• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- X86InstrArithmetic.td - Integer Arithmetic Instrs ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the integer arithmetic instructions in the X86
11// architecture.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// LEA - Load Effective Address
17
18let neverHasSideEffects = 1 in
19def LEA16r   : I<0x8D, MRMSrcMem,
20                 (outs GR16:$dst), (ins i32mem:$src),
21                 "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize;
22let isReMaterializable = 1 in
23def LEA32r   : I<0x8D, MRMSrcMem,
24                 (outs GR32:$dst), (ins i32mem:$src),
25                 "lea{l}\t{$src|$dst}, {$dst|$src}",
26                 [(set GR32:$dst, lea32addr:$src)]>, Requires<[In32BitMode]>;
27
28def LEA64_32r : I<0x8D, MRMSrcMem,
29                  (outs GR32:$dst), (ins lea64_32mem:$src),
30                  "lea{l}\t{$src|$dst}, {$dst|$src}",
31                  [(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>;
32
33let isReMaterializable = 1 in
34def LEA64r   : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
35                  "lea{q}\t{$src|$dst}, {$dst|$src}",
36                  [(set GR64:$dst, lea64addr:$src)]>;
37
38
39
40//===----------------------------------------------------------------------===//
41//  Fixed-Register Multiplication and Division Instructions.
42//
43
44// Extra precision multiplication
45
46// AL is really implied by AX, but the registers in Defs must match the
47// SDNode results (i8, i32).
48let Defs = [AL,EFLAGS,AX], Uses = [AL] in
49def MUL8r  : I<0xF6, MRM4r, (outs),  (ins GR8:$src), "mul{b}\t$src",
50               // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
51               // This probably ought to be moved to a def : Pat<> if the
52               // syntax can be accepted.
53               [(set AL, (mul AL, GR8:$src)),
54                (implicit EFLAGS)]>;     // AL,AH = AL*GR8
55
56let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in
57def MUL16r : I<0xF7, MRM4r, (outs),  (ins GR16:$src),
58               "mul{w}\t$src",
59               []>, OpSize;    // AX,DX = AX*GR16
60
61let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in
62def MUL32r : I<0xF7, MRM4r, (outs),  (ins GR32:$src),
63               "mul{l}\t$src",   // EAX,EDX = EAX*GR32
64               [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/]>;
65let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
66def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
67                "mul{q}\t$src",          // RAX,RDX = RAX*GR64
68                [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/]>;
69
70let Defs = [AL,EFLAGS,AX], Uses = [AL] in
71def MUL8m  : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
72               "mul{b}\t$src",
73               // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
74               // This probably ought to be moved to a def : Pat<> if the
75               // syntax can be accepted.
76               [(set AL, (mul AL, (loadi8 addr:$src))),
77                (implicit EFLAGS)]>;   // AL,AH = AL*[mem8]
78
79let mayLoad = 1, neverHasSideEffects = 1 in {
80let Defs = [AX,DX,EFLAGS], Uses = [AX] in
81def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
82               "mul{w}\t$src",
83               []>, OpSize; // AX,DX = AX*[mem16]
84
85let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
86def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
87              "mul{l}\t$src",
88              []>;          // EAX,EDX = EAX*[mem32]
89let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
90def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
91                "mul{q}\t$src", []>;         // RAX,RDX = RAX*[mem64]
92}
93
94let neverHasSideEffects = 1 in {
95let Defs = [AL,EFLAGS,AX], Uses = [AL] in
96def IMUL8r  : I<0xF6, MRM5r, (outs),  (ins GR8:$src), "imul{b}\t$src", []>;
97              // AL,AH = AL*GR8
98let Defs = [AX,DX,EFLAGS], Uses = [AX] in
99def IMUL16r : I<0xF7, MRM5r, (outs),  (ins GR16:$src), "imul{w}\t$src", []>,
100              OpSize;    // AX,DX = AX*GR16
101let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
102def IMUL32r : I<0xF7, MRM5r, (outs),  (ins GR32:$src), "imul{l}\t$src", []>;
103              // EAX,EDX = EAX*GR32
104let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
105def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", []>;
106              // RAX,RDX = RAX*GR64
107
108let mayLoad = 1 in {
109let Defs = [AL,EFLAGS,AX], Uses = [AL] in
110def IMUL8m  : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
111                "imul{b}\t$src", []>;    // AL,AH = AL*[mem8]
112let Defs = [AX,DX,EFLAGS], Uses = [AX] in
113def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
114                "imul{w}\t$src", []>, OpSize; // AX,DX = AX*[mem16]
115let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
116def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
117                "imul{l}\t$src", []>;  // EAX,EDX = EAX*[mem32]
118let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
119def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
120                 "imul{q}\t$src", []>;         // RAX,RDX = RAX*[mem64]
121}
122} // neverHasSideEffects
123
124
125let Defs = [EFLAGS] in {
126let Constraints = "$src1 = $dst" in {
127
128let isCommutable = 1 in {  // X = IMUL Y, Z --> X = IMUL Z, Y
129// Register-Register Signed Integer Multiply
130def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
131                 "imul{w}\t{$src2, $dst|$dst, $src2}",
132                 [(set GR16:$dst, EFLAGS,
133                       (X86smul_flag GR16:$src1, GR16:$src2))]>, TB, OpSize;
134def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
135                 "imul{l}\t{$src2, $dst|$dst, $src2}",
136                 [(set GR32:$dst, EFLAGS,
137                       (X86smul_flag GR32:$src1, GR32:$src2))]>, TB;
138def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
139                                   (ins GR64:$src1, GR64:$src2),
140                  "imul{q}\t{$src2, $dst|$dst, $src2}",
141                  [(set GR64:$dst, EFLAGS,
142                        (X86smul_flag GR64:$src1, GR64:$src2))]>, TB;
143}
144
145// Register-Memory Signed Integer Multiply
146def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
147                                  (ins GR16:$src1, i16mem:$src2),
148                 "imul{w}\t{$src2, $dst|$dst, $src2}",
149                 [(set GR16:$dst, EFLAGS,
150                       (X86smul_flag GR16:$src1, (load addr:$src2)))]>,
151               TB, OpSize;
152def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst),
153                 (ins GR32:$src1, i32mem:$src2),
154                 "imul{l}\t{$src2, $dst|$dst, $src2}",
155                 [(set GR32:$dst, EFLAGS,
156                       (X86smul_flag GR32:$src1, (load addr:$src2)))]>, TB;
157def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
158                                   (ins GR64:$src1, i64mem:$src2),
159                  "imul{q}\t{$src2, $dst|$dst, $src2}",
160                  [(set GR64:$dst, EFLAGS,
161                        (X86smul_flag GR64:$src1, (load addr:$src2)))]>, TB;
162} // Constraints = "$src1 = $dst"
163
164} // Defs = [EFLAGS]
165
166// Surprisingly enough, these are not two address instructions!
