• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2007 Atheros Corporation. All rights reserved.
3  *
4  * Derived from Intel e1000 driver
5  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6  *
7  * Modified for gPXE, October 2009 by Joshua Oreman <oremanj@rwcr.net>.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  */
23 
24 FILE_LICENCE ( GPL2_OR_LATER );
25 
26 #include "atl1e.h"
27 
28 /* User-tweakable parameters: */
29 #define TX_DESC_COUNT	32	/* TX descriptors, minimum 32 */
30 #define RX_MEM_SIZE	8192	/* RX area size, minimum 8kb */
31 #define MAX_FRAME_SIZE	1500	/* Maximum MTU supported, minimum 1500 */
32 
33 /* Arcane parameters: */
34 #define PREAMBLE_LEN	7
35 #define RX_JUMBO_THRESH	((MAX_FRAME_SIZE + ETH_HLEN + \
36 			  VLAN_HLEN + ETH_FCS_LEN + 7) >> 3)
37 #define IMT_VAL		100	/* interrupt moderator timer, us */
38 #define ICT_VAL		50000	/* interrupt clear timer, us */
39 #define SMB_TIMER	200000
40 #define RRD_THRESH	1	/* packets to queue before interrupt */
41 #define TPD_BURST	5
42 #define TPD_THRESH	(TX_DESC_COUNT / 2)
43 #define RX_COUNT_DOWN	4
44 #define TX_COUNT_DOWN	(IMT_VAL * 4 / 3)
45 #define DMAR_DLY_CNT	15
46 #define DMAW_DLY_CNT	4
47 
48 #define PCI_DEVICE_ID_ATTANSIC_L1E      0x1026
49 
50 /*
51  * atl1e_pci_tbl - PCI Device ID Table
52  *
53  * Wildcard entries (PCI_ANY_ID) should come last
54  * Last entry must be all 0s
55  *
56  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
57  *   Class, Class Mask, private data (not used) }
58  */
59 static struct pci_device_id atl1e_pci_tbl[] = {
60 	PCI_ROM(0x1969, 0x1026, "atl1e_26", "Attansic L1E 0x1026", 0),
61 	PCI_ROM(0x1969, 0x1066, "atl1e_66", "Attansic L1E 0x1066", 0),
62 };
63 
64 static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter);
65 
66 static const u16
67 atl1e_rx_page_vld_regs[AT_PAGE_NUM_PER_QUEUE] =
68 {
69 	REG_HOST_RXF0_PAGE0_VLD, REG_HOST_RXF0_PAGE1_VLD
70 };
71 
72 static const u16
73 atl1e_rx_page_lo_addr_regs[AT_PAGE_NUM_PER_QUEUE] =
74 {
75 	REG_HOST_RXF0_PAGE0_LO, REG_HOST_RXF0_PAGE1_LO
76 };
77 
78 static const u16
79 atl1e_rx_page_write_offset_regs[AT_PAGE_NUM_PER_QUEUE] =
80 {
81 	REG_HOST_RXF0_MB0_LO,  REG_HOST_RXF0_MB1_LO
82 };
83 
84 static const u16 atl1e_pay_load_size[] = {
85 	128, 256, 512, 1024, 2048, 4096,
86 };
87 
88 /*
89  * atl1e_irq_enable - Enable default interrupt generation settings
90  * @adapter: board private structure
91  */
atl1e_irq_enable(struct atl1e_adapter * adapter)92 static inline void atl1e_irq_enable(struct atl1e_adapter *adapter)
93 {
94 	AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
95 	AT_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
96 	AT_WRITE_FLUSH(&adapter->hw);
97 }
98 
99 /*
100  * atl1e_irq_disable - Mask off interrupt generation on the NIC
101  * @adapter: board private structure
102  */
atl1e_irq_disable(struct atl1e_adapter * adapter)103 static inline void atl1e_irq_disable(struct atl1e_adapter *adapter)
104 {
105 	AT_WRITE_REG(&adapter->hw, REG_IMR, 0);
106 	AT_WRITE_FLUSH(&adapter->hw);
107 }
108 
109 /*
110  * atl1e_irq_reset - reset interrupt confiure on the NIC
111  * @adapter: board private structure
112  */
atl1e_irq_reset(struct atl1e_adapter * adapter)113 static inline void atl1e_irq_reset(struct atl1e_adapter *adapter)
114 {
115 	AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
116 	AT_WRITE_REG(&adapter->hw, REG_IMR, 0);
117 	AT_WRITE_FLUSH(&adapter->hw);
118 }
119 
atl1e_reset(struct atl1e_adapter * adapter)120 static void atl1e_reset(struct atl1e_adapter *adapter)
121 {
122 	atl1e_down(adapter);
123 	atl1e_up(adapter);
124 }
125 
atl1e_check_link(struct atl1e_adapter * adapter)126 static int atl1e_check_link(struct atl1e_adapter *adapter)
127 {
128 	struct atl1e_hw *hw = &adapter->hw;
129 	struct net_device *netdev = adapter->netdev;
130 	int err = 0;
131 	u16 speed, duplex, phy_data;
132 
133 	/* MII_BMSR must read twise */
134 	atl1e_read_phy_reg(hw, MII_BMSR, &phy_data);
135 	atl1e_read_phy_reg(hw, MII_BMSR, &phy_data);
136 
137 	if ((phy_data & BMSR_LSTATUS) == 0) {
138 		/* link down */
139 		if (netdev_link_ok(netdev)) { /* old link state: Up */
140 			u32 value;
141 			/* disable rx */
142 			value = AT_READ_REG(hw, REG_MAC_CTRL);
143 			value &= ~MAC_CTRL_RX_EN;
144 			AT_WRITE_REG(hw, REG_MAC_CTRL, value);
145 			adapter->link_speed = SPEED_0;
146 
147 			DBG("atl1e: %s link is down\n", netdev->name);
148 			netdev_link_down(netdev);
149 		}
150 	} else {
151 		/* Link Up */
152 		err = atl1e_get_speed_and_duplex(hw, &speed, &duplex);
153 		if (err)
154 			return err;
155 
156 		/* link result is our setting */
157 		if (adapter->link_speed != speed ||
158 		    adapter->link_duplex != duplex) {
159 			adapter->link_speed  = speed;
160 			adapter->link_duplex = duplex;
161 			atl1e_setup_mac_ctrl(adapter);
162 
163 			DBG("atl1e: %s link is up, %d Mbps, %s duplex\n",
164 			    netdev->name, adapter->link_speed,
165 			    adapter->link_duplex == FULL_DUPLEX ?
166 			    "full" : "half");
167 			netdev_link_up(netdev);
168 		}
169 	}
170 	return 0;
171 }
172 
atl1e_mdio_read(struct net_device * netdev,int phy_id __unused,int reg_num)173 static int atl1e_mdio_read(struct net_device *netdev, int phy_id __unused,
174 			   int reg_num)
175 {
176 	struct atl1e_adapter *adapter = netdev_priv(netdev);
177 	u16 result;
178 
179 	atl1e_read_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, &result);
180 	return result;
181 }
182 
atl1e_mdio_write(struct net_device * netdev,int phy_id __unused,int reg_num,int val)183 static void atl1e_mdio_write(struct net_device *netdev, int phy_id __unused,
184 			     int reg_num, int val)
185 {
186 	struct atl1e_adapter *adapter = netdev_priv(netdev);
187 
188 	atl1e_write_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, val);
189 }
190 
atl1e_setup_pcicmd(struct pci_device * pdev)191 static void atl1e_setup_pcicmd(struct pci_device *pdev)
192 {
193 	u16 cmd;
194 
195 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
196 	cmd |=  (PCI_COMMAND_MEM | PCI_COMMAND_MASTER);
197 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
198 
199 	/*
200 	 * some motherboards BIOS(PXE/EFI) driver may set PME
201 	 * while they transfer control to OS (Windows/Linux)
202 	 * so we should clear this bit before NIC work normally
203 	 */
204 	pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
205 	mdelay(1);
206 }
207 
208 /*
209  * atl1e_sw_init - Initialize general software structures (struct atl1e_adapter)
210  * @adapter: board private structure to initialize
211  *
212  * atl1e_sw_init initializes the Adapter private data structure.
213  * Fields are initialized based on PCI device information and
214  * OS network device settings (MTU size).
