (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
871def : Pat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
872          (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
873
874def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
875def : Pat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
876def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
877          (ADDiu CPURegs:$hi, tjumptable:$lo)>;
878
879def : Pat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
880def : Pat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
881def : Pat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
882          (ADDiu CPURegs:$hi, tconstpool:$lo)>;
883
884// gp_rel relocs
885def : Pat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
886          (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
887def : Pat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
888          (ADDiu CPURegs:$gp, tconstpool:$in)>;
889
890// tlsgd
891def : Pat<(add CPURegs:$gp, (MipsTlsGd tglobaltlsaddr:$in)),
892          (ADDiu CPURegs:$gp, tglobaltlsaddr:$in)>;
893
894// tprel hi/lo
895def : Pat<(MipsTprelHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
896def : Pat<(MipsTprelLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
897def : Pat<(add CPURegs:$hi, (MipsTprelLo tglobaltlsaddr:$lo)),
898          (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
899
900// wrapper_pic
901class WrapperPICPat<SDNode node>:
902      Pat<(MipsWrapperPIC node:$in),
903          (ADDiu GP, node:$in)>;
904
905def : WrapperPICPat<tglobaladdr>;
906def : WrapperPICPat<tconstpool>;
907def : WrapperPICPat<texternalsym>;
908def : WrapperPICPat<tblockaddress>;
909def : WrapperPICPat<tjumptable>;
910
911// Mips does not have "not", so we expand our way
912def : Pat<(not CPURegs:$in),
913          (NOR CPURegs:$in, ZERO)>;
914
915// extended load and stores
916def : Pat<(extloadi1  addr:$src), (LBu addr:$src)>;
917def : Pat<(extloadi8  addr:$src), (LBu addr:$src)>;
918def : Pat<(extloadi16_a addr:$src), (LHu addr:$src)>;
919def : Pat<(extloadi16_u addr:$src), (ULHu addr:$src)>;
920
921// peepholes
922def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
923
924// brcond patterns
925multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
926                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
927                      Instruction SLTiuOp, Register ZEROReg> {
928def : Pat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
929          (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
930def : Pat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
931          (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
932
933def : Pat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
934          (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
935def : Pat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
936          (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
937def : Pat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
938          (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
939def : Pat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
940          (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
941
942def : Pat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
943          (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
944def : Pat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
945          (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
946
947def : Pat<(brcond RC:$cond, bb:$dst),
948          (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
949}
950
951defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
952
953// select patterns
954multiclass MovzPats<RegisterClass RC, Instruction MOVZInst> {
955  def : Pat<(select (i32 (setge CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F),
956            (MOVZInst RC:$T, (SLT CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
957  def : Pat<(select (i32 (setuge CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F),
958            (MOVZInst RC:$T, (SLTu CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
959  def : Pat<(select (i32 (setge CPURegs:$lhs, immSExt16:$rhs)), RC:$T, RC:$F),
960            (MOVZInst RC:$T, (SLTi CPURegs:$lhs, immSExt16:$rhs), RC:$F)>;
961  def : Pat<(select (i32 (setuge CPURegs:$lh, immSExt16:$rh)), RC:$T, RC:$F),
962            (MOVZInst RC:$T, (SLTiu CPURegs:$lh, immSExt16:$rh), RC:$F)>;
963  def : Pat<(select (i32 (setle CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F),
964            (MOVZInst RC:$T, (SLT CPURegs:$rhs, CPURegs:$lhs), RC:$F)>;
965  def : Pat<(select (i32 (setule CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F),
966            (MOVZInst RC:$T, (SLTu CPURegs:$rhs, CPURegs:$lhs), RC:$F)>;
967  def : Pat<(select (i32 (seteq CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F),
968            (MOVZInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
969  def : Pat<(select (i32 (seteq CPURegs:$lhs, 0)), RC:$T, RC:$F),
970            (MOVZInst RC:$T, CPURegs:$lhs, RC:$F)>;
971}
972
973multiclass MovnPats<RegisterClass RC, Instruction MOVNInst> {
974  def : Pat<(select (i32 (setne CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F),
975            (MOVNInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>;
976  def : Pat<(select CPURegs:$cond, RC:$T, RC:$F),
977            (MOVNInst RC:$T, CPURegs:$cond, RC:$F)>;
978  def : Pat<(select (i32 (setne CPURegs:$lhs, 0)), RC:$T, RC:$F),
979            (MOVNInst RC:$T, CPURegs:$lhs, RC:$F)>;
980}
981
982defm : MovzPats<CPURegs, MOVZ_I>;
983defm : MovnPats<CPURegs, MOVN_I>;
984
985// setcc patterns
986multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
987                     Instruction SLTuOp, Register ZEROReg> {
988  def : Pat<(seteq RC:$lhs, RC:$rhs),
989            (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
990  def : Pat<(setne RC:$lhs, RC:$rhs),
991            (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
992}
993
994multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
995  def : Pat<(setle RC:$lhs, RC:$rhs),
996            (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
997  def : Pat<(setule RC:$lhs, RC:$rhs),
998            (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
999}
1000
1001multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1002  def : Pat<(setgt RC:$lhs, RC:$rhs),
1003            (SLTOp RC:$rhs, RC:$lhs)>;
1004  def : Pat<(setugt RC:$lhs, RC:$rhs),
1005            (SLTuOp RC:$rhs, RC:$lhs)>;
1006}
1007
1008multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1009  def : Pat<(setge RC:$lhs, RC:$rhs),
1010            (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1011  def : Pat<(setuge RC:$lhs, RC:$rhs),
1012            (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1013}
1014
1015multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1016                        Instruction SLTiuOp> {
1017  def : Pat<(setge RC:$lhs, immSExt16:$rhs),
1018            (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1019  def : Pat<(setuge RC:$lhs, immSExt16:$rhs),
1020            (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1021}
1022
1023defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1024defm : SetlePats<CPURegs, SLT, SLTu>;
1025defm : SetgtPats<CPURegs, SLT, SLTu>;
1026defm : SetgePats<CPURegs, SLT, SLTu>;
1027defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1028
1029// select MipsDynAlloc
1030def : Pat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
1031
1032//===----------------------------------------------------------------------===//
1033// Floating Point Support
1034//===----------------------------------------------------------------------===//
1035
1036include "MipsInstrFPU.td"
1037include "Mips64InstrInfo.td"
1038
1039