167let Defs = [EFLAGS] in {
168// Register-Integer Signed Integer Multiply
169def IMUL16rri  : Ii16<0x69, MRMSrcReg,                      // GR16 = GR16*I16
170                      (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
171                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
172                      [(set GR16:$dst, EFLAGS,
173                            (X86smul_flag GR16:$src1, imm:$src2))]>, OpSize;
174def IMUL16rri8 : Ii8<0x6B, MRMSrcReg,                       // GR16 = GR16*I8
175                     (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
176                     "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
177                     [(set GR16:$dst, EFLAGS,
178                           (X86smul_flag GR16:$src1, i16immSExt8:$src2))]>,
179                 OpSize;
180def IMUL32rri  : Ii32<0x69, MRMSrcReg,                      // GR32 = GR32*I32
181                      (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
182                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
183                      [(set GR32:$dst, EFLAGS,
184                            (X86smul_flag GR32:$src1, imm:$src2))]>;
185def IMUL32rri8 : Ii8<0x6B, MRMSrcReg,                       // GR32 = GR32*I8
186                     (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
187                     "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
188                     [(set GR32:$dst, EFLAGS,
189                           (X86smul_flag GR32:$src1, i32immSExt8:$src2))]>;
190def IMUL64rri32 : RIi32<0x69, MRMSrcReg,                    // GR64 = GR64*I32
191                        (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
192                        "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
193                       [(set GR64:$dst, EFLAGS,
194                             (X86smul_flag GR64:$src1, i64immSExt32:$src2))]>;
195def IMUL64rri8 : RIi8<0x6B, MRMSrcReg,                      // GR64 = GR64*I8
196                      (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
197                      "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
198                      [(set GR64:$dst, EFLAGS,
199                            (X86smul_flag GR64:$src1, i64immSExt8:$src2))]>;
200
201
202// Memory-Integer Signed Integer Multiply
203def IMUL16rmi  : Ii16<0x69, MRMSrcMem,                     // GR16 = [mem16]*I16
204                      (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
205                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
206                      [(set GR16:$dst, EFLAGS,
207                            (X86smul_flag (load addr:$src1), imm:$src2))]>,
208                 OpSize;
209def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR16 = [mem16]*I8
210                     (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
211                     "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
212                     [(set GR16:$dst, EFLAGS,
213                           (X86smul_flag (load addr:$src1),
214                                         i16immSExt8:$src2))]>, OpSize;
215def IMUL32rmi  : Ii32<0x69, MRMSrcMem,                     // GR32 = [mem32]*I32
216                      (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
217                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
218                      [(set GR32:$dst, EFLAGS,
219                            (X86smul_flag (load addr:$src1), imm:$src2))]>;
220def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR32 = [mem32]*I8
221                     (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
222                     "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
223                     [(set GR32:$dst, EFLAGS,
224                           (X86smul_flag (load addr:$src1),
225                                         i32immSExt8:$src2))]>;
226def IMUL64rmi32 : RIi32<0x69, MRMSrcMem,                   // GR64 = [mem64]*I32
227                        (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
228                        "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
229                        [(set GR64:$dst, EFLAGS,
230                              (X86smul_flag (load addr:$src1),
231                                            i64immSExt32:$src2))]>;
232def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem,                      // GR64 = [mem64]*I8
233                      (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
234                      "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
235                      [(set GR64:$dst, EFLAGS,
236                            (X86smul_flag (load addr:$src1),
237                                          i64immSExt8:$src2))]>;
238} // Defs = [EFLAGS]
239
240
241
242
243// unsigned division/remainder
244let Defs = [AL,EFLAGS,AX], Uses = [AX] in
245def DIV8r  : I<0xF6, MRM6r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
246               "div{b}\t$src", []>;
247let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
248def DIV16r : I<0xF7, MRM6r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
249               "div{w}\t$src", []>, OpSize;
250let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
251def DIV32r : I<0xF7, MRM6r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
252               "div{l}\t$src", []>;
253// RDX:RAX/r64 = RAX,RDX
254let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
255def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
256                "div{q}\t$src", []>;
257
258let mayLoad = 1 in {
259let Defs = [AL,EFLAGS,AX], Uses = [AX] in
260def DIV8m  : I<0xF6, MRM6m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
261               "div{b}\t$src", []>;
262let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
263def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
264               "div{w}\t$src", []>, OpSize;
265let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
266def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
267               "div{l}\t$src", []>;
268// RDX:RAX/[mem64] = RAX,RDX
269let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
270def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
271                "div{q}\t$src", []>;
272}
273
274// Signed division/remainder.