215  */
atl1e_sw_init(struct atl1e_adapter * adapter)216 static int atl1e_sw_init(struct atl1e_adapter *adapter)
217 {
218 	struct atl1e_hw *hw = &adapter->hw;
219 	struct pci_device *pdev = adapter->pdev;
220 	u32 phy_status_data = 0;
221 	u8 rev_id = 0;
222 
223 	adapter->link_speed = SPEED_0;   /* hardware init */
224 	adapter->link_duplex = FULL_DUPLEX;
225 
226 	/* PCI config space info */
227 	pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
228 
229 	phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS);
230 	/* nic type */
231 	if (rev_id >= 0xF0) {
232 		hw->nic_type = athr_l2e_revB;
233 	} else {
234 		if (phy_status_data & PHY_STATUS_100M)
235 			hw->nic_type = athr_l1e;
236 		else
237 			hw->nic_type = athr_l2e_revA;
238 	}
239 
240 	phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS);
241 
242 	hw->emi_ca = !!(phy_status_data & PHY_STATUS_EMI_CA);
243 
244 	hw->phy_configured = 0;
245 
246 	/* need confirm */
247 
248 	hw->dmar_block = atl1e_dma_req_1024;
249 	hw->dmaw_block = atl1e_dma_req_1024;
250 
251 	netdev_link_down(adapter->netdev);
252 
253 	return 0;
254 }
255 
256 /*
257  * atl1e_clean_tx_ring - free all Tx buffers for device close
258  * @adapter: board private structure
259  */
atl1e_clean_tx_ring(struct atl1e_adapter * adapter)260 static void atl1e_clean_tx_ring(struct atl1e_adapter *adapter)
261 {
262 	struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *)
263 				&adapter->tx_ring;
264 	struct atl1e_tx_buffer *tx_buffer = NULL;
265 	u16 index, ring_count = tx_ring->count;
266 
267 	if (tx_ring->desc == NULL || tx_ring->tx_buffer == NULL)
268 		return;
269 
270 	for (index = 0; index < ring_count; index++) {
271 		tx_buffer = &tx_ring->tx_buffer[index];
272 		if (tx_buffer->iob) {
273 			netdev_tx_complete(adapter->netdev, tx_buffer->iob);
274 			tx_buffer->dma = 0;
275 			tx_buffer->iob = NULL;
276 		}
277 	}
278 
279 	/* Zero out Tx-buffers */
280 	memset(tx_ring->desc, 0, sizeof(struct atl1e_tpd_desc) *
281 	       ring_count);
282 	memset(tx_ring->tx_buffer, 0, sizeof(struct atl1e_tx_buffer) *
283 	       ring_count);
284 }
285 
286 /*
287  * atl1e_clean_rx_ring - Free rx-reservation iobs
288  * @adapter: board private structure
289  */
atl1e_clean_rx_ring(struct atl1e_adapter * adapter)290 static void atl1e_clean_rx_ring(struct atl1e_adapter *adapter)
291 {
292 	struct atl1e_rx_ring *rx_ring =
293 		(struct atl1e_rx_ring *)&adapter->rx_ring;
294 	struct atl1e_rx_page_desc *rx_page_desc = &rx_ring->rx_page_desc;
295 	u16 j;
296 
297 	if (adapter->ring_vir_addr == NULL)
298 		return;
299 
300 	/* Zero out the descriptor ring */
301 	for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
302 		if (rx_page_desc->rx_page[j].addr != NULL) {
303 			memset(rx_page_desc->rx_page[j].addr, 0,
304 			       rx_ring->real_page_size);
305 		}
306 	}
307 }
308 
atl1e_cal_ring_size(struct atl1e_adapter * adapter,u32 * ring_size)309 static void atl1e_cal_ring_size(struct atl1e_adapter *adapter, u32 *ring_size)
310 {
311 	*ring_size = ((u32)(adapter->tx_ring.count *
312 		     sizeof(struct atl1e_tpd_desc) + 7
313 			/* tx ring, qword align */
314 		     + adapter->rx_ring.real_page_size * AT_PAGE_NUM_PER_QUEUE
315 		     + 31
316 			/* rx ring,  32 bytes align */
317 		     + (1 + AT_PAGE_NUM_PER_QUEUE) *
318 			sizeof(u32) + 3));
319 			/* tx, rx cmd, dword align   */
320 }
321 
atl1e_init_ring_resources(struct atl1e_adapter * adapter)322 static void atl1e_init_ring_resources(struct atl1e_adapter *adapter)
323 {
324 	struct atl1e_tx_ring *tx_ring = NULL;
325 	struct atl1e_rx_ring *rx_ring = NULL;
326 
327 	tx_ring = &adapter->tx_ring;
328 	rx_ring = &adapter->rx_ring;
329 
330 	rx_ring->real_page_size = adapter->rx_ring.page_size
331 				 + MAX_FRAME_SIZE
332 				 + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN;
333 	rx_ring->real_page_size = (rx_ring->real_page_size + 31) & ~31;
334 	atl1e_cal_ring_size(adapter, &adapter->ring_size);
335 
336 	adapter->ring_vir_addr = NULL;
337 	adapter->rx_ring.desc = NULL;
338 
339 	return;
340 }
341 
342 /*
343  * Read / Write Ptr Initialize:
344  */
atl1e_init_ring_ptrs(struct atl1e_adapter * adapter)345 static void atl1e_init_ring_ptrs(struct atl1e_adapter *adapter)
346 {
347 	struct atl1e_tx_ring *tx_ring = NULL;
348 	struct atl1e_rx_ring *rx_ring = NULL;
349 	struct atl1e_rx_page_desc *rx_page_desc = NULL;
350 	int j;
351 
352 	tx_ring = &adapter->tx_ring;
353 	rx_ring = &adapter->rx_ring;
354 	rx_page_desc = &rx_ring->rx_page_desc;
355 
356 	tx_ring->next_to_use = 0;
357 	tx_ring->next_to_clean = 0;
358 
359 	rx_page_desc->rx_using  = 0;
360 	rx_page_desc->rx_nxseq = 0;
361 	for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
362 		*rx_page_desc->rx_page[j].write_offset_addr = 0;
363 		rx_page_desc->rx_page[j].read_offset = 0;
364 	}
365 }
366 
367 /*
368  * atl1e_free_ring_resources - Free Tx / RX descriptor Resources
369  * @adapter: board private structure
370  *
371  * Free all transmit software resources
372  */
atl1e_free_ring_resources(struct atl1e_adapter * adapter)373 static void atl1e_free_ring_resources(struct atl1e_adapter *adapter)
374 {
375 	atl1e_clean_tx_ring(adapter);
376 	atl1e_clean_rx_ring(adapter);
377 
378 	if (adapter->ring_vir_addr) {
379 		free_dma(adapter->ring_vir_addr, adapter->ring_size);
380 		adapter->ring_vir_addr = NULL;
381 		adapter->ring_dma = 0;
382 	}
383 
384 	if (adapter->tx_ring.tx_buffer) {
385 		free(adapter->tx_ring.tx_buffer);
386 		adapter->tx_ring.tx_buffer = NULL;
387 	}
388 }
389 
390 /*
391  * atl1e_setup_mem_resources - allocate Tx / RX descriptor resources
392  * @adapter: board private structure
393  *
394  * Return 0 on success, negative on failure
395  */
atl1e_setup_ring_resources(struct atl1e_adapter * adapter)396 static int atl1e_setup_ring_resources(struct atl1e_adapter *adapter)
397 {
398 	struct atl1e_tx_ring *tx_ring;
399 	struct atl1e_rx_ring *rx_ring;
400 	struct atl1e_rx_page_desc  *rx_page_desc;
401 	int size, j;
402 	u32 offset = 0;
403 	int err = 0;
404 
405 	if (adapter->ring_vir_addr != NULL)
406 		return 0; /* alloced already */
407 
408 	tx_ring = &adapter->tx_ring;
409 	rx_ring = &adapter->rx_ring;
410 
411 	/* real ring DMA buffer */
412 
413 	size = adapter->ring_size;
414 	adapter->ring_vir_addr = malloc_dma(adapter->ring_size, 32);
415 
416 	if (adapter->ring_vir_addr == NULL) {
417 		DBG("atl1e: out of memory allocating %d bytes for %s ring\n",
418 		    adapter->ring_size, adapter->netdev->name);
419 		return -ENOMEM;
420 	}
421 
422 	adapter->ring_dma = virt_to_bus(adapter->ring_vir_addr);
423 	memset(adapter->ring_vir_addr, 0, adapter->ring_size);
424 
425 	rx_page_desc = &rx_ring->rx_page_desc;
426 
427 	/* Init TPD Ring */
428 	tx_ring->dma = (adapter->ring_dma + 7) & ~7;
429 	offset = tx_ring->dma - adapter->ring_dma;
430 	tx_ring->desc = (struct atl1e_tpd_desc *)
431 			(adapter->ring_vir_addr + offset);
432 	size = sizeof(struct atl1e_tx_buffer) * (tx_ring->count);
433 	tx_ring->tx_buffer = zalloc(size);
434 	if (tx_ring->tx_buffer == NULL) {
435 		DBG("atl1e: out of memory allocating %d bytes for %s txbuf\n",
436 		    size, adapter->netdev->name);
437 		err = -ENOMEM;
438 		goto failed;
439 	}
440 
441 	/* Init RXF-Pages */
442 	offset += (sizeof(struct atl1e_tpd_desc) * tx_ring->count);
443 	offset = (offset + 31) & ~31;
444 
445 	for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
446 		rx_page_desc->rx_page[j].dma =
447 			adapter->ring_dma + offset;
448 		rx_page_desc->rx_page[j].addr =
449 			adapter->ring_vir_addr + offset;
450 		offset += rx_ring->real_page_size;
451 	}
452 
453 	/* Init CMB dma address */
454 	tx_ring->cmb_dma = adapter->ring_dma + offset;
455 	tx_ring->cmb     = (u32 *)(adapter->ring_vir_addr + offset);
456 	offset += sizeof(u32);
457 
458 	for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
459 		rx_page_desc->rx_page[j].write_offset_dma =
460 			adapter->ring_dma + offset;
461 		rx_page_desc->rx_page[j].write_offset_addr =
462 			adapter->ring_vir_addr + offset;
463 		offset += sizeof(u32);
464 	}
465 
466 	if (offset > adapter->ring_size) {
467 		DBG("atl1e: ring miscalculation! need %d > %d bytes\n",
468 		    offset, adapter->ring_size);
469 		err = -EINVAL;
470 		goto failed;
471 	}
472 
473 	return 0;
474 failed:
475 	atl1e_free_ring_resources(adapter);
476 	return err;
477 }
478 
atl1e_configure_des_ring(const struct atl1e_adapter * adapter)479 static inline void atl1e_configure_des_ring(const struct atl1e_adapter *adapter)
480 {
481 
482 	struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw;
483 	struct atl1e_rx_ring *rx_ring =
484 			(struct atl1e_rx_ring *)&adapter->rx_ring;
485 	struct atl1e_tx_ring *tx_ring =
486 			(struct atl1e_tx_ring *)&adapter->tx_ring;
487 	struct atl1e_rx_page_desc *rx_page_desc = NULL;
488 	int j;
489 
490 	AT_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI, 0);
491 	AT_WRITE_REG(hw, REG_TPD_BASE_ADDR_LO, tx_ring->dma);
492 	AT_WRITE_REG(hw, REG_TPD_RING_SIZE, (u16)(tx_ring->count));
493 	AT_WRITE_REG(hw, REG_HOST_TX_CMB_LO, tx_ring->cmb_dma);
494 
495 	rx_page_desc = &rx_ring->rx_page_desc;
496 
497 	/* RXF Page Physical address / Page Length */
498 	AT_WRITE_REG(hw, REG_RXF0_BASE_ADDR_HI, 0);
499 
500 	for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
501 		u32 page_phy_addr;
502 		u32 offset_phy_addr;
503 
504 		page_phy_addr = rx_page_desc->rx_page[j].dma;
505 		offset_phy_addr = rx_page_desc->rx_page[j].write_offset_dma;
506 
507 		AT_WRITE_REG(hw, atl1e_rx_page_lo_addr_regs[j], page_phy_addr);
508 		AT_WRITE_REG(hw, atl1e_rx_page_write_offset_regs[j],
509 			     offset_phy_addr);
510 		AT_WRITE_REGB(hw, atl1e_rx_page_vld_regs[j], 1);
511 	}
512 
513 	/* Page Length */
514 	AT_WRITE_REG(hw, REG_HOST_RXFPAGE_SIZE, rx_ring->page_size);
515 	/* Load all of base address above */
516 	AT_WRITE_REG(hw, REG_LOAD_PTR, 1);
517 
518 	return;
519 }
520 
atl1e_configure_tx(struct atl1e_adapter * adapter)521 static inline void atl1e_configure_tx(struct atl1e_adapter *adapter)
522 {
523 	struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw;
524 	u32 dev_ctrl_data = 0;
525 	u32 max_pay_load = 0;
526 	u32 jumbo_thresh = 0;
527 	u32 extra_size = 0;     /* Jumbo frame threshold in QWORD unit */
528 
529 	/* configure TXQ param */
530 	if (hw->nic_type != athr_l2e_revB) {
531 		extra_size = ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN;
532 		jumbo_thresh = MAX_FRAME_SIZE + extra_size;
533 		AT_WRITE_REG(hw, REG_TX_EARLY_TH, (jumbo_thresh + 7) >> 3);
534 	}
535 
536 	dev_ctrl_data = AT_READ_REG(hw, REG_DEVICE_CTRL);
537 
538 	max_pay_load  = ((dev_ctrl_data >> DEVICE_CTRL_MAX_PAYLOAD_SHIFT)) &
539 			DEVICE_CTRL_MAX_PAYLOAD_MASK;
540 	if (max_pay_load < hw->dmaw_block)
541 		hw->dmaw_block = max_pay_load;
542 
543 	max_pay_load  = ((dev_ctrl_data >> DEVICE_CTRL_MAX_RREQ_SZ_SHIFT)) &
544 			DEVICE_CTRL_MAX_RREQ_SZ_MASK;
545 	if (max_pay_load < hw->dmar_block)
546 		hw->dmar_block = max_pay_load;
547 
548 	if (hw->nic_type != athr_l2e_revB)
549 		AT_WRITE_REGW(hw, REG_TXQ_CTRL + 2,
550 			      atl1e_pay_load_size[hw->dmar_block]);
551 	/* enable TXQ */
552 	AT_WRITE_REGW(hw, REG_TXQ_CTRL,
553 			((TPD_BURST & TXQ_CTRL_NUM_TPD_BURST_MASK)
554 			 << TXQ_CTRL_NUM_TPD_BURST_SHIFT)
555 			| TXQ_CTRL_ENH_MODE | TXQ_CTRL_EN);
556 	return;
557 }
558 
atl1e_configure_rx(struct atl1e_adapter * adapter)559 static inline void atl1e_configure_rx(struct atl1e_adapter *adapter)
560 {
561 	struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw;
562 	u32 rxf_len  = 0;
563 	u32 rxf_low  = 0;
564 	u32 rxf_high = 0;
565 	u32 rxf_thresh_data = 0;
566 	u32 rxq_ctrl_data = 0;
567 
568 	if (hw->nic_type != athr_l2e_revB) {
569 		AT_WRITE_REGW(hw, REG_RXQ_JMBOSZ_RRDTIM,
570 			      (u16)((RX_JUMBO_THRESH & RXQ_JMBOSZ_TH_MASK) <<
571 			      RXQ_JMBOSZ_TH_SHIFT |
572 			      (1 & RXQ_JMBO_LKAH_MASK) <<
573 			      RXQ_JMBO_LKAH_SHIFT));
574 
575 		rxf_len  = AT_READ_REG(hw, REG_SRAM_RXF_LEN);
576 		rxf_high = rxf_len * 4 / 5;
577 		rxf_low  = rxf_len / 5;
578 		rxf_thresh_data = ((rxf_high  & RXQ_RXF_PAUSE_TH_HI_MASK)
579 				  << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
580 				  ((rxf_low & RXQ_RXF_PAUSE_TH_LO_MASK)
581 				  << RXQ_RXF_PAUSE_TH_LO_SHIFT);
582 
583 		AT_WRITE_REG(hw, REG_RXQ_RXF_PAUSE_THRESH, rxf_thresh_data);
584 	}
585 
586 	/* RRS */
587 	AT_WRITE_REG(hw, REG_IDT_TABLE, 0);
588 	AT_WRITE_REG(hw, REG_BASE_CPU_NUMBER, 0);
589 
590 	rxq_ctrl_data |= RXQ_CTRL_PBA_ALIGN_32 |
591 			 RXQ_CTRL_CUT_THRU_EN | RXQ_CTRL_EN;
592 
593 	AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data);
594 	return;
595 }
596 
atl1e_configure_dma(struct atl1e_adapter * adapter)597 static inline void atl1e_configure_dma(struct atl1e_adapter *adapter)
598 {
599 	struct atl1e_hw *hw = &adapter->hw;
600 	u32 dma_ctrl_data = 0;
601 
602 	dma_ctrl_data = DMA_CTRL_RXCMB_EN;
603 	dma_ctrl_data |= (((u32)hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
604 		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT;
605 	dma_ctrl_data |= (((u32)hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
606 		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT;
607 	dma_ctrl_data |= DMA_CTRL_DMAR_REQ_PRI | DMA_CTRL_DMAR_OUT_ORDER;
608 	dma_ctrl_data |= (DMAR_DLY_CNT & DMA_CTRL_DMAR_DLY_CNT_MASK)
609 		<< DMA_CTRL_DMAR_DLY_CNT_SHIFT;
610 	dma_ctrl_data |= (DMAW_DLY_CNT & DMA_CTRL_DMAW_DLY_CNT_MASK)
611 		<< DMA_CTRL_DMAW_DLY_CNT_SHIFT;
612 
613 	AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data);
614 	return;
615 }
616 
atl1e_setup_mac_ctrl(struct atl1e_adapter * adapter)617 static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter)
618 {
619 	u32 value;
620 	struct atl1e_hw *hw = &adapter->hw;
621 
622 	/* Config MAC CTRL Register */
623 	value = MAC_CTRL_TX_EN |
624 		MAC_CTRL_RX_EN ;
625 
626 	if (FULL_DUPLEX == adapter->link_duplex)
627 		value |= MAC_CTRL_DUPLX;
628 
629 	value |= ((u32)((SPEED_1000 == adapter->link_speed) ?