275let Defs = [AL,EFLAGS,AX], Uses = [AX] in
276def IDIV8r : I<0xF6, MRM7r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
277               "idiv{b}\t$src", []>;
278let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
279def IDIV16r: I<0xF7, MRM7r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
280               "idiv{w}\t$src", []>, OpSize;
281let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
282def IDIV32r: I<0xF7, MRM7r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
283               "idiv{l}\t$src", []>;
284// RDX:RAX/r64 = RAX,RDX
285let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
286def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
287                "idiv{q}\t$src", []>;
288
289let mayLoad = 1, mayLoad = 1 in {
290let Defs = [AL,EFLAGS,AX], Uses = [AX] in
291def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
292               "idiv{b}\t$src", []>;
293let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
294def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
295               "idiv{w}\t$src", []>, OpSize;
296let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
297def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src),
298               "idiv{l}\t$src", []>;
299let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
300def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
301                "idiv{q}\t$src", []>;
302}
303
304//===----------------------------------------------------------------------===//
305//  Two address Instructions.
306//
307
308// unary instructions
309let CodeSize = 2 in {
310let Defs = [EFLAGS] in {
311let Constraints = "$src1 = $dst" in {
312def NEG8r  : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1),
313               "neg{b}\t$dst",
314               [(set GR8:$dst, (ineg GR8:$src1)),
315                (implicit EFLAGS)]>;
316def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
317               "neg{w}\t$dst",
318               [(set GR16:$dst, (ineg GR16:$src1)),
319                (implicit EFLAGS)]>, OpSize;
320def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
321               "neg{l}\t$dst",
322               [(set GR32:$dst, (ineg GR32:$src1)),
323                (implicit EFLAGS)]>;
324def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst",
325                [(set GR64:$dst, (ineg GR64:$src1)),
326                 (implicit EFLAGS)]>;
327} // Constraints = "$src1 = $dst"
328
329def NEG8m  : I<0xF6, MRM3m, (outs), (ins i8mem :$dst),
330               "neg{b}\t$dst",
331               [(store (ineg (loadi8 addr:$dst)), addr:$dst),
332                (implicit EFLAGS)]>;
333def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst),
334               "neg{w}\t$dst",
335               [(store (ineg (loadi16 addr:$dst)), addr:$dst),
336                (implicit EFLAGS)]>, OpSize;
337def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst),
338               "neg{l}\t$dst",
339               [(store (ineg (loadi32 addr:$dst)), addr:$dst),
340                (implicit EFLAGS)]>;
341def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
342                [(store (ineg (loadi64 addr:$dst)), addr:$dst),
343                 (implicit EFLAGS)]>;
344} // Defs = [EFLAGS]
345
346
347// Note: NOT does not set EFLAGS!
348
349let Constraints = "$src1 = $dst" in {
350// Match xor -1 to not. Favors these over a move imm + xor to save code size.
351let AddedComplexity = 15 in {
352def NOT8r  : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1),
353               "not{b}\t$dst",
354               [(set GR8:$dst, (not GR8:$src1))]>;
355def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
356               "not{w}\t$dst",
357               [(set GR16:$dst, (not GR16:$src1))]>, OpSize;
358def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
359               "not{l}\t$dst",
360               [(set GR32:$dst, (not GR32:$src1))]>;
361def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst",
362                [(set GR64:$dst, (not GR64:$src1))]>;
363}
364} // Constraints = "$src1 = $dst"
365
366def NOT8m  : I<0xF6, MRM2m, (outs), (ins i8mem :$dst),
367               "not{b}\t$dst",
368               [(store (not (loadi8 addr:$dst)), addr:$dst)]>;
369def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst),
370               "not{w}\t$dst",
371               [(store (not (loadi16 addr:$dst)), addr:$dst)]>, OpSize;
372def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst),
373               "not{l}\t$dst",
374               [(store (not (loadi32 addr:$dst)), addr:$dst)]>;
375def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
376                [(store (not (loadi64 addr:$dst)), addr:$dst)]>;
377} // CodeSize
378
379// TODO: inc/dec is slow for P4, but fast for Pentium-M.
380let Defs = [EFLAGS] in {
381let Constraints = "$src1 = $dst" in {
382let CodeSize = 2 in
383def INC8r  : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
384               "inc{b}\t$dst",
385               [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))]>;
386
387let isConvertibleToThreeAddress = 1, CodeSize = 1 in {  // Can xform into LEA.
388def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
389               "inc{w}\t$dst",
390               [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>,
391             OpSize, Requires<[In32BitMode]>;
392def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
393               "inc{l}\t$dst",
394               [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>,
395             Requires<[In32BitMode]>;
396def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
397                [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))]>;
398} // isConvertibleToThreeAddress = 1, CodeSize = 1
399
400
401// In 64-bit mode, single byte INC and DEC cannot be encoded.