630 			  MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
631 			  MAC_CTRL_SPEED_SHIFT);
632 	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
633 
634 	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
635 	value |= ((PREAMBLE_LEN & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
636 
637 	value |= MAC_CTRL_BC_EN;
638 	value |= MAC_CTRL_MC_ALL_EN;
639 
640 	AT_WRITE_REG(hw, REG_MAC_CTRL, value);
641 }
642 
643 /*
644  * atl1e_configure - Configure Transmit&Receive Unit after Reset
645  * @adapter: board private structure
646  *
647  * Configure the Tx /Rx unit of the MAC after a reset.
648  */
atl1e_configure(struct atl1e_adapter * adapter)649 static int atl1e_configure(struct atl1e_adapter *adapter)
650 {
651 	struct atl1e_hw *hw = &adapter->hw;
652 	u32 intr_status_data = 0;
653 
654 	/* clear interrupt status */
655 	AT_WRITE_REG(hw, REG_ISR, ~0);
656 
657 	/* 1. set MAC Address */
658 	atl1e_hw_set_mac_addr(hw);
659 
660 	/* 2. Init the Multicast HASH table (clear) */
661 	AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
662 	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
663 
664 	/* 3. Clear any WOL status */
665 	AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
666 
667 	/* 4. Descripter Ring BaseMem/Length/Read ptr/Write ptr
668 	 *    TPD Ring/SMB/RXF0 Page CMBs, they use the same
669 	 *    High 32bits memory */
670 	atl1e_configure_des_ring(adapter);
671 
672 	/* 5. set Interrupt Moderator Timer */
673 	AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, IMT_VAL);
674 	AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER2_INIT, IMT_VAL);
675 	AT_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_LED_MODE |
676 			MASTER_CTRL_ITIMER_EN | MASTER_CTRL_ITIMER2_EN);
677 
678 	/* 6. rx/tx threshold to trig interrupt */
679 	AT_WRITE_REGW(hw, REG_TRIG_RRD_THRESH, RRD_THRESH);
680 	AT_WRITE_REGW(hw, REG_TRIG_TPD_THRESH, TPD_THRESH);
681 	AT_WRITE_REGW(hw, REG_TRIG_RXTIMER, RX_COUNT_DOWN);
682 	AT_WRITE_REGW(hw, REG_TRIG_TXTIMER, TX_COUNT_DOWN);
683 
684 	/* 7. set Interrupt Clear Timer */
685 	AT_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, ICT_VAL);
686 
687 	/* 8. set MTU */
688 	AT_WRITE_REG(hw, REG_MTU, MAX_FRAME_SIZE + ETH_HLEN +
689 			VLAN_HLEN + ETH_FCS_LEN);
690 
691 	/* 9. config TXQ early tx threshold */
692 	atl1e_configure_tx(adapter);
693 
694 	/* 10. config RXQ */
695 	atl1e_configure_rx(adapter);
696 
697 	/* 11. config  DMA Engine */
698 	atl1e_configure_dma(adapter);
699 
700 	/* 12. smb timer to trig interrupt */
701 	AT_WRITE_REG(hw, REG_SMB_STAT_TIMER, SMB_TIMER);
702 
703 	intr_status_data = AT_READ_REG(hw, REG_ISR);
704 	if ((intr_status_data & ISR_PHY_LINKDOWN) != 0) {
705 		DBG("atl1e: configure failed, PCIE phy link down\n");
706 		return -1;
707 	}
708 
709 	AT_WRITE_REG(hw, REG_ISR, 0x7fffffff);
710 	return 0;
711 }
712 
atl1e_clear_phy_int(struct atl1e_adapter * adapter)713 static inline void atl1e_clear_phy_int(struct atl1e_adapter *adapter)
714 {
715 	u16 phy_data;
716 
717 	atl1e_read_phy_reg(&adapter->hw, MII_INT_STATUS, &phy_data);
718 }
719 
atl1e_clean_tx_irq(struct atl1e_adapter * adapter)720 static int atl1e_clean_tx_irq(struct atl1e_adapter *adapter)
721 {
722 	struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *)
723 					&adapter->tx_ring;
724 	struct atl1e_tx_buffer *tx_buffer = NULL;
725 	u16 hw_next_to_clean = AT_READ_REGW(&adapter->hw, REG_TPD_CONS_IDX);
726 	u16 next_to_clean = tx_ring->next_to_clean;
727 
728 	while (next_to_clean != hw_next_to_clean) {
729 		tx_buffer = &tx_ring->tx_buffer[next_to_clean];
730 
731 		tx_buffer->dma = 0;
732 		if (tx_buffer->iob) {
733 			netdev_tx_complete(adapter->netdev, tx_buffer->iob);
734 			tx_buffer->iob = NULL;
735 		}
736 
737 		if (++next_to_clean == tx_ring->count)
738 			next_to_clean = 0;
739 	}
740 
741 	tx_ring->next_to_clean = next_to_clean;
742 
743 	return 1;
744 }
745 
atl1e_get_rx_page(struct atl1e_adapter * adapter)746 static struct atl1e_rx_page *atl1e_get_rx_page(struct atl1e_adapter *adapter)
747 {
748 	struct atl1e_rx_page_desc *rx_page_desc =
749 		(struct atl1e_rx_page_desc *) &adapter->rx_ring.rx_page_desc;
750 	u8 rx_using = rx_page_desc->rx_using;
751 
752 	return (struct atl1e_rx_page *)&(rx_page_desc->rx_page[rx_using]);
753 }
754 
atl1e_clean_rx_irq(struct atl1e_adapter * adapter)755 static void atl1e_clean_rx_irq(struct atl1e_adapter *adapter)
756 {
757 	struct net_device *netdev  = adapter->netdev;
758 	struct atl1e_rx_ring *rx_ring = (struct atl1e_rx_ring *)
759 					 &adapter->rx_ring;
760 	struct atl1e_rx_page_desc *rx_page_desc =
761 		(struct atl1e_rx_page_desc *) &rx_ring->rx_page_desc;
762 	struct io_buffer *iob = NULL;
763 	struct atl1e_rx_page *rx_page = atl1e_get_rx_page(adapter);
764 	u32 packet_size, write_offset;
765 	struct atl1e_recv_ret_status *prrs;
766 
767 	write_offset = *(rx_page->write_offset_addr);
768 	if (rx_page->read_offset >= write_offset)
769 		return;
770 
771 	do {
772 		/* get new packet's  rrs */
773 		prrs = (struct atl1e_recv_ret_status *) (rx_page->addr +
774 							 rx_page->read_offset);
775 		/* check sequence number */
776 		if (prrs->seq_num != rx_page_desc->rx_nxseq) {
777 			DBG("atl1e %s: RX sequence number error (%d != %d)\n",
778 			    netdev->name, prrs->seq_num,
779 			    rx_page_desc->rx_nxseq);
780 			rx_page_desc->rx_nxseq++;
781 			goto fatal_err;
782 		}
783 
784 		rx_page_desc->rx_nxseq++;
785 
786 		/* error packet */
787 		if (prrs->pkt_flag & RRS_IS_ERR_FRAME) {
788 			if (prrs->err_flag & (RRS_ERR_BAD_CRC |
789 					      RRS_ERR_DRIBBLE | RRS_ERR_CODE |
790 					      RRS_ERR_TRUNC)) {
791 				/* hardware error, discard this
792 				   packet */
793 				netdev_rx_err(netdev, NULL, EIO);
794 				goto skip_pkt;
795 			}
796 		}
797 
798 		packet_size = ((prrs->word1 >> RRS_PKT_SIZE_SHIFT) &
799 			       RRS_PKT_SIZE_MASK) - ETH_FCS_LEN;
800 		iob = alloc_iob(packet_size + NET_IP_ALIGN);
801 		if (iob == NULL) {
802 			DBG("atl1e %s: dropping packet under memory pressure\n",
803 			    netdev->name);
804 			goto skip_pkt;
805 		}
806 		iob_reserve(iob, NET_IP_ALIGN);
807 		memcpy(iob->data, (u8 *)(prrs + 1), packet_size);
808 		iob_put(iob, packet_size);
809 
810 		netdev_rx(netdev, iob);
811 
812 skip_pkt:
813 		/* skip current packet whether it's ok or not. */
814 		rx_page->read_offset +=
815 			(((u32)((prrs->word1 >> RRS_PKT_SIZE_SHIFT) &
816 				RRS_PKT_SIZE_MASK) +
817 			  sizeof(struct atl1e_recv_ret_status) + 31) &
818 			 0xFFFFFFE0);
819 
820 		if (rx_page->read_offset >= rx_ring->page_size) {
821 			/* mark this page clean */
822 			u16 reg_addr;
823 			u8  rx_using;
824 
825 			rx_page->read_offset =
826 				*(rx_page->write_offset_addr) = 0;
827 			rx_using = rx_page_desc->rx_using;
828 			reg_addr =
829 				atl1e_rx_page_vld_regs[rx_using];
830 			AT_WRITE_REGB(&adapter->hw, reg_addr, 1);
831 			rx_page_desc->rx_using ^= 1;
832 			rx_page = atl1e_get_rx_page(adapter);
833 		}
834 		write_offset = *(rx_page->write_offset_addr);