402let isConvertibleToThreeAddress = 1, CodeSize = 2 in {
403// Can transform into LEA.
404def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
405                  "inc{w}\t$dst",
406                  [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>,
407                OpSize, Requires<[In64BitMode]>;
408def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
409                  "inc{l}\t$dst",
410                  [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>,
411                Requires<[In64BitMode]>;
412def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
413                  "dec{w}\t$dst",
414                  [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>,
415                OpSize, Requires<[In64BitMode]>;
416def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
417                  "dec{l}\t$dst",
418                  [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>,
419                Requires<[In64BitMode]>;
420} // isConvertibleToThreeAddress = 1, CodeSize = 2
421
422} // Constraints = "$src1 = $dst"
423
424let CodeSize = 2 in {
425  def INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
426               [(store (add (loadi8 addr:$dst), 1), addr:$dst),
427                (implicit EFLAGS)]>;
428  def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
429               [(store (add (loadi16 addr:$dst), 1), addr:$dst),
430                (implicit EFLAGS)]>,
431               OpSize, Requires<[In32BitMode]>;
432  def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
433               [(store (add (loadi32 addr:$dst), 1), addr:$dst),
434                (implicit EFLAGS)]>,
435               Requires<[In32BitMode]>;
436  def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
437                  [(store (add (loadi64 addr:$dst), 1), addr:$dst),
438                   (implicit EFLAGS)]>;
439
440// These are duplicates of their 32-bit counterparts. Only needed so X86 knows
441// how to unfold them.
442// FIXME: What is this for??
443def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
444                  [(store (add (loadi16 addr:$dst), 1), addr:$dst),
445                    (implicit EFLAGS)]>,
446                OpSize, Requires<[In64BitMode]>;
447def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
448                  [(store (add (loadi32 addr:$dst), 1), addr:$dst),
449                    (implicit EFLAGS)]>,
450                Requires<[In64BitMode]>;
451def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
452                  [(store (add (loadi16 addr:$dst), -1), addr:$dst),
453                    (implicit EFLAGS)]>,
454                OpSize, Requires<[In64BitMode]>;
455def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
456                  [(store (add (loadi32 addr:$dst), -1), addr:$dst),
457                    (implicit EFLAGS)]>,
458                Requires<[In64BitMode]>;
459} // CodeSize = 2
460
461let Constraints = "$src1 = $dst" in {
462let CodeSize = 2 in
463def DEC8r  : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
464               "dec{b}\t$dst",
465               [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))]>;
466let isConvertibleToThreeAddress = 1, CodeSize = 1 in {   // Can xform into LEA.
467def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
468               "dec{w}\t$dst",
469               [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>,
470             OpSize, Requires<[In32BitMode]>;
471def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
472               "dec{l}\t$dst",
473               [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>,
474             Requires<[In32BitMode]>;
475def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
476                [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))]>;
477} // CodeSize = 2
478} // Constraints = "$src1 = $dst"
479
480
481let CodeSize = 2 in {
482  def DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
483               [(store (add (loadi8 addr:$dst), -1), addr:$dst),
484                (implicit EFLAGS)]>;
485  def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
486               [(store (add (loadi16 addr:$dst), -1), addr:$dst),
487                (implicit EFLAGS)]>,
488               OpSize, Requires<[In32BitMode]>;
489  def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
490               [(store (add (loadi32 addr:$dst), -1), addr:$dst),
491                (implicit EFLAGS)]>,
492               Requires<[In32BitMode]>;
493  def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
494                  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
495                   (implicit EFLAGS)]>;
496} // CodeSize = 2
497} // Defs = [EFLAGS]
498
499
500/// X86TypeInfo - This is a bunch of information that describes relevant X86
501/// information about value types.  For example, it can tell you what the
502/// register class and preferred load to use.
503class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
504                  PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
505                  Operand immoperand, SDPatternOperator immoperator,
506                  Operand imm8operand, SDPatternOperator imm8operator,
507                  bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> {
508  /// VT - This is the value type itself.
509  ValueType VT = vt;
510
511  /// InstrSuffix - This is the suffix used on instructions with this type.  For
512  /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
513  string InstrSuffix = instrsuffix;
514
515  /// RegClass - This is the register class associated with this type.  For
516  /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
517  RegisterClass RegClass = regclass;
518
519  /// LoadNode - This is the load node associated with this type.  For
520  /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
521  PatFrag LoadNode = loadnode;
522
523  /// MemOperand - This is the memory operand associated with this type.  For
524  /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
525  X86MemOperand MemOperand = memoperand;
526
527  /// ImmEncoding - This is the encoding of an immediate of this type.  For
528  /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32.  Note that i64 -> Imm32
529  /// since the immediate fields of i64 instructions is a 32-bit sign extended
530  /// value.
531  ImmType ImmEncoding = immkind;
532
533  /// ImmOperand - This is the operand kind of an immediate of this type.  For
534  /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm.  Note that i64 ->
535  /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
536  /// extended value.
537  Operand ImmOperand = immoperand;
538
539  /// ImmOperator - This is the operator that should be used to match an
540  /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
541  SDPatternOperator ImmOperator = immoperator;
542
543  /// Imm8Operand - This is the operand kind to use for an imm8 of this type.
544  /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm.  This is
545  /// only used for instructions that have a sign-extended imm8 field form.
546  Operand Imm8Operand = imm8operand;
547
548  /// Imm8Operator - This is the operator that should be used to match an 8-bit
549  /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
550  SDPatternOperator Imm8Operator = imm8operator;
551
552  /// HasOddOpcode - This bit is true if the instruction should have an odd (as
553  /// opposed to even) opcode.  Operations on i8 are usually even, operations on
554  /// other datatypes are odd.
555  bit HasOddOpcode = hasOddOpcode;
556
557  /// HasOpSizePrefix - This bit is set to true if the instruction should have
558  /// the 0x66 operand size prefix.  This is set for i16 types.
559  bit HasOpSizePrefix = hasOpSizePrefix;
560
561  /// HasREX_WPrefix - This bit is set to true if the instruction should have
562  /// the 0x40 REX prefix.  This is set for i64 types.
563  bit HasREX_WPrefix = hasREX_WPrefix;
564}
565
566def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
567
568
569def Xi8  : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem ,
570                       Imm8 , i8imm ,    imm,          i8imm   , invalid_node,
571                       0, 0, 0>;
572def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem,
573                       Imm16, i16imm,    imm,          i16i8imm, i16immSExt8,
574                       1, 1, 0>;
575def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem,
576                       Imm32, i32imm,    imm,          i32i8imm, i32immSExt8,
577                       1, 0, 0>;
578def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem,
579                       Imm32, i64i32imm, i64immSExt32, i64i8imm, i64immSExt8,
580                       1, 0, 1>;
581
582/// ITy - This instruction base class takes the type info for the instruction.
583/// Using this, it:
584/// 1. Concatenates together the instruction mnemonic with the appropriate
585///    suffix letter, a tab, and the arguments.
586/// 2. Infers whether the instruction should have a 0x66 prefix byte.
587/// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
588/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
589///    or 1 (for i16,i32,i64 operations).
590class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
591          string mnemonic, string args, list<dag> pattern>
592  : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
593       opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
594      f, outs, ins,
595      !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern> {
596
597  // Infer instruction prefixes from type info.
598  let hasOpSizePrefix = typeinfo.HasOpSizePrefix;
599  let hasREX_WPrefix  = typeinfo.HasREX_WPrefix;
600}
601
602// BinOpRR - Instructions like "add reg, reg, reg".
603class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
604              dag outlist, list<dag> pattern, Format f = MRMDestReg>
605  : ITy<opcode, f, typeinfo, outlist,
606        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
607        mnemonic, "{$src2, $src1|$src1, $src2}", pattern>;
608
609// BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has
610// just a regclass (no eflags) as a result.
611class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
612                SDNode opnode>
613  : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
614            [(set typeinfo.RegClass:$dst,
615                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
616
617// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
618// just a EFLAGS as a result.
619class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
620                SDPatternOperator opnode, Format f = MRMDestReg>
621  : BinOpRR<opcode, mnemonic, typeinfo, (outs),
622            [(set EFLAGS,
623                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
624            f>;
625
626// BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has
627// both a regclass and EFLAGS as a result.
628class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
629                 SDNode opnode>
630  : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
631            [(set typeinfo.RegClass:$dst, EFLAGS,
632                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
633
634// BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has
635// both a regclass and EFLAGS as a result, and has EFLAGS as input.
636class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
637                  SDNode opnode>
638  : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
639            [(set typeinfo.RegClass:$dst, EFLAGS,
640                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
641                          EFLAGS))]>;
642
643// BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding).
644class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
645  : ITy<opcode, MRMSrcReg, typeinfo,
646        (outs typeinfo.RegClass:$dst),
647        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
648        mnemonic, "{$src2, $dst|$dst, $src2}", []> {
649  // The disassembler should know about this, but not the asmparser.
650  let isCodeGenOnly = 1;
651}
652
653// BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding).
654class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
655  : ITy<opcode, MRMSrcReg, typeinfo, (outs),
656        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
657        mnemonic, "{$src2, $src1|$src1, $src2}", []> {
658  // The disassembler should know about this, but not the asmparser.
659  let isCodeGenOnly = 1;
660}
661
662// BinOpRM - Instructions like "add reg, reg, [mem]".
663class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
664              dag outlist, list<dag> pattern>
665  : ITy<opcode, MRMSrcMem, typeinfo, outlist,
666        (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
667        mnemonic, "{$src2, $src1|$src1, $src2}", pattern>;
668
669// BinOpRM_R - Instructions like "add reg, reg, [mem]".
670class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
671              SDNode opnode>
672  : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
673            [(set typeinfo.RegClass:$dst,
674            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
675
676// BinOpRM_F - Instructions like "cmp reg, [mem]".
677class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
678              SDPatternOperator opnode>
679  : BinOpRM<opcode, mnemonic, typeinfo, (outs),
680            [(set EFLAGS,
681            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
682
683// BinOpRM_RF - Instructions like "add reg, reg, [mem]".
684class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
685                 SDNode opnode>
686  : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
687            [(set typeinfo.RegClass:$dst, EFLAGS,
688            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
689
690// BinOpRM_RFF - Instructions like "adc reg, reg, [mem]".
691class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
692                 SDNode opnode>
693  : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
694            [(set typeinfo.RegClass:$dst, EFLAGS,
695            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2),
696                    EFLAGS))]>;
697
698// BinOpRI - Instructions like "add reg, reg, imm".
699class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
700              Format f, dag outlist, list<dag> pattern>
701  : ITy<opcode, f, typeinfo, outlist,
702        (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
703        mnemonic, "{$src2, $src1|$src1, $src2}", pattern> {
704  let ImmT = typeinfo.ImmEncoding;
705}
706
707// BinOpRI_R - Instructions like "add reg, reg, imm".