835 	} while (rx_page->read_offset < write_offset);
836 
837 	return;
838 
839 fatal_err:
840 	if (!netdev_link_ok(adapter->netdev))
841 		atl1e_reset(adapter);
842 }
843 
844 /*
845  * atl1e_poll - poll for completed transmissions and received packets
846  * @netdev: network device
847  */
atl1e_poll(struct net_device * netdev)848 static void atl1e_poll(struct net_device *netdev)
849 {
850 	struct atl1e_adapter *adapter = netdev_priv(netdev);
851 	struct atl1e_hw *hw = &adapter->hw;
852 	int max_ints = 64;
853 	u32 status;
854 
855 	do {
856 		status = AT_READ_REG(hw, REG_ISR);
857 		if ((status & IMR_NORMAL_MASK) == 0)
858 			break;
859 
860 		/* link event */
861 		if (status & ISR_GPHY)
862 			atl1e_clear_phy_int(adapter);
863 		/* Ack ISR */
864 		AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
865 
866 		/* check if PCIE PHY Link down */
867 		if (status & ISR_PHY_LINKDOWN) {
868 			DBG("atl1e: PCI-E PHY link down: %x\n", status);
869 			if (netdev_link_ok(adapter->netdev)) {
870 				/* reset MAC */
871 				atl1e_irq_reset(adapter);
872 				atl1e_reset(adapter);
873 				break;
874 			}
875 		}
876 
877 		/* check if DMA read/write error */
878 		if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
879 			DBG("atl1e: PCI-E DMA RW error: %x\n", status);
880 			atl1e_irq_reset(adapter);
881 			atl1e_reset(adapter);
882 			break;
883 		}
884 
885 		/* link event */
886 		if (status & (ISR_GPHY | ISR_MANUAL)) {
887 			atl1e_check_link(adapter);
888 			break;
889 		}
890 
891 		/* transmit event */
892 		if (status & ISR_TX_EVENT)
893 			atl1e_clean_tx_irq(adapter);
894 
895 		if (status & ISR_RX_EVENT)
896 			atl1e_clean_rx_irq(adapter);
897 	} while (--max_ints > 0);
898 
899 	/* re-enable Interrupt*/
900 	AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
901 
902 	return;
903 }
904 
atl1e_tpd_avail(struct atl1e_adapter * adapter)905 static inline u16 atl1e_tpd_avail(struct atl1e_adapter *adapter)
906 {
907 	struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
908 	u16 next_to_use = 0;
909 	u16 next_to_clean = 0;
910 
911 	next_to_clean = tx_ring->next_to_clean;
912 	next_to_use   = tx_ring->next_to_use;
913 
914 	return (u16)(next_to_clean > next_to_use) ?
915 		(next_to_clean - next_to_use - 1) :
916 		(tx_ring->count + next_to_clean - next_to_use - 1);
917 }
918 
919 /*
920  * get next usable tpd
921  * Note: should call atl1e_tdp_avail to make sure
922  * there is enough tpd to use
923  */
atl1e_get_tpd(struct atl1e_adapter * adapter)924 static struct atl1e_tpd_desc *atl1e_get_tpd(struct atl1e_adapter *adapter)
925 {
926 	struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
927 	u16 next_to_use = 0;
928 
929 	next_to_use = tx_ring->next_to_use;
930 	if (++tx_ring->next_to_use == tx_ring->count)
931 		tx_ring->next_to_use = 0;
932 
933 	memset(&tx_ring->desc[next_to_use], 0, sizeof(struct atl1e_tpd_desc));
934 	return (struct atl1e_tpd_desc *)&tx_ring->desc[next_to_use];
935 }
936 
937 static struct atl1e_tx_buffer *
atl1e_get_tx_buffer(struct atl1e_adapter * adapter,struct atl1e_tpd_desc * tpd)938 atl1e_get_tx_buffer(struct atl1e_adapter *adapter, struct atl1e_tpd_desc *tpd)
939 {
940 	struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
941 
942 	return &tx_ring->tx_buffer[tpd - tx_ring->desc];
943 }
944 
atl1e_tx_map(struct atl1e_adapter * adapter,struct io_buffer * iob,struct atl1e_tpd_desc * tpd)945 static void atl1e_tx_map(struct atl1e_adapter *adapter,
946 		      struct io_buffer *iob, struct atl1e_tpd_desc *tpd)
947 {
948 	struct atl1e_tx_buffer *tx_buffer = NULL;
949 	u16 buf_len = iob_len(iob);
950 
951 	tx_buffer = atl1e_get_tx_buffer(adapter, tpd);
952 	tx_buffer->iob = iob;
953 	tx_buffer->length = buf_len;
954 	tx_buffer->dma = virt_to_bus(iob->data);
955 	tpd->buffer_addr = cpu_to_le64(tx_buffer->dma);
956 	tpd->word2 = ((tpd->word2 & ~TPD_BUFLEN_MASK) |
957 		      ((cpu_to_le32(buf_len) & TPD_BUFLEN_MASK) <<
958 		       TPD_BUFLEN_SHIFT));
959 	tpd->word3 |= 1 << TPD_EOP_SHIFT;
960 }
961 
atl1e_tx_queue(struct atl1e_adapter * adapter,u16 count __unused,struct atl1e_tpd_desc * tpd __unused)962 static void atl1e_tx_queue(struct atl1e_adapter *adapter, u16 count __unused,
963 			   struct atl1e_tpd_desc *tpd __unused)
964 {
965 	struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
966 	wmb();
967 	AT_WRITE_REG(&adapter->hw, REG_MB_TPD_PROD_IDX, tx_ring->next_to_use);
968 }
969 
atl1e_xmit_frame(struct net_device * netdev,struct io_buffer * iob)970 static int atl1e_xmit_frame(struct net_device *netdev, struct io_buffer *iob)
971 {
972 	struct atl1e_adapter *adapter = netdev_priv(netdev);
973 	u16 tpd_req = 1;
974 	struct atl1e_tpd_desc *tpd;
975 
976 	if (!netdev_link_ok(netdev)) {
977 		return -EINVAL;
978 	}
979 
980 	if (atl1e_tpd_avail(adapter) < tpd_req) {
981 		return -EBUSY;
982 	}
983 
984 	tpd = atl1e_get_tpd(adapter);
985 
986 	atl1e_tx_map(adapter, iob, tpd);
987 	atl1e_tx_queue(adapter, tpd_req, tpd);
988 
989 	return 0;
990 }
991 
atl1e_up(struct atl1e_adapter * adapter)992 int atl1e_up(struct atl1e_adapter *adapter)
993 {
994 	struct net_device *netdev = adapter->netdev;
995 	int err = 0;
996 	u32 val;
997 
998 	/* hardware has been reset, we need to reload some things */
999 	err = atl1e_init_hw(&adapter->hw);
1000 	if (err) {
1001 		return -EIO;
1002 	}
1003 	atl1e_init_ring_ptrs(adapter);
1004 
1005 	memcpy(adapter->hw.mac_addr, netdev->ll_addr, ETH_ALEN);
1006 
1007 	if (atl1e_configure(adapter) != 0) {
1008 		return -EIO;
1009 	}
1010 
1011 	atl1e_irq_disable(adapter);
1012 
1013 	val = AT_READ_REG(&adapter->hw, REG_MASTER_CTRL);
1014 	AT_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
1015 		      val | MASTER_CTRL_MANUAL_INT);
1016 
1017 	return err;
1018 }
1019 
atl1e_irq(struct net_device * netdev,int enable)1020 void atl1e_irq(struct net_device *netdev, int enable)
1021 {
1022 	struct atl1e_adapter *adapter = netdev_priv(netdev);
1023 
1024 	if (enable)
1025 		atl1e_irq_enable(adapter);
1026 	else
1027 		atl1e_irq_disable(adapter);
1028 }
1029 
atl1e_down(struct atl1e_adapter * adapter)1030 void atl1e_down(struct atl1e_adapter *adapter)
1031 {
1032 	struct net_device *netdev = adapter->netdev;
1033 
1034 	/* reset MAC to disable all RX/TX */
1035 	atl1e_reset_hw(&adapter->hw);
1036 	mdelay(1);
1037 
1038 	netdev_link_down(netdev);
1039 	adapter->link_speed = SPEED_0;
1040 	adapter->link_duplex = -1;
1041 
1042 	atl1e_clean_tx_ring(adapter);
1043 	atl1e_clean_rx_ring(adapter);
1044 }
1045 
1046 /*
1047  * atl1e_open - Called when a network interface is made active
1048  * @netdev: network interface device structure
1049  *
1050  * Returns 0 on success, negative value on failure
1051  *
1052  * The open entry point is called when a network interface is made
1053  * active by the system (IFF_UP).  At this point all resources needed
1054  * for transmit and receive operations are allocated, the interrupt
1055  * handler is registered with the OS, the watchdog timer is started,
1056  * and the stack is notified that the interface is ready.