708class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
709                SDNode opnode, Format f>
710  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
711            [(set typeinfo.RegClass:$dst,
712                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
713
714// BinOpRI_F - Instructions like "cmp reg, imm".
715class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
716                SDPatternOperator opnode, Format f>
717  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs),
718            [(set EFLAGS,
719                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
720
721// BinOpRI_RF - Instructions like "add reg, reg, imm".
722class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
723                 SDNode opnode, Format f>
724  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
725            [(set typeinfo.RegClass:$dst, EFLAGS,
726                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
727
728// BinOpRI_RFF - Instructions like "adc reg, reg, imm".
729class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
730                 SDNode opnode, Format f>
731  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
732            [(set typeinfo.RegClass:$dst, EFLAGS,
733                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
734                        EFLAGS))]>;
735
736// BinOpRI8 - Instructions like "add reg, reg, imm8".
737class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
738               Format f, dag outlist, list<dag> pattern>
739  : ITy<opcode, f, typeinfo, outlist,
740        (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
741        mnemonic, "{$src2, $src1|$src1, $src2}", pattern> {
742  let ImmT = Imm8; // Always 8-bit immediate.
743}
744
745// BinOpRI8_R - Instructions like "add reg, reg, imm8".
746class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
747                  SDNode opnode, Format f>
748  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
749             [(set typeinfo.RegClass:$dst,
750               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
751
752// BinOpRI8_F - Instructions like "cmp reg, imm8".
753class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
754                  SDNode opnode, Format f>
755  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs),
756             [(set EFLAGS,
757               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
758
759// BinOpRI8_RF - Instructions like "add reg, reg, imm8".
760class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
761                  SDNode opnode, Format f>
762  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
763             [(set typeinfo.RegClass:$dst, EFLAGS,
764               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
765
766// BinOpRI8_RFF - Instructions like "adc reg, reg, imm8".
767class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
768                   SDNode opnode, Format f>
769  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
770             [(set typeinfo.RegClass:$dst, EFLAGS,
771               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2,
772                       EFLAGS))]>;
773
774// BinOpMR - Instructions like "add [mem], reg".
775class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
776              list<dag> pattern>
777  : ITy<opcode, MRMDestMem, typeinfo,
778        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
779        mnemonic, "{$src, $dst|$dst, $src}", pattern>;
780
781// BinOpMR_RMW - Instructions like "add [mem], reg".
782class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
783                  SDNode opnode>
784  : BinOpMR<opcode, mnemonic, typeinfo,
785          [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
786           (implicit EFLAGS)]>;
787
788// BinOpMR_RMW_FF - Instructions like "adc [mem], reg".
789class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
790                    SDNode opnode>
791  : BinOpMR<opcode, mnemonic, typeinfo,
792          [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
793                  addr:$dst),
794           (implicit EFLAGS)]>;
795
796// BinOpMR_F - Instructions like "cmp [mem], reg".
797class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
798                  SDNode opnode>
799  : BinOpMR<opcode, mnemonic, typeinfo,
800            [(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>;
801
802// BinOpMI - Instructions like "add [mem], imm".
803class BinOpMI<string mnemonic, X86TypeInfo typeinfo,
804              Format f, list<dag> pattern, bits<8> opcode = 0x80>
805  : ITy<opcode, f, typeinfo,
806        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
807        mnemonic, "{$src, $dst|$dst, $src}", pattern> {
808  let ImmT = typeinfo.ImmEncoding;
809}
810
811// BinOpMI_RMW - Instructions like "add [mem], imm".
812class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo,
813                  SDNode opnode, Format f>
814  : BinOpMI<mnemonic, typeinfo, f,
815            [(store (opnode (typeinfo.VT (load addr:$dst)),
816                            typeinfo.ImmOperator:$src), addr:$dst),
817             (implicit EFLAGS)]>;
818
819// BinOpMI_RMW_FF - Instructions like "adc [mem], imm".
820class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
821                  SDNode opnode, Format f>
822  : BinOpMI<mnemonic, typeinfo, f,
823            [(store (opnode (typeinfo.VT (load addr:$dst)),
824                            typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
825             (implicit EFLAGS)]>;
826
827// BinOpMI_F - Instructions like "cmp [mem], imm".
828class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo,
829                SDPatternOperator opnode, Format f, bits<8> opcode = 0x80>
830  : BinOpMI<mnemonic, typeinfo, f,
831            [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)),
832                                               typeinfo.ImmOperator:$src))],
833            opcode>;
834
835// BinOpMI8 - Instructions like "add [mem], imm8".
836class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
837               Format f, list<dag> pattern>
838  : ITy<0x82, f, typeinfo,
839        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
840        mnemonic, "{$src, $dst|$dst, $src}", pattern> {
841  let ImmT = Imm8; // Always 8-bit immediate.
842}
843
844// BinOpMI8_RMW - Instructions like "add [mem], imm8".
845class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
846                   SDNode opnode, Format f>
847  : BinOpMI8<mnemonic, typeinfo, f,
848             [(store (opnode (load addr:$dst),
849                             typeinfo.Imm8Operator:$src), addr:$dst),
850              (implicit EFLAGS)]>;
851
852// BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8".
853class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
854                   SDNode opnode, Format f>
855  : BinOpMI8<mnemonic, typeinfo, f,
856             [(store (opnode (load addr:$dst),
857                             typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst),
858              (implicit EFLAGS)]>;
859
860// BinOpMI8_F - Instructions like "cmp [mem], imm8".
861class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
862                 SDNode opnode, Format f>
863  : BinOpMI8<mnemonic, typeinfo, f,
864             [(set EFLAGS, (opnode (load addr:$dst),
865                                   typeinfo.Imm8Operator:$src))]>;
866
867// BinOpAI - Instructions like "add %eax, %eax, imm".
868class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
869              Register areg, string operands>
870  : ITy<opcode, RawFrm, typeinfo,
871        (outs), (ins typeinfo.ImmOperand:$src),
872        mnemonic, operands, []> {
873  let ImmT = typeinfo.ImmEncoding;
874  let Uses = [areg];
875  let Defs = [areg];
876}
877
878/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
879/// defined with "(set GPR:$dst, EFLAGS, (...".
880///
881/// It would be nice to get rid of the second and third argument here, but
882/// tblgen can't handle dependent type references aggressively enough: PR8330
883multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
884                         string mnemonic, Format RegMRM, Format MemMRM,
885                         SDNode opnodeflag, SDNode opnode,
886                         bit CommutableRR, bit ConvertibleToThreeAddress> {
887  let Defs = [EFLAGS] in {
888    let Constraints = "$src1 = $dst" in {
889      let isCommutable = CommutableRR,
890          isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
891        def #NAME#8rr  : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
892        def #NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
893        def #NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
894        def #NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
895      } // isCommutable
896
897      def #NAME#8rr_REV  : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
898      def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
899      def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
900      def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
901
902      def #NAME#8rm   : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
903      def #NAME#16rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
904      def #NAME#32rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
905      def #NAME#64rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
906
907      let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
908        // NOTE: These are order specific, we want the ri8 forms to be listed
909        // first so that they are slightly preferred to the ri forms.
910        def #NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>;
911        def #NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
912        def #NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
913
914        def #NAME#8ri   : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
915        def #NAME#16ri  : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
916        def #NAME#32ri  : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
917        def #NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
918      }
919    } // Constraints = "$src1 = $dst"
920
921    def #NAME#8mr    : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
922    def #NAME#16mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
923    def #NAME#32mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
924    def #NAME#64mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
925
926    // NOTE: These are order specific, we want the mi8 forms to be listed
927    // first so that they are slightly preferred to the mi forms.
928    def #NAME#16mi8  : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
929    def #NAME#32mi8  : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
930    def #NAME#64mi8  : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
931
932    def #NAME#8mi    : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>;
933    def #NAME#16mi   : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>;
934    def #NAME#32mi   : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>;
935    def #NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>;
936
937    def #NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
938                              "{$src, %al|AL, $src}">;
939    def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
940                              "{$src, %ax|AX, $src}">;
941    def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
942                              "{$src, %eax|EAX, $src}">;
943    def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
944                              "{$src, %rax|RAX, $src}">;
945  }
946}
947
948/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
949/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
950/// SBB.
951///
952/// It would be nice to get rid of the second and third argument here, but
953/// tblgen can't handle dependent type references aggressively enough: PR8330
954multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
955                          string mnemonic, Format RegMRM, Format MemMRM,
956                          SDNode opnode, bit CommutableRR,
957                           bit ConvertibleToThreeAddress> {
958  let Defs = [EFLAGS] in {
959    let Constraints = "$src1 = $dst" in {
960      let isCommutable = CommutableRR,
961          isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
962        def #NAME#8rr  : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
963        def #NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
964        def #NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
965        def #NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
966      } // isCommutable
967
968      def #NAME#8rr_REV  : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
969      def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
970      def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
971      def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
972
973      def #NAME#8rm   : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
974      def #NAME#16rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
975      def #NAME#32rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
976      def #NAME#64rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
977
978      let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
979        // NOTE: These are order specific, we want the ri8 forms to be listed
980        // first so that they are slightly preferred to the ri forms.
981        def #NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>;
982        def #NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>;
983        def #NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>;
984
985        def #NAME#8ri   : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
986        def #NAME#16ri  : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
987        def #NAME#32ri  : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
988        def #NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
989      }
990    } // Constraints = "$src1 = $dst"
991
992    def #NAME#8mr    : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
993    def #NAME#16mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
994    def #NAME#32mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
995    def #NAME#64mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
996
997    // NOTE: These are order specific, we want the mi8 forms to be listed
998    // first so that they are slightly preferred to the mi forms.
999    def #NAME#16mi8  : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
1000    def #NAME#32mi8  : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
1001    def #NAME#64mi8  : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
1002
1003    def #NAME#8mi    : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>;
1004    def #NAME#16mi   : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
1005    def #NAME#32mi   : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
1006    def #NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
1007
1008    def #NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
1009                              "{$src, %al|AL, $src}">;
1010    def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
1011                              "{$src, %ax|AX, $src}">;
1012    def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
1013                              "{$src, %eax|EAX, $src}">;
1014    def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
1015                              "{$src, %rax|RAX, $src}">;
1016  }
1017}
1018
1019/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
1020/// defined with "(set EFLAGS, (...".  It would be really nice to find a way
1021/// to factor this with the other ArithBinOp_*.