1057  */
atl1e_open(struct net_device * netdev)1058 static int atl1e_open(struct net_device *netdev)
1059 {
1060 	struct atl1e_adapter *adapter = netdev_priv(netdev);
1061 	int err;
1062 
1063 	/* allocate rx/tx dma buffer & descriptors */
1064 	atl1e_init_ring_resources(adapter);
1065 	err = atl1e_setup_ring_resources(adapter);
1066 	if (err)
1067 		return err;
1068 
1069 	err = atl1e_up(adapter);
1070 	if (err)
1071 		goto err_up;
1072 
1073 	return 0;
1074 
1075 err_up:
1076 	atl1e_free_ring_resources(adapter);
1077 	atl1e_reset_hw(&adapter->hw);
1078 
1079 	return err;
1080 }
1081 
1082 /*
1083  * atl1e_close - Disables a network interface
1084  * @netdev: network interface device structure
1085  *
1086  * Returns 0, this is not allowed to fail
1087  *
1088  * The close entry point is called when an interface is de-activated
1089  * by the OS.  The hardware is still under the drivers control, but
1090  * needs to be disabled.  A global MAC reset is issued to stop the
1091  * hardware, and all transmit and receive resources are freed.
1092  */
atl1e_close(struct net_device * netdev)1093 static void atl1e_close(struct net_device *netdev)
1094 {
1095 	struct atl1e_adapter *adapter = netdev_priv(netdev);
1096 
1097 	atl1e_down(adapter);
1098 	atl1e_free_ring_resources(adapter);
1099 }
1100 
1101 static struct net_device_operations atl1e_netdev_ops = {
1102 	.open		= atl1e_open,
1103 	.close		= atl1e_close,
1104 	.transmit	= atl1e_xmit_frame,
1105 	.poll		= atl1e_poll,
1106 	.irq		= atl1e_irq,
1107 };
1108 
atl1e_init_netdev(struct net_device * netdev,struct pci_device * pdev)1109 static void atl1e_init_netdev(struct net_device *netdev, struct pci_device *pdev)
1110 {
1111 	netdev_init(netdev, &atl1e_netdev_ops);
1112 
1113 	netdev->dev = &pdev->dev;
1114 	pci_set_drvdata(pdev, netdev);
1115 }
1116 
1117 /*
1118  * atl1e_probe - Device Initialization Routine
1119  * @pdev: PCI device information struct
1120  * @ent: entry in atl1e_pci_tbl
1121  *
1122  * Returns 0 on success, negative on failure
1123  *
1124  * atl1e_probe initializes an adapter identified by a pci_device structure.
1125  * The OS initialization, configuring of the adapter private structure,
1126  * and a hardware reset occur.
1127  */
atl1e_probe(struct pci_device * pdev,const struct pci_device_id * ent __unused)1128 static int atl1e_probe(struct pci_device *pdev,
1129 		       const struct pci_device_id *ent __unused)
1130 {
1131 	struct net_device *netdev;
1132 	struct atl1e_adapter *adapter = NULL;
1133 	static int cards_found;
1134 
1135 	int err = 0;
1136 
1137 	adjust_pci_device(pdev);
1138 
1139 	netdev = alloc_etherdev(sizeof(struct atl1e_adapter));
1140 	if (netdev == NULL) {
1141 		err = -ENOMEM;
1142 		DBG("atl1e: out of memory allocating net_device\n");
1143 		goto err;
1144 	}
1145 
1146 	atl1e_init_netdev(netdev, pdev);
1147 
1148 	adapter = netdev_priv(netdev);
1149 	adapter->bd_number = cards_found;
1150 	adapter->netdev = netdev;
1151 	adapter->pdev = pdev;
1152 	adapter->hw.adapter = adapter;
1153 	if (!pdev->membase) {
1154 		err = -EIO;
1155 		DBG("atl1e: cannot map device registers\n");
1156 		goto err_free_netdev;
1157 	}
1158 	adapter->hw.hw_addr = bus_to_virt(pdev->membase);
1159 
1160 	/* init mii data */
1161 	adapter->mii.dev = netdev;
1162 	adapter->mii.mdio_read  = atl1e_mdio_read;
1163 	adapter->mii.mdio_write = atl1e_mdio_write;
1164 	adapter->mii.phy_id_mask = 0x1f;
1165 	adapter->mii.reg_num_mask = MDIO_REG_ADDR_MASK;
1166 
1167 	/* get user settings */
1168 	adapter->tx_ring.count = TX_DESC_COUNT;
1169 	adapter->rx_ring.page_size = RX_MEM_SIZE;
1170 
1171 	atl1e_setup_pcicmd(pdev);
1172 
1173 	/* setup the private structure */
1174 	err = atl1e_sw_init(adapter);
1175 	if (err) {
1176 		DBG("atl1e: private data init failed\n");
1177 		goto err_free_netdev;
1178 	}
1179 
1180 	/* Init GPHY as early as possible due to power saving issue  */
1181 	atl1e_phy_init(&adapter->hw);
1182 
1183 	/* reset the controller to
1184 	 * put the device in a known good starting state */
1185 	err = atl1e_reset_hw(&adapter->hw);
1186 	if (err) {
1187 		err = -EIO;
1188 		goto err_free_netdev;
1189 	}
1190 
1191 	/* This may have been run by a zero-wait timer around
1192 	   now... unclear. */
1193 	atl1e_restart_autoneg(&adapter->hw);
1194 
1195 	if (atl1e_read_mac_addr(&adapter->hw) != 0) {
1196 		DBG("atl1e: cannot read MAC address from EEPROM\n");
1197 		err = -EIO;
1198 		goto err_free_netdev;
1199 	}
1200 
1201 	memcpy(netdev->hw_addr, adapter->hw.perm_mac_addr, ETH_ALEN);
1202 	memcpy(netdev->ll_addr, adapter->hw.mac_addr, ETH_ALEN);
1203 	DBG("atl1e: Attansic L1E Ethernet controller on %s, "
1204 	    "%02x:%02x:%02x:%02x:%02x:%02x\n", adapter->netdev->name,
1205 	    adapter->hw.mac_addr[0], adapter->hw.mac_addr[1],
1206 	    adapter->hw.mac_addr[2], adapter->hw.mac_addr[3],
1207 	    adapter->hw.mac_addr[4], adapter->hw.mac_addr[5]);
1208 
1209 	err = register_netdev(netdev);
1210 	if (err) {
1211 		DBG("atl1e: cannot register network device\n");
1212 		goto err_free_netdev;
1213 	}
1214 
1215 	netdev_link_down(netdev);
1216 
1217 	cards_found++;
1218 	return 0;
1219 
1220 err_free_netdev:
1221 	netdev_nullify(netdev);
1222 	netdev_put(netdev);
1223 err:
1224 	return err;
1225 }
1226 
1227 /*
1228  * atl1e_remove - Device Removal Routine
1229  * @pdev: PCI device information struct
1230  *
1231  * atl1e_remove is called by the PCI subsystem to alert the driver
1232  * that it should release a PCI device.  The could be caused by a
1233  * Hot-Plug event, or because the driver is going to be removed from
1234  * memory.