1022///
1023multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
1024                        string mnemonic, Format RegMRM, Format MemMRM,
1025                        SDNode opnode,
1026                        bit CommutableRR, bit ConvertibleToThreeAddress> {
1027  let Defs = [EFLAGS] in {
1028    let isCommutable = CommutableRR,
1029        isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1030      def #NAME#8rr  : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
1031      def #NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
1032      def #NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
1033      def #NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
1034    } // isCommutable
1035
1036    def #NAME#8rr_REV  : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>;
1037    def #NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>;
1038    def #NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>;
1039    def #NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>;
1040
1041    def #NAME#8rm   : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
1042    def #NAME#16rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
1043    def #NAME#32rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
1044    def #NAME#64rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
1045
1046    let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1047      // NOTE: These are order specific, we want the ri8 forms to be listed
1048      // first so that they are slightly preferred to the ri forms.
1049      def #NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>;
1050      def #NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
1051      def #NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
1052
1053      def #NAME#8ri   : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
1054      def #NAME#16ri  : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
1055      def #NAME#32ri  : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
1056      def #NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
1057    }
1058
1059    def #NAME#8mr    : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
1060    def #NAME#16mr   : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
1061    def #NAME#32mr   : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
1062    def #NAME#64mr   : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
1063
1064    // NOTE: These are order specific, we want the mi8 forms to be listed
1065    // first so that they are slightly preferred to the mi forms.
1066    def #NAME#16mi8  : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>;
1067    def #NAME#32mi8  : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
1068    def #NAME#64mi8  : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
1069
1070    def #NAME#8mi    : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>;
1071    def #NAME#16mi   : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>;
1072    def #NAME#32mi   : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>;
1073    def #NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>;
1074
1075    def #NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
1076                              "{$src, %al|AL, $src}">;
1077    def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
1078                              "{$src, %ax|AX, $src}">;
1079    def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
1080                              "{$src, %eax|EAX, $src}">;
1081    def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
1082                              "{$src, %rax|RAX, $src}">;
1083  }
1084}
1085
1086
1087defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
1088                         X86and_flag, and, 1, 0>;
1089defm OR  : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
1090                         X86or_flag, or, 1, 0>;
1091defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
1092                         X86xor_flag, xor, 1, 0>;
1093defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
1094                         X86add_flag, add, 1, 1>;
1095defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
1096                         X86sub_flag, sub, 0, 0>;
1097
1098// Arithmetic.
1099let Uses = [EFLAGS] in {
1100  defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
1101                            1, 0>;
1102  defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
1103                            0, 0>;
1104}
1105
1106defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
1107
1108
1109//===----------------------------------------------------------------------===//
1110// Semantically, test instructions are similar like AND, except they don't
1111// generate a result.  From an encoding perspective, they are very different:
1112// they don't have all the usual imm8 and REV forms, and are encoded into a
1113// different space.
1114def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
1115                         (X86cmp (and_su node:$lhs, node:$rhs), 0)>;
1116
1117let Defs = [EFLAGS] in {
1118  let isCommutable = 1 in {
1119    def TEST8rr  : BinOpRR_F<0x84, "test", Xi8 , X86testpat, MRMSrcReg>;
1120    def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat, MRMSrcReg>;
1121    def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat, MRMSrcReg>;
1122    def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat, MRMSrcReg>;
1123  } // isCommutable
1124
1125  def TEST8rm    : BinOpRM_F<0x84, "test", Xi8 , X86testpat>;
1126  def TEST16rm   : BinOpRM_F<0x84, "test", Xi16, X86testpat>;
1127  def TEST32rm   : BinOpRM_F<0x84, "test", Xi32, X86testpat>;
1128  def TEST64rm   : BinOpRM_F<0x84, "test", Xi64, X86testpat>;
1129
1130  def TEST8ri    : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
1131  def TEST16ri   : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
1132  def TEST32ri   : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
1133  def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
1134
1135  def TEST8mi    : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>;
1136  def TEST16mi   : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>;
1137  def TEST32mi   : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>;
1138  def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>;
1139
1140  def TEST8i8    : BinOpAI<0xA8, "test", Xi8 , AL,
1141                           "{$src, %al|AL, $src}">;
1142  def TEST16i16  : BinOpAI<0xA8, "test", Xi16, AX,
1143                           "{$src, %ax|AX, $src}">;
1144  def TEST32i32  : BinOpAI<0xA8, "test", Xi32, EAX,
1145                           "{$src, %eax|EAX, $src}">;
1146  def TEST64i32  : BinOpAI<0xA8, "test", Xi64, RAX,
1147                           "{$src, %rax|RAX, $src}">;
1148
1149  // When testing the result of EXTRACT_SUBREG sub_8bit_hi, make sure the
1150  // register class is constrained to GR8_NOREX.
1151  let isPseudo = 1 in
1152  def TEST8ri_NOREX : I<0, Pseudo, (outs), (ins GR8_NOREX:$src, i8imm:$mask),
1153                        "", []>;
1154}
1155
1156//===----------------------------------------------------------------------===//
1157// ANDN Instruction
1158//
1159multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
1160                    PatFrag ld_frag> {
1161  def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
1162            !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
1163            [(set RC:$dst, EFLAGS, (X86andn_flag RC:$src1, RC:$src2))]>;
1164  def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
1165            !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
1166            [(set RC:$dst, EFLAGS,
1167             (X86andn_flag RC:$src1, (ld_frag addr:$src2)))]>;
1168}
1169
1170let Predicates = [HasBMI], Defs = [EFLAGS] in {
1171  defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8, VEX_4V;
1172  defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8, VEX_4V, VEX_W;
1173}
1174