1235  */
atl1e_remove(struct pci_device * pdev)1236 static void atl1e_remove(struct pci_device *pdev)
1237 {
1238 	struct net_device *netdev = pci_get_drvdata(pdev);
1239 	struct atl1e_adapter *adapter = netdev_priv(netdev);
1240 
1241 	unregister_netdev(netdev);
1242 	atl1e_free_ring_resources(adapter);
1243 	atl1e_force_ps(&adapter->hw);
1244 	netdev_nullify(netdev);
1245 	netdev_put(netdev);
1246 }
1247 
1248 struct pci_driver atl1e_driver __pci_driver = {
1249 	.ids      = atl1e_pci_tbl,
1250 	.id_count = (sizeof(atl1e_pci_tbl) / sizeof(atl1e_pci_tbl[0])),
1251 	.probe    = atl1e_probe,
1252 	.remove   = atl1e_remove,
1253 };
1254 
1255 /********** Hardware-level functions: **********/
1256 
1257 /*
1258  * check_eeprom_exist
1259  * return 0 if eeprom exist
1260  */
atl1e_check_eeprom_exist(struct atl1e_hw * hw)1261 int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
1262 {
1263 	u32 value;
1264 
1265 	value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
1266 	if (value & SPI_FLASH_CTRL_EN_VPD) {
1267 		value &= ~SPI_FLASH_CTRL_EN_VPD;
1268 		AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
1269 	}
1270 	value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
1271 	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
1272 }
1273 
atl1e_hw_set_mac_addr(struct atl1e_hw * hw)1274 void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
1275 {
1276 	u32 value;
1277 	/*
1278 	 * 00-0B-6A-F6-00-DC
1279 	 * 0:  6AF600DC 1: 000B
1280 	 * low dword
1281 	 */
1282 	value = (((u32)hw->mac_addr[2]) << 24) |
1283 		(((u32)hw->mac_addr[3]) << 16) |
1284 		(((u32)hw->mac_addr[4]) << 8)  |
1285 		(((u32)hw->mac_addr[5])) ;
1286 	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
1287 	/* hight dword */
1288 	value = (((u32)hw->mac_addr[0]) << 8) |
1289 		(((u32)hw->mac_addr[1])) ;
1290 	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
1291 }
1292 
1293 /*
1294  * atl1e_get_permanent_address
1295  * return 0 if get valid mac address,
1296  */
atl1e_get_permanent_address(struct atl1e_hw * hw)1297 static int atl1e_get_permanent_address(struct atl1e_hw *hw)
1298 {
1299 	union {
1300 		u32 dword[2];
1301 		u8 byte[8];
1302 	} hw_addr;
1303 	u32 i;
1304 	u32 twsi_ctrl_data;
1305 	u8  eth_addr[ETH_ALEN];
1306 
1307 	if (!atl1e_check_eeprom_exist(hw)) {
1308 		/* eeprom exist */
1309 		twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
1310 		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
1311 		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
1312 		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
1313 			mdelay(10);
1314 			twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
1315 			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
1316 				break;
1317 		}
1318 		if (i >= AT_TWSI_EEPROM_TIMEOUT)
1319 			return AT_ERR_TIMEOUT;
1320 	}
1321 
1322 	/* maybe MAC-address is from BIOS */
1323 	hw_addr.dword[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
1324 	hw_addr.dword[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
1325 	for (i = 0; i < ETH_ALEN; i++) {
1326 		eth_addr[ETH_ALEN - i - 1] = hw_addr.byte[i];
1327 	}
1328 
1329 	memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
1330 	return 0;
1331 }
1332 
atl1e_force_ps(struct atl1e_hw * hw)1333 void atl1e_force_ps(struct atl1e_hw *hw)
1334 {
1335 	AT_WRITE_REGW(hw, REG_GPHY_CTRL,
1336 			GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
1337 }
1338 
1339 /*
1340  * Reads the adapter's MAC address from the EEPROM
1341  *
1342  * hw - Struct containing variables accessed by shared code
1343  */
atl1e_read_mac_addr(struct atl1e_hw * hw)1344 int atl1e_read_mac_addr(struct atl1e_hw *hw)
1345 {
1346 	int err = 0;
1347 
1348 	err = atl1e_get_permanent_address(hw);
1349 	if (err)
1350 		return AT_ERR_EEPROM;
1351 	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
1352 	return 0;
1353 }
1354 
1355 /*
1356  * Reads the value from a PHY register
1357  * hw - Struct containing variables accessed by shared code
1358  * reg_addr - address of the PHY register to read
1359  */
atl1e_read_phy_reg(struct atl1e_hw * hw,u16 reg_addr,u16 * phy_data)1360 int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
1361 {
1362 	u32 val;
1363 	int i;
1364 
1365 	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
1366 		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
1367 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
1368 
1369 	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
1370 
1371 	wmb();
1372 
1373 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
1374 		udelay(2);
1375 		val = AT_READ_REG(hw, REG_MDIO_CTRL);
1376 		if (!(val & (MDIO_START | MDIO_BUSY)))
1377 			break;
1378 		wmb();
1379 	}
1380 	if (!(val & (MDIO_START | MDIO_BUSY))) {
1381 		*phy_data = (u16)val;
1382 		return 0;
1383 	}
1384 
1385 	return AT_ERR_PHY;
1386 }
1387 
1388 /*
1389  * Writes a value to a PHY register
1390  * hw - Struct containing variables accessed by shared code
1391  * reg_addr - address of the PHY register to write
1392  * data - data to write to the PHY
1393  */
atl1e_write_phy_reg(struct atl1e_hw * hw,u32 reg_addr,u16 phy_data)1394 int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
1395 {
1396 	int i;
1397 	u32 val;
1398 
1399 	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
1400 	       (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
1401 	       MDIO_SUP_PREAMBLE |
1402 	       MDIO_START |
1403 	       MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
1404 
1405 	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
1406 	wmb();
1407 
1408 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
1409 		udelay(2);
1410 		val = AT_READ_REG(hw, REG_MDIO_CTRL);
1411 		if (!(val & (MDIO_START | MDIO_BUSY)))
1412 			break;
1413 		wmb();
1414 	}
1415 
1416 	if (!(val & (MDIO_START | MDIO_BUSY)))
1417 		return 0;
1418 
1419 	return AT_ERR_PHY;
1420 }
1421 
1422 /*
1423  * atl1e_init_pcie - init PCIE module
1424  */
atl1e_init_pcie(struct atl1e_hw * hw)1425 static void atl1e_init_pcie(struct atl1e_hw *hw)
1426 {
1427 	u32 value;
1428 	/* comment 2lines below to save more power when sususpend
1429 	   value = LTSSM_TEST_MODE_DEF;
1430 	   AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
1431 	 */
1432 
1433 	/* pcie flow control mode change */
1434 	value = AT_READ_REG(hw, 0x1008);
1435 	value |= 0x8000;
1436 	AT_WRITE_REG(hw, 0x1008, value);
1437 }
1438 /*
1439  * Configures PHY autoneg and flow control advertisement settings
1440  *
1441  * hw - Struct containing variables accessed by shared code
1442  */
atl1e_phy_setup_autoneg_adv(struct atl1e_hw * hw)1443 static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
1444 {
1445 	s32 ret_val;
1446 	u16 mii_autoneg_adv_reg;
1447 	u16 mii_1000t_ctrl_reg;
1448 
1449 	if (0 != hw->mii_autoneg_adv_reg)
1450 		return 0;
1451 	/* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
1452 	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
1453 	mii_1000t_ctrl_reg  = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
1454 
1455 	/*
1456 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
1457 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1458 	 * the  1000Base-T control Register (Address 9).
1459 	 */
1460 	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
1461 	mii_1000t_ctrl_reg  &= ~MII_AT001_CR_1000T_SPEED_MASK;
1462 
1463 	/* Assume auto-detect media type */
1464 	mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS   |
1465 				MII_AR_10T_FD_CAPS   |
1466 				MII_AR_100TX_HD_CAPS |
1467 				MII_AR_100TX_FD_CAPS);
1468 	if (hw->nic_type == athr_l1e) {
1469 		mii_1000t_ctrl_reg |= MII_AT001_CR_1000T_FD_CAPS;
1470 	}
1471 
1472 	/* flow control fixed to enable all */
1473 	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
1474 
1475 	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
1476 	hw->mii_1000t_ctrl_reg  = mii_1000t_ctrl_reg;
1477 
1478 	ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1479 	if (ret_val)
1480 		return ret_val;
1481 
1482 	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
1483 		ret_val = atl1e_write_phy_reg(hw, MII_AT001_CR,
1484 					   mii_1000t_ctrl_reg);
1485 		if (ret_val)
1486 			return ret_val;
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 
1493 /*
1494  * Resets the PHY and make all config validate
1495  *
1496  * hw - Struct containing variables accessed by shared code
1497  *
1498  * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
1499  */
atl1e_phy_commit(struct atl1e_hw * hw)1500 int atl1e_phy_commit(struct atl1e_hw *hw)
1501 {
1502 	int ret_val;
1503 	u16 phy_data;
1504 
1505 	phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1506 
1507 	ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
1508 	if (ret_val) {
1509 		u32 val;
1510 		int i;
1511 		/**************************************
1512 		 * pcie serdes link may be down !
1513 		 **************************************/
1514 		for (i = 0; i < 25; i++) {
1515 			mdelay(1);
1516 			val = AT_READ_REG(hw, REG_MDIO_CTRL);
1517 			if (!(val & (MDIO_START | MDIO_BUSY)))
1518 				break;
1519 		}
1520 
1521 		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
1522 			DBG("atl1e: PCI-E link down for at least 25ms\n");
1523 			return ret_val;
1524 		}
1525 
1526 		DBG("atl1e: PCI-E link up after %d ms\n", i);
1527 	}
1528 	return 0;
1529 }
1530 
atl1e_phy_init(struct atl1e_hw * hw)1531 int atl1e_phy_init(struct atl1e_hw *hw)
1532 {
1533 	s32 ret_val;
1534 	u16 phy_val;
1535 
1536 	if (hw->phy_configured) {
1537 		if (hw->re_autoneg) {
1538 			hw->re_autoneg = 0;
1539 			return atl1e_restart_autoneg(hw);
1540 		}
1541 		return 0;
1542 	}
1543 
1544 	/* RESET GPHY Core */
1545 	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
1546 	mdelay(2);
1547 	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
1548 		      GPHY_CTRL_EXT_RESET);
1549 	mdelay(2);
1550 
1551 	/* patches */
1552 	/* p1. eable hibernation mode */
1553 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
1554 	if (ret_val)
1555 		return ret_val;
1556 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
1557 	if (ret_val)
1558 		return ret_val;
1559 	/* p2. set Class A/B for all modes */
1560 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
1561 	if (ret_val)
1562 		return ret_val;
1563 	phy_val = 0x02ef;
1564 	/* remove Class AB */
1565 	/* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
1566 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
1567 	if (ret_val)
1568 		return ret_val;
1569 	/* p3. 10B ??? */
1570 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
1571 	if (ret_val)
1572 		return ret_val;
1573 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
1574 	if (ret_val)
1575 		return ret_val;
1576 	/* p4. 1000T power */
1577 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
1578 	if (ret_val)
1579 		return ret_val;
1580 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
1581 	if (ret_val)
1582 		return ret_val;
1583 
1584 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
1585 	if (ret_val)
1586 		return ret_val;
1587 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
1588 	if (ret_val)
1589 		return ret_val;
1590 
1591 	mdelay(1);
1592 
1593 	/*Enable PHY LinkChange Interrupt */
1594 	ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
1595 	if (ret_val) {
1596 		DBG("atl1e: Error enable PHY linkChange Interrupt\n");
1597 		return ret_val;
1598 	}
1599 	/* setup AutoNeg parameters */
1600 	ret_val = atl1e_phy_setup_autoneg_adv(hw);
1601 	if (ret_val) {
1602 		DBG("atl1e: Error Setting up Auto-Negotiation\n");
1603 		return ret_val;
1604 	}
1605 	/* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
1606 	DBG("atl1e: Restarting Auto-Neg");
1607 	ret_val = atl1e_phy_commit(hw);
1608 	if (ret_val) {
1609 		DBG("atl1e: Error Resetting the phy");
1610 		return ret_val;
1611 	}
1612 
1613 	hw->phy_configured = 1;
1614 
1615 	return 0;
1616 }
1617 
1618 /*
1619  * Reset the transmit and receive units; mask and clear all interrupts.
1620  * hw - Struct containing variables accessed by shared code
1621  * return : 0  or  idle status (if error)
1622  */
atl1e_reset_hw(struct atl1e_hw * hw)1623 int atl1e_reset_hw(struct atl1e_hw *hw)
1624 {
1625 	struct atl1e_adapter *adapter = hw->adapter;
1626 	struct pci_device *pdev = adapter->pdev;
1627 	int timeout = 0;
1628 	u32 idle_status_data = 0;
1629 	u16 pci_cfg_cmd_word = 0;
1630 
1631 	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
1632 	pci_read_config_word(pdev, PCI_COMMAND, &pci_cfg_cmd_word);
1633 	if ((pci_cfg_cmd_word & (PCI_COMMAND_IO | PCI_COMMAND_MEM |
1634 				 PCI_COMMAND_MASTER))
1635 			!= (PCI_COMMAND_IO | PCI_COMMAND_MEM |
1636 			    PCI_COMMAND_MASTER)) {
1637 		pci_cfg_cmd_word |= (PCI_COMMAND_IO | PCI_COMMAND_MEM |
1638 				     PCI_COMMAND_MASTER);
1639 		pci_write_config_word(pdev, PCI_COMMAND, pci_cfg_cmd_word);
1640 	}
1641 
1642 	/*
1643 	 * Issue Soft Reset to the MAC.  This will reset the chip's
1644 	 * transmit, receive, DMA.  It will not effect
1645 	 * the current PCI configuration.  The global reset bit is self-
1646 	 * clearing, and should clear within a microsecond.
1647 	 */
1648 	AT_WRITE_REG(hw, REG_MASTER_CTRL,
1649 			MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
1650 	wmb();
1651 	mdelay(1);
1652 
1653 	/* Wait at least 10ms for All module to be Idle */
1654 	for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
1655 		idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
1656 		if (idle_status_data == 0)
1657 			break;
1658 		mdelay(1);
1659 	}
1660 
1661 	if (timeout >= AT_HW_MAX_IDLE_DELAY) {
1662 		DBG("atl1e: MAC reset timeout\n");
1663 		return AT_ERR_TIMEOUT;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 
1670 /*
1671  * Performs basic configuration of the adapter.
1672  *
1673  * hw - Struct containing variables accessed by shared code
1674  * Assumes that the controller has previously been reset and is in a
1675  * post-reset uninitialized state. Initializes multicast table,
1676  * and  Calls routines to setup link
1677  * Leaves the transmit and receive units disabled and uninitialized.
1678  */
atl1e_init_hw(struct atl1e_hw * hw)1679 int atl1e_init_hw(struct atl1e_hw *hw)
1680 {
1681 	s32 ret_val = 0;
1682 
1683 	atl1e_init_pcie(hw);
1684 
1685 	/* Zero out the Multicast HASH table */
1686 	/* clear the old settings from the multicast hash table */
1687 	AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
1688 	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
1689 
1690 	ret_val = atl1e_phy_init(hw);
1691 
1692 	return ret_val;
1693 }
1694 
1695 /*
1696  * Detects the current speed and duplex settings of the hardware.
1697  *
1698  * hw - Struct containing variables accessed by shared code
1699  * speed - Speed of the connection
1700  * duplex - Duplex setting of the connection
1701  */
atl1e_get_speed_and_duplex(struct atl1e_hw * hw,u16 * speed,u16 * duplex)1702 int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
1703 {
1704 	int err;
1705 	u16 phy_data;
1706 
1707 	/* Read   PHY Specific Status Register (17) */
1708 	err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
1709 	if (err)
1710 		return err;
1711 
1712 	if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
1713 		return AT_ERR_PHY_RES;
1714 
1715 	switch (phy_data & MII_AT001_PSSR_SPEED) {
1716 	case MII_AT001_PSSR_1000MBS:
1717 		*speed = SPEED_1000;
1718 		break;
1719 	case MII_AT001_PSSR_100MBS:
1720 		*speed = SPEED_100;
1721 		break;
1722 	case MII_AT001_PSSR_10MBS:
1723 		*speed = SPEED_10;
1724 		break;
1725 	default:
1726 		return AT_ERR_PHY_SPEED;
1727 		break;
1728 	}
1729 
1730 	if (phy_data & MII_AT001_PSSR_DPLX)
1731 		*duplex = FULL_DUPLEX;
1732 	else
1733 		*duplex = HALF_DUPLEX;
1734 
1735 	return 0;
1736 }
1737 
atl1e_restart_autoneg(struct atl1e_hw * hw)1738 int atl1e_restart_autoneg(struct atl1e_hw *hw)
1739 {
1740 	int err = 0;
1741 
1742 	err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
1743 	if (err)
1744 		return err;
1745 
1746 	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
1747 		err = atl1e_write_phy_reg(hw, MII_AT001_CR,
1748 				       hw->mii_1000t_ctrl_reg);
1749 		if (err)
1750 			return err;
1751 	}
1752 
1753 	err = atl1e_write_phy_reg(hw, MII_BMCR,
1754 			MII_CR_RESET | MII_CR_AUTO_NEG_EN |
1755 			MII_CR_RESTART_AUTO_NEG);
1756 	return err;
1757 }
1758 
